]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
leds: trigger: Introduce a MTD (NAND/NOR) trigger
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
1da177e4
LT
39#include <linux/types.h>
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/nand.h>
42#include <linux/mtd/nand_ecc.h>
193bd400 43#include <linux/mtd/nand_bch.h>
1da177e4
LT
44#include <linux/interrupt.h>
45#include <linux/bitops.h>
8fe833c1 46#include <linux/leds.h>
7351d3a5 47#include <linux/io.h>
1da177e4 48#include <linux/mtd/partitions.h>
5844feea 49#include <linux/of_mtd.h>
1da177e4
LT
50
51/* Define default oob placement schemes for large and small page devices */
5bd34c09 52static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
5bd34c09
TG
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
f8ac0414 59 .length = 2} }
1da177e4
LT
60};
61
5bd34c09 62static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
65 .oobfree = {
66 {.offset = 8,
f8ac0414 67 . length = 8} }
1da177e4
LT
68};
69
5bd34c09 70static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
71 .eccbytes = 24,
72 .eccpos = {
e0c7d767
DW
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
76 .oobfree = {
77 {.offset = 2,
f8ac0414 78 .length = 38} }
1da177e4
LT
79};
80
81ec5364
TG
81static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
f8ac0414 92 .length = 78} }
81ec5364
TG
93};
94
6a8214aa 95static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 96
8593fbc6
TG
97static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
d470a97c 100/*
8e87d782 101 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
102 * compiled away when LED support is disabled.
103 */
104DEFINE_LED_TRIGGER(nand_led_trigger);
105
6fe5a6ac
VS
106static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108{
862eba51 109 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
110 int ret = 0;
111
112 /* Start address must align on block boundary */
daae74ca 113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 114 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
daae74ca 119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 120 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
121 ret = -EINVAL;
122 }
123
6fe5a6ac
VS
124 return ret;
125}
126
1da177e4
LT
127/**
128 * nand_release_device - [GENERIC] release chip
8b6e50c9 129 * @mtd: MTD device structure
61b03bd7 130 *
b0bb6903 131 * Release chip lock and wake up anyone waiting on the device.
1da177e4 132 */
e0c7d767 133static void nand_release_device(struct mtd_info *mtd)
1da177e4 134{
862eba51 135 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 136
a36ed299 137 /* Release the controller and the chip */
ace4dfee
TG
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
1da177e4
LT
143}
144
145/**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 147 * @mtd: MTD device structure
1da177e4 148 *
7854d3f7 149 * Default read function for 8bit buswidth
1da177e4 150 */
58dd8f2b 151static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 152{
862eba51 153 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 154 return readb(chip->IO_ADDR_R);
1da177e4
LT
155}
156
1da177e4 157/**
7854d3f7 158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 159 * @mtd: MTD device structure
1da177e4 160 *
7854d3f7
BN
161 * Default read function for 16bit buswidth with endianness conversion.
162 *
1da177e4 163 */
58dd8f2b 164static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 165{
862eba51 166 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 167 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
168}
169
1da177e4
LT
170/**
171 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 172 * @mtd: MTD device structure
1da177e4 173 *
7854d3f7 174 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
175 */
176static u16 nand_read_word(struct mtd_info *mtd)
177{
862eba51 178 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 179 return readw(chip->IO_ADDR_R);
1da177e4
LT
180}
181
1da177e4
LT
182/**
183 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
184 * @mtd: MTD device structure
185 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
186 *
187 * Default select function for 1 chip devices.
188 */
ace4dfee 189static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 190{
862eba51 191 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
192
193 switch (chipnr) {
1da177e4 194 case -1:
ace4dfee 195 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
196 break;
197 case 0:
1da177e4
LT
198 break;
199
200 default:
201 BUG();
202 }
203}
204
05f78359
UKK
205/**
206 * nand_write_byte - [DEFAULT] write single byte to chip
207 * @mtd: MTD device structure
208 * @byte: value to write
209 *
210 * Default function to write a byte to I/O[7:0]
211 */
212static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213{
862eba51 214 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
215
216 chip->write_buf(mtd, &byte, 1);
217}
218
219/**
220 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221 * @mtd: MTD device structure
222 * @byte: value to write
223 *
224 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225 */
226static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227{
862eba51 228 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
229 uint16_t word = byte;
230
231 /*
232 * It's not entirely clear what should happen to I/O[15:8] when writing
233 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234 *
235 * When the host supports a 16-bit bus width, only data is
236 * transferred at the 16-bit width. All address and command line
237 * transfers shall use only the lower 8-bits of the data bus. During
238 * command transfers, the host may place any value on the upper
239 * 8-bits of the data bus. During address transfers, the host shall
240 * set the upper 8-bits of the data bus to 00h.
