]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/nand/nand_base.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
38b8d208 39#include <linux/nmi.h>
1da177e4
LT
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
193bd400 44#include <linux/mtd/nand_bch.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
7351d3a5 47#include <linux/io.h>
1da177e4 48#include <linux/mtd/partitions.h>
d48f62b9 49#include <linux/of.h>
1da177e4 50
41b207a7
BB
51static int nand_get_device(struct mtd_info *mtd, int new_state);
52
53static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54 struct mtd_oob_ops *ops);
1da177e4
LT
55
56/* Define default oob placement schemes for large and small page devices */
41b207a7
BB
57static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58 struct mtd_oob_region *oobregion)
59{
60 struct nand_chip *chip = mtd_to_nand(mtd);
61 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 62
41b207a7
BB
63 if (section > 1)
64 return -ERANGE;
1da177e4 65
41b207a7
BB
66 if (!section) {
67 oobregion->offset = 0;
f7f8c175
MR
68 if (mtd->oobsize == 16)
69 oobregion->length = 4;
70 else
71 oobregion->length = 3;
41b207a7 72 } else {
f7f8c175
MR
73 if (mtd->oobsize == 8)
74 return -ERANGE;
75
41b207a7
BB
76 oobregion->offset = 6;
77 oobregion->length = ecc->total - 4;
78 }
1da177e4 79
41b207a7
BB
80 return 0;
81}
82
83static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
84 struct mtd_oob_region *oobregion)
85{
86 if (section > 1)
87 return -ERANGE;
1da177e4 88
41b207a7
BB
89 if (mtd->oobsize == 16) {
90 if (section)
91 return -ERANGE;
92
93 oobregion->length = 8;
94 oobregion->offset = 8;
95 } else {
96 oobregion->length = 2;
97 if (!section)
98 oobregion->offset = 3;
99 else
100 oobregion->offset = 6;
101 }
102
103 return 0;
104}
105
106const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
107 .ecc = nand_ooblayout_ecc_sp,
108 .free = nand_ooblayout_free_sp,
81ec5364 109};
41b207a7 110EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
81ec5364 111
41b207a7
BB
112static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
113 struct mtd_oob_region *oobregion)
114{
115 struct nand_chip *chip = mtd_to_nand(mtd);
116 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 117
41b207a7
BB
118 if (section)
119 return -ERANGE;
8593fbc6 120
41b207a7
BB
121 oobregion->length = ecc->total;
122 oobregion->offset = mtd->oobsize - oobregion->length;
123
124 return 0;
125}
126
127static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
128 struct mtd_oob_region *oobregion)
129{
130 struct nand_chip *chip = mtd_to_nand(mtd);
131 struct nand_ecc_ctrl *ecc = &chip->ecc;
132
133 if (section)
134 return -ERANGE;
135
136 oobregion->length = mtd->oobsize - ecc->total - 2;
137 oobregion->offset = 2;
138
139 return 0;
140}
141
142const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
143 .ecc = nand_ooblayout_ecc_lp,
144 .free = nand_ooblayout_free_lp,
145};
146EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
d470a97c 147
6a623e07
AC
148/*
149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
150 * are placed at a fixed offset.
151 */
152static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
153 struct mtd_oob_region *oobregion)
154{
155 struct nand_chip *chip = mtd_to_nand(mtd);
156 struct nand_ecc_ctrl *ecc = &chip->ecc;
157
158 if (section)
159 return -ERANGE;
160
161 switch (mtd->oobsize) {
162 case 64:
163 oobregion->offset = 40;
164 break;
165 case 128:
166 oobregion->offset = 80;
167 break;
168 default:
169 return -EINVAL;
170 }
171
172 oobregion->length = ecc->total;
173 if (oobregion->offset + oobregion->length > mtd->oobsize)
174 return -ERANGE;
175
176 return 0;
177}
178
179static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
180 struct mtd_oob_region *oobregion)
181{
182 struct nand_chip *chip = mtd_to_nand(mtd);
183 struct nand_ecc_ctrl *ecc = &chip->ecc;
184 int ecc_offset = 0;
185
186 if (section < 0 || section > 1)
187 return -ERANGE;
188
189 switch (mtd->oobsize) {
190 case 64:
191 ecc_offset = 40;
192 break;
193 case 128:
194 ecc_offset = 80;
195 break;
196 default:
197 return -EINVAL;
198 }
199
200 if (section == 0) {
201 oobregion->offset = 2;
202 oobregion->length = ecc_offset - 2;
203 } else {
204 oobregion->offset = ecc_offset + ecc->total;
205 oobregion->length = mtd->oobsize - oobregion->offset;
206 }
207
208 return 0;
209}
210
d4ed3b90 211static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
6a623e07
AC
212 .ecc = nand_ooblayout_ecc_lp_hamming,
213 .free = nand_ooblayout_free_lp_hamming,
214};
215
6fe5a6ac
VS
216static int check_offs_len(struct mtd_info *mtd,
217 loff_t ofs, uint64_t len)
218{
862eba51 219 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
220 int ret = 0;
221
222 /* Start address must align on block boundary */
daae74ca 223 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 224 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
225 ret = -EINVAL;
226 }
227
228 /* Length must align on block boundary */
daae74ca 229 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 230 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
231 ret = -EINVAL;
232 }
233
6fe5a6ac
VS
234 return ret;
235}
236
1da177e4
LT
237/**
238 * nand_release_device - [GENERIC] release chip
8b6e50c9 239 * @mtd: MTD device structure
61b03bd7 240 *
b0bb6903 241 * Release chip lock and wake up anyone waiting on the device.
1da177e4 242 */
e0c7d767 243static void nand_release_device(struct mtd_info *mtd)
1da177e4 244{
862eba51 245 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 246
a36ed299 247 /* Release the controller and the chip */
ace4dfee
TG
248 spin_lock(&chip->controller->lock);
249 chip->controller->active = NULL;
250 chip->state = FL_READY;
251 wake_up(&chip->controller->wq);
252 spin_unlock(&chip->controller->lock);
1da177e4
LT
253}
254
255/**
256 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 257 * @mtd: MTD device structure
1da177e4 258 *
7854d3f7 259 * Default read function for 8bit buswidth
1da177e4 260 */
58dd8f2b 261static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 262{
862eba51 263 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 264 return readb(chip->IO_ADDR_R);
1da177e4
LT
265}
266
1da177e4 267/**
7854d3f7 268 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 269 * @mtd: MTD device structure
1da177e4 270 *
7854d3f7
BN
271 * Default read function for 16bit buswidth with endianness conversion.
272 *
1da177e4 273 */
58dd8f2b 274static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 275{
862eba51 276 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 277 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
278}
279
1da177e4
LT
280/**
281 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 282 * @mtd: MTD device structure
1da177e4 283 *
7854d3f7 284 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
285 */
286static u16 nand_read_word(struct mtd_info *mtd)
287{
862eba51 288 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 289 return readw(chip->IO_ADDR_R);
1da177e4
LT
290}
291
1da177e4
LT
292/**
293 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
294 * @mtd: MTD device structure
295 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
296 *
297 * Default select function for 1 chip devices.
298 */
ace4dfee 299static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 300{
862eba51 301 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
302
303 switch (chipnr) {
1da177e4 304 case -1:
ace4dfee 305 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
306 break;
307 case 0:
1da177e4
LT
308 break;
309
310 default:
311 BUG();
312 }
313}
314
05f78359
UKK
315/**
316 * nand_write_byte - [DEFAULT] write single byte to chip
317 * @mtd: MTD device structure
318 * @byte: value to write
319 *
320 * Default function to write a byte to I/O[7:0]
321 */
322static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
323{
862eba51 324 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
325
326 chip->write_buf(mtd, &byte, 1);
327}
328
329/**
330 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
331 * @mtd: MTD device structure
332 * @byte: value to write
333 *
334 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
335 */
336static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
337{
862eba51 338 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
339 uint16_t word = byte;
340
341 /*
342 * It's not entirely clear what should happen to I/O[15:8] when writing
343 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
344 *
345 * When the host supports a 16-bit bus width, only data is
346 * transferred at the 16-bit width. All address and command line
347 * transfers shall use only the lower 8-bits of the data bus. During
348 * command transfers, the host may place any value on the upper
349 * 8-bits of the data bus. During address transfers, the host shall
350 * set the upper 8-bits of the data bus to 00h.
351 *
352 * One user of the write_byte callback is nand_onfi_set_features. The
353 * four parameters are specified to be written to I/O[7:0], but this is
354 * neither an address nor a command transfer. Let's assume a 0 on the
355 * upper I/O lines is OK.
356 */
357 chip->write_buf(mtd, (uint8_t *)&word, 2);
358}
359
1da177e4
LT
360/**
361 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
362 * @mtd: MTD device structure
363 * @buf: data buffer
364 * @len: number of bytes to write
1da177e4 365 *
7854d3f7 366 * Default write function for 8bit buswidth.
1da177e4 367 */
58dd8f2b 368static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 369{
862eba51 370 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 371
76413839 372 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
373}
374
375/**
61b03bd7 376 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
377 * @mtd: MTD device structure
378 * @buf: buffer to store date
379 * @len: number of bytes to read
1da177e4 380 *
7854d3f7 381 * Default read function for 8bit buswidth.
1da177e4 382 */
58dd8f2b 383static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 384{
862eba51 385 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 386
76413839 387 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
388}
389
1da177e4
LT
390/**
391 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
392 * @mtd: MTD device structure
393 * @buf: data buffer
394 * @len: number of bytes to write
1da177e4 395 *
7854d3f7 396 * Default write function for 16bit buswidth.
1da177e4 397 */
58dd8f2b 398static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 399{
862eba51 400 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 401 u16 *p = (u16 *) buf;
61b03bd7 402
76413839 403 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
404}
405
406/**
61b03bd7 407 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
408 * @mtd: MTD device structure
409 * @buf: buffer to store date
410 * @len: number of bytes to read
1da177e4 411 *
7854d3f7 412 * Default read function for 16bit buswidth.
1da177e4 413 */
58dd8f2b 414static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 415{
862eba51 416 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 417 u16 *p = (u16 *) buf;
1da177e4 418
76413839 419 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
420}
421
1da177e4
LT
422/**
423 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
424 * @mtd: MTD device structure
425 * @ofs: offset from device start
1da177e4 426 *
61b03bd7 427 * Check, if the block is bad.
1da177e4 428 */
9f3e0429 429static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
1da177e4 430{
c120e75e 431 int page, page_end, res;
862eba51 432 struct nand_chip *chip = mtd_to_nand(mtd);
c120e75e 433 u8 bad;
1da177e4 434
5fb1549d 435 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
436 ofs += mtd->erasesize - mtd->writesize;
437
1a12f46a 438 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
c120e75e 439 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
1a12f46a 440
c120e75e
MY
441 for (; page < page_end; page++) {
442 res = chip->ecc.read_oob(mtd, chip, page);
443 if (res)
444 return res;
445
446 bad = chip->oob_poi[chip->badblockpos];
cdbec050
BN
447
448 if (likely(chip->badblockbits == 8))
449 res = bad != 0xFF;
e0b58d0a 450 else
cdbec050 451 res = hweight8(bad) < chip->badblockbits;
c120e75e
MY
452 if (res)
453 return res;
454 }
e0b58d0a 455
c120e75e 456 return 0;
1da177e4
LT
457}
458
459/**
5a0edb25 460 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
461 * @mtd: MTD device structure
462 * @ofs: offset from device start
1da177e4 463 *
8b6e50c9 464 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
465 * specific driver. It provides the details for writing a bad block marker to a
466 * block.
467 */
468static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
469{
862eba51 470 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
471 struct mtd_oob_ops ops;
472 uint8_t buf[2] = { 0, 0 };
473 int ret = 0, res, i = 0;
474
0ec56dc4 475 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
476 ops.oobbuf = buf;
477 ops.ooboffs = chip->badblockpos;
478 if (chip->options & NAND_BUSWIDTH_16) {
479 ops.ooboffs &= ~0x01;
480 ops.len = ops.ooblen = 2;
481 } else {
482 ops.len = ops.ooblen = 1;
483 }
484 ops.mode = MTD_OPS_PLACE_OOB;
485
486 /* Write to first/last page(s) if necessary */
487 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
488 ofs += mtd->erasesize - mtd->writesize;
489 do {
490 res = nand_do_write_oob(mtd, ofs, &ops);
491 if (!ret)
492 ret = res;
493
494 i++;
495 ofs += mtd->writesize;
496 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
497
498 return ret;
499}
500
501/**
502 * nand_block_markbad_lowlevel - mark a block bad
503 * @mtd: MTD device structure
504 * @ofs: offset from device start
505 *
506 * This function performs the generic NAND bad block marking steps (i.e., bad
507 * block table(s) and/or marker(s)). We only allow the hardware driver to
508 * specify how to write bad block markers to OOB (chip->block_markbad).
509 *
b32843b7 510 * We try operations in the following order:
b6f6c294 511 *
e2414f4c 512 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
513 * (2) write bad block marker to OOB area of affected block (unless flag
514 * NAND_BBT_NO_OOB_BBM is present)
515 * (3) update the BBT
b6f6c294 516 *
b32843b7 517 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 518 * procedures, and dump the error in the end.
1da177e4 519*/
5a0edb25 520static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 521{
862eba51 522 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 523 int res, ret = 0;
61b03bd7 524
b32843b7 525 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
526 struct erase_info einfo;
527
528 /* Attempt erase before marking OOB */
529 memset(&einfo, 0, sizeof(einfo));
530 einfo.mtd = mtd;
531 einfo.addr = ofs;
daae74ca 532 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 533 nand_erase_nand(mtd, &einfo, 0);
1da177e4 534
b32843b7 535 /* Write bad block marker to OOB */
6a8214aa 536 nand_get_device(mtd, FL_WRITING);
5a0edb25 537 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 538 nand_release_device(mtd);
f1a28c02 539 }
e2414f4c 540
b32843b7
BN
541 /* Mark block bad in BBT */
542 if (chip->bbt) {
543 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
544 if (!ret)
545 ret = res;
546 }
547
f1a28c02
TG
548 if (!ret)
549 mtd->ecc_stats.badblocks++;
c0b8ba7b 550
f1a28c02 551 return ret;
1da177e4
LT
552}
553
61b03bd7 554/**
1da177e4 555 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 556 * @mtd: MTD device structure
1da177e4 557 *
8b6e50c9
BN
558 * Check, if the device is write protected. The function expects, that the
559 * device is already selected.
1da177e4 560 */
e0c7d767 561static int nand_check_wp(struct mtd_info *mtd)
1da177e4 562{
862eba51 563 struct nand_chip *chip = mtd_to_nand(mtd);
93edbad6 564
8b6e50c9 565 /* Broken xD cards report WP despite being writable */
93edbad6
ML
566 if (chip->options & NAND_BROKEN_XD)
567 return 0;
568
1da177e4 569 /* Check the WP bit */
ace4dfee
TG
570 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
571 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
572}
573
8471bb73 574/**
c30e1f79 575 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
576 * @mtd: MTD device structure
577 * @ofs: offset from device start
578 *
c30e1f79 579 * Check if the block is marked as reserved.
8471bb73
EG
580 */
581static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
582{
862eba51 583 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
584
585 if (!chip->bbt)
586 return 0;
587 /* Return info from the table */
588 return nand_isreserved_bbt(mtd, ofs);
589}
590
1da177e4
LT
591/**
592 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
593 * @mtd: MTD device structure
594 * @ofs: offset from device start
8b6e50c9 595 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
596 *
597 * Check, if the block is bad. Either by reading the bad block table or
598 * calling of the scan function.
599 */
9f3e0429 600static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1da177e4 601{
862eba51 602 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 603
ace4dfee 604 if (!chip->bbt)
9f3e0429 605 return chip->block_bad(mtd, ofs);
61b03bd7 606
1da177e4 607 /* Return info from the table */
e0c7d767 608 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
609}
610
2af7c653
SK
611/**
612 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
613 * @mtd: MTD device structure
614 * @timeo: Timeout
2af7c653
SK
615 *
616 * Helper function for nand_wait_ready used when needing to wait in interrupt
617 * context.
618 */
619static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
620{
862eba51 621 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
622 int i;
623
624 /* Wait for the device to get ready */
625 for (i = 0; i < timeo; i++) {
626 if (chip->dev_ready(mtd))
627 break;
628 touch_softlockup_watchdog();
629 mdelay(1);
630 }
631}
632
b70af9be
AS
633/**
634 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
635 * @mtd: MTD device structure
636 *
637 * Wait for the ready pin after a command, and warn if a timeout occurs.
638 */
4b648b02 639void nand_wait_ready(struct mtd_info *mtd)
3b88775c 640{
862eba51 641 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 642 unsigned long timeo = 400;
3b88775c 643
2af7c653 644 if (in_interrupt() || oops_in_progress)
b70af9be 645 return panic_nand_wait_ready(mtd, timeo);
2af7c653 646
7854d3f7 647 /* Wait until command is processed or timeout occurs */
b70af9be 648 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 649 do {
ace4dfee 650 if (chip->dev_ready(mtd))
4c7e054f 651 return;
b70af9be 652 cond_resched();
61b03bd7 653 } while (time_before(jiffies, timeo));
b70af9be 654
9ebfdf5b
BN
655 if (!chip->dev_ready(mtd))
656 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
3b88775c 657}
4b648b02 658EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 659
60c70d66
RQ
660/**
661 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
662 * @mtd: MTD device structure
663 * @timeo: Timeout in ms
664 *
665 * Wait for status ready (i.e. command done) or timeout.
666 */
667static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
668{
862eba51 669 register struct nand_chip *chip = mtd_to_nand(mtd);
60c70d66
RQ
670
671 timeo = jiffies + msecs_to_jiffies(timeo);
672 do {
673 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
674 break;
675 touch_softlockup_watchdog();
676 } while (time_before(jiffies, timeo));
677};
678
1da177e4
LT
679/**
680 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
681 * @mtd: MTD device structure
682 * @command: the command to be sent
683 * @column: the column address for this command, -1 if none
684 * @page_addr: the page address for this command, -1 if none
1da177e4 685 *
8b6e50c9 686 * Send command to NAND device. This function is used for small page devices
51148f1f 687 * (512 Bytes per page).
1da177e4 688 */
7abd3ef9
TG
689static void nand_command(struct mtd_info *mtd, unsigned int command,
690 int column, int page_addr)
1da177e4 691{
862eba51 692 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 693 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 694
8b6e50c9 695 /* Write out the command to the device */
1da177e4
LT
696 if (command == NAND_CMD_SEQIN) {
697 int readcmd;
698
28318776 699 if (column >= mtd->writesize) {
1da177e4 700 /* OOB area */
28318776 701 column -= mtd->writesize;
1da177e4
LT
702 readcmd = NAND_CMD_READOOB;
703 } else if (column < 256) {
704 /* First 256 bytes --> READ0 */
705 readcmd = NAND_CMD_READ0;
706 } else {
707 column -= 256;
708 readcmd = NAND_CMD_READ1;
709 }
ace4dfee 710 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 711 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 712 }
ace4dfee 713 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 714
8b6e50c9 715 /* Address cycle, when necessary */
7abd3ef9
TG
716 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
717 /* Serially input address */
718 if (column != -1) {
719 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
720 if (chip->options & NAND_BUSWIDTH_16 &&
721 !nand_opcode_8bits(command))
7abd3ef9 722 column >>= 1;
ace4dfee 723 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
724 ctrl &= ~NAND_CTRL_CHANGE;
725 }
726 if (page_addr != -1) {
ace4dfee 727 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 728 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 729 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 730 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
731 if (chip->chipsize > (32 << 20))
732 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 733 }
ace4dfee 734 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
735
736 /*
8b6e50c9
BN
737 * Program and erase have their own busy handlers status and sequential
738 * in needs no delay
e0c7d767 739 */
1da177e4 740 switch (command) {
61b03bd7 741
1da177e4
LT
742 case NAND_CMD_PAGEPROG:
743 case NAND_CMD_ERASE1:
744 case NAND_CMD_ERASE2:
745 case NAND_CMD_SEQIN:
746 case NAND_CMD_STATUS:
3158fa0e 747 case NAND_CMD_READID:
c5d664aa 748 case NAND_CMD_SET_FEATURES:
1da177e4
LT
749 return;
750
751 case NAND_CMD_RESET:
ace4dfee 752 if (chip->dev_ready)
1da177e4 753 break;
ace4dfee
TG
754 udelay(chip->chip_delay);
755 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 756 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
757 chip->cmd_ctrl(mtd,
758 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
759 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
760 nand_wait_status_ready(mtd, 250);
1da177e4
LT
761 return;
762
e0c7d767 763 /* This applies to read commands */
2165c4a1
BB
764 case NAND_CMD_READ0:
765 /*
766 * READ0 is sometimes used to exit GET STATUS mode. When this
767 * is the case no address cycles are requested, and we can use
768 * this information to detect that we should not wait for the
769 * device to be ready.
770 */
771 if (column == -1 && page_addr == -1)
772 return;
773
1da177e4 774 default:
61b03bd7 775 /*
1da177e4
LT
776 * If we don't have access to the busy pin, we apply the given
777 * command delay
e0c7d767 778 */
ace4dfee
TG
779 if (!chip->dev_ready) {
780 udelay(chip->chip_delay);
1da177e4 781 return;
61b03bd7 782 }
1da177e4 783 }
8b6e50c9
BN
784 /*
785 * Apply this short delay always to ensure that we do wait tWB in
786 * any case on any machine.
787 */
e0c7d767 788 ndelay(100);
3b88775c
TG
789
790 nand_wait_ready(mtd);
1da177e4
LT
791}
792
6ea40a3b
BB
793static void nand_ccs_delay(struct nand_chip *chip)
794{
795 /*
796 * The controller already takes care of waiting for tCCS when the RNDIN
797 * or RNDOUT command is sent, return directly.
798 */
799 if (!(chip->options & NAND_WAIT_TCCS))
800 return;
801
802 /*
803 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
804 * (which should be safe for all NANDs).
805 */
806 if (chip->data_interface && chip->data_interface->timings.sdr.tCCS_min)
807 ndelay(chip->data_interface->timings.sdr.tCCS_min / 1000);
808 else
809 ndelay(500);
810}
811
1da177e4
LT
812/**
813 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
814 * @mtd: MTD device structure
815 * @command: the command to be sent
816 * @column: the column address for this command, -1 if none
817 * @page_addr: the page address for this command, -1 if none
1da177e4 818 *
7abd3ef9 819 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
820 * devices. We don't have the separate regions as we have in the small page
821 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 822 */
7abd3ef9
TG
823static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
824 int column, int page_addr)
1da177e4 825{
862eba51 826 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
827
828 /* Emulate NAND_CMD_READOOB */
829 if (command == NAND_CMD_READOOB) {
28318776 830 column += mtd->writesize;
1da177e4
LT
831 command = NAND_CMD_READ0;
832 }
61b03bd7 833
7abd3ef9 834 /* Command latch cycle */
fb066ada 835 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
836
837 if (column != -1 || page_addr != -1) {
7abd3ef9 838 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
839
840 /* Serially input address */
841 if (column != -1) {
842 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
843 if (chip->options & NAND_BUSWIDTH_16 &&
844 !nand_opcode_8bits(command))
1da177e4 845 column >>= 1;
ace4dfee 846 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 847 ctrl &= ~NAND_CTRL_CHANGE;
fde85cfd 848
f5b88de2 849 /* Only output a single addr cycle for 8bits opcodes. */
fde85cfd
BB
850 if (!nand_opcode_8bits(command))
851 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 852 }
1da177e4 853 if (page_addr != -1) {
ace4dfee
TG
854 chip->cmd_ctrl(mtd, page_addr, ctrl);
855 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 856 NAND_NCE | NAND_ALE);
1da177e4 857 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
858 if (chip->chipsize > (128 << 20))
859 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 860 NAND_NCE | NAND_ALE);
1da177e4 861 }
1da177e4 862 }
ace4dfee 863 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
864
865 /*
8b6e50c9 866 * Program and erase have their own busy handlers status, sequential
7a442f17 867 * in and status need no delay.
30f464b7 868 */
1da177e4 869 switch (command) {
61b03bd7 870
1da177e4
LT
871 case NAND_CMD_CACHEDPROG:
872 case NAND_CMD_PAGEPROG:
873 case NAND_CMD_ERASE1:
874 case NAND_CMD_ERASE2:
875 case NAND_CMD_SEQIN:
876 case NAND_CMD_STATUS:
3158fa0e 877 case NAND_CMD_READID:
c5d664aa 878 case NAND_CMD_SET_FEATURES:
30f464b7 879 return;
1da177e4 880
6ea40a3b
BB
881 case NAND_CMD_RNDIN:
882 nand_ccs_delay(chip);
883 return;
884
1da177e4 885 case NAND_CMD_RESET:
ace4dfee 886 if (chip->dev_ready)
1da177e4 887 break;
ace4dfee 888 udelay(chip->chip_delay);
12efdde3
TG
889 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
890 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
891 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
892 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
893 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
894 nand_wait_status_ready(mtd, 250);
1da177e4
LT
895 return;
896
7bc3312b
TG
897 case NAND_CMD_RNDOUT:
898 /* No ready / busy check necessary */
899 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
900 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
901 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
902 NAND_NCE | NAND_CTRL_CHANGE);
6ea40a3b
BB
903
904 nand_ccs_delay(chip);
7bc3312b
TG
905 return;
906
1da177e4 907 case NAND_CMD_READ0:
2165c4a1
BB
908 /*
909 * READ0 is sometimes used to exit GET STATUS mode. When this
910 * is the case no address cycles are requested, and we can use
911 * this information to detect that READSTART should not be
912 * issued.
913 */
914 if (column == -1 && page_addr == -1)
915 return;
916
12efdde3
TG
917 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
918 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
919 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
920 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 921
e0c7d767 922 /* This applies to read commands */
1da177e4 923 default:
61b03bd7 924 /*
1da177e4 925 * If we don't have access to the busy pin, we apply the given
8b6e50c9 926 * command delay.
e0c7d767 927 */
ace4dfee
TG
928 if (!chip->dev_ready) {
929 udelay(chip->chip_delay);
1da177e4 930 return;
61b03bd7 931 }
1da177e4 932 }
3b88775c 933
8b6e50c9
BN
934 /*
935 * Apply this short delay always to ensure that we do wait tWB in
936 * any case on any machine.
937 */
e0c7d767 938 ndelay(100);
3b88775c
TG
939
940 nand_wait_ready(mtd);
1da177e4
LT
941}
942
2af7c653
SK
943/**
944 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
945 * @chip: the nand chip descriptor
946 * @mtd: MTD device structure
947 * @new_state: the state which is requested
2af7c653
SK
948 *
949 * Used when in panic, no locks are taken.
950 */
951static void panic_nand_get_device(struct nand_chip *chip,
952 struct mtd_info *mtd, int new_state)
953{
7854d3f7 954 /* Hardware controller shared among independent devices */
2af7c653
SK
955 chip->controller->active = chip;
956 chip->state = new_state;
957}
958
1da177e4
LT
959/**
960 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
961 * @mtd: MTD device structure
962 * @new_state: the state which is requested
1da177e4
LT
963 *
964 * Get the device and lock it for exclusive access
965 */
2c0a2bed 966static int
6a8214aa 967nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 968{
862eba51 969 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
970 spinlock_t *lock = &chip->controller->lock;
971 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 972 DECLARE_WAITQUEUE(wait, current);
7351d3a5 973retry:
0dfc6246
TG
974 spin_lock(lock);
975
b8b3ee9a 976 /* Hardware controller shared among independent devices */
ace4dfee
TG
977 if (!chip->controller->active)
978 chip->controller->active = chip;
a36ed299 979
ace4dfee
TG
980 if (chip->controller->active == chip && chip->state == FL_READY) {
981 chip->state = new_state;
0dfc6246 982 spin_unlock(lock);
962034f4
VW
983 return 0;
984 }
985 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
986 if (chip->controller->active->state == FL_PM_SUSPENDED) {
987 chip->state = FL_PM_SUSPENDED;
988 spin_unlock(lock);
989 return 0;
6b0d9a84 990 }
0dfc6246
TG
991 }
992 set_current_state(TASK_UNINTERRUPTIBLE);
993 add_wait_queue(wq, &wait);
994 spin_unlock(lock);
995 schedule();
996 remove_wait_queue(wq, &wait);
1da177e4
LT
997 goto retry;
998}
999
2af7c653 1000/**
8b6e50c9
BN
1001 * panic_nand_wait - [GENERIC] wait until the command is done
1002 * @mtd: MTD device structure
1003 * @chip: NAND chip structure
1004 * @timeo: timeout
2af7c653
SK
1005 *
1006 * Wait for command done. This is a helper function for nand_wait used when
1007 * we are in interrupt context. May happen when in panic and trying to write
b595076a 1008 * an oops through mtdoops.
2af7c653
SK
1009 */
1010static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1011 unsigned long timeo)
1012{
1013 int i;
1014 for (i = 0; i < timeo; i++) {
1015 if (chip->dev_ready) {
1016 if (chip->dev_ready(mtd))
1017 break;
1018 } else {
1019 if (chip->read_byte(mtd) & NAND_STATUS_READY)
1020 break;
1021 }
1022 mdelay(1);
f8ac0414 1023 }
2af7c653
SK
1024}
1025
1da177e4 1026/**
8b6e50c9
BN
1027 * nand_wait - [DEFAULT] wait until the command is done
1028 * @mtd: MTD device structure
1029 * @chip: NAND chip structure
1da177e4 1030 *
b70af9be 1031 * Wait for command done. This applies to erase and program only.
844d3b42 1032 */
7bc3312b 1033static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
1034{
1035
b70af9be
AS
1036 int status;
1037 unsigned long timeo = 400;
1da177e4 1038
8b6e50c9
BN
1039 /*
1040 * Apply this short delay always to ensure that we do wait tWB in any
1041 * case on any machine.
1042 */
e0c7d767 1043 ndelay(100);
1da177e4 1044
14c65786 1045 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 1046
2af7c653
SK
1047 if (in_interrupt() || oops_in_progress)
1048 panic_nand_wait(mtd, chip, timeo);
1049 else {
6d2559f8 1050 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 1051 do {
2af7c653
SK
1052 if (chip->dev_ready) {
1053 if (chip->dev_ready(mtd))
1054 break;
1055 } else {
1056 if (chip->read_byte(mtd) & NAND_STATUS_READY)
1057 break;
1058 }
1059 cond_resched();
b70af9be 1060 } while (time_before(jiffies, timeo));
1da177e4 1061 }
8fe833c1 1062
ace4dfee 1063 status = (int)chip->read_byte(mtd);
f251b8df
MC
1064 /* This can happen if in case of timeout or buggy dev_ready */
1065 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
1066 return status;
1067}
1068
d8e725dd
BB
1069/**
1070 * nand_reset_data_interface - Reset data interface and timings
1071 * @chip: The NAND chip
104e442a 1072 * @chipnr: Internal die id
d8e725dd
BB
1073 *
1074 * Reset the Data interface and timings to ONFI mode 0.
1075 *
1076 * Returns 0 for success or negative error code otherwise.
1077 */
104e442a 1078static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
d8e725dd
BB
1079{
1080 struct mtd_info *mtd = nand_to_mtd(chip);
1081 const struct nand_data_interface *conf;
1082 int ret;
1083
1084 if (!chip->setup_data_interface)
1085 return 0;
1086
1087 /*
1088 * The ONFI specification says:
1089 * "
1090 * To transition from NV-DDR or NV-DDR2 to the SDR data
1091 * interface, the host shall use the Reset (FFh) command
1092 * using SDR timing mode 0. A device in any timing mode is
1093 * required to recognize Reset (FFh) command issued in SDR
1094 * timing mode 0.
1095 * "
1096 *
1097 * Configure the data interface in SDR mode and set the
1098 * timings to timing mode 0.
1099 */
1100
1101 conf = nand_get_default_data_interface();
104e442a 1102 ret = chip->setup_data_interface(mtd, chipnr, conf);
d8e725dd
BB
1103 if (ret)
1104 pr_err("Failed to configure data interface to SDR timing mode 0\n");
1105
1106 return ret;
1107}
1108
1109/**
1110 * nand_setup_data_interface - Setup the best data interface and timings
1111 * @chip: The NAND chip
104e442a 1112 * @chipnr: Internal die id
d8e725dd
BB
1113 *
1114 * Find and configure the best data interface and NAND timings supported by
1115 * the chip and the driver.
1116 * First tries to retrieve supported timing modes from ONFI information,
1117 * and if the NAND chip does not support ONFI, relies on the
1118 * ->onfi_timing_mode_default specified in the nand_ids table.
1119 *
1120 * Returns 0 for success or negative error code otherwise.
1121 */
104e442a 1122static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
d8e725dd
BB
1123{
1124 struct mtd_info *mtd = nand_to_mtd(chip);
1125 int ret;
1126
1127 if (!chip->setup_data_interface || !chip->data_interface)
1128 return 0;
1129
1130 /*
1131 * Ensure the timing mode has been changed on the chip side
1132 * before changing timings on the controller side.
1133 */
a11bf5ed
BB
1134 if (chip->onfi_version &&
1135 (le16_to_cpu(chip->onfi_params.opt_cmd) &
1136 ONFI_OPT_CMD_SET_GET_FEATURES)) {
d8e725dd
BB
1137 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1138 chip->onfi_timing_mode_default,
1139 };
1140
1141 ret = chip->onfi_set_features(mtd, chip,
1142 ONFI_FEATURE_ADDR_TIMING_MODE,
1143 tmode_param);
1144 if (ret)
1145 goto err;
1146 }
1147
104e442a 1148 ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
d8e725dd
BB
1149err:
1150 return ret;
1151}
1152
1153/**
1154 * nand_init_data_interface - find the best data interface and timings
1155 * @chip: The NAND chip
1156 *
1157 * Find the best data interface and NAND timings supported by the chip
1158 * and the driver.
1159 * First tries to retrieve supported timing modes from ONFI information,
1160 * and if the NAND chip does not support ONFI, relies on the
1161 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1162 * function nand_chip->data_interface is initialized with the best timing mode
1163 * available.
1164 *
1165 * Returns 0 for success or negative error code otherwise.
1166 */
1167static int nand_init_data_interface(struct nand_chip *chip)
1168{
1169 struct mtd_info *mtd = nand_to_mtd(chip);
1170 int modes, mode, ret;
1171
1172 if (!chip->setup_data_interface)
1173 return 0;
1174
1175 /*
1176 * First try to identify the best timings from ONFI parameters and
1177 * if the NAND does not support ONFI, fallback to the default ONFI
1178 * timing mode.
1179 */
1180 modes = onfi_get_async_timing_mode(chip);
1181 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1182 if (!chip->onfi_timing_mode_default)
1183 return 0;
1184
1185 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1186 }
1187
1188 chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1189 GFP_KERNEL);
1190 if (!chip->data_interface)
1191 return -ENOMEM;
1192
1193 for (mode = fls(modes) - 1; mode >= 0; mode--) {
1194 ret = onfi_init_data_interface(chip, chip->data_interface,
1195 NAND_SDR_IFACE, mode);
1196 if (ret)
1197 continue;
1198
104e442a
BB
1199 /* Pass -1 to only */
1200 ret = chip->setup_data_interface(mtd,
1201 NAND_DATA_IFACE_CHECK_ONLY,
1202 chip->data_interface);
d8e725dd
BB
1203 if (!ret) {
1204 chip->onfi_timing_mode_default = mode;
1205 break;
1206 }
1207 }
1208
1209 return 0;
1210}
1211
1212static void nand_release_data_interface(struct nand_chip *chip)
1213{
1214 kfree(chip->data_interface);
1215}
1216
2f94abfe
SH
1217/**
1218 * nand_reset - Reset and initialize a NAND device
1219 * @chip: The NAND chip
73f907fd 1220 * @chipnr: Internal die id
2f94abfe
SH
1221 *
1222 * Returns 0 for success or negative error code otherwise
1223 */
73f907fd 1224int nand_reset(struct nand_chip *chip, int chipnr)
2f94abfe
SH
1225{
1226 struct mtd_info *mtd = nand_to_mtd(chip);
d8e725dd
BB
1227 int ret;
1228
104e442a 1229 ret = nand_reset_data_interface(chip, chipnr);
d8e725dd
BB
1230 if (ret)
1231 return ret;
2f94abfe 1232
73f907fd
BB
1233 /*
1234 * The CS line has to be released before we can apply the new NAND
1235 * interface settings, hence this weird ->select_chip() dance.
1236 */
1237 chip->select_chip(mtd, chipnr);
2f94abfe 1238 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
73f907fd 1239 chip->select_chip(mtd, -1);
2f94abfe 1240
73f907fd 1241 chip->select_chip(mtd, chipnr);
104e442a 1242 ret = nand_setup_data_interface(chip, chipnr);
73f907fd 1243 chip->select_chip(mtd, -1);
d8e725dd
BB
1244 if (ret)
1245 return ret;
1246
2f94abfe
SH
1247 return 0;
1248}
1249
7d70f334 1250/**
b6d676db 1251 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
1252 * @mtd: mtd info
1253 * @ofs: offset to start unlock from
1254 * @len: length to unlock
b6f6c294
MCC
1255 * @invert:
1256 * - when = 0, unlock the range of blocks within the lower and
8b6e50c9 1257 * upper boundary address
b6f6c294 1258 * - when = 1, unlock the range of blocks outside the boundaries
8b6e50c9 1259 * of the lower and upper boundary address
7d70f334 1260 *
8b6e50c9 1261 * Returs unlock status.
7d70f334
VS
1262 */
1263static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
1264 uint64_t len, int invert)
1265{
1266 int ret = 0;
1267 int status, page;
862eba51 1268 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334
VS
1269
1270 /* Submit address of first page to unlock */
1271 page = ofs >> chip->page_shift;
1272 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
1273
1274 /* Submit address of last page to unlock */
1275 page = (ofs + len) >> chip->page_shift;
1276 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
1277 (page | invert) & chip->pagemask);
1278
1279 /* Call wait ready function */
1280 status = chip->waitfunc(mtd, chip);
7d70f334 1281 /* See if device thinks it succeeded */
74830966 1282 if (status & NAND_STATUS_FAIL) {
289c0522 1283 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1284 __func__, status);
1285 ret = -EIO;
1286 }
1287
1288 return ret;
1289}
1290
1291/**
b6d676db 1292 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
1293 * @mtd: mtd info
1294 * @ofs: offset to start unlock from
1295 * @len: length to unlock
7d70f334 1296 *
8b6e50c9 1297 * Returns unlock status.
7d70f334
VS
1298 */
1299int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1300{
1301 int ret = 0;
1302 int chipnr;
862eba51 1303 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1304
289c0522 1305 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1306 __func__, (unsigned long long)ofs, len);
1307
1308 if (check_offs_len(mtd, ofs, len))
b1a2348a 1309 return -EINVAL;
7d70f334
VS
1310
1311 /* Align to last block address if size addresses end of the device */
1312 if (ofs + len == mtd->size)
1313 len -= mtd->erasesize;
1314
6a8214aa 1315 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
1316
1317 /* Shift to get chip number */
1318 chipnr = ofs >> chip->chip_shift;
1319
57d3a9a8
WD
1320 /*
1321 * Reset the chip.
1322 * If we want to check the WP through READ STATUS and check the bit 7
1323 * we must reset the chip
1324 * some operation can also clear the bit 7 of status register
1325 * eg. erase/program a locked block
1326 */
73f907fd
BB
1327 nand_reset(chip, chipnr);
1328
1329 chip->select_chip(mtd, chipnr);
57d3a9a8 1330
7d70f334
VS
1331 /* Check, if it is write protected */
1332 if (nand_check_wp(mtd)) {
289c0522 1333 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1334 __func__);
1335 ret = -EIO;
1336 goto out;
1337 }
1338
1339 ret = __nand_unlock(mtd, ofs, len, 0);
1340
1341out:
b0bb6903 1342 chip->select_chip(mtd, -1);
7d70f334
VS
1343 nand_release_device(mtd);
1344
1345 return ret;
1346}
7351d3a5 1347EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1348
1349/**
b6d676db 1350 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1351 * @mtd: mtd info
1352 * @ofs: offset to start unlock from
1353 * @len: length to unlock
7d70f334 1354 *
8b6e50c9
BN
1355 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1356 * have this feature, but it allows only to lock all blocks, not for specified
1357 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1358 * now.
7d70f334 1359 *
8b6e50c9 1360 * Returns lock status.
7d70f334
VS
1361 */
1362int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1363{
1364 int ret = 0;
1365 int chipnr, status, page;
862eba51 1366 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1367
289c0522 1368 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1369 __func__, (unsigned long long)ofs, len);
1370
1371 if (check_offs_len(mtd, ofs, len))
b1a2348a 1372 return -EINVAL;
7d70f334 1373
6a8214aa 1374 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1375
1376 /* Shift to get chip number */
1377 chipnr = ofs >> chip->chip_shift;
1378
57d3a9a8
WD
1379 /*
1380 * Reset the chip.
1381 * If we want to check the WP through READ STATUS and check the bit 7
1382 * we must reset the chip
1383 * some operation can also clear the bit 7 of status register
1384 * eg. erase/program a locked block
1385 */
73f907fd
BB
1386 nand_reset(chip, chipnr);
1387
1388 chip->select_chip(mtd, chipnr);
57d3a9a8 1389
7d70f334
VS
1390 /* Check, if it is write protected */
1391 if (nand_check_wp(mtd)) {
289c0522 1392 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1393 __func__);
1394 status = MTD_ERASE_FAILED;
1395 ret = -EIO;
1396 goto out;
1397 }
1398
1399 /* Submit address of first page to lock */
1400 page = ofs >> chip->page_shift;
1401 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1402
1403 /* Call wait ready function */
1404 status = chip->waitfunc(mtd, chip);
7d70f334 1405 /* See if device thinks it succeeded */
74830966 1406 if (status & NAND_STATUS_FAIL) {
289c0522 1407 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1408 __func__, status);
1409 ret = -EIO;
1410 goto out;
1411 }
1412
1413 ret = __nand_unlock(mtd, ofs, len, 0x1);
1414
1415out:
b0bb6903 1416 chip->select_chip(mtd, -1);
7d70f334
VS
1417 nand_release_device(mtd);
1418
1419 return ret;
1420}
7351d3a5 1421EXPORT_SYMBOL(nand_lock);
7d70f334 1422
730a43fb
BB
1423/**
1424 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1425 * @buf: buffer to test
1426 * @len: buffer length
1427 * @bitflips_threshold: maximum number of bitflips
1428 *
1429 * Check if a buffer contains only 0xff, which means the underlying region
1430 * has been erased and is ready to be programmed.
1431 * The bitflips_threshold specify the maximum number of bitflips before
1432 * considering the region is not erased.
1433 * Note: The logic of this function has been extracted from the memweight
1434 * implementation, except that nand_check_erased_buf function exit before
1435 * testing the whole buffer if the number of bitflips exceed the
1436 * bitflips_threshold value.