241 *
242 * One user of the write_byte callback is nand_onfi_set_features. The
243 * four parameters are specified to be written to I/O[7:0], but this is
244 * neither an address nor a command transfer. Let's assume a 0 on the
245 * upper I/O lines is OK.
246 */
247 chip->write_buf(mtd, (uint8_t *)&word, 2);
248}
249
1da177e4
LT
250/**
251 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
252 * @mtd: MTD device structure
253 * @buf: data buffer
254 * @len: number of bytes to write
1da177e4 255 *
7854d3f7 256 * Default write function for 8bit buswidth.
1da177e4 257 */
58dd8f2b 258static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 259{
862eba51 260 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 261
76413839 262 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
263}
264
265/**
61b03bd7 266 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
1da177e4 270 *
7854d3f7 271 * Default read function for 8bit buswidth.
1da177e4 272 */
58dd8f2b 273static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 274{
862eba51 275 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 276
76413839 277 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
278}
279
1da177e4
LT
280/**
281 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
1da177e4 285 *
7854d3f7 286 * Default write function for 16bit buswidth.
1da177e4 287 */
58dd8f2b 288static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 289{
862eba51 290 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 291 u16 *p = (u16 *) buf;
61b03bd7 292
76413839 293 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
294}
295
296/**
61b03bd7 297 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
298 * @mtd: MTD device structure
299 * @buf: buffer to store date
300 * @len: number of bytes to read
1da177e4 301 *
7854d3f7 302 * Default read function for 16bit buswidth.
1da177e4 303 */
58dd8f2b 304static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 305{
862eba51 306 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 307 u16 *p = (u16 *) buf;
1da177e4 308
76413839 309 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
310}
311
1da177e4
LT
312/**
313 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
314 * @mtd: MTD device structure
315 * @ofs: offset from device start
1da177e4 316 *
61b03bd7 317 * Check, if the block is bad.
1da177e4 318 */
9f3e0429 319static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
1da177e4 320{
9f3e0429 321 int page, res = 0, i = 0;
862eba51 322 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
323 u16 bad;
324
5fb1549d 325 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
326 ofs += mtd->erasesize - mtd->writesize;
327
1a12f46a
TK
328 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
329
cdbec050
BN
330 do {
331 if (chip->options & NAND_BUSWIDTH_16) {
332 chip->cmdfunc(mtd, NAND_CMD_READOOB,
333 chip->badblockpos & 0xFE, page);
334 bad = cpu_to_le16(chip->read_word(mtd));
335 if (chip->badblockpos & 0x1)
336 bad >>= 8;
337 else
338 bad &= 0xFF;
339 } else {
340 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
341 page);
342 bad = chip->read_byte(mtd);
343 }
344
345 if (likely(chip->badblockbits == 8))
346 res = bad != 0xFF;
e0b58d0a 347 else
cdbec050
BN
348 res = hweight8(bad) < chip->badblockbits;
349 ofs += mtd->writesize;
350 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351 i++;
352 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 353
1da177e4
LT
354 return res;
355}
356
357/**
5a0edb25 358 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
359 * @mtd: MTD device structure
360 * @ofs: offset from device start
1da177e4 361 *
8b6e50c9 362 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
363 * specific driver. It provides the details for writing a bad block marker to a
364 * block.
365 */
366static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
367{
862eba51 368 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
369 struct mtd_oob_ops ops;
370 uint8_t buf[2] = { 0, 0 };
371 int ret = 0, res, i = 0;
372
0ec56dc4 373 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
374 ops.oobbuf = buf;
375 ops.ooboffs = chip->badblockpos;
376 if (chip->options & NAND_BUSWIDTH_16) {
377 ops.ooboffs &= ~0x01;
378 ops.len = ops.ooblen = 2;
379 } else {
380 ops.len = ops.ooblen = 1;
381 }
382 ops.mode = MTD_OPS_PLACE_OOB;
383
384 /* Write to first/last page(s) if necessary */
385 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
386 ofs += mtd->erasesize - mtd->writesize;
387 do {
388 res = nand_do_write_oob(mtd, ofs, &ops);
389 if (!ret)
390 ret = res;
391
392 i++;
393 ofs += mtd->writesize;
394 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
395
396 return ret;
397}
398
399/**
400 * nand_block_markbad_lowlevel - mark a block bad
401 * @mtd: MTD device structure
402 * @ofs: offset from device start
403 *
404 * This function performs the generic NAND bad block marking steps (i.e., bad
405 * block table(s) and/or marker(s)). We only allow the hardware driver to
406 * specify how to write bad block markers to OOB (chip->block_markbad).
407 *
b32843b7 408 * We try operations in the following order:
e2414f4c 409 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
410 * (2) write bad block marker to OOB area of affected block (unless flag
411 * NAND_BBT_NO_OOB_BBM is present)
412 * (3) update the BBT
413 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 414 * procedures, and dump the error in the end.
1da177e4 415*/
5a0edb25 416static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 417{
862eba51 418 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 419 int res, ret = 0;
61b03bd7 420
b32843b7 421 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
422 struct erase_info einfo;
423
424 /* Attempt erase before marking OOB */
425 memset(&einfo, 0, sizeof(einfo));
426 einfo.mtd = mtd;
427 einfo.addr = ofs;
daae74ca 428 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 429 nand_erase_nand(mtd, &einfo, 0);
1da177e4 430
b32843b7 431 /* Write bad block marker to OOB */
6a8214aa 432 nand_get_device(mtd, FL_WRITING);
5a0edb25 433 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 434 nand_release_device(mtd);
f1a28c02 435 }
e2414f4c 436
b32843b7
BN
437 /* Mark block bad in BBT */
438 if (chip->bbt) {
439 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
440 if (!ret)
441 ret = res;
442 }
443
f1a28c02
TG
444 if (!ret)
445 mtd->ecc_stats.badblocks++;
c0b8ba7b 446
f1a28c02 447 return ret;
1da177e4
LT
448}
449
61b03bd7 450/**
1da177e4 451 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 452 * @mtd: MTD device structure
1da177e4 453 *
8b6e50c9
BN
454 * Check, if the device is write protected. The function expects, that the
455 * device is already selected.
1da177e4 456 */
e0c7d767 457static int nand_check_wp(struct mtd_info *mtd)
1da177e4 458{
862eba51 459 struct nand_chip *chip = mtd_to_nand(mtd);
93edbad6 460
8b6e50c9 461 /* Broken xD cards report WP despite being writable */
93edbad6
ML
462 if (chip->options & NAND_BROKEN_XD)
463 return 0;
464
1da177e4 465 /* Check the WP bit */
ace4dfee
TG
466 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
467 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
468}
469
8471bb73 470/**
c30e1f79 471 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
472 * @mtd: MTD device structure
473 * @ofs: offset from device start
474 *
c30e1f79 475 * Check if the block is marked as reserved.
8471bb73
EG
476 */
477static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
478{
862eba51 479 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
480
481 if (!chip->bbt)
482 return 0;
483 /* Return info from the table */
484 return nand_isreserved_bbt(mtd, ofs);
485}
486
1da177e4
LT
487/**
488 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
489 * @mtd: MTD device structure
490 * @ofs: offset from device start
8b6e50c9 491 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
492 *
493 * Check, if the block is bad. Either by reading the bad block table or
494 * calling of the scan function.
495 */
9f3e0429 496static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1da177e4 497{
862eba51 498 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 499
ace4dfee 500 if (!chip->bbt)
9f3e0429 501 return chip->block_bad(mtd, ofs);
61b03bd7 502
1da177e4 503 /* Return info from the table */
e0c7d767 504 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
505}
506
2af7c653
SK
507/**
508 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
509 * @mtd: MTD device structure
510 * @timeo: Timeout
2af7c653
SK
511 *
512 * Helper function for nand_wait_ready used when needing to wait in interrupt
513 * context.