1437 *
1438 * Returns a positive number of bitflips less than or equal to
1439 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1440 * threshold.
1441 */
1442static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1443{
1444 const unsigned char *bitmap = buf;
1445 int bitflips = 0;
1446 int weight;
1447
1448 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1449 len--, bitmap++) {
1450 weight = hweight8(*bitmap);
1451 bitflips += BITS_PER_BYTE - weight;
1452 if (unlikely(bitflips > bitflips_threshold))
1453 return -EBADMSG;
1454 }
1455
1456 for (; len >= sizeof(long);
1457 len -= sizeof(long), bitmap += sizeof(long)) {
086567f1
PM
1458 unsigned long d = *((unsigned long *)bitmap);
1459 if (d == ~0UL)
1460 continue;
1461 weight = hweight_long(d);
730a43fb
BB
1462 bitflips += BITS_PER_LONG - weight;
1463 if (unlikely(bitflips > bitflips_threshold))
1464 return -EBADMSG;
1465 }
1466
1467 for (; len > 0; len--, bitmap++) {
1468 weight = hweight8(*bitmap);
1469 bitflips += BITS_PER_BYTE - weight;
1470 if (unlikely(bitflips > bitflips_threshold))
1471 return -EBADMSG;
1472 }
1473
1474 return bitflips;
1475}
1476
1477/**
1478 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1479 * 0xff data
1480 * @data: data buffer to test
1481 * @datalen: data length
1482 * @ecc: ECC buffer
1483 * @ecclen: ECC length
1484 * @extraoob: extra OOB buffer
1485 * @extraooblen: extra OOB length
1486 * @bitflips_threshold: maximum number of bitflips
1487 *
1488 * Check if a data buffer and its associated ECC and OOB data contains only
1489 * 0xff pattern, which means the underlying region has been erased and is
1490 * ready to be programmed.
1491 * The bitflips_threshold specify the maximum number of bitflips before
1492 * considering the region as not erased.
1493 *
1494 * Note:
1495 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1496 * different from the NAND page size. When fixing bitflips, ECC engines will
1497 * report the number of errors per chunk, and the NAND core infrastructure
1498 * expect you to return the maximum number of bitflips for the whole page.
1499 * This is why you should always use this function on a single chunk and
1500 * not on the whole page. After checking each chunk you should update your
1501 * max_bitflips value accordingly.
1502 * 2/ When checking for bitflips in erased pages you should not only check
1503 * the payload data but also their associated ECC data, because a user might
1504 * have programmed almost all bits to 1 but a few. In this case, we
1505 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1506 * this case.
1507 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1508 * data are protected by the ECC engine.
1509 * It could also be used if you support subpages and want to attach some
1510 * extra OOB data to an ECC chunk.
1511 *
1512 * Returns a positive number of bitflips less than or equal to
1513 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1514 * threshold. In case of success, the passed buffers are filled with 0xff.
1515 */
1516int nand_check_erased_ecc_chunk(void *data, int datalen,
1517 void *ecc, int ecclen,
1518 void *extraoob, int extraooblen,
1519 int bitflips_threshold)
1520{
1521 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1522
1523 data_bitflips = nand_check_erased_buf(data, datalen,
1524 bitflips_threshold);
1525 if (data_bitflips < 0)
1526 return data_bitflips;
1527
1528 bitflips_threshold -= data_bitflips;
1529
1530 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1531 if (ecc_bitflips < 0)
1532 return ecc_bitflips;
1533
1534 bitflips_threshold -= ecc_bitflips;
1535
1536 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1537 bitflips_threshold);
1538 if (extraoob_bitflips < 0)
1539 return extraoob_bitflips;
1540
1541 if (data_bitflips)
1542 memset(data, 0xff, datalen);
1543
1544 if (ecc_bitflips)
1545 memset(ecc, 0xff, ecclen);
1546
1547 if (extraoob_bitflips)
1548 memset(extraoob, 0xff, extraooblen);
1549
1550 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1551}
1552EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1553
8593fbc6 1554/**
7854d3f7 1555 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1556 * @mtd: mtd info structure
1557 * @chip: nand chip info structure
1558 * @buf: buffer to store read data
1fbb938d 1559 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1560 * @page: page number to read
52ff49df 1561 *
7854d3f7 1562 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1563 */
cc0f51ec
TP
1564int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1565 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1566{
1567 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1568 if (oob_required)
1569 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1570 return 0;
1571}
cc0f51ec 1572EXPORT_SYMBOL(nand_read_page_raw);
8593fbc6 1573
52ff49df 1574/**
7854d3f7 1575 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1576 * @mtd: mtd info structure
1577 * @chip: nand chip info structure
1578 * @buf: buffer to store read data
1fbb938d 1579 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1580 * @page: page number to read
52ff49df
DB
1581 *
1582 * We need a special oob layout and handling even when OOB isn't used.
1583 */
7351d3a5 1584static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1585 struct nand_chip *chip, uint8_t *buf,
1586 int oob_required, int page)
52ff49df
DB
1587{
1588 int eccsize = chip->ecc.size;
1589 int eccbytes = chip->ecc.bytes;
1590 uint8_t *oob = chip->oob_poi;
1591 int steps, size;
1592
1593 for (steps = chip->ecc.steps; steps > 0; steps--) {
1594 chip->read_buf(mtd, buf, eccsize);
1595 buf += eccsize;
1596
1597 if (chip->ecc.prepad) {
1598 chip->read_buf(mtd, oob, chip->ecc.prepad);
1599 oob += chip->ecc.prepad;
1600 }
1601
1602 chip->read_buf(mtd, oob, eccbytes);
1603 oob += eccbytes;
1604
1605 if (chip->ecc.postpad) {
1606 chip->read_buf(mtd, oob, chip->ecc.postpad);
1607 oob += chip->ecc.postpad;
1608 }
1609 }
1610
1611 size = mtd->oobsize - (oob - chip->oob_poi);
1612 if (size)
1613 chip->read_buf(mtd, oob, size);
1614
1615 return 0;
1616}
1617
1da177e4 1618/**
7854d3f7 1619 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1620 * @mtd: mtd info structure
1621 * @chip: nand chip info structure
1622 * @buf: buffer to store read data
1fbb938d 1623 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1624 * @page: page number to read
068e3c0a 1625 */
f5bbdacc 1626static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1627 uint8_t *buf, int oob_required, int page)
1da177e4 1628{
846031d3 1629 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
1630 int eccbytes = chip->ecc.bytes;
1631 int eccsteps = chip->ecc.steps;
1632 uint8_t *p = buf;
4bf63fcb
DW
1633 uint8_t *ecc_calc = chip->buffers->ecccalc;
1634 uint8_t *ecc_code = chip->buffers->ecccode;
3f91e94f 1635 unsigned int max_bitflips = 0;
f5bbdacc 1636
1fbb938d 1637 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1638
1639 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1640 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1641
846031d3
BB
1642 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1643 chip->ecc.total);
1644 if (ret)
1645 return ret;
f5bbdacc
TG
1646
1647 eccsteps = chip->ecc.steps;
1648 p = buf;
1649
1650 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1651 int stat;
1652
1653 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1654 if (stat < 0) {
f5bbdacc 1655 mtd->ecc_stats.failed++;
3f91e94f 1656 } else {
f5bbdacc 1657 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1658 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1659 }
f5bbdacc 1660 }
3f91e94f 1661 return max_bitflips;
22c60f5f 1662}
1da177e4 1663
3d459559 1664/**
837a6ba4 1665 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1666 * @mtd: mtd info structure
1667 * @chip: nand chip info structure
1668 * @data_offs: offset of requested data within the page
1669 * @readlen: data length
1670 * @bufpoi: buffer to store read data
e004debd 1671 * @page: page number to read
3d459559 1672 */
7351d3a5 1673static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1674 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1675 int page)
3d459559 1676{
846031d3 1677 int start_step, end_step, num_steps, ret;
3d459559
AK
1678 uint8_t *p;
1679 int data_col_addr, i, gaps = 0;
1680 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1681 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
846031d3 1682 int index, section = 0;
3f91e94f 1683 unsigned int max_bitflips = 0;
846031d3 1684 struct mtd_oob_region oobregion = { };
3d459559 1685
7854d3f7 1686 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1687 start_step = data_offs / chip->ecc.size;
1688 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1689 num_steps = end_step - start_step + 1;
4a4163ca 1690 index = start_step * chip->ecc.bytes;
3d459559 1691
8b6e50c9 1692 /* Data size aligned to ECC ecc.size */
3d459559
AK
1693 datafrag_len = num_steps * chip->ecc.size;
1694 eccfrag_len = num_steps * chip->ecc.bytes;
1695
1696 data_col_addr = start_step * chip->ecc.size;
1697 /* If we read not a page aligned data */
1698 if (data_col_addr != 0)
1699 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1700
1701 p = bufpoi + data_col_addr;
1702 chip->read_buf(mtd, p, datafrag_len);
1703
8b6e50c9 1704 /* Calculate ECC */
3d459559
AK
1705 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1706 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1707
8b6e50c9
BN
1708 /*
1709 * The performance is faster if we position offsets according to
7854d3f7 1710 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1711 */
846031d3
BB
1712 ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
1713 if (ret)
1714 return ret;
1715
1716 if (oobregion.length < eccfrag_len)
1717 gaps = 1;
1718
3d459559
AK
1719 if (gaps) {
1720 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1721 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1722 } else {
8b6e50c9 1723 /*
7854d3f7 1724 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1725 * about buswidth alignment in read_buf.
1726 */
846031d3 1727 aligned_pos = oobregion.offset & ~(busw - 1);
3d459559 1728 aligned_len = eccfrag_len;
846031d3 1729 if (oobregion.offset & (busw - 1))
3d459559 1730 aligned_len++;
846031d3
BB
1731 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
1732 (busw - 1))
3d459559
AK
1733 aligned_len++;
1734
7351d3a5 1735 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
846031d3 1736 mtd->writesize + aligned_pos, -1);
3d459559
AK
1737 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1738 }
1739
846031d3
BB
1740 ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
1741 chip->oob_poi, index, eccfrag_len);
1742 if (ret)
1743 return ret;
3d459559
AK
1744
1745 p = bufpoi + data_col_addr;
1746 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1747 int stat;
1748
7351d3a5
FF
1749 stat = chip->ecc.correct(mtd, p,
1750 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
40cbe6ee
BB
1751 if (stat == -EBADMSG &&
1752 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1753 /* check for empty pages with bitflips */
1754 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1755 &chip->buffers->ecccode[i],
1756 chip->ecc.bytes,
1757 NULL, 0,
1758 chip->ecc.strength);
1759 }
1760
3f91e94f 1761 if (stat < 0) {
3d459559 1762 mtd->ecc_stats.failed++;
3f91e94f 1763 } else {
3d459559 1764 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1765 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1766 }
3d459559 1767 }
3f91e94f 1768 return max_bitflips;
3d459559
AK
1769}
1770
068e3c0a 1771/**
7854d3f7 1772 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1773 * @mtd: mtd info structure
1774 * @chip: nand chip info structure
1775 * @buf: buffer to store read data
1fbb938d 1776 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1777 * @page: page number to read
068e3c0a 1778 *
7854d3f7 1779 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1780 */
f5bbdacc 1781static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1782 uint8_t *buf, int oob_required, int page)
1da177e4 1783{
846031d3 1784 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
1785 int eccbytes = chip->ecc.bytes;
1786 int eccsteps = chip->ecc.steps;
1787 uint8_t *p = buf;
4bf63fcb
DW
1788 uint8_t *ecc_calc = chip->buffers->ecccalc;
1789 uint8_t *ecc_code = chip->buffers->ecccode;
3f91e94f 1790 unsigned int max_bitflips = 0;
f5bbdacc
TG
1791
1792 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1793 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1794 chip->read_buf(mtd, p, eccsize);
1795 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1796 }
f75e5097 1797 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1798
846031d3
BB
1799 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1800 chip->ecc.total);
1801 if (ret)
1802 return ret;
1da177e4 1803
f5bbdacc
TG
1804 eccsteps = chip->ecc.steps;
1805 p = buf;
61b03bd7 1806
f5bbdacc
TG
1807 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1808 int stat;
1da177e4 1809
f5bbdacc 1810 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
40cbe6ee
BB
1811 if (stat == -EBADMSG &&
1812 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1813 /* check for empty pages with bitflips */
1814 stat = nand_check_erased_ecc_chunk(p, eccsize,
1815 &ecc_code[i], eccbytes,
1816 NULL, 0,
1817 chip->ecc.strength);
1818 }
1819
3f91e94f 1820 if (stat < 0) {
f5bbdacc 1821 mtd->ecc_stats.failed++;
3f91e94f 1822 } else {
f5bbdacc 1823 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1824 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1825 }
f5bbdacc 1826 }
3f91e94f 1827 return max_bitflips;
f5bbdacc 1828}
1da177e4 1829
6e0cb135 1830/**
7854d3f7 1831 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1832 * @mtd: mtd info structure
1833 * @chip: nand chip info structure
1834 * @buf: buffer to store read data
1fbb938d 1835 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1836 * @page: page number to read
6e0cb135 1837 *
8b6e50c9
BN
1838 * Hardware ECC for large page chips, require OOB to be read first. For this
1839 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1840 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1841 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1842 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1843 */
1844static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1845 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135 1846{
846031d3 1847 int i, eccsize = chip->ecc.size, ret;
6e0cb135
SN
1848 int eccbytes = chip->ecc.bytes;
1849 int eccsteps = chip->ecc.steps;
1850 uint8_t *p = buf;
1851 uint8_t *ecc_code = chip->buffers->ecccode;
6e0cb135 1852 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1853 unsigned int max_bitflips = 0;
6e0cb135
SN
1854
1855 /* Read the OOB area first */
1856 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1857 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1858 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1859
846031d3
BB
1860 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1861 chip->ecc.total);
1862 if (ret)
1863 return ret;
6e0cb135
SN
1864
1865 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1866 int stat;
1867
1868 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1869 chip->read_buf(mtd, p, eccsize);
1870 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1871
1872 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
40cbe6ee
BB
1873 if (stat == -EBADMSG &&
1874 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1875 /* check for empty pages with bitflips */
1876 stat = nand_check_erased_ecc_chunk(p, eccsize,
1877 &ecc_code[i], eccbytes,
1878 NULL, 0,
1879 chip->ecc.strength);
1880 }
1881
3f91e94f 1882 if (stat < 0) {
6e0cb135 1883 mtd->ecc_stats.failed++;
3f91e94f 1884 } else {
6e0cb135 1885 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1886 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1887 }
6e0cb135 1888 }
3f91e94f 1889 return max_bitflips;
6e0cb135
SN
1890}
1891
f5bbdacc 1892/**
7854d3f7 1893 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1894 * @mtd: mtd info structure
1895 * @chip: nand chip info structure
1896 * @buf: buffer to store read data
1fbb938d 1897 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1898 * @page: page number to read
f5bbdacc 1899 *
8b6e50c9
BN
1900 * The hw generator calculates the error syndrome automatically. Therefore we
1901 * need a special oob layout and handling.
f5bbdacc
TG
1902 */
1903static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1904 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1905{
1906 int i, eccsize = chip->ecc.size;
1907 int eccbytes = chip->ecc.bytes;
1908 int eccsteps = chip->ecc.steps;
40cbe6ee 1909 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
f5bbdacc 1910 uint8_t *p = buf;
f75e5097 1911 uint8_t *oob = chip->oob_poi;
3f91e94f 1912 unsigned int max_bitflips = 0;
1da177e4 1913
f5bbdacc
TG
1914 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1915 int stat;
61b03bd7 1916
f5bbdacc
TG
1917 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1918 chip->read_buf(mtd, p, eccsize);
1da177e4 1919
f5bbdacc
TG
1920 if (chip->ecc.prepad) {
1921 chip->read_buf(mtd, oob, chip->ecc.prepad);
1922 oob += chip->ecc.prepad;
1923 }
1da177e4 1924
f5bbdacc
TG
1925 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1926 chip->read_buf(mtd, oob, eccbytes);
1927 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1928
f5bbdacc 1929 oob += eccbytes;
1da177e4 1930
f5bbdacc
TG
1931 if (chip->ecc.postpad) {
1932 chip->read_buf(mtd, oob, chip->ecc.postpad);
1933 oob += chip->ecc.postpad;
61b03bd7 1934 }
40cbe6ee
BB
1935
1936 if (stat == -EBADMSG &&
1937 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1938 /* check for empty pages with bitflips */
1939 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1940 oob - eccpadbytes,
1941 eccpadbytes,
1942 NULL, 0,
1943 chip->ecc.strength);
1944 }
1945
1946 if (stat < 0) {
1947 mtd->ecc_stats.failed++;
1948 } else {
1949 mtd->ecc_stats.corrected += stat;
1950 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1951 }
f5bbdacc 1952 }
1da177e4 1953
f5bbdacc 1954 /* Calculate remaining oob bytes */
7e4178f9 1955 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1956 if (i)
1957 chip->read_buf(mtd, oob, i);
61b03bd7 1958
3f91e94f 1959 return max_bitflips;
f5bbdacc 1960}
1da177e4 1961
f5bbdacc 1962/**
7854d3f7 1963 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
846031d3 1964 * @mtd: mtd info structure
8b6e50c9
BN
1965 * @oob: oob destination address
1966 * @ops: oob ops structure
1967 * @len: size of oob to transfer
8593fbc6 1968 */
846031d3 1969static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
7014568b 1970 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1971{
846031d3
BB
1972 struct nand_chip *chip = mtd_to_nand(mtd);
1973 int ret;
1974
f8ac0414 1975 switch (ops->mode) {
8593fbc6 1976
0612b9dd
BN
1977 case MTD_OPS_PLACE_OOB:
1978 case MTD_OPS_RAW:
8593fbc6
TG
1979 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1980 return oob + len;
1981
846031d3
BB
1982 case MTD_OPS_AUTO_OOB:
1983 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
1984 ops->ooboffs, len);
1985 BUG_ON(ret);
1986 return oob + len;
1987
8593fbc6
TG
1988 default:
1989 BUG();
1990 }
1991 return NULL;
1992}
1993
ba84fb59
BN
1994/**
1995 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1996 * @mtd: MTD device structure
1997 * @retry_mode: the retry mode to use
1998 *
1999 * Some vendors supply a special command to shift the Vt threshold, to be used
2000 * when there are too many bitflips in a page (i.e., ECC error). After setting
2001 * a new threshold, the host should retry reading the page.
2002 */
2003static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
2004{
862eba51 2005 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
2006
2007 pr_debug("setting READ RETRY mode %d\n", retry_mode);
2008
2009 if (retry_mode >= chip->read_retries)
2010 return -EINVAL;
2011
2012 if (!chip->setup_read_retry)
2013 return -EOPNOTSUPP;
2014
2015 return chip->setup_read_retry(mtd, retry_mode);
2016}
2017
8593fbc6 2018/**
7854d3f7 2019 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
2020 * @mtd: MTD device structure
2021 * @from: offset to read from
2022 * @ops: oob ops structure
f5bbdacc
TG
2023 *
2024 * Internal function. Called with chip held.
2025 */
8593fbc6
TG
2026static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
2027 struct mtd_oob_ops *ops)
f5bbdacc 2028{
e47f3db4 2029 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 2030 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 2031 int ret = 0;
8593fbc6 2032 uint32_t readlen = ops->len;
7014568b 2033 uint32_t oobreadlen = ops->ooblen;
29f1058a 2034 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
9aca334e 2035
8593fbc6 2036 uint8_t *bufpoi, *oob, *buf;
66507c7b 2037 int use_bufpoi;
edbc4540 2038 unsigned int max_bitflips = 0;
ba84fb59 2039 int retry_mode = 0;
b72f3dfb 2040 bool ecc_fail = false;
1da177e4 2041
f5bbdacc
TG
2042 chipnr = (int)(from >> chip->chip_shift);
2043 chip->select_chip(mtd, chipnr);
61b03bd7 2044
f5bbdacc
TG
2045 realpage = (int)(from >> chip->page_shift);
2046 page = realpage & chip->pagemask;
1da177e4 2047
f5bbdacc 2048 col = (int)(from & (mtd->writesize - 1));
61b03bd7 2049
8593fbc6
TG
2050 buf = ops->datbuf;
2051 oob = ops->oobbuf;
e47f3db4 2052 oob_required = oob ? 1 : 0;
8593fbc6 2053
f8ac0414 2054 while (1) {
b72f3dfb
BN
2055 unsigned int ecc_failures = mtd->ecc_stats.failed;
2056
f5bbdacc
TG
2057 bytes = min(mtd->writesize - col, readlen);
2058 aligned = (bytes == mtd->writesize);
61b03bd7 2059
66507c7b
KD
2060 if (!aligned)
2061 use_bufpoi = 1;
2062 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
2063 use_bufpoi = !virt_addr_valid(buf) ||
2064 !IS_ALIGNED((unsigned long)buf,
2065 chip->buf_align);
66507c7b
KD
2066 else
2067 use_bufpoi = 0;
2068
8b6e50c9 2069 /* Is the current page in the buffer? */
8593fbc6 2070 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
2071 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
2072
2073 if (use_bufpoi && aligned)
2074 pr_debug("%s: using read bounce buffer for buf@%p\n",
2075 __func__, buf);
61b03bd7 2076
ba84fb59 2077read_retry:
3371d663
MG
2078 if (nand_standard_page_accessors(&chip->ecc))
2079 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 2080
edbc4540
MD
2081 /*
2082 * Now read the page into the buffer. Absent an error,
2083 * the read methods return max bitflips per ecc step.