514 */
515static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
516{
862eba51 517 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
518 int i;
519
520 /* Wait for the device to get ready */
521 for (i = 0; i < timeo; i++) {
522 if (chip->dev_ready(mtd))
523 break;
524 touch_softlockup_watchdog();
525 mdelay(1);
526 }
527}
528
b70af9be
AS
529/**
530 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
531 * @mtd: MTD device structure
532 *
533 * Wait for the ready pin after a command, and warn if a timeout occurs.
534 */
4b648b02 535void nand_wait_ready(struct mtd_info *mtd)
3b88775c 536{
862eba51 537 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 538 unsigned long timeo = 400;
3b88775c 539
2af7c653 540 if (in_interrupt() || oops_in_progress)
b70af9be 541 return panic_nand_wait_ready(mtd, timeo);
2af7c653 542
8fe833c1 543 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 544 /* Wait until command is processed or timeout occurs */
b70af9be 545 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 546 do {
ace4dfee 547 if (chip->dev_ready(mtd))
b70af9be
AS
548 goto out;
549 cond_resched();
61b03bd7 550 } while (time_before(jiffies, timeo));
b70af9be 551
9ebfdf5b
BN
552 if (!chip->dev_ready(mtd))
553 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
b70af9be 554out:
8fe833c1 555 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 556}
4b648b02 557EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 558
60c70d66
RQ
559/**
560 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
561 * @mtd: MTD device structure
562 * @timeo: Timeout in ms
563 *
564 * Wait for status ready (i.e. command done) or timeout.
565 */
566static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
567{
862eba51 568 register struct nand_chip *chip = mtd_to_nand(mtd);
60c70d66
RQ
569
570 timeo = jiffies + msecs_to_jiffies(timeo);
571 do {
572 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
573 break;
574 touch_softlockup_watchdog();
575 } while (time_before(jiffies, timeo));
576};
577
1da177e4
LT
578/**
579 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
580 * @mtd: MTD device structure
581 * @command: the command to be sent
582 * @column: the column address for this command, -1 if none
583 * @page_addr: the page address for this command, -1 if none
1da177e4 584 *
8b6e50c9 585 * Send command to NAND device. This function is used for small page devices
51148f1f 586 * (512 Bytes per page).
1da177e4 587 */
7abd3ef9
TG
588static void nand_command(struct mtd_info *mtd, unsigned int command,
589 int column, int page_addr)
1da177e4 590{
862eba51 591 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 592 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 593
8b6e50c9 594 /* Write out the command to the device */
1da177e4
LT
595 if (command == NAND_CMD_SEQIN) {
596 int readcmd;
597
28318776 598 if (column >= mtd->writesize) {
1da177e4 599 /* OOB area */
28318776 600 column -= mtd->writesize;
1da177e4
LT
601 readcmd = NAND_CMD_READOOB;
602 } else if (column < 256) {
603 /* First 256 bytes --> READ0 */
604 readcmd = NAND_CMD_READ0;
605 } else {
606 column -= 256;
607 readcmd = NAND_CMD_READ1;
608 }
ace4dfee 609 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 610 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 611 }
ace4dfee 612 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 613
8b6e50c9 614 /* Address cycle, when necessary */
7abd3ef9
TG
615 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
616 /* Serially input address */
617 if (column != -1) {
618 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
619 if (chip->options & NAND_BUSWIDTH_16 &&
620 !nand_opcode_8bits(command))
7abd3ef9 621 column >>= 1;
ace4dfee 622 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
623 ctrl &= ~NAND_CTRL_CHANGE;
624 }
625 if (page_addr != -1) {
ace4dfee 626 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 627 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 628 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 629 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
630 if (chip->chipsize > (32 << 20))
631 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 632 }
ace4dfee 633 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
634
635 /*
8b6e50c9
BN
636 * Program and erase have their own busy handlers status and sequential
637 * in needs no delay
e0c7d767 638 */
1da177e4 639 switch (command) {
61b03bd7 640
1da177e4
LT
641 case NAND_CMD_PAGEPROG:
642 case NAND_CMD_ERASE1:
643 case NAND_CMD_ERASE2:
644 case NAND_CMD_SEQIN:
645 case NAND_CMD_STATUS:
646 return;
647
648 case NAND_CMD_RESET:
ace4dfee 649 if (chip->dev_ready)
1da177e4 650 break;
ace4dfee
TG
651 udelay(chip->chip_delay);
652 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 653 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
654 chip->cmd_ctrl(mtd,
655 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
656 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
657 nand_wait_status_ready(mtd, 250);
1da177e4
LT
658 return;
659
e0c7d767 660 /* This applies to read commands */
1da177e4 661 default:
61b03bd7 662 /*
1da177e4
LT
663 * If we don't have access to the busy pin, we apply the given
664 * command delay
e0c7d767 665 */
ace4dfee
TG
666 if (!chip->dev_ready) {
667 udelay(chip->chip_delay);
1da177e4 668 return;
61b03bd7 669 }
1da177e4 670 }
8b6e50c9
BN
671 /*
672 * Apply this short delay always to ensure that we do wait tWB in
673 * any case on any machine.
674 */
e0c7d767 675 ndelay(100);
3b88775c
TG
676
677 nand_wait_ready(mtd);
1da177e4
LT
678}
679
680/**
681 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
682 * @mtd: MTD device structure
683 * @command: the command to be sent
684 * @column: the column address for this command, -1 if none
685 * @page_addr: the page address for this command, -1 if none
1da177e4 686 *
7abd3ef9 687 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
688 * devices. We don't have the separate regions as we have in the small page
689 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 690 */
7abd3ef9
TG
691static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
692 int column, int page_addr)
1da177e4 693{
862eba51 694 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
695
696 /* Emulate NAND_CMD_READOOB */
697 if (command == NAND_CMD_READOOB) {
28318776 698 column += mtd->writesize;
1da177e4
LT
699 command = NAND_CMD_READ0;
700 }
61b03bd7 701
7abd3ef9 702 /* Command latch cycle */
fb066ada 703 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
704
705 if (column != -1 || page_addr != -1) {
7abd3ef9 706 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
707
708 /* Serially input address */
709 if (column != -1) {
710 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
711 if (chip->options & NAND_BUSWIDTH_16 &&
712 !nand_opcode_8bits(command))
1da177e4 713 column >>= 1;
ace4dfee 714 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 715 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 716 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 717 }
1da177e4 718 if (page_addr != -1) {
ace4dfee
TG
719 chip->cmd_ctrl(mtd, page_addr, ctrl);
720 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 721 NAND_NCE | NAND_ALE);
1da177e4 722 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
723 if (chip->chipsize > (128 << 20))
724 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 725 NAND_NCE | NAND_ALE);
1da177e4 726 }
1da177e4 727 }
ace4dfee 728 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
729
730 /*
8b6e50c9 731 * Program and erase have their own busy handlers status, sequential
7a442f17 732 * in and status need no delay.
30f464b7 733 */
1da177e4 734 switch (command) {
61b03bd7 735
1da177e4
LT
736 case NAND_CMD_CACHEDPROG:
737 case NAND_CMD_PAGEPROG:
738 case NAND_CMD_ERASE1:
739 case NAND_CMD_ERASE2:
740 case NAND_CMD_SEQIN:
7bc3312b 741 case NAND_CMD_RNDIN:
1da177e4 742 case NAND_CMD_STATUS:
30f464b7 743 return;
1da177e4
LT
744
745 case NAND_CMD_RESET:
ace4dfee 746 if (chip->dev_ready)
1da177e4 747 break;
ace4dfee 748 udelay(chip->chip_delay);
12efdde3
TG
749 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
750 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
751 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
752 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
753 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
754 nand_wait_status_ready(mtd, 250);
1da177e4
LT
755 return;
756
7bc3312b
TG
757 case NAND_CMD_RNDOUT:
758 /* No ready / busy check necessary */
759 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
760 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
761 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
762 NAND_NCE | NAND_CTRL_CHANGE);
763 return;
764
1da177e4 765 case NAND_CMD_READ0:
12efdde3
TG
766 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
767 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
768 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
769 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 770
e0c7d767 771 /* This applies to read commands */
1da177e4 772 default:
61b03bd7 773 /*
1da177e4 774 * If we don't have access to the busy pin, we apply the given
8b6e50c9 775 * command delay.
e0c7d767 776 */
ace4dfee
TG
777 if (!chip->dev_ready) {
778 udelay(chip->chip_delay);
1da177e4 779 return;
61b03bd7 780 }
1da177e4 781 }
3b88775c 782
8b6e50c9
BN
783 /*
784 * Apply this short delay always to ensure that we do wait tWB in
785 * any case on any machine.