2084 */
0612b9dd 2085 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 2086 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
2087 oob_required,
2088 page);
a5ff4f10
JW
2089 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
2090 !oob)
7351d3a5 2091 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
2092 col, bytes, bufpoi,
2093 page);
956e944c 2094 else
46a8cf2d 2095 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 2096 oob_required, page);
6d77b9d0 2097 if (ret < 0) {
66507c7b 2098 if (use_bufpoi)
6d77b9d0
BN
2099 /* Invalidate page cache */
2100 chip->pagebuf = -1;
1da177e4 2101 break;
6d77b9d0 2102 }
f5bbdacc
TG
2103
2104 /* Transfer not aligned data */
66507c7b 2105 if (use_bufpoi) {
a5ff4f10 2106 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 2107 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 2108 (ops->mode != MTD_OPS_RAW)) {
3d459559 2109 chip->pagebuf = realpage;
edbc4540
MD
2110 chip->pagebuf_bitflips = ret;
2111 } else {
6d77b9d0
BN
2112 /* Invalidate page cache */
2113 chip->pagebuf = -1;
edbc4540 2114 }
4bf63fcb 2115 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
2116 }
2117
8593fbc6 2118 if (unlikely(oob)) {
b64d39d8
ML
2119 int toread = min(oobreadlen, max_oobsize);
2120
2121 if (toread) {
846031d3 2122 oob = nand_transfer_oob(mtd,
b64d39d8
ML
2123 oob, ops, toread);
2124 oobreadlen -= toread;
2125 }
8593fbc6 2126 }
5bc7c33c
BN
2127
2128 if (chip->options & NAND_NEED_READRDY) {
2129 /* Apply delay or wait for ready/busy pin */
2130 if (!chip->dev_ready)
2131 udelay(chip->chip_delay);
2132 else
2133 nand_wait_ready(mtd);
2134 }
b72f3dfb 2135
ba84fb59 2136 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 2137 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
2138 retry_mode++;
2139 ret = nand_setup_read_retry(mtd,
2140 retry_mode);
2141 if (ret < 0)
2142 break;
2143
2144 /* Reset failures; retry */
2145 mtd->ecc_stats.failed = ecc_failures;
2146 goto read_retry;
2147 } else {
2148 /* No more retry modes; real failure */
2149 ecc_fail = true;
2150 }
2151 }
2152
2153 buf += bytes;
07604686 2154 max_bitflips = max_t(unsigned int, max_bitflips, ret);
8593fbc6 2155 } else {
4bf63fcb 2156 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 2157 buf += bytes;
edbc4540
MD
2158 max_bitflips = max_t(unsigned int, max_bitflips,
2159 chip->pagebuf_bitflips);
8593fbc6 2160 }
1da177e4 2161
f5bbdacc 2162 readlen -= bytes;
61b03bd7 2163
ba84fb59
BN
2164 /* Reset to retry mode 0 */
2165 if (retry_mode) {
2166 ret = nand_setup_read_retry(mtd, 0);
2167 if (ret < 0)
2168 break;
2169 retry_mode = 0;
2170 }
2171
f5bbdacc 2172 if (!readlen)
61b03bd7 2173 break;
1da177e4 2174
8b6e50c9 2175 /* For subsequent reads align to page boundary */
1da177e4
LT
2176 col = 0;
2177 /* Increment page address */
2178 realpage++;
2179
ace4dfee 2180 page = realpage & chip->pagemask;
1da177e4
LT
2181 /* Check, if we cross a chip boundary */
2182 if (!page) {
2183 chipnr++;
ace4dfee
TG
2184 chip->select_chip(mtd, -1);
2185 chip->select_chip(mtd, chipnr);
1da177e4 2186 }
1da177e4 2187 }
b0bb6903 2188 chip->select_chip(mtd, -1);
1da177e4 2189
8593fbc6 2190 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
2191 if (oob)
2192 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 2193
3f91e94f 2194 if (ret < 0)
f5bbdacc
TG
2195 return ret;
2196
b72f3dfb 2197 if (ecc_fail)
9a1fcdfd
TG
2198 return -EBADMSG;
2199
edbc4540 2200 return max_bitflips;
f5bbdacc
TG
2201}
2202
2203/**
25985edc 2204 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
2205 * @mtd: MTD device structure
2206 * @from: offset to read from
2207 * @len: number of bytes to read
2208 * @retlen: pointer to variable to store the number of read bytes
2209 * @buf: the databuffer to put data
f5bbdacc 2210 *
8b6e50c9 2211 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
2212 */
2213static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
2214 size_t *retlen, uint8_t *buf)
2215{
4a89ff88 2216 struct mtd_oob_ops ops;
f5bbdacc
TG
2217 int ret;
2218
6a8214aa 2219 nand_get_device(mtd, FL_READING);
0ec56dc4 2220 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2221 ops.len = len;
2222 ops.datbuf = buf;
11041ae6 2223 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2224 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 2225 *retlen = ops.retlen;
f5bbdacc 2226 nand_release_device(mtd);
f5bbdacc 2227 return ret;
1da177e4
LT
2228}
2229
7bc3312b 2230/**
7854d3f7 2231 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
2232 * @mtd: mtd info structure
2233 * @chip: nand chip info structure
2234 * @page: page number to read
7bc3312b 2235 */
9d02fc2a 2236int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b 2237{
5c2ffb11 2238 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 2239 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 2240 return 0;
7bc3312b 2241}
9d02fc2a 2242EXPORT_SYMBOL(nand_read_oob_std);
7bc3312b
TG
2243
2244/**
7854d3f7 2245 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 2246 * with syndromes
8b6e50c9
BN
2247 * @mtd: mtd info structure
2248 * @chip: nand chip info structure
2249 * @page: page number to read
7bc3312b 2250 */
9d02fc2a
BB
2251int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2252 int page)
7bc3312b 2253{
7bc3312b
TG
2254 int length = mtd->oobsize;
2255 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2256 int eccsize = chip->ecc.size;
2ea69d21 2257 uint8_t *bufpoi = chip->oob_poi;
7bc3312b
TG
2258 int i, toread, sndrnd = 0, pos;
2259
2260 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
2261 for (i = 0; i < chip->ecc.steps; i++) {
2262 if (sndrnd) {
2263 pos = eccsize + i * (eccsize + chunk);
2264 if (mtd->writesize > 512)
2265 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
2266 else
2267 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
2268 } else
2269 sndrnd = 1;
2270 toread = min_t(int, length, chunk);
2271 chip->read_buf(mtd, bufpoi, toread);
2272 bufpoi += toread;
2273 length -= toread;
2274 }
2275 if (length > 0)
2276 chip->read_buf(mtd, bufpoi, length);
2277
5c2ffb11 2278 return 0;
7bc3312b 2279}
9d02fc2a 2280EXPORT_SYMBOL(nand_read_oob_syndrome);
7bc3312b
TG
2281
2282/**
7854d3f7 2283 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
2284 * @mtd: mtd info structure
2285 * @chip: nand chip info structure
2286 * @page: page number to write
7bc3312b 2287 */
9d02fc2a 2288int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b
TG
2289{
2290 int status = 0;
2291 const uint8_t *buf = chip->oob_poi;
2292 int length = mtd->oobsize;
2293
2294 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
2295 chip->write_buf(mtd, buf, length);
2296 /* Send command to program the OOB data */
2297 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2298
2299 status = chip->waitfunc(mtd, chip);
2300
0d420f9d 2301 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b 2302}
9d02fc2a 2303EXPORT_SYMBOL(nand_write_oob_std);
7bc3312b
TG
2304
2305/**
7854d3f7 2306 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
2307 * with syndrome - only for large page flash
2308 * @mtd: mtd info structure
2309 * @chip: nand chip info structure
2310 * @page: page number to write
7bc3312b 2311 */
9d02fc2a
BB
2312int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2313 int page)
7bc3312b
TG
2314{
2315 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2316 int eccsize = chip->ecc.size, length = mtd->oobsize;
2317 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2318 const uint8_t *bufpoi = chip->oob_poi;
2319
2320 /*
2321 * data-ecc-data-ecc ... ecc-oob
2322 * or
2323 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2324 */
2325 if (!chip->ecc.prepad && !chip->ecc.postpad) {
2326 pos = steps * (eccsize + chunk);
2327 steps = 0;
2328 } else
8b0036ee 2329 pos = eccsize;
7bc3312b
TG
2330
2331 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2332 for (i = 0; i < steps; i++) {
2333 if (sndcmd) {
2334 if (mtd->writesize <= 512) {
2335 uint32_t fill = 0xFFFFFFFF;
2336
2337 len = eccsize;
2338 while (len > 0) {
2339 int num = min_t(int, len, 4);
2340 chip->write_buf(mtd, (uint8_t *)&fill,
2341 num);
2342 len -= num;
2343 }
2344 } else {
2345 pos = eccsize + i * (eccsize + chunk);
2346 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2347 }
2348 } else
2349 sndcmd = 1;
2350 len = min_t(int, length, chunk);
2351 chip->write_buf(mtd, bufpoi, len);
2352 bufpoi += len;
2353 length -= len;
2354 }
2355 if (length > 0)
2356 chip->write_buf(mtd, bufpoi, length);
2357
2358 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2359 status = chip->waitfunc(mtd, chip);
2360
2361 return status & NAND_STATUS_FAIL ? -EIO : 0;
2362}
9d02fc2a 2363EXPORT_SYMBOL(nand_write_oob_syndrome);
7bc3312b 2364
1da177e4 2365/**
7854d3f7 2366 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
2367 * @mtd: MTD device structure
2368 * @from: offset to read from
2369 * @ops: oob operations description structure
1da177e4 2370 *
8b6e50c9 2371 * NAND read out-of-band data from the spare area.
1da177e4 2372 */
8593fbc6
TG
2373static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2374 struct mtd_oob_ops *ops)
1da177e4 2375{
c00a0991 2376 int page, realpage, chipnr;
862eba51 2377 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 2378 struct mtd_ecc_stats stats;
7014568b
VW
2379 int readlen = ops->ooblen;
2380 int len;
7bc3312b 2381 uint8_t *buf = ops->oobbuf;
1951f2f7 2382 int ret = 0;
61b03bd7 2383
289c0522 2384 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 2385 __func__, (unsigned long long)from, readlen);
1da177e4 2386
041e4575
BN
2387 stats = mtd->ecc_stats;
2388
29f1058a 2389 len = mtd_oobavail(mtd, ops);
03736155
AH
2390
2391 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2392 pr_debug("%s: attempt to start read outside oob\n",
2393 __func__);
03736155
AH
2394 return -EINVAL;
2395 }
2396
2397 /* Do not allow reads past end of device */
2398 if (unlikely(from >= mtd->size ||
2399 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2400 (from >> chip->page_shift)) * len)) {
289c0522
BN
2401 pr_debug("%s: attempt to read beyond end of device\n",
2402 __func__);
03736155
AH
2403 return -EINVAL;
2404 }
7014568b 2405
7314e9e7 2406 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 2407 chip->select_chip(mtd, chipnr);
1da177e4 2408
7314e9e7
TG
2409 /* Shift to get page */
2410 realpage = (int)(from >> chip->page_shift);
2411 page = realpage & chip->pagemask;
1da177e4 2412
f8ac0414 2413 while (1) {
0612b9dd 2414 if (ops->mode == MTD_OPS_RAW)
1951f2f7 2415 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 2416 else
1951f2f7
SL
2417 ret = chip->ecc.read_oob(mtd, chip, page);
2418
2419 if (ret < 0)
2420 break;
7014568b
VW
2421
2422 len = min(len, readlen);
846031d3 2423 buf = nand_transfer_oob(mtd, buf, ops, len);
8593fbc6 2424
5bc7c33c
BN
2425 if (chip->options & NAND_NEED_READRDY) {
2426 /* Apply delay or wait for ready/busy pin */
2427 if (!chip->dev_ready)
2428 udelay(chip->chip_delay);
2429 else
2430 nand_wait_ready(mtd);
2431 }
2432
7014568b 2433 readlen -= len;
0d420f9d
SZ
2434 if (!readlen)
2435 break;
2436
7314e9e7
TG
2437 /* Increment page address */
2438 realpage++;
2439
2440 page = realpage & chip->pagemask;
2441 /* Check, if we cross a chip boundary */
2442 if (!page) {
2443 chipnr++;
2444 chip->select_chip(mtd, -1);
2445 chip->select_chip(mtd, chipnr);
1da177e4
LT
2446 }
2447 }
b0bb6903 2448 chip->select_chip(mtd, -1);
1da177e4 2449
1951f2f7
SL
2450 ops->oobretlen = ops->ooblen - readlen;
2451
2452 if (ret < 0)
2453 return ret;
041e4575
BN
2454
2455 if (mtd->ecc_stats.failed - stats.failed)
2456 return -EBADMSG;
2457
2458 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
2459}
2460
2461/**
8593fbc6 2462 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
2463 * @mtd: MTD device structure
2464 * @from: offset to read from
2465 * @ops: oob operation description structure
1da177e4 2466 *
8b6e50c9 2467 * NAND read data and/or out-of-band data.
1da177e4 2468 */
8593fbc6
TG
2469static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2470 struct mtd_oob_ops *ops)
1da177e4 2471{
fc6b4d12 2472 int ret;
8593fbc6
TG
2473
2474 ops->retlen = 0;
1da177e4
LT
2475
2476 /* Do not allow reads past end of device */
7014568b 2477 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
2478 pr_debug("%s: attempt to read beyond end of device\n",
2479 __func__);
1da177e4
LT
2480 return -EINVAL;
2481 }
2482
fc6b4d12
AS
2483 if (ops->mode != MTD_OPS_PLACE_OOB &&
2484 ops->mode != MTD_OPS_AUTO_OOB &&
2485 ops->mode != MTD_OPS_RAW)
2486 return -ENOTSUPP;
1da177e4 2487
fc6b4d12 2488 nand_get_device(mtd, FL_READING);
1da177e4 2489
8593fbc6
TG
2490 if (!ops->datbuf)
2491 ret = nand_do_read_oob(mtd, from, ops);
2492 else
2493 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2494
8593fbc6
TG
2495 nand_release_device(mtd);
2496 return ret;
2497}
61b03bd7 2498
1da177e4 2499
8593fbc6 2500/**
7854d3f7 2501 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2502 * @mtd: mtd info structure
2503 * @chip: nand chip info structure
2504 * @buf: data buffer
1fbb938d 2505 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2506 * @page: page number to write
52ff49df 2507 *
7854d3f7 2508 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2509 */
cc0f51ec
TP
2510int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2511 const uint8_t *buf, int oob_required, int page)
8593fbc6
TG
2512{
2513 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2514 if (oob_required)
2515 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2516
2517 return 0;
1da177e4 2518}
cc0f51ec 2519EXPORT_SYMBOL(nand_write_page_raw);
1da177e4 2520
52ff49df 2521/**
7854d3f7 2522 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2523 * @mtd: mtd info structure
2524 * @chip: nand chip info structure
2525 * @buf: data buffer
1fbb938d 2526 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2527 * @page: page number to write
52ff49df
DB
2528 *
2529 * We need a special oob layout and handling even when ECC isn't checked.
2530 */
fdbad98d 2531static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2532 struct nand_chip *chip,
45aaeff9
BB
2533 const uint8_t *buf, int oob_required,
2534 int page)
52ff49df
DB
2535{
2536 int eccsize = chip->ecc.size;
2537 int eccbytes = chip->ecc.bytes;
2538 uint8_t *oob = chip->oob_poi;
2539 int steps, size;
2540
2541 for (steps = chip->ecc.steps; steps > 0; steps--) {
2542 chip->write_buf(mtd, buf, eccsize);
2543 buf += eccsize;
2544
2545 if (chip->ecc.prepad) {
2546 chip->write_buf(mtd, oob, chip->ecc.prepad);
2547 oob += chip->ecc.prepad;
2548 }
2549
60c3bc1f 2550 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2551 oob += eccbytes;
2552
2553 if (chip->ecc.postpad) {
2554 chip->write_buf(mtd, oob, chip->ecc.postpad);
2555 oob += chip->ecc.postpad;
2556 }
2557 }
2558
2559 size = mtd->oobsize - (oob - chip->oob_poi);
2560 if (size)
2561 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2562
2563 return 0;
52ff49df 2564}
9223a456 2565/**
7854d3f7 2566 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2567 * @mtd: mtd info structure
2568 * @chip: nand chip info structure
2569 * @buf: data buffer
1fbb938d 2570 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2571 * @page: page number to write
9223a456 2572 */
fdbad98d 2573static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2574 const uint8_t *buf, int oob_required,
2575 int page)
9223a456 2576{
846031d3 2577 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
2578 int eccbytes = chip->ecc.bytes;
2579 int eccsteps = chip->ecc.steps;
4bf63fcb 2580 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2581 const uint8_t *p = buf;
9223a456 2582
7854d3f7 2583 /* Software ECC calculation */
8593fbc6
TG
2584 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2585 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2586
846031d3
BB
2587 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2588 chip->ecc.total);
2589 if (ret)
2590 return ret;
9223a456 2591
45aaeff9 2592 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 2593}
9223a456 2594
f75e5097 2595/**
7854d3f7 2596 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2597 * @mtd: mtd info structure
2598 * @chip: nand chip info structure
2599 * @buf: data buffer
1fbb938d 2600 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2601 * @page: page number to write
f75e5097 2602 */
fdbad98d 2603static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2604 const uint8_t *buf, int oob_required,
2605 int page)
f75e5097 2606{
846031d3 2607 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
2608 int eccbytes = chip->ecc.bytes;
2609 int eccsteps = chip->ecc.steps;
4bf63fcb 2610 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2611 const uint8_t *p = buf;
9223a456 2612
f75e5097
TG
2613 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2614 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2615 chip->write_buf(mtd, p, eccsize);
f75e5097 2616 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2617 }
2618
846031d3
BB
2619 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2620 chip->ecc.total);
2621 if (ret)
2622 return ret;
f75e5097
TG
2623
2624 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2625
2626 return 0;
9223a456
TG
2627}
2628
837a6ba4
GP
2629
2630/**
73c8aaf4 2631 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
2632 * @mtd: mtd info structure
2633 * @chip: nand chip info structure
d6a95080 2634 * @offset: column address of subpage within the page
837a6ba4 2635 * @data_len: data length
d6a95080 2636 * @buf: data buffer
837a6ba4 2637 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2638 * @page: page number to write
837a6ba4
GP
2639 */
2640static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2641 struct nand_chip *chip, uint32_t offset,
d6a95080 2642 uint32_t data_len, const uint8_t *buf,
45aaeff9 2643 int oob_required, int page)
837a6ba4
GP
2644{
2645 uint8_t *oob_buf = chip->oob_poi;
2646 uint8_t *ecc_calc = chip->buffers->ecccalc;
2647 int ecc_size = chip->ecc.size;
2648 int ecc_bytes = chip->ecc.bytes;
2649 int ecc_steps = chip->ecc.steps;
837a6ba4
GP
2650 uint32_t start_step = offset / ecc_size;
2651 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2652 int oob_bytes = mtd->oobsize / ecc_steps;
846031d3 2653 int step, ret;
837a6ba4
GP
2654
2655 for (step = 0; step < ecc_steps; step++) {
2656 /* configure controller for WRITE access */
2657 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2658
2659 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2660 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2661
2662 /* mask ECC of un-touched subpages by padding 0xFF */
2663 if ((step < start_step) || (step > end_step))
2664 memset(ecc_calc, 0xff, ecc_bytes);
2665 else
d6a95080 2666 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2667
2668 /* mask OOB of un-touched subpages by padding 0xFF */
2669 /* if oob_required, preserve OOB metadata of written subpage */
2670 if (!oob_required || (step < start_step) || (step > end_step))
2671 memset(oob_buf, 0xff, oob_bytes);
2672
d6a95080 2673 buf += ecc_size;
837a6ba4
GP
2674 ecc_calc += ecc_bytes;
2675 oob_buf += oob_bytes;
2676 }
2677
2678 /* copy calculated ECC for whole page to chip->buffer->oob */
2679 /* this include masked-value(0xFF) for unwritten subpages */
2680 ecc_calc = chip->buffers->ecccalc;
846031d3
BB
2681 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2682 chip->ecc.total);
2683 if (ret)
2684 return ret;
837a6ba4
GP
2685
2686 /* write OOB buffer to NAND device */
2687 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2688
2689 return 0;
2690}
2691
2692
61b03bd7 2693/**
7854d3f7 2694 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2695 * @mtd: mtd info structure
2696 * @chip: nand chip info structure
2697 * @buf: data buffer
1fbb938d 2698 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2699 * @page: page number to write
1da177e4 2700 *
8b6e50c9
BN
2701 * The hw generator calculates the error syndrome automatically. Therefore we
2702 * need a special oob layout and handling.
f75e5097 2703 */
fdbad98d 2704static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 2705 struct nand_chip *chip,
45aaeff9
BB
2706 const uint8_t *buf, int oob_required,
2707 int page)
1da177e4 2708{
f75e5097
TG
2709 int i, eccsize = chip->ecc.size;
2710 int eccbytes = chip->ecc.bytes;
2711 int eccsteps = chip->ecc.steps;
2712 const uint8_t *p = buf;
2713 uint8_t *oob = chip->oob_poi;
1da177e4 2714
f75e5097 2715 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2716
f75e5097
TG
2717 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2718 chip->write_buf(mtd, p, eccsize);
61b03bd7 2719
f75e5097
TG
2720 if (chip->ecc.prepad) {
2721 chip->write_buf(mtd, oob, chip->ecc.prepad);
2722 oob += chip->ecc.prepad;
2723 }
2724
2725 chip->ecc.calculate(mtd, p, oob);
2726 chip->write_buf(mtd, oob, eccbytes);
2727 oob += eccbytes;
2728
2729 if (chip->ecc.postpad) {
2730 chip->write_buf(mtd, oob, chip->ecc.postpad);
2731 oob += chip->ecc.postpad;
1da177e4 2732 }
1da177e4 2733 }
f75e5097
TG
2734
2735 /* Calculate remaining oob bytes */
7e4178f9 2736 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2737 if (i)
2738 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2739
2740 return 0;
f75e5097
TG
2741}
2742
2743/**
f107d7a4 2744 * nand_write_page - write one page
8b6e50c9
BN
2745 * @mtd: MTD device structure
2746 * @chip: NAND chip descriptor
837a6ba4
GP
2747 * @offset: address offset within the page
2748 * @data_len: length of actual data to be written
8b6e50c9 2749 * @buf: the data to write
1fbb938d 2750 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9 2751 * @page: page number to write
8b6e50c9 2752 * @raw: use _raw version of write_page
f75e5097
TG
2753 */
2754static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4 2755 uint32_t offset, int data_len, const uint8_t *buf,
0b4773fd 2756 int oob_required, int page, int raw)
f75e5097 2757{
837a6ba4
GP
2758 int status, subpage;
2759
2760 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2761 chip->ecc.write_subpage)
2762 subpage = offset || (data_len < mtd->writesize);
2763 else
2764 subpage = 0;
f75e5097 2765
3371d663
MG
2766 if (nand_standard_page_accessors(&chip->ecc))
2767 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
f75e5097 2768
956e944c 2769 if (unlikely(raw))
837a6ba4 2770 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 2771 oob_required, page);
837a6ba4
GP
2772 else if (subpage)
2773 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 2774 buf, oob_required, page);
956e944c 2775 else
45aaeff9
BB
2776 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2777 page);
fdbad98d
JW
2778
2779 if (status < 0)
2780 return status;
f75e5097 2781
41145649 2782 if (nand_standard_page_accessors(&chip->ecc)) {
0b4773fd 2783 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
f75e5097 2784
7bc3312b 2785 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2786 if (status & NAND_STATUS_FAIL)
2787 return -EIO;
f75e5097
TG
2788 }
2789
f75e5097 2790 return 0;
1da177e4
LT
2791}
2792
8593fbc6 2793/**
7854d3f7 2794 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2795 * @mtd: MTD device structure
8b6e50c9
BN
2796 * @oob: oob data buffer
2797 * @len: oob data write length
2798 * @ops: oob ops structure
8593fbc6 2799 */
f722013e
TAA
2800static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2801 struct mtd_oob_ops *ops)
8593fbc6 2802{
862eba51 2803 struct nand_chip *chip = mtd_to_nand(mtd);
846031d3 2804 int ret;
f722013e
TAA
2805
2806 /*
2807 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2808 * data from a previous OOB read.