786 */
e0c7d767 787 ndelay(100);
3b88775c
TG
788
789 nand_wait_ready(mtd);
1da177e4
LT
790}
791
2af7c653
SK
792/**
793 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
794 * @chip: the nand chip descriptor
795 * @mtd: MTD device structure
796 * @new_state: the state which is requested
2af7c653
SK
797 *
798 * Used when in panic, no locks are taken.
799 */
800static void panic_nand_get_device(struct nand_chip *chip,
801 struct mtd_info *mtd, int new_state)
802{
7854d3f7 803 /* Hardware controller shared among independent devices */
2af7c653
SK
804 chip->controller->active = chip;
805 chip->state = new_state;
806}
807
1da177e4
LT
808/**
809 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
810 * @mtd: MTD device structure
811 * @new_state: the state which is requested
1da177e4
LT
812 *
813 * Get the device and lock it for exclusive access
814 */
2c0a2bed 815static int
6a8214aa 816nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 817{
862eba51 818 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
819 spinlock_t *lock = &chip->controller->lock;
820 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 821 DECLARE_WAITQUEUE(wait, current);
7351d3a5 822retry:
0dfc6246
TG
823 spin_lock(lock);
824
b8b3ee9a 825 /* Hardware controller shared among independent devices */
ace4dfee
TG
826 if (!chip->controller->active)
827 chip->controller->active = chip;
a36ed299 828
ace4dfee
TG
829 if (chip->controller->active == chip && chip->state == FL_READY) {
830 chip->state = new_state;
0dfc6246 831 spin_unlock(lock);
962034f4
VW
832 return 0;
833 }
834 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
835 if (chip->controller->active->state == FL_PM_SUSPENDED) {
836 chip->state = FL_PM_SUSPENDED;
837 spin_unlock(lock);
838 return 0;
6b0d9a84 839 }
0dfc6246
TG
840 }
841 set_current_state(TASK_UNINTERRUPTIBLE);
842 add_wait_queue(wq, &wait);
843 spin_unlock(lock);
844 schedule();
845 remove_wait_queue(wq, &wait);
1da177e4
LT
846 goto retry;
847}
848
2af7c653 849/**
8b6e50c9
BN
850 * panic_nand_wait - [GENERIC] wait until the command is done
851 * @mtd: MTD device structure
852 * @chip: NAND chip structure
853 * @timeo: timeout
2af7c653
SK
854 *
855 * Wait for command done. This is a helper function for nand_wait used when
856 * we are in interrupt context. May happen when in panic and trying to write
b595076a 857 * an oops through mtdoops.
2af7c653
SK
858 */
859static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
860 unsigned long timeo)
861{
862 int i;
863 for (i = 0; i < timeo; i++) {
864 if (chip->dev_ready) {
865 if (chip->dev_ready(mtd))
866 break;
867 } else {
868 if (chip->read_byte(mtd) & NAND_STATUS_READY)
869 break;
870 }
871 mdelay(1);
f8ac0414 872 }
2af7c653
SK
873}
874
1da177e4 875/**
8b6e50c9
BN
876 * nand_wait - [DEFAULT] wait until the command is done
877 * @mtd: MTD device structure
878 * @chip: NAND chip structure
1da177e4 879 *
b70af9be 880 * Wait for command done. This applies to erase and program only.
844d3b42 881 */
7bc3312b 882static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
883{
884
b70af9be
AS
885 int status;
886 unsigned long timeo = 400;
1da177e4 887
8fe833c1
RP
888 led_trigger_event(nand_led_trigger, LED_FULL);
889
8b6e50c9
BN
890 /*
891 * Apply this short delay always to ensure that we do wait tWB in any
892 * case on any machine.