2809 */
2810 memset(chip->oob_poi, 0xff, mtd->oobsize);
2811
f8ac0414 2812 switch (ops->mode) {
8593fbc6 2813
0612b9dd
BN
2814 case MTD_OPS_PLACE_OOB:
2815 case MTD_OPS_RAW:
8593fbc6
TG
2816 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2817 return oob + len;
2818
846031d3
BB
2819 case MTD_OPS_AUTO_OOB:
2820 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
2821 ops->ooboffs, len);
2822 BUG_ON(ret);
2823 return oob + len;
2824
8593fbc6
TG
2825 default:
2826 BUG();
2827 }
2828 return NULL;
2829}
2830
f8ac0414 2831#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2832
2833/**
7854d3f7 2834 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2835 * @mtd: MTD device structure
2836 * @to: offset to write to
2837 * @ops: oob operations description structure
1da177e4 2838 *
8b6e50c9 2839 * NAND write with ECC.
1da177e4 2840 */
8593fbc6
TG
2841static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2842 struct mtd_oob_ops *ops)
1da177e4 2843{
29072b96 2844 int chipnr, realpage, page, blockmask, column;
862eba51 2845 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 2846 uint32_t writelen = ops->len;
782ce79a
ML
2847
2848 uint32_t oobwritelen = ops->ooblen;
29f1058a 2849 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
782ce79a 2850
8593fbc6
TG
2851 uint8_t *oob = ops->oobbuf;
2852 uint8_t *buf = ops->datbuf;
837a6ba4 2853 int ret;
e47f3db4 2854 int oob_required = oob ? 1 : 0;
1da177e4 2855
8593fbc6 2856 ops->retlen = 0;
29072b96
TG
2857 if (!writelen)
2858 return 0;
1da177e4 2859
8b6e50c9 2860 /* Reject writes, which are not page aligned */
8593fbc6 2861 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2862 pr_notice("%s: attempt to write non page aligned data\n",
2863 __func__);
1da177e4
LT
2864 return -EINVAL;
2865 }
2866
29072b96 2867 column = to & (mtd->writesize - 1);
1da177e4 2868
6a930961
TG
2869 chipnr = (int)(to >> chip->chip_shift);
2870 chip->select_chip(mtd, chipnr);
2871
1da177e4 2872 /* Check, if it is write protected */
b0bb6903
HS
2873 if (nand_check_wp(mtd)) {
2874 ret = -EIO;
2875 goto err_out;
2876 }
1da177e4 2877
f75e5097
TG
2878 realpage = (int)(to >> chip->page_shift);
2879 page = realpage & chip->pagemask;
2880 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2881
2882 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2883 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2884 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2885 chip->pagebuf = -1;
61b03bd7 2886
782ce79a 2887 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2888 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2889 ret = -EINVAL;
2890 goto err_out;
2891 }
782ce79a 2892
f8ac0414 2893 while (1) {
29072b96 2894 int bytes = mtd->writesize;
29072b96 2895 uint8_t *wbuf = buf;
66507c7b 2896 int use_bufpoi;
144f4c98 2897 int part_pagewr = (column || writelen < mtd->writesize);
66507c7b
KD
2898
2899 if (part_pagewr)
2900 use_bufpoi = 1;
2901 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
2902 use_bufpoi = !virt_addr_valid(buf) ||
2903 !IS_ALIGNED((unsigned long)buf,
2904 chip->buf_align);
66507c7b
KD
2905 else
2906 use_bufpoi = 0;
29072b96 2907
66507c7b
KD
2908 /* Partial page write?, or need to use bounce buffer */
2909 if (use_bufpoi) {
2910 pr_debug("%s: using write bounce buffer for buf@%p\n",
2911 __func__, buf);
66507c7b
KD
2912 if (part_pagewr)
2913 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2914 chip->pagebuf = -1;
2915 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2916 memcpy(&chip->buffers->databuf[column], buf, bytes);
2917 wbuf = chip->buffers->databuf;
2918 }
1da177e4 2919
782ce79a
ML
2920 if (unlikely(oob)) {
2921 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2922 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2923 oobwritelen -= len;
f722013e
TAA
2924 } else {
2925 /* We still need to erase leftover OOB data */
2926 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2927 }
f107d7a4
BB
2928
2929 ret = nand_write_page(mtd, chip, column, bytes, wbuf,
0b4773fd 2930 oob_required, page,
f107d7a4 2931 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2932 if (ret)
2933 break;
2934
2935 writelen -= bytes;
2936 if (!writelen)
2937 break;
2938
29072b96 2939 column = 0;
f75e5097
TG
2940 buf += bytes;
2941 realpage++;
2942
2943 page = realpage & chip->pagemask;
2944 /* Check, if we cross a chip boundary */
2945 if (!page) {
2946 chipnr++;
2947 chip->select_chip(mtd, -1);
2948 chip->select_chip(mtd, chipnr);
1da177e4
LT
2949 }
2950 }
8593fbc6 2951
8593fbc6 2952 ops->retlen = ops->len - writelen;
7014568b
VW
2953 if (unlikely(oob))
2954 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2955
2956err_out:
2957 chip->select_chip(mtd, -1);
1da177e4
LT
2958 return ret;
2959}
2960
2af7c653
SK
2961/**
2962 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2963 * @mtd: MTD device structure
2964 * @to: offset to write to
2965 * @len: number of bytes to write
2966 * @retlen: pointer to variable to store the number of written bytes
2967 * @buf: the data to write
2af7c653
SK
2968 *
2969 * NAND write with ECC. Used when performing writes in interrupt context, this
2970 * may for example be called by mtdoops when writing an oops while in panic.
2971 */
2972static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2973 size_t *retlen, const uint8_t *buf)
2974{
862eba51 2975 struct nand_chip *chip = mtd_to_nand(mtd);
4a89ff88 2976 struct mtd_oob_ops ops;
2af7c653
SK
2977 int ret;
2978
8b6e50c9 2979 /* Wait for the device to get ready */
2af7c653
SK
2980 panic_nand_wait(mtd, chip, 400);
2981
8b6e50c9 2982 /* Grab the device */
2af7c653
SK
2983 panic_nand_get_device(chip, mtd, FL_WRITING);
2984
0ec56dc4 2985 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2986 ops.len = len;
2987 ops.datbuf = (uint8_t *)buf;
11041ae6 2988 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2989
4a89ff88 2990 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2991
4a89ff88 2992 *retlen = ops.retlen;
2af7c653
SK
2993 return ret;
2994}
2995
f75e5097 2996/**
8593fbc6 2997 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2998 * @mtd: MTD device structure
2999 * @to: offset to write to
3000 * @len: number of bytes to write
3001 * @retlen: pointer to variable to store the number of written bytes
3002 * @buf: the data to write
f75e5097 3003 *
8b6e50c9 3004 * NAND write with ECC.
f75e5097 3005 */
8593fbc6
TG
3006static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
3007 size_t *retlen, const uint8_t *buf)
f75e5097 3008{
4a89ff88 3009 struct mtd_oob_ops ops;
f75e5097
TG
3010 int ret;
3011
6a8214aa 3012 nand_get_device(mtd, FL_WRITING);
0ec56dc4 3013 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
3014 ops.len = len;
3015 ops.datbuf = (uint8_t *)buf;
11041ae6 3016 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 3017 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 3018 *retlen = ops.retlen;
f75e5097 3019 nand_release_device(mtd);
8593fbc6 3020 return ret;
f75e5097 3021}
7314e9e7 3022
1da177e4 3023/**
8593fbc6 3024 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
3025 * @mtd: MTD device structure
3026 * @to: offset to write to
3027 * @ops: oob operation description structure
1da177e4 3028 *
8b6e50c9 3029 * NAND write out-of-band.
1da177e4 3030 */
8593fbc6
TG
3031static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
3032 struct mtd_oob_ops *ops)
1da177e4 3033{
03736155 3034 int chipnr, page, status, len;
862eba51 3035 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 3036
289c0522 3037 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 3038 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 3039
29f1058a 3040 len = mtd_oobavail(mtd, ops);
03736155 3041
1da177e4 3042 /* Do not allow write past end of page */
03736155 3043 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
3044 pr_debug("%s: attempt to write past end of page\n",
3045 __func__);
1da177e4
LT
3046 return -EINVAL;
3047 }
3048
03736155 3049 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
3050 pr_debug("%s: attempt to start write outside oob\n",
3051 __func__);
03736155
AH
3052 return -EINVAL;
3053 }
3054
775adc3d 3055 /* Do not allow write past end of device */
03736155
AH
3056 if (unlikely(to >= mtd->size ||
3057 ops->ooboffs + ops->ooblen >
3058 ((mtd->size >> chip->page_shift) -
3059 (to >> chip->page_shift)) * len)) {
289c0522
BN
3060 pr_debug("%s: attempt to write beyond end of device\n",
3061 __func__);
03736155
AH
3062 return -EINVAL;
3063 }
3064
7314e9e7 3065 chipnr = (int)(to >> chip->chip_shift);
7314e9e7
TG
3066
3067 /*
3068 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
3069 * of my DiskOnChip 2000 test units) will clear the whole data page too
3070 * if we don't do this. I have no clue why, but I seem to have 'fixed'
3071 * it in the doc2000 driver in August 1999. dwmw2.
3072 */
73f907fd
BB
3073 nand_reset(chip, chipnr);
3074
3075 chip->select_chip(mtd, chipnr);
3076
3077 /* Shift to get page */
3078 page = (int)(to >> chip->page_shift);
1da177e4
LT
3079
3080 /* Check, if it is write protected */
b0bb6903
HS
3081 if (nand_check_wp(mtd)) {
3082 chip->select_chip(mtd, -1);
8593fbc6 3083 return -EROFS;
b0bb6903 3084 }
61b03bd7 3085
1da177e4 3086 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
3087 if (page == chip->pagebuf)
3088 chip->pagebuf = -1;
1da177e4 3089
f722013e 3090 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 3091
0612b9dd 3092 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
3093 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
3094 else
3095 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 3096
b0bb6903
HS
3097 chip->select_chip(mtd, -1);
3098
7bc3312b
TG
3099 if (status)
3100 return status;
1da177e4 3101
7014568b 3102 ops->oobretlen = ops->ooblen;
1da177e4 3103
7bc3312b 3104 return 0;
8593fbc6
TG
3105}
3106
3107/**
3108 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
3109 * @mtd: MTD device structure
3110 * @to: offset to write to
3111 * @ops: oob operation description structure
8593fbc6
TG
3112 */
3113static int nand_write_oob(struct mtd_info *mtd, loff_t to,
3114 struct mtd_oob_ops *ops)
3115{
8593fbc6
TG
3116 int ret = -ENOTSUPP;
3117
3118 ops->retlen = 0;
3119
3120 /* Do not allow writes past end of device */
7014568b 3121 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
3122 pr_debug("%s: attempt to write beyond end of device\n",
3123 __func__);
8593fbc6
TG
3124 return -EINVAL;
3125 }
3126
6a8214aa 3127 nand_get_device(mtd, FL_WRITING);
8593fbc6 3128
f8ac0414 3129 switch (ops->mode) {
0612b9dd
BN
3130 case MTD_OPS_PLACE_OOB:
3131 case MTD_OPS_AUTO_OOB:
3132 case MTD_OPS_RAW:
8593fbc6
TG
3133 break;
3134
3135 default:
3136 goto out;
3137 }
3138
3139 if (!ops->datbuf)
3140 ret = nand_do_write_oob(mtd, to, ops);
3141 else
3142 ret = nand_do_write_ops(mtd, to, ops);
3143
7351d3a5 3144out:
1da177e4 3145 nand_release_device(mtd);
1da177e4
LT
3146 return ret;
3147}
3148
1da177e4 3149/**
49c50b97 3150 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
3151 * @mtd: MTD device structure
3152 * @page: the page address of the block which will be erased
1da177e4 3153 *
49c50b97 3154 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 3155 */
49c50b97 3156static int single_erase(struct mtd_info *mtd, int page)
1da177e4 3157{
862eba51 3158 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 3159 /* Send commands to erase a block */
ace4dfee
TG
3160 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
3161 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
3162
3163 return chip->waitfunc(mtd, chip);
1da177e4
LT
3164}
3165
1da177e4
LT
3166/**
3167 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
3168 * @mtd: MTD device structure
3169 * @instr: erase instruction
1da177e4 3170 *
8b6e50c9 3171 * Erase one ore more blocks.
1da177e4 3172 */
e0c7d767 3173static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 3174{
e0c7d767 3175 return nand_erase_nand(mtd, instr, 0);
1da177e4 3176}
61b03bd7 3177
1da177e4 3178/**
7854d3f7 3179 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
3180 * @mtd: MTD device structure
3181 * @instr: erase instruction
3182 * @allowbbt: allow erasing the bbt area
1da177e4 3183 *
8b6e50c9 3184 * Erase one ore more blocks.
1da177e4 3185 */
ace4dfee
TG
3186int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3187 int allowbbt)
1da177e4 3188{
69423d99 3189 int page, status, pages_per_block, ret, chipnr;
862eba51 3190 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 3191 loff_t len;
1da177e4 3192
289c0522
BN
3193 pr_debug("%s: start = 0x%012llx, len = %llu\n",
3194 __func__, (unsigned long long)instr->addr,
3195 (unsigned long long)instr->len);
1da177e4 3196
6fe5a6ac 3197 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 3198 return -EINVAL;
1da177e4 3199
1da177e4 3200 /* Grab the lock and see if the device is available */
6a8214aa 3201 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
3202
3203 /* Shift to get first page */
ace4dfee
TG
3204 page = (int)(instr->addr >> chip->page_shift);
3205 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
3206
3207 /* Calculate pages in each block */
ace4dfee 3208 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
3209
3210 /* Select the NAND device */
ace4dfee 3211 chip->select_chip(mtd, chipnr);
1da177e4 3212
1da177e4
LT
3213 /* Check, if it is write protected */
3214 if (nand_check_wp(mtd)) {
289c0522
BN
3215 pr_debug("%s: device is write protected!\n",
3216 __func__);
1da177e4
LT
3217 instr->state = MTD_ERASE_FAILED;
3218 goto erase_exit;
3219 }
3220
3221 /* Loop through the pages */
3222 len = instr->len;
3223
3224 instr->state = MTD_ERASING;
3225
3226 while (len) {
12183a20 3227 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee 3228 if (nand_block_checkbad(mtd, ((loff_t) page) <<
9f3e0429 3229 chip->page_shift, allowbbt)) {
d0370219
BN
3230 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3231 __func__, page);
1da177e4
LT
3232 instr->state = MTD_ERASE_FAILED;
3233 goto erase_exit;
3234 }
61b03bd7 3235
ace4dfee
TG
3236 /*
3237 * Invalidate the page cache, if we erase the block which
8b6e50c9 3238 * contains the current cached page.
ace4dfee
TG
3239 */
3240 if (page <= chip->pagebuf && chip->pagebuf <
3241 (page + pages_per_block))
3242 chip->pagebuf = -1;
1da177e4 3243
49c50b97 3244 status = chip->erase(mtd, page & chip->pagemask);
1da177e4
LT
3245
3246 /* See if block erase succeeded */
a4ab4c5d 3247 if (status & NAND_STATUS_FAIL) {
289c0522
BN
3248 pr_debug("%s: failed erase, page 0x%08x\n",
3249 __func__, page);
1da177e4 3250 instr->state = MTD_ERASE_FAILED;
69423d99
AH
3251 instr->fail_addr =
3252 ((loff_t)page << chip->page_shift);
1da177e4
LT
3253 goto erase_exit;
3254 }
30f464b7 3255
1da177e4 3256 /* Increment page address and decrement length */
daae74ca 3257 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
3258 page += pages_per_block;
3259
3260 /* Check, if we cross a chip boundary */
ace4dfee 3261 if (len && !(page & chip->pagemask)) {
1da177e4 3262 chipnr++;
ace4dfee
TG
3263 chip->select_chip(mtd, -1);
3264 chip->select_chip(mtd, chipnr);
1da177e4
LT
3265 }
3266 }
3267 instr->state = MTD_ERASE_DONE;
3268
7351d3a5 3269erase_exit:
1da177e4
LT
3270
3271 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
3272
3273 /* Deselect and wake up anyone waiting on the device */
b0bb6903 3274 chip->select_chip(mtd, -1);
1da177e4
LT
3275 nand_release_device(mtd);
3276
49defc01
DW
3277 /* Do call back function */
3278 if (!ret)
3279 mtd_erase_callback(instr);
3280
1da177e4
LT
3281 /* Return more or less happy */
3282 return ret;
3283}
3284
3285/**
3286 * nand_sync - [MTD Interface] sync
8b6e50c9 3287 * @mtd: MTD device structure
1da177e4 3288 *
8b6e50c9 3289 * Sync is actually a wait for chip ready function.
1da177e4 3290 */
e0c7d767 3291static void nand_sync(struct mtd_info *mtd)
1da177e4 3292{
289c0522 3293 pr_debug("%s: called\n", __func__);
1da177e4
LT
3294
3295 /* Grab the lock and see if the device is available */
6a8214aa 3296 nand_get_device(mtd, FL_SYNCING);
1da177e4 3297 /* Release it and go back */
e0c7d767 3298 nand_release_device(mtd);
1da177e4
LT
3299}
3300
1da177e4 3301/**
ace4dfee 3302 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
3303 * @mtd: MTD device structure
3304 * @offs: offset relative to mtd start
1da177e4 3305 */
ace4dfee 3306static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 3307{
9f3e0429
AT
3308 struct nand_chip *chip = mtd_to_nand(mtd);
3309 int chipnr = (int)(offs >> chip->chip_shift);
3310 int ret;
3311
3312 /* Select the NAND device */
3313 nand_get_device(mtd, FL_READING);
3314 chip->select_chip(mtd, chipnr);
3315
3316 ret = nand_block_checkbad(mtd, offs, 0);
3317
3318 chip->select_chip(mtd, -1);
3319 nand_release_device(mtd);
3320
3321 return ret;
1da177e4
LT
3322}
3323
3324/**
ace4dfee 3325 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
3326 * @mtd: MTD device structure
3327 * @ofs: offset relative to mtd start
1da177e4 3328 */
e0c7d767 3329static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 3330{
1da177e4
LT
3331 int ret;
3332
f8ac0414
FF
3333 ret = nand_block_isbad(mtd, ofs);
3334 if (ret) {
8b6e50c9 3335 /* If it was bad already, return success and do nothing */
1da177e4
LT
3336 if (ret > 0)
3337 return 0;
e0c7d767
DW
3338 return ret;
3339 }
1da177e4 3340
5a0edb25 3341 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
3342}
3343
5671842f
ZB
3344/**
3345 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
3346 * @mtd: MTD device structure
3347 * @ofs: offset relative to mtd start
3348 * @len: length of mtd
3349 */
3350static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
3351{
3352 struct nand_chip *chip = mtd_to_nand(mtd);
3353 u32 part_start_block;
3354 u32 part_end_block;
3355 u32 part_start_die;
3356 u32 part_end_die;
3357
3358 /*
3359 * max_bb_per_die and blocks_per_die used to determine
3360 * the maximum bad block count.
3361 */
3362 if (!chip->max_bb_per_die || !chip->blocks_per_die)
3363 return -ENOTSUPP;
3364
3365 /* Get the start and end of the partition in erase blocks. */
3366 part_start_block = mtd_div_by_eb(ofs, mtd);
3367 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
3368
3369 /* Get the start and end LUNs of the partition. */
3370 part_start_die = part_start_block / chip->blocks_per_die;
3371 part_end_die = part_end_block / chip->blocks_per_die;
3372
3373 /*
3374 * Look up the bad blocks per unit and multiply by the number of units
3375 * that the partition spans.
3376 */
3377 return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
3378}
3379
7db03ecc
HS
3380/**
3381 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3382 * @mtd: MTD device structure
3383 * @chip: nand chip info structure
3384 * @addr: feature address.
3385 * @subfeature_param: the subfeature parameters, a four bytes array.
3386 */
3387static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3388 int addr, uint8_t *subfeature_param)
3389{
3390 int status;
05f78359 3391 int i;
7db03ecc 3392
d914c932
DM
3393 if (!chip->onfi_version ||
3394 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3395 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3396 return -EINVAL;
3397
3398 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
3399 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3400 chip->write_byte(mtd, subfeature_param[i]);
3401
7db03ecc
HS
3402 status = chip->waitfunc(mtd, chip);
3403 if (status & NAND_STATUS_FAIL)
3404 return -EIO;
3405 return 0;
3406}
3407
3408/**
3409 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3410 * @mtd: MTD device structure
3411 * @chip: nand chip info structure
3412 * @addr: feature address.
3413 * @subfeature_param: the subfeature parameters, a four bytes array.
3414 */
3415static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3416 int addr, uint8_t *subfeature_param)
3417{
05f78359
UKK
3418 int i;
3419
d914c932
DM
3420 if (!chip->onfi_version ||
3421 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3422 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3423 return -EINVAL;
3424
7db03ecc 3425 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
3426 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3427 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
3428 return 0;
3429}
3430
4a78cc64
BB
3431/**
3432 * nand_onfi_get_set_features_notsupp - set/get features stub returning
3433 * -ENOTSUPP
3434 * @mtd: MTD device structure
3435 * @chip: nand chip info structure
3436 * @addr: feature address.
3437 * @subfeature_param: the subfeature parameters, a four bytes array.
3438 *
3439 * Should be used by NAND controller drivers that do not support the SET/GET
3440 * FEATURES operations.
3441 */
3442int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
3443 struct nand_chip *chip, int addr,
3444 u8 *subfeature_param)
3445{
3446 return -ENOTSUPP;
3447}
3448EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
3449
962034f4
VW
3450/**
3451 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 3452 * @mtd: MTD device structure
962034f4
VW
3453 */
3454static int nand_suspend(struct mtd_info *mtd)
3455{
6a8214aa 3456 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
3457}
3458
3459/**
3460 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 3461 * @mtd: MTD device structure
962034f4
VW
3462 */
3463static void nand_resume(struct mtd_info *mtd)
3464{
862eba51 3465 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 3466
ace4dfee 3467 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
3468 nand_release_device(mtd);
3469 else
d0370219
BN
3470 pr_err("%s called for a chip which is not in suspended state\n",
3471 __func__);
962034f4
VW
3472}
3473
72ea4036
SB
3474/**
3475 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3476 * prevent further operations
3477 * @mtd: MTD device structure
3478 */
3479static void nand_shutdown(struct mtd_info *mtd)
3480{
9ca641b0 3481 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
3482}
3483
8b6e50c9 3484/* Set default functions */
29a198a1 3485static void nand_set_defaults(struct nand_chip *chip)
7aa65bfd 3486{
29a198a1
BB
3487 unsigned int busw = chip->options & NAND_BUSWIDTH_16;
3488
1da177e4 3489 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
3490 if (!chip->chip_delay)
3491 chip->chip_delay = 20;
1da177e4
LT
3492
3493 /* check, if a user supplied command function given */
ace4dfee
TG
3494 if (chip->cmdfunc == NULL)
3495 chip->cmdfunc = nand_command;
1da177e4
LT
3496
3497 /* check, if a user supplied wait function given */
ace4dfee
TG
3498 if (chip->waitfunc == NULL)
3499 chip->waitfunc = nand_wait;
3500
3501 if (!chip->select_chip)
3502 chip->select_chip = nand_select_chip;
68e80780 3503
4204cccd
HS
3504 /* set for ONFI nand */
3505 if (!chip->onfi_set_features)
3506 chip->onfi_set_features = nand_onfi_set_features;
3507 if (!chip->onfi_get_features)
3508 chip->onfi_get_features = nand_onfi_get_features;
3509
68e80780
BN
3510 /* If called twice, pointers that depend on busw may need to be reset */
3511 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
3512 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3513 if (!chip->read_word)
3514 chip->read_word = nand_read_word;
3515 if (!chip->block_bad)
3516 chip->block_bad = nand_block_bad;
3517 if (!chip->block_markbad)
3518 chip->block_markbad = nand_default_block_markbad;
68e80780 3519 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 3520 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
3521 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3522 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 3523 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 3524 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
3525 if (!chip->scan_bbt)
3526 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
3527
3528 if (!chip->controller) {
3529 chip->controller = &chip->hwcontrol;
d45bc58d 3530 nand_hw_control_init(chip->controller);
f75e5097
TG
3531 }
3532
477544c6
MY
3533 if (!chip->buf_align)
3534 chip->buf_align = 1;
7aa65bfd
TG
3535}
3536
8b6e50c9 3537/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3538static void sanitize_string(uint8_t *s, size_t len)
3539{
3540 ssize_t i;
3541
8b6e50c9 3542 /* Null terminate */
d1e1f4e4
FF
3543 s[len - 1] = 0;
3544
8b6e50c9 3545 /* Remove non printable chars */
d1e1f4e4
FF
3546 for (i = 0; i < len - 1; i++) {
3547 if (s[i] < ' ' || s[i] > 127)
3548 s[i] = '?';
3549 }
3550
8b6e50c9 3551 /* Remove trailing spaces */
d1e1f4e4
FF
3552 strim(s);
3553}
3554
3555static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3556{
3557 int i;
3558 while (len--) {
3559 crc ^= *p++ << 8;
3560 for (i = 0; i < 8; i++)
3561 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3562 }
3563
3564 return crc;
3565}
3566
6dcbe0cd 3567/* Parse the Extended Parameter Page. */
cbe435a1
BB
3568static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
3569 struct nand_onfi_params *p)
6dcbe0cd 3570{
cbe435a1 3571 struct mtd_info *mtd = nand_to_mtd(chip);
6dcbe0cd
HS
3572 struct onfi_ext_param_page *ep;
3573 struct onfi_ext_section *s;
3574 struct onfi_ext_ecc_info *ecc;
3575 uint8_t *cursor;
3576 int ret = -EINVAL;
3577 int len;
3578 int i;
3579
3580 len = le16_to_cpu(p->ext_param_page_length) * 16;
3581 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3582 if (!ep)
3583 return -ENOMEM;
6dcbe0cd
HS
3584
3585 /* Send our own NAND_CMD_PARAM. */
3586 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3587
3588 /* Use the Change Read Column command to skip the ONFI param pages. */
3589 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3590 sizeof(*p) * p->num_of_param_pages , -1);
3591
3592 /* Read out the Extended Parameter Page. */
3593 chip->read_buf(mtd, (uint8_t *)ep, len);
3594 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3595 != le16_to_cpu(ep->crc))) {
3596 pr_debug("fail in the CRC.\n");
3597 goto ext_out;
3598 }
3599
3600 /*
3601 * Check the signature.
3602 * Do not strictly follow the ONFI spec, maybe changed in future.
3603 */
3604 if (strncmp(ep->sig, "EPPS", 4)) {
3605 pr_debug("The signature is invalid.\n");
3606 goto ext_out;
3607 }
3608
3609 /* find the ECC section. */
3610 cursor = (uint8_t *)(ep + 1);
3611 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3612 s = ep->sections + i;
3613 if (s->type == ONFI_SECTION_TYPE_2)
3614 break;
3615 cursor += s->length * 16;
3616 }
3617 if (i == ONFI_EXT_SECTION_MAX) {
3618 pr_debug("We can not find the ECC section.\n");
3619 goto ext_out;
3620 }
3621
3622 /* get the info we want. */
3623 ecc = (struct onfi_ext_ecc_info *)cursor;
3624
4ae7d228
BN
3625 if (!ecc->codeword_size) {
3626 pr_debug("Invalid codeword size\n");
3627 goto ext_out;
6dcbe0cd
HS
3628 }
3629
4ae7d228
BN
3630 chip->ecc_strength_ds = ecc->ecc_bits;
3631 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3632 ret = 0;
6dcbe0cd
HS
3633
3634ext_out:
3635 kfree(ep);
3636 return ret;
3637}
3638
6fb277ba 3639/*
8b6e50c9 3640 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba 3641 */
29a198a1 3642static int nand_flash_detect_onfi(struct nand_chip *chip)
6fb277ba 3643{
cbe435a1 3644 struct mtd_info *mtd = nand_to_mtd(chip);
6fb277ba 3645 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3646 int i, j;
6fb277ba
FF
3647 int val;
3648
7854d3f7 3649 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3650 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3651 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3652 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3653 return 0;
3654
6fb277ba
FF
3655 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3656 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3657 for (j = 0; j < sizeof(*p); j++)
3658 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3659 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3660 le16_to_cpu(p->crc)) {
6fb277ba
FF
3661 break;
3662 }
3663 }
3664
c7f23a70
BN
3665 if (i == 3) {
3666 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3667 return 0;
c7f23a70 3668 }
6fb277ba 3669
8b6e50c9 3670 /* Check version */
6fb277ba 3671 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3672 if (val & (1 << 5))
3673 chip->onfi_version = 23;
3674 else if (val & (1 << 4))
6fb277ba
FF
3675 chip->onfi_version = 22;
3676 else if (val & (1 << 3))
3677 chip->onfi_version = 21;
3678 else if (val & (1 << 2))
3679 chip->onfi_version = 20;
b7b1a29d 3680 else if (val & (1 << 1))
6fb277ba 3681 chip->onfi_version = 10;
b7b1a29d
BN
3682
3683 if (!chip->onfi_version) {
20171642 3684 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3685 return 0;
3686 }
6fb277ba
FF
3687
3688 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3689 sanitize_string(p->model, sizeof(p->model));
3690 if (!mtd->name)
3691 mtd->name = p->model;
4355b70c 3692
6fb277ba 3693 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3694
3695 /*
3696 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3697 * (don't ask me who thought of this...). MTD assumes that these
3698 * dimensions will be power-of-2, so just truncate the remaining area.
3699 */
3700 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3701 mtd->erasesize *= mtd->writesize;
3702
6fb277ba 3703 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3704
3705 /* See erasesize comment */
3706 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3707 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3708 chip->bits_per_cell = p->bits_per_cell;
e2985fc1 3709
34da5f5f
ZB
3710 chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
3711 chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
3712
e2985fc1 3713 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
29a198a1 3714 chip->options |= NAND_BUSWIDTH_16;
6fb277ba 3715
10c86bab
HS
3716 if (p->ecc_bits != 0xff) {
3717 chip->ecc_strength_ds = p->ecc_bits;
3718 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3719 } else if (chip->onfi_version >= 21 &&
3720 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3721
3722 /*
3723 * The nand_flash_detect_ext_param_page() uses the
3724 * Change Read Column command which maybe not supported
3725 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3726 * now. We do not replace user supplied command function.
3727 */
3728 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3729 chip->cmdfunc = nand_command_lp;
3730
3731 /* The Extended Parameter Page is supported since ONFI 2.1. */
cbe435a1 3732 if (nand_flash_detect_ext_param_page(chip, p))
c7f23a70
BN
3733 pr_warn("Failed to detect ONFI extended param page\n");
3734 } else {
3735 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3736 }
3737
6fb277ba
FF
3738 return 1;
3739}
3740
91361818
HS
3741/*
3742 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3743 */
29a198a1 3744static int nand_flash_detect_jedec(struct nand_chip *chip)
91361818 3745{
cbe435a1 3746 struct mtd_info *mtd = nand_to_mtd(chip);
91361818
HS
3747 struct nand_jedec_params *p = &chip->jedec_params;
3748 struct jedec_ecc_info *ecc;
3749 int val;
3750 int i, j;
3751
3752 /* Try JEDEC for unknown chip or LP */
3753 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3754 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3755 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3756 chip->read_byte(mtd) != 'C')
3757 return 0;
3758
3759 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3760 for (i = 0; i < 3; i++) {
3761 for (j = 0; j < sizeof(*p); j++)
3762 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3763
3764 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3765 le16_to_cpu(p->crc))
3766 break;
3767 }
3768
3769 if (i == 3) {
3770 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3771 return 0;
3772 }
3773
3774 /* Check version */
3775 val = le16_to_cpu(p->revision);
3776 if (val & (1 << 2))
3777 chip->jedec_version = 10;
3778 else if (val & (1 << 1))
3779 chip->jedec_version = 1; /* vendor specific version */
3780
3781 if (!chip->jedec_version) {
3782 pr_info("unsupported JEDEC version: %d\n", val);
3783 return 0;
3784 }
3785
3786 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3787 sanitize_string(p->model, sizeof(p->model));
3788 if (!mtd->name)
3789 mtd->name = p->model;
3790
3791 mtd->writesize = le32_to_cpu(p->byte_per_page);
3792
3793 /* Please reference to the comment for nand_flash_detect_onfi. */
3794 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3795 mtd->erasesize *= mtd->writesize;
3796
3797 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3798
3799 /* Please reference to the comment for nand_flash_detect_onfi. */
3800 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3801 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3802 chip->bits_per_cell = p->bits_per_cell;
3803
3804 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
29a198a1 3805 chip->options |= NAND_BUSWIDTH_16;
91361818
HS
3806
3807 /* ECC info */
3808 ecc = &p->ecc_info[0];
3809
3810 if (ecc->codeword_size >= 9) {
3811 chip->ecc_strength_ds = ecc->ecc_bits;
3812 chip->ecc_step_ds = 1 << ecc->codeword_size;
3813 } else {
3814 pr_warn("Invalid codeword size\n");
3815 }
3816
3817 return 1;
3818}
3819
e3b88bd6
BN
3820/*
3821 * nand_id_has_period - Check if an ID string has a given wraparound period
3822 * @id_data: the ID string
3823 * @arrlen: the length of the @id_data array
3824 * @period: the period of repitition
3825 *
3826 * Check if an ID string is repeated within a given sequence of bytes at
3827 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3828 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3829 * if the repetition has a period of @period; otherwise, returns zero.
3830 */
3831static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3832{
3833 int i, j;
3834 for (i = 0; i < period; i++)
3835 for (j = i + period; j < arrlen; j += period)
3836 if (id_data[i] != id_data[j])
3837 return 0;
3838 return 1;
3839}
3840
3841/*
3842 * nand_id_len - Get the length of an ID string returned by CMD_READID
3843 * @id_data: the ID string
3844 * @arrlen: the length of the @id_data array
3845
3846 * Returns the length of the ID string, according to known wraparound/trailing
3847 * zero patterns. If no pattern exists, returns the length of the array.
3848 */
3849static int nand_id_len(u8 *id_data, int arrlen)
3850{
3851 int last_nonzero, period;
3852
3853 /* Find last non-zero byte */
3854 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3855 if (id_data[last_nonzero])
3856 break;
3857
3858 /* All zeros */
3859 if (last_nonzero < 0)
3860 return 0;
3861
3862 /* Calculate wraparound period */
3863 for (period = 1; period < arrlen; period++)
3864 if (nand_id_has_period(id_data, arrlen, period))
3865 break;
3866
3867 /* There's a repeated pattern */
3868 if (period < arrlen)
3869 return period;
3870
3871 /* There are trailing zeros */
3872 if (last_nonzero < arrlen - 1)
3873 return last_nonzero + 1;
3874
3875 /* No pattern detected */
3876 return arrlen;
3877}
3878
7db906b7
HS
3879/* Extract the bits of per cell from the 3rd byte of the extended ID */
3880static int nand_get_bits_per_cell(u8 cellinfo)
3881{
3882 int bits;
3883
3884 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3885 bits >>= NAND_CI_CELLTYPE_SHIFT;
3886 return bits + 1;
3887}
3888
fc09bbc0
BN
3889/*
3890 * Many new NAND share similar device ID codes, which represent the size of the
3891 * chip. The rest of the parameters must be decoded according to generic or
3892 * manufacturer-specific "extended ID" decoding patterns.
3893 */
abbe26d1 3894void nand_decode_ext_id(struct nand_chip *chip)
fc09bbc0 3895{
cbe435a1 3896 struct mtd_info *mtd = nand_to_mtd(chip);
9b2d61f8 3897 int extid;
7f501f0a 3898 u8 *id_data = chip->id.data;
fc09bbc0 3899 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3900 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3901 /* The 4th id byte is the important one */
3902 extid = id_data[3];
3903
01389b6b
BB
3904 /* Calc pagesize */
3905 mtd->writesize = 1024 << (extid & 0x03);
3906 extid >>= 2;
3907 /* Calc oobsize */
3908 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
3909 extid >>= 2;
3910 /* Calc blocksize. Blocksize is multiples of 64KiB */
3911 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3912 extid >>= 2;
3913 /* Get buswidth information */
3914 if (extid & 0x1)
3915 chip->options |= NAND_BUSWIDTH_16;
fc09bbc0 3916}
abbe26d1 3917EXPORT_SYMBOL_GPL(nand_decode_ext_id);
fc09bbc0 3918
f23a481c
BN
3919/*
3920 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3921 * decodes a matching ID table entry and assigns the MTD size parameters for
3922 * the chip.
3923 */
29a198a1 3924static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
f23a481c 3925{
cbe435a1 3926 struct mtd_info *mtd = nand_to_mtd(chip);
f23a481c
BN
3927
3928 mtd->erasesize = type->erasesize;
3929 mtd->writesize = type->pagesize;
3930 mtd->oobsize = mtd->writesize / 32;
f23a481c 3931
1c195e90
HS
3932 /* All legacy ID NAND are small-page, SLC */
3933 chip->bits_per_cell = 1;
f23a481c
BN
3934}
3935
7e74c2d7
BN
3936/*
3937 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3938 * heuristic patterns using various detected parameters (e.g., manufacturer,
3939 * page size, cell-type information).
3940 */
7f501f0a 3941static void nand_decode_bbm_options(struct nand_chip *chip)
7e74c2d7 3942{
cbe435a1 3943 struct mtd_info *mtd = nand_to_mtd(chip);
7e74c2d7
BN
3944
3945 /* Set the bad block position */
3946 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3947 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3948 else
3949 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
7e74c2d7
BN
3950}
3951
ec6e87e3
HS
3952static inline bool is_full_id_nand(struct nand_flash_dev *type)
3953{
3954 return type->id_len;
3955}
3956
cbe435a1 3957static bool find_full_id_nand(struct nand_chip *chip,
29a198a1 3958 struct nand_flash_dev *type)
ec6e87e3 3959{
cbe435a1 3960 struct mtd_info *mtd = nand_to_mtd(chip);
7f501f0a 3961 u8 *id_data = chip->id.data;
cbe435a1 3962
ec6e87e3
HS
3963 if (!strncmp(type->id, id_data, type->id_len)) {
3964 mtd->writesize = type->pagesize;
3965 mtd->erasesize = type->erasesize;
3966 mtd->oobsize = type->oobsize;
3967
7db906b7 3968 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3969 chip->chipsize = (uint64_t)type->chipsize << 20;
3970 chip->options |= type->options;
57219342
HS
3971 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3972 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3973 chip->onfi_timing_mode_default =
3974 type->onfi_timing_mode_default;
ec6e87e3 3975
092b6a1d
CZ
3976 if (!mtd->name)
3977 mtd->name = type->name;
3978
ec6e87e3
HS
3979 return true;
3980 }
3981 return false;
3982}
3983
abbe26d1
BB
3984/*
3985 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
3986 * compliant and does not have a full-id or legacy-id entry in the nand_ids
3987 * table.
3988 */
3989static void nand_manufacturer_detect(struct nand_chip *chip)
3990{
3991 /*
3992 * Try manufacturer detection if available and use
3993 * nand_decode_ext_id() otherwise.
3994 */
3995 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
3996 chip->manufacturer.desc->ops->detect)
3997 chip->manufacturer.desc->ops->detect(chip);
3998 else
3999 nand_decode_ext_id(chip);
4000}
4001
4002/*
4003 * Manufacturer initialization. This function is called for all NANDs including
4004 * ONFI and JEDEC compliant ones.
4005 * Manufacturer drivers should put all their specific initialization code in
4006 * their ->init() hook.
4007 */
4008static int nand_manufacturer_init(struct nand_chip *chip)
4009{
4010 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4011 !chip->manufacturer.desc->ops->init)
4012 return 0;
4013
4014 return chip->manufacturer.desc->ops->init(chip);
4015}
4016
4017/*
4018 * Manufacturer cleanup. This function is called for all NANDs including
4019 * ONFI and JEDEC compliant ones.
4020 * Manufacturer drivers should put all their specific cleanup code in their
4021 * ->cleanup() hook.
4022 */
4023static void nand_manufacturer_cleanup(struct nand_chip *chip)
4024{
4025 /* Release manufacturer private data */
4026 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4027 chip->manufacturer.desc->ops->cleanup)
4028 chip->manufacturer.desc->ops->cleanup(chip);
4029}
4030
7aa65bfd 4031/*
8b6e50c9 4032 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd 4033 */
7bb42799 4034static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
7aa65bfd 4035{
bcc678c2 4036 const struct nand_manufacturer *manufacturer;
cbe435a1 4037 struct mtd_info *mtd = nand_to_mtd(chip);
bb77082f 4038 int busw;
abbe26d1 4039 int i, ret;
7f501f0a
BB
4040 u8 *id_data = chip->id.data;
4041 u8 maf_id, dev_id;
1da177e4 4042
ef89a880
KB
4043 /*
4044 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 4045 * after power-up.
ef89a880 4046 */
73f907fd
BB
4047 nand_reset(chip, 0);
4048
4049 /* Select the device */
4050 chip->select_chip(mtd, 0);
ef89a880 4051
1da177e4 4052 /* Send the command for reading device ID */
ace4dfee 4053 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
4054
4055 /* Read manufacturer and device IDs */
7f501f0a
BB
4056 maf_id = chip->read_byte(mtd);
4057 dev_id = chip->read_byte(mtd);
1da177e4 4058
8b6e50c9
BN
4059 /*
4060 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
4061 * interface concerns can cause random data which looks like a
4062 * possibly credible NAND flash to appear. If the two results do
4063 * not match, ignore the device completely.
4064 */
4065
4066 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4067
4aef9b78
BN
4068 /* Read entire ID string */
4069 for (i = 0; i < 8; i++)
426c457a 4070 id_data[i] = chip->read_byte(mtd);
ed8165c7 4071
7f501f0a 4072 if (id_data[0] != maf_id || id_data[1] != dev_id) {
20171642 4073 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
7f501f0a 4074 maf_id, dev_id, id_data[0], id_data[1]);
4722c0e9 4075 return -ENODEV;
ed8165c7
BD
4076 }
4077
7f501f0a
BB
4078 chip->id.len = nand_id_len(id_data, 8);
4079
abbe26d1
BB
4080 /* Try to identify manufacturer */
4081 manufacturer = nand_get_manufacturer(maf_id);
4082 chip->manufacturer.desc = manufacturer;
4083
7aa65bfd 4084 if (!type)
5e81e88a
DW
4085 type = nand_flash_ids;
4086
29a198a1
BB
4087 /*
4088 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4089 * override it.
4090 * This is required to make sure initial NAND bus width set by the
4091 * NAND controller driver is coherent with the real NAND bus width
4092 * (extracted by auto-detection code).
4093 */
4094 busw = chip->options & NAND_BUSWIDTH_16;
4095
4096 /*
4097 * The flag is only set (never cleared), reset it to its default value
4098 * before starting auto-detection.
4099 */
4100 chip->options &= ~NAND_BUSWIDTH_16;
4101
ec6e87e3
HS
4102 for (; type->name != NULL; type++) {
4103 if (is_full_id_nand(type)) {
29a198a1 4104 if (find_full_id_nand(chip, type))
ec6e87e3 4105 goto ident_done;
7f501f0a 4106 } else if (dev_id == type->dev_id) {
db5b09f6 4107 break;
ec6e87e3
HS
4108 }
4109 }
5e81e88a 4110
d1e1f4e4
FF
4111 chip->onfi_version = 0;
4112 if (!type->name || !type->pagesize) {
35fc5195 4113 /* Check if the chip is ONFI compliant */
29a198a1 4114 if (nand_flash_detect_onfi(chip))
6fb277ba 4115 goto ident_done;
91361818
HS
4116
4117 /* Check if the chip is JEDEC compliant */
29a198a1 4118 if (nand_flash_detect_jedec(chip))
91361818 4119 goto ident_done;
d1e1f4e4
FF
4120 }
4121
5e81e88a 4122 if (!type->name)
4722c0e9 4123 return -ENODEV;
7aa65bfd 4124
ba0251fe
TG
4125 if (!mtd->name)
4126 mtd->name = type->name;
4127
69423d99 4128 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 4129
abbe26d1
BB
4130 if (!type->pagesize)
4131 nand_manufacturer_detect(chip);
4132 else
29a198a1 4133 nand_decode_id(chip, type);
abbe26d1 4134
bf7a01bf
BN
4135 /* Get chip options */
4136 chip->options |= type->options;
d1e1f4e4 4137
d1e1f4e4
FF
4138ident_done:
4139
64b37b2a 4140 if (chip->options & NAND_BUSWIDTH_AUTO) {
29a198a1
BB
4141 WARN_ON(busw & NAND_BUSWIDTH_16);
4142 nand_set_defaults(chip);
64b37b2a
MC
4143 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4144 /*
4145 * Check, if buswidth is correct. Hardware drivers should set
4146 * chip correct!
4147 */
20171642 4148 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 4149 maf_id, dev_id);
bcc678c2
BB
4150 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4151 mtd->name);
29a198a1
BB
4152 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4153 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4722c0e9 4154 return -EINVAL;
7aa65bfd 4155 }
61b03bd7 4156
7f501f0a 4157 nand_decode_bbm_options(chip);
7e74c2d7 4158
7aa65bfd 4159 /* Calculate the address shift from the page size */
ace4dfee 4160 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 4161 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 4162 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 4163
ace4dfee 4164 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 4165 ffs(mtd->erasesize) - 1;
69423d99
AH
4166 if (chip->chipsize & 0xffffffff)
4167 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
4168 else {
4169 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4170 chip->chip_shift += 32 - 1;
4171 }
1da177e4 4172
26d9be11 4173 chip->badblockbits = 8;
49c50b97 4174 chip->erase = single_erase;
7aa65bfd 4175
8b6e50c9 4176 /* Do not replace user supplied command function! */
ace4dfee
TG
4177 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4178 chip->cmdfunc = nand_command_lp;
7aa65bfd 4179
abbe26d1
BB
4180 ret = nand_manufacturer_init(chip);
4181 if (ret)
4182 return ret;
4183
20171642 4184 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 4185 maf_id, dev_id);
ffdac6cd
HS
4186
4187 if (chip->onfi_version)
bcc678c2
BB
4188 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4189 chip->onfi_params.model);
ffdac6cd 4190 else if (chip->jedec_version)
bcc678c2
BB
4191 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4192 chip->jedec_params.model);
ffdac6cd 4193 else
bcc678c2
BB
4194 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4195 type->name);
ffdac6cd 4196
3755a991 4197 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 4198 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 4199 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4722c0e9 4200 return 0;
7aa65bfd
TG
4201}
4202
d48f62b9
BB
4203static const char * const nand_ecc_modes[] = {
4204 [NAND_ECC_NONE] = "none",
4205 [NAND_ECC_SOFT] = "soft",
4206 [NAND_ECC_HW] = "hw",
4207 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
4208 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
785818fa 4209 [NAND_ECC_ON_DIE] = "on-die",
d48f62b9
BB
4210};
4211
4212static int of_get_nand_ecc_mode(struct device_node *np)
4213{
4214 const char *pm;
4215 int err, i;
4216
4217 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4218 if (err < 0)
4219 return err;
4220
4221 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4222 if (!strcasecmp(pm, nand_ecc_modes[i]))
4223 return i;
4224
ae211bcf
RM
4225 /*
4226 * For backward compatibility we support few obsoleted values that don't
4227 * have their mappings into nand_ecc_modes_t anymore (they were merged
4228 * with other enums).
4229 */
4230 if (!strcasecmp(pm, "soft_bch"))
4231 return NAND_ECC_SOFT;
4232
d48f62b9
BB
4233 return -ENODEV;
4234}
4235
ba4f46b2
RM
4236static const char * const nand_ecc_algos[] = {
4237 [NAND_ECC_HAMMING] = "hamming",
4238 [NAND_ECC_BCH] = "bch",
4239};
4240
d48f62b9
BB
4241static int of_get_nand_ecc_algo(struct device_node *np)
4242{
4243 const char *pm;
ba4f46b2 4244 int err, i;
d48f62b9 4245
ba4f46b2
RM
4246 err = of_property_read_string(np, "nand-ecc-algo", &pm);
4247 if (!err) {
4248 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4249 if (!strcasecmp(pm, nand_ecc_algos[i]))
4250 return i;
4251 return -ENODEV;
4252 }
d48f62b9
BB
4253
4254 /*
4255 * For backward compatibility we also read "nand-ecc-mode" checking
4256 * for some obsoleted values that were specifying ECC algorithm.
4257 */
4258 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4259 if (err < 0)
4260 return err;
4261
4262 if (!strcasecmp(pm, "soft"))
4263 return NAND_ECC_HAMMING;
4264 else if (!strcasecmp(pm, "soft_bch"))
4265 return NAND_ECC_BCH;
4266
4267 return -ENODEV;
4268}
4269
4270static int of_get_nand_ecc_step_size(struct device_node *np)
4271{
4272 int ret;
4273 u32 val;
4274
4275 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4276 return ret ? ret : val;
4277}
4278
4279static int of_get_nand_ecc_strength(struct device_node *np)
4280{
4281 int ret;
4282 u32 val;
4283
4284 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4285 return ret ? ret : val;
4286}
4287
4288static int of_get_nand_bus_width(struct device_node *np)
4289{
4290 u32 val;
4291
4292 if (of_property_read_u32(np, "nand-bus-width", &val))
4293 return 8;
4294
4295 switch (val) {
4296 case 8:
4297 case 16:
4298 return val;
4299 default:
4300 return -EIO;
4301 }
4302}
4303
4304static bool of_get_nand_on_flash_bbt(struct device_node *np)
4305{
4306 return of_property_read_bool(np, "nand-on-flash-bbt");
4307}
4308
7194a29a 4309static int nand_dt_init(struct nand_chip *chip)
5844feea 4310{
7194a29a 4311 struct device_node *dn = nand_get_flash_node(chip);
79082457 4312 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5844feea 4313
7194a29a
BB
4314 if (!dn)
4315 return 0;
4316
5844feea
BN
4317 if (of_get_nand_bus_width(dn) == 16)
4318 chip->options |= NAND_BUSWIDTH_16;
4319
4320 if (of_get_nand_on_flash_bbt(dn))
4321 chip->bbt_options |= NAND_BBT_USE_FLASH;
4322
4323 ecc_mode = of_get_nand_ecc_mode(dn);
79082457 4324 ecc_algo = of_get_nand_ecc_algo(dn);
5844feea
BN
4325 ecc_strength = of_get_nand_ecc_strength(dn);
4326 ecc_step = of_get_nand_ecc_step_size(dn);
4327
5844feea
BN
4328 if (ecc_mode >= 0)
4329 chip->ecc.mode = ecc_mode;
4330
79082457
RM
4331 if (ecc_algo >= 0)
4332 chip->ecc.algo = ecc_algo;
4333
5844feea
BN
4334 if (ecc_strength >= 0)
4335 chip->ecc.strength = ecc_strength;
4336
4337 if (ecc_step > 0)
4338 chip->ecc.size = ecc_step;
4339
ba78ee00
BB
4340 if (of_property_read_bool(dn, "nand-ecc-maximize"))
4341 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4342
5844feea
BN
4343 return 0;
4344}
4345
7aa65bfd 4346/**
3b85c321 4347 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4348 * @mtd: MTD device structure
4349 * @maxchips: number of chips to scan for
4350 * @table: alternative NAND ID table
7aa65bfd 4351 *
8b6e50c9
BN
4352 * This is the first phase of the normal nand_scan() function. It reads the
4353 * flash ID and sets up MTD fields accordingly.
7aa65bfd
TG
4354 *
4355 */
5e81e88a
DW
4356int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4357 struct nand_flash_dev *table)
7aa65bfd 4358{
bb77082f 4359 int i, nand_maf_id, nand_dev_id;
862eba51 4360 struct nand_chip *chip = mtd_to_nand(mtd);
5844feea
BN
4361 int ret;
4362
7194a29a
BB
4363 ret = nand_dt_init(chip);
4364 if (ret)
4365 return ret;
7aa65bfd 4366
f7a8e38f
BN
4367 if (!mtd->name && mtd->dev.parent)
4368 mtd->name = dev_name(mtd->dev.parent);
4369
76fe334f
AS
4370 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
4371 /*
4372 * Default functions assigned for chip_select() and
4373 * cmdfunc() both expect cmd_ctrl() to be populated,
4374 * so we need to check that that's the case
4375 */
4376 pr_err("chip.cmd_ctrl() callback is not provided");
4377 return -EINVAL;
4378 }
7aa65bfd 4379 /* Set the default functions */
29a198a1 4380 nand_set_defaults(chip);
7aa65bfd
TG
4381
4382 /* Read the flash type */
7bb42799 4383 ret = nand_detect(chip, table);
4722c0e9 4384 if (ret) {
b1c6e6db 4385 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 4386 pr_warn("No NAND device found\n");
ace4dfee 4387 chip->select_chip(mtd, -1);
4722c0e9 4388 return ret;
1da177e4
LT
4389 }
4390
73f907fd 4391 /* Initialize the ->data_interface field. */
d8e725dd
BB
4392 ret = nand_init_data_interface(chip);
4393 if (ret)
78771049 4394 goto err_nand_init;
d8e725dd 4395
73f907fd
BB
4396 /*
4397 * Setup the data interface correctly on the chip and controller side.
4398 * This explicit call to nand_setup_data_interface() is only required
4399 * for the first die, because nand_reset() has been called before
4400 * ->data_interface and ->default_onfi_timing_mode were set.
4401 * For the other dies, nand_reset() will automatically switch to the
4402 * best mode for us.
4403 */
104e442a 4404 ret = nand_setup_data_interface(chip, 0);
73f907fd 4405 if (ret)
78771049 4406 goto err_nand_init;
73f907fd 4407
7f501f0a
BB
4408 nand_maf_id = chip->id.data[0];
4409 nand_dev_id = chip->id.data[1];
4410
07300164
HS
4411 chip->select_chip(mtd, -1);
4412
7aa65bfd 4413 /* Check for a chip array */
e0c7d767 4414 for (i = 1; i < maxchips; i++) {
ef89a880 4415 /* See comment in nand_get_flash_type for reset */
73f907fd
BB
4416 nand_reset(chip, i);
4417
4418 chip->select_chip(mtd, i);
1da177e4 4419 /* Send the command for reading device ID */
ace4dfee 4420 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 4421 /* Read manufacturer and device IDs */
ace4dfee 4422 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
4423 nand_dev_id != chip->read_byte(mtd)) {
4424 chip->select_chip(mtd, -1);
1da177e4 4425 break;
07300164
HS
4426 }
4427 chip->select_chip(mtd, -1);
1da177e4
LT
4428 }
4429 if (i > 1)
20171642 4430 pr_info("%d chips detected\n", i);
61b03bd7 4431
1da177e4 4432 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
4433 chip->numchips = i;
4434 mtd->size = i * chip->chipsize;
7aa65bfd 4435
3b85c321 4436 return 0;
78771049
BN
4437
4438err_nand_init:
4439 /* Free manufacturer priv data. */
4440 nand_manufacturer_cleanup(chip);
4441
4442 return ret;
3b85c321 4443}
7351d3a5 4444EXPORT_SYMBOL(nand_scan_ident);
3b85c321 4445
06f384c9
RM
4446static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
4447{
4448 struct nand_chip *chip = mtd_to_nand(mtd);
4449 struct nand_ecc_ctrl *ecc = &chip->ecc;
4450
e4225ae8 4451 if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
06f384c9
RM
4452 return -EINVAL;
4453
4454 switch (ecc->algo) {
4455 case NAND_ECC_HAMMING:
4456 ecc->calculate = nand_calculate_ecc;
4457 ecc->correct = nand_correct_data;
4458 ecc->read_page = nand_read_page_swecc;
4459 ecc->read_subpage = nand_read_subpage;
4460 ecc->write_page = nand_write_page_swecc;
4461 ecc->read_page_raw = nand_read_page_raw;
4462 ecc->write_page_raw = nand_write_page_raw;
4463 ecc->read_oob = nand_read_oob_std;
4464 ecc->write_oob = nand_write_oob_std;
4465 if (!ecc->size)
4466 ecc->size = 256;
4467 ecc->bytes = 3;
4468 ecc->strength = 1;
4469 return 0;
4470 case NAND_ECC_BCH:
4471 if (!mtd_nand_has_bch()) {
4472 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4473 return -EINVAL;
4474 }
4475 ecc->calculate = nand_bch_calculate_ecc;
4476 ecc->correct = nand_bch_correct_data;
4477 ecc->read_page = nand_read_page_swecc;
4478 ecc->read_subpage = nand_read_subpage;
4479 ecc->write_page = nand_write_page_swecc;
4480 ecc->read_page_raw = nand_read_page_raw;
4481 ecc->write_page_raw = nand_write_page_raw;
4482 ecc->read_oob = nand_read_oob_std;
4483 ecc->write_oob = nand_write_oob_std;
8bbba481 4484
06f384c9
RM
4485 /*
4486 * Board driver should supply ecc.size and ecc.strength
4487 * values to select how many bits are correctable.
4488 * Otherwise, default to 4 bits for large page devices.
4489 */
4490 if (!ecc->size && (mtd->oobsize >= 64)) {
4491 ecc->size = 512;
4492 ecc->strength = 4;
4493 }
4494
4495 /*
4496 * if no ecc placement scheme was provided pickup the default
4497 * large page one.
4498 */
4499 if (!mtd->ooblayout) {
4500 /* handle large page devices only */
4501 if (mtd->oobsize < 64) {
4502 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4503 return -EINVAL;
4504 }
4505
4506 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
8bbba481
BB
4507
4508 }
4509
4510 /*
4511 * We can only maximize ECC config when the default layout is
4512 * used, otherwise we don't know how many bytes can really be
4513 * used.
4514 */
4515 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
4516 ecc->options & NAND_ECC_MAXIMIZE) {
4517 int steps, bytes;
4518
4519 /* Always prefer 1k blocks over 512bytes ones */
4520 ecc->size = 1024;
4521 steps = mtd->writesize / ecc->size;
4522
4523 /* Reserve 2 bytes for the BBM */
4524 bytes = (mtd->oobsize - 2) / steps;
4525 ecc->strength = bytes * 8 / fls(8 * ecc->size);
06f384c9
RM
4526 }
4527
4528 /* See nand_bch_init() for details. */
4529 ecc->bytes = 0;
4530 ecc->priv = nand_bch_init(mtd);
4531 if (!ecc->priv) {
4532 WARN(1, "BCH ECC initialization failed!\n");
4533 return -EINVAL;
4534 }
4535 return 0;
4536 default:
4537 WARN(1, "Unsupported ECC algorithm!\n");
4538 return -EINVAL;
4539 }
4540}
4541
2c8f8afa
MY
4542/**
4543 * nand_check_ecc_caps - check the sanity of preset ECC settings
4544 * @chip: nand chip info structure
4545 * @caps: ECC caps info structure
4546 * @oobavail: OOB size that the ECC engine can use
4547 *
4548 * When ECC step size and strength are already set, check if they are supported
4549 * by the controller and the calculated ECC bytes fit within the chip's OOB.
4550 * On success, the calculated ECC bytes is set.
4551 */
4552int nand_check_ecc_caps(struct nand_chip *chip,
4553 const struct nand_ecc_caps *caps, int oobavail)
4554{
4555 struct mtd_info *mtd = nand_to_mtd(chip);
4556 const struct nand_ecc_step_info *stepinfo;
4557 int preset_step = chip->ecc.size;
4558 int preset_strength = chip->ecc.strength;
4559 int nsteps, ecc_bytes;
4560 int i, j;
4561
4562 if (WARN_ON(oobavail < 0))
4563 return -EINVAL;
4564
4565 if (!preset_step || !preset_strength)
4566 return -ENODATA;
4567
4568 nsteps = mtd->writesize / preset_step;
4569
4570 for (i = 0; i < caps->nstepinfos; i++) {
4571 stepinfo = &caps->stepinfos[i];
4572
4573 if (stepinfo->stepsize != preset_step)
4574 continue;
4575
4576 for (j = 0; j < stepinfo->nstrengths; j++) {
4577 if (stepinfo->strengths[j] != preset_strength)
4578 continue;
4579
4580 ecc_bytes = caps->calc_ecc_bytes(preset_step,
4581 preset_strength);
4582 if (WARN_ON_ONCE(ecc_bytes < 0))
4583 return ecc_bytes;
4584
4585 if (ecc_bytes * nsteps > oobavail) {
4586 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4587 preset_step, preset_strength);
4588 return -ENOSPC;
4589 }
4590
4591 chip->ecc.bytes = ecc_bytes;
4592
4593 return 0;
4594 }
4595 }
4596
4597 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4598 preset_step, preset_strength);
4599
4600 return -ENOTSUPP;
4601}
4602EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4603
4604/**
4605 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4606 * @chip: nand chip info structure
4607 * @caps: ECC engine caps info structure
4608 * @oobavail: OOB size that the ECC engine can use
4609 *
4610 * If a chip's ECC requirement is provided, try to meet it with the least
4611 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4612 * On success, the chosen ECC settings are set.
4613 */
4614int nand_match_ecc_req(struct nand_chip *chip,
4615 const struct nand_ecc_caps *caps, int oobavail)
4616{
4617 struct mtd_info *mtd = nand_to_mtd(chip);
4618 const struct nand_ecc_step_info *stepinfo;
4619 int req_step = chip->ecc_step_ds;
4620 int req_strength = chip->ecc_strength_ds;
4621 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4622 int best_step, best_strength, best_ecc_bytes;
4623 int best_ecc_bytes_total = INT_MAX;
4624 int i, j;
4625
4626 if (WARN_ON(oobavail < 0))
4627 return -EINVAL;
4628
4629 /* No information provided by the NAND chip */
4630 if (!req_step || !req_strength)
4631 return -ENOTSUPP;
4632
4633 /* number of correctable bits the chip requires in a page */
4634 req_corr = mtd->writesize / req_step * req_strength;
4635
4636 for (i = 0; i < caps->nstepinfos; i++) {
4637 stepinfo = &caps->stepinfos[i];
4638 step_size = stepinfo->stepsize;
4639
4640 for (j = 0; j < stepinfo->nstrengths; j++) {
4641 strength = stepinfo->strengths[j];
4642
4643 /*
4644 * If both step size and strength are smaller than the
4645 * chip's requirement, it is not easy to compare the
4646 * resulted reliability.
4647 */
4648 if (step_size < req_step && strength < req_strength)
4649 continue;
4650
4651 if (mtd->writesize % step_size)
4652 continue;
4653
4654 nsteps = mtd->writesize / step_size;
4655
4656 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4657 if (WARN_ON_ONCE(ecc_bytes < 0))
4658 continue;
4659 ecc_bytes_total = ecc_bytes * nsteps;
4660
4661 if (ecc_bytes_total > oobavail ||
4662 strength * nsteps < req_corr)
4663 continue;
4664
4665 /*
4666 * We assume the best is to meet the chip's requrement
4667 * with the least number of ECC bytes.
4668 */
4669 if (ecc_bytes_total < best_ecc_bytes_total) {
4670 best_ecc_bytes_total = ecc_bytes_total;
4671 best_step = step_size;
4672 best_strength = strength;
4673 best_ecc_bytes = ecc_bytes;
4674 }
4675 }
4676 }
4677
4678 if (best_ecc_bytes_total == INT_MAX)
4679 return -ENOTSUPP;
4680
4681 chip->ecc.size = best_step;
4682 chip->ecc.strength = best_strength;
4683 chip->ecc.bytes = best_ecc_bytes;
4684
4685 return 0;
4686}
4687EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4688
4689/**
4690 * nand_maximize_ecc - choose the max ECC strength available
4691 * @chip: nand chip info structure
4692 * @caps: ECC engine caps info structure
4693 * @oobavail: OOB size that the ECC engine can use
4694 *
4695 * Choose the max ECC strength that is supported on the controller, and can fit
4696 * within the chip's OOB. On success, the chosen ECC settings are set.
4697 */
4698int nand_maximize_ecc(struct nand_chip *chip,
4699 const struct nand_ecc_caps *caps, int oobavail)
4700{
4701 struct mtd_info *mtd = nand_to_mtd(chip);
4702 const struct nand_ecc_step_info *stepinfo;
4703 int step_size, strength, nsteps, ecc_bytes, corr;
4704 int best_corr = 0;
4705 int best_step = 0;
4706 int best_strength, best_ecc_bytes;
4707 int i, j;
4708
4709 if (WARN_ON(oobavail < 0))
4710 return -EINVAL;
4711
4712 for (i = 0; i < caps->nstepinfos; i++) {
4713 stepinfo = &caps->stepinfos[i];
4714 step_size = stepinfo->stepsize;
4715
4716 /* If chip->ecc.size is already set, respect it */
4717 if (chip->ecc.size && step_size != chip->ecc.size)
4718 continue;
4719
4720 for (j = 0; j < stepinfo->nstrengths; j++) {
4721 strength = stepinfo->strengths[j];
4722
4723 if (mtd->writesize % step_size)
4724 continue;
4725
4726 nsteps = mtd->writesize / step_size;
4727
4728 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4729 if (WARN_ON_ONCE(ecc_bytes < 0))
4730 continue;
4731
4732 if (ecc_bytes * nsteps > oobavail)
4733 continue;
4734
4735 corr = strength * nsteps;
4736
4737 /*
4738 * If the number of correctable bits is the same,
4739 * bigger step_size has more reliability.
4740 */
4741 if (corr > best_corr ||
4742 (corr == best_corr && step_size > best_step)) {
4743 best_corr = corr;
4744 best_step = step_size;
4745 best_strength = strength;
4746 best_ecc_bytes = ecc_bytes;
4747 }
4748 }
4749 }
4750
4751 if (!best_corr)
4752 return -ENOTSUPP;
4753
4754 chip->ecc.size = best_step;
4755 chip->ecc.strength = best_strength;
4756 chip->ecc.bytes = best_ecc_bytes;
4757
4758 return 0;
4759}
4760EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4761
67a9ad9b
EG
4762/*
4763 * Check if the chip configuration meet the datasheet requirements.
4764
4765 * If our configuration corrects A bits per B bytes and the minimum
4766 * required correction level is X bits per Y bytes, then we must ensure
4767 * both of the following are true:
4768 *
4769 * (1) A / B >= X / Y
4770 * (2) A >= X
4771 *
4772 * Requirement (1) ensures we can correct for the required bitflip density.
4773 * Requirement (2) ensures we can correct even when all bitflips are clumped
4774 * in the same sector.
4775 */
4776static bool nand_ecc_strength_good(struct mtd_info *mtd)
4777{
862eba51 4778 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
4779 struct nand_ecc_ctrl *ecc = &chip->ecc;
4780 int corr, ds_corr;
4781
4782 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4783 /* Not enough information */
4784 return true;
4785
4786 /*
4787 * We get the number of corrected bits per page to compare
4788 * the correction density.
4789 */
4790 corr = (mtd->writesize * ecc->strength) / ecc->size;
4791 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4792
4793 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4794}
3b85c321 4795
3371d663
MG
4796static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4797{
4798 struct nand_ecc_ctrl *ecc = &chip->ecc;
4799
4800 if (nand_standard_page_accessors(ecc))
4801 return false;
4802
4803 /*
4804 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4805 * controller driver implements all the page accessors because
4806 * default helpers are not suitable when the core does not
4807 * send the READ0/PAGEPROG commands.
4808 */
4809 return (!ecc->read_page || !ecc->write_page ||
4810 !ecc->read_page_raw || !ecc->write_page_raw ||
4811 (NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4812 (NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4813 ecc->hwctl && ecc->calculate));
4814}
4815
3b85c321
DW
4816/**
4817 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 4818 * @mtd: MTD device structure
3b85c321 4819 *
8b6e50c9
BN
4820 * This is the second phase of the normal nand_scan() function. It fills out
4821 * all the uninitialized function pointers with the defaults and scans for a
4822 * bad block table if appropriate.
3b85c321
DW
4823 */
4824int nand_scan_tail(struct mtd_info *mtd)
4825{
862eba51 4826 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 4827 struct nand_ecc_ctrl *ecc = &chip->ecc;
3deb9979 4828 struct nand_buffers *nbuf = NULL;
11eaf6df 4829 int ret;
3b85c321 4830
e2414f4c 4831 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
11eaf6df 4832 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
78771049
BN
4833 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
4834 ret = -EINVAL;
4835 goto err_ident;
4836 }
e2414f4c 4837
3371d663
MG
4838 if (invalid_ecc_page_accessors(chip)) {
4839 pr_err("Invalid ECC page accessors setup\n");
78771049
BN
4840 ret = -EINVAL;
4841 goto err_ident;
3371d663
MG
4842 }
4843
f02ea4e6 4844 if (!(chip->options & NAND_OWN_BUFFERS)) {
3deb9979 4845 nbuf = kzalloc(sizeof(*nbuf), GFP_KERNEL);
78771049
BN
4846 if (!nbuf) {
4847 ret = -ENOMEM;
4848 goto err_ident;
4849 }
3deb9979
MY
4850
4851 nbuf->ecccalc = kmalloc(mtd->oobsize, GFP_KERNEL);
4852 if (!nbuf->ecccalc) {
4853 ret = -ENOMEM;
4854 goto err_free;
4855 }
4856
4857 nbuf->ecccode = kmalloc(mtd->oobsize, GFP_KERNEL);
4858 if (!nbuf->ecccode) {
4859 ret = -ENOMEM;
4860 goto err_free;
4861 }
4862
4863 nbuf->databuf = kmalloc(mtd->writesize + mtd->oobsize,
4864 GFP_KERNEL);
4865 if (!nbuf->databuf) {
4866 ret = -ENOMEM;
4867 goto err_free;
4868 }
f02ea4e6
HS
4869
4870 chip->buffers = nbuf;
4871 } else {
78771049
BN
4872 if (!chip->buffers) {
4873 ret = -ENOMEM;
4874 goto err_ident;
4875 }
f02ea4e6 4876 }
4bf63fcb 4877
7dcdcbef 4878 /* Set the internal oob buffer location, just after the page data */
784f4d5e 4879 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 4880
7aa65bfd 4881 /*
8b6e50c9 4882 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 4883 */
06f384c9 4884 if (!mtd->ooblayout &&
e4225ae8 4885 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
61b03bd7 4886 switch (mtd->oobsize) {
1da177e4 4887 case 8:
1da177e4 4888 case 16:
41b207a7 4889 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
1da177e4
LT
4890 break;
4891 case 64:
81ec5364 4892 case 128:
6a623e07 4893 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
81ec5364 4894 break;
1da177e4 4895 default:
11eaf6df
EG
4896 WARN(1, "No oob scheme defined for oobsize %d\n",
4897 mtd->oobsize);
4898 ret = -EINVAL;
4899 goto err_free;
1da177e4
LT
4900 }
4901 }
61b03bd7 4902
61b03bd7 4903 /*
8b6e50c9 4904 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 4905 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 4906 */
956e944c 4907
97de79e0 4908 switch (ecc->mode) {
6e0cb135
SN
4909 case NAND_ECC_HW_OOB_FIRST:
4910 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 4911 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
11eaf6df
EG
4912 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4913 ret = -EINVAL;
4914 goto err_free;
6e0cb135 4915 }
97de79e0
HS
4916 if (!ecc->read_page)
4917 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 4918
6dfc6d25 4919 case NAND_ECC_HW:
8b6e50c9 4920 /* Use standard hwecc read page function? */
97de79e0
HS
4921 if (!ecc->read_page)
4922 ecc->read_page = nand_read_page_hwecc;
4923 if (!ecc->write_page)
4924 ecc->write_page = nand_write_page_hwecc;
4925 if (!ecc->read_page_raw)
4926 ecc->read_page_raw = nand_read_page_raw;
4927 if (!ecc->write_page_raw)
4928 ecc->write_page_raw = nand_write_page_raw;
4929 if (!ecc->read_oob)
4930 ecc->read_oob = nand_read_oob_std;
4931 if (!ecc->write_oob)
4932 ecc->write_oob = nand_write_oob_std;
4933 if (!ecc->read_subpage)
4934 ecc->read_subpage = nand_read_subpage;
44991b3d 4935 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
97de79e0 4936 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 4937
6dfc6d25 4938 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
4939 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4940 (!ecc->read_page ||
4941 ecc->read_page == nand_read_page_hwecc ||
4942 !ecc->write_page ||
4943 ecc->write_page == nand_write_page_hwecc)) {
11eaf6df
EG
4944 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4945 ret = -EINVAL;
4946 goto err_free;
6dfc6d25 4947 }
8b6e50c9 4948 /* Use standard syndrome read/write page function? */
97de79e0
HS
4949 if (!ecc->read_page)
4950 ecc->read_page = nand_read_page_syndrome;
4951 if (!ecc->write_page)
4952 ecc->write_page = nand_write_page_syndrome;
4953 if (!ecc->read_page_raw)
4954 ecc->read_page_raw = nand_read_page_raw_syndrome;
4955 if (!ecc->write_page_raw)
4956 ecc->write_page_raw = nand_write_page_raw_syndrome;
4957 if (!ecc->read_oob)
4958 ecc->read_oob = nand_read_oob_syndrome;
4959 if (!ecc->write_oob)
4960 ecc->write_oob = nand_write_oob_syndrome;
4961
4962 if (mtd->writesize >= ecc->size) {
4963 if (!ecc->strength) {
11eaf6df
EG
4964 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4965 ret = -EINVAL;
4966 goto err_free;
e2788c98 4967 }
6dfc6d25 4968 break;
e2788c98 4969 }
2ac63d90
RM
4970 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4971 ecc->size, mtd->writesize);
97de79e0 4972 ecc->mode = NAND_ECC_SOFT;
e9d4faed 4973 ecc->algo = NAND_ECC_HAMMING;
61b03bd7 4974
6dfc6d25 4975 case NAND_ECC_SOFT:
06f384c9
RM
4976 ret = nand_set_ecc_soft_ops(mtd);
4977 if (ret) {
11eaf6df
EG
4978 ret = -EINVAL;
4979 goto err_free;
193bd400
ID
4980 }
4981 break;
4982
785818fa
TP
4983 case NAND_ECC_ON_DIE:
4984 if (!ecc->read_page || !ecc->write_page) {
4985 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
4986 ret = -EINVAL;
4987 goto err_free;
4988 }
4989 if (!ecc->read_oob)
4990 ecc->read_oob = nand_read_oob_std;
4991 if (!ecc->write_oob)
4992 ecc->write_oob = nand_write_oob_std;
4993 break;
4994
61b03bd7 4995 case NAND_ECC_NONE:
2ac63d90 4996 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4997 ecc->read_page = nand_read_page_raw;
4998 ecc->write_page = nand_write_page_raw;
4999 ecc->read_oob = nand_read_oob_std;
5000 ecc->read_page_raw = nand_read_page_raw;
5001 ecc->write_page_raw = nand_write_page_raw;
5002 ecc->write_oob = nand_write_oob_std;
5003 ecc->size = mtd->writesize;
5004 ecc->bytes = 0;
5005 ecc->strength = 0;
1da177e4 5006 break;
956e944c 5007
1da177e4 5008 default:
11eaf6df
EG
5009 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5010 ret = -EINVAL;
5011 goto err_free;
1da177e4 5012 }
61b03bd7 5013
9ce244b3 5014 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
5015 if (!ecc->read_oob_raw)
5016 ecc->read_oob_raw = ecc->read_oob;
5017 if (!ecc->write_oob_raw)
5018 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 5019
846031d3 5020 /* propagate ecc info to mtd_info */
846031d3
BB
5021 mtd->ecc_strength = ecc->strength;
5022 mtd->ecc_step_size = ecc->size;
67a9ad9b 5023
7aa65bfd
TG
5024 /*
5025 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 5026 * mode.
7aa65bfd 5027 */
97de79e0
HS
5028 ecc->steps = mtd->writesize / ecc->size;
5029 if (ecc->steps * ecc->size != mtd->writesize) {
11eaf6df
EG
5030 WARN(1, "Invalid ECC parameters\n");
5031 ret = -EINVAL;
5032 goto err_free;
1da177e4 5033 }
97de79e0 5034 ecc->total = ecc->steps * ecc->bytes;
79e0348c
MY
5035 if (ecc->total > mtd->oobsize) {
5036 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5037 ret = -EINVAL;
5038 goto err_free;
5039 }
61b03bd7 5040
846031d3
BB
5041 /*
5042 * The number of bytes available for a client to place data into
5043 * the out of band area.
5044 */
5045 ret = mtd_ooblayout_count_freebytes(mtd);
5046 if (ret < 0)
5047 ret = 0;
5048
5049 mtd->oobavail = ret;
5050
5051 /* ECC sanity check: warn if it's too weak */
5052 if (!nand_ecc_strength_good(mtd))
5053 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5054 mtd->name);
5055
8b6e50c9 5056 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 5057 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 5058 switch (ecc->steps) {
29072b96
TG
5059 case 2:
5060 mtd->subpage_sft = 1;
5061 break;
5062 case 4:
5063 case 8:
81ec5364 5064 case 16:
29072b96
TG
5065 mtd->subpage_sft = 2;
5066 break;
5067 }
5068 }
5069 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5070
04bbd0ea 5071 /* Initialize state */
ace4dfee 5072 chip->state = FL_READY;
1da177e4 5073
1da177e4 5074 /* Invalidate the pagebuffer reference */
ace4dfee 5075 chip->pagebuf = -1;
1da177e4 5076
a5ff4f10 5077 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
5078 switch (ecc->mode) {
5079 case NAND_ECC_SOFT:
4007e2d1
RL
5080 if (chip->page_shift > 9)
5081 chip->options |= NAND_SUBPAGE_READ;
5082 break;
5083
5084 default:
5085 break;
5086 }
a5ff4f10 5087
1da177e4 5088 /* Fill in remaining MTD driver data */
963d1c28 5089 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
5090 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
5091 MTD_CAP_NANDFLASH;
3c3c10bb
AB
5092 mtd->_erase = nand_erase;
5093 mtd->_point = NULL;
5094 mtd->_unpoint = NULL;
5095 mtd->_read = nand_read;
5096 mtd->_write = nand_write;
5097 mtd->_panic_write = panic_nand_write;
5098 mtd->_read_oob = nand_read_oob;
5099 mtd->_write_oob = nand_write_oob;
5100 mtd->_sync = nand_sync;
5101 mtd->_lock = NULL;
5102 mtd->_unlock = NULL;
5103 mtd->_suspend = nand_suspend;
5104 mtd->_resume = nand_resume;
72ea4036 5105 mtd->_reboot = nand_shutdown;
8471bb73 5106 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
5107 mtd->_block_isbad = nand_block_isbad;
5108 mtd->_block_markbad = nand_block_markbad;
5671842f 5109 mtd->_max_bad_blocks = nand_max_bad_blocks;
cbcab65a 5110 mtd->writebufsize = mtd->writesize;
1da177e4 5111
ea3b2ea2
SL
5112 /*
5113 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5114 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5115 * properly set.
5116 */
5117 if (!mtd->bitflip_threshold)
240181fd 5118 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 5119
0040bf38 5120 /* Check, if we should skip the bad block table scan */
ace4dfee 5121 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 5122 return 0;
1da177e4
LT
5123
5124 /* Build bad block table */
44d4182e
BN
5125 ret = chip->scan_bbt(mtd);
5126 if (ret)
5127 goto err_free;
5128 return 0;
5129
11eaf6df 5130err_free:
3deb9979
MY
5131 if (nbuf) {
5132 kfree(nbuf->databuf);
5133 kfree(nbuf->ecccode);
5134 kfree(nbuf->ecccalc);
5135 kfree(nbuf);
5136 }
78771049
BN
5137
5138err_ident:
5139 /* Clean up nand_scan_ident(). */
5140
5141 /* Free manufacturer priv data. */
5142 nand_manufacturer_cleanup(chip);
5143
11eaf6df 5144 return ret;
1da177e4 5145}
7351d3a5 5146EXPORT_SYMBOL(nand_scan_tail);
1da177e4 5147
8b6e50c9
BN
5148/*
5149 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 5150 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
5151 * to call us from in-kernel code if the core NAND support is modular.
5152 */
3b85c321
DW
5153#ifdef MODULE
5154#define caller_is_module() (1)
5155#else
5156#define caller_is_module() \
a6e6abd5 5157 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
5158#endif
5159
5160/**
5161 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
5162 * @mtd: MTD device structure
5163 * @maxchips: number of chips to scan for
3b85c321 5164 *
8b6e50c9
BN
5165 * This fills out all the uninitialized function pointers with the defaults.
5166 * The flash ID is read and the mtd/chip structures are filled with the
20c07a5b 5167 * appropriate values.
3b85c321
DW
5168 */
5169int nand_scan(struct mtd_info *mtd, int maxchips)
5170{
5171 int ret;
5172
5e81e88a 5173 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
5174 if (!ret)
5175 ret = nand_scan_tail(mtd);
5176 return ret;
5177}
7351d3a5 5178EXPORT_SYMBOL(nand_scan);
3b85c321 5179
1da177e4 5180/**
d44154f9
RW
5181 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5182 * @chip: NAND chip object
8b6e50c9 5183 */
d44154f9 5184void nand_cleanup(struct nand_chip *chip)
1da177e4 5185{
e4225ae8 5186 if (chip->ecc.mode == NAND_ECC_SOFT &&
06f384c9 5187 chip->ecc.algo == NAND_ECC_BCH)
193bd400
ID
5188 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5189
d8e725dd
BB
5190 nand_release_data_interface(chip);
5191
fa671646 5192 /* Free bad block table memory */
ace4dfee 5193 kfree(chip->bbt);
3deb9979
MY
5194 if (!(chip->options & NAND_OWN_BUFFERS) && chip->buffers) {
5195 kfree(chip->buffers->databuf);
5196 kfree(chip->buffers->ecccode);
5197 kfree(chip->buffers->ecccalc);
4bf63fcb 5198 kfree(chip->buffers);
3deb9979 5199 }
58373ff0
BN
5200
5201 /* Free bad block descriptor memory */
5202 if (chip->badblock_pattern && chip->badblock_pattern->options
5203 & NAND_BBT_DYNAMICSTRUCT)
5204 kfree(chip->badblock_pattern);
abbe26d1
BB
5205
5206 /* Free manufacturer priv data. */
5207 nand_manufacturer_cleanup(chip);
1da177e4 5208}
d44154f9
RW
5209EXPORT_SYMBOL_GPL(nand_cleanup);
5210
5211/**
5212 * nand_release - [NAND Interface] Unregister the MTD device and free resources
5213 * held by the NAND device
5214 * @mtd: MTD device structure
5215 */
5216void nand_release(struct mtd_info *mtd)
5217{
5218 mtd_device_unregister(mtd);
5219 nand_cleanup(mtd_to_nand(mtd));
5220}
e0c7d767 5221EXPORT_SYMBOL_GPL(nand_release);
8fe833c1 5222
e0c7d767 5223MODULE_LICENSE("GPL");
7351d3a5
FF
5224MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5225MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 5226MODULE_DESCRIPTION("Generic NAND flash driver code");