893 */
e0c7d767 894 ndelay(100);
1da177e4 895
14c65786 896 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 897
2af7c653
SK
898 if (in_interrupt() || oops_in_progress)
899 panic_nand_wait(mtd, chip, timeo);
900 else {
6d2559f8 901 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 902 do {
2af7c653
SK
903 if (chip->dev_ready) {
904 if (chip->dev_ready(mtd))
905 break;
906 } else {
907 if (chip->read_byte(mtd) & NAND_STATUS_READY)
908 break;
909 }
910 cond_resched();
b70af9be 911 } while (time_before(jiffies, timeo));
1da177e4 912 }
8fe833c1
RP
913 led_trigger_event(nand_led_trigger, LED_OFF);
914
ace4dfee 915 status = (int)chip->read_byte(mtd);
f251b8df
MC
916 /* This can happen if in case of timeout or buggy dev_ready */
917 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
918 return status;
919}
920
7d70f334 921/**
b6d676db 922 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
923 * @mtd: mtd info
924 * @ofs: offset to start unlock from
925 * @len: length to unlock
8b6e50c9
BN
926 * @invert: when = 0, unlock the range of blocks within the lower and
927 * upper boundary address
928 * when = 1, unlock the range of blocks outside the boundaries
929 * of the lower and upper boundary address
7d70f334 930 *
8b6e50c9 931 * Returs unlock status.
7d70f334
VS
932 */
933static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
934 uint64_t len, int invert)
935{
936 int ret = 0;
937 int status, page;
862eba51 938 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334
VS
939
940 /* Submit address of first page to unlock */
941 page = ofs >> chip->page_shift;
942 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
943
944 /* Submit address of last page to unlock */
945 page = (ofs + len) >> chip->page_shift;
946 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
947 (page | invert) & chip->pagemask);
948
949 /* Call wait ready function */
950 status = chip->waitfunc(mtd, chip);
7d70f334 951 /* See if device thinks it succeeded */
74830966 952 if (status & NAND_STATUS_FAIL) {
289c0522 953 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
954 __func__, status);
955 ret = -EIO;
956 }
957
958 return ret;
959}
960
961/**
b6d676db 962 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
963 * @mtd: mtd info
964 * @ofs: offset to start unlock from
965 * @len: length to unlock
7d70f334 966 *
8b6e50c9 967 * Returns unlock status.
7d70f334
VS
968 */
969int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
970{
971 int ret = 0;
972 int chipnr;
862eba51 973 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 974
289c0522 975 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
976 __func__, (unsigned long long)ofs, len);
977
978 if (check_offs_len(mtd, ofs, len))
b1a2348a 979 return -EINVAL;
7d70f334
VS
980
981 /* Align to last block address if size addresses end of the device */
982 if (ofs + len == mtd->size)
983 len -= mtd->erasesize;
984
6a8214aa 985 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
986
987 /* Shift to get chip number */
988 chipnr = ofs >> chip->chip_shift;
989
990 chip->select_chip(mtd, chipnr);
991
57d3a9a8
WD
992 /*
993 * Reset the chip.
994 * If we want to check the WP through READ STATUS and check the bit 7
995 * we must reset the chip
996 * some operation can also clear the bit 7 of status register
997 * eg. erase/program a locked block
998 */
999 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1000
7d70f334
VS
1001 /* Check, if it is write protected */
1002 if (nand_check_wp(mtd)) {
289c0522 1003 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1004 __func__);
1005 ret = -EIO;
1006 goto out;
1007 }
1008
1009 ret = __nand_unlock(mtd, ofs, len, 0);
1010
1011out:
b0bb6903 1012 chip->select_chip(mtd, -1);
7d70f334
VS
1013 nand_release_device(mtd);
1014
1015 return ret;
1016}
7351d3a5 1017EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1018
1019/**
b6d676db 1020 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1021 * @mtd: mtd info
1022 * @ofs: offset to start unlock from
1023 * @len: length to unlock
7d70f334 1024 *
8b6e50c9
BN
1025 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1026 * have this feature, but it allows only to lock all blocks, not for specified
1027 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1028 * now.
7d70f334 1029 *
8b6e50c9 1030 * Returns lock status.
7d70f334
VS
1031 */
1032int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1033{
1034 int ret = 0;
1035 int chipnr, status, page;
862eba51 1036 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1037
289c0522 1038 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1039 __func__, (unsigned long long)ofs, len);
1040
1041 if (check_offs_len(mtd, ofs, len))
b1a2348a 1042 return -EINVAL;
7d70f334 1043
6a8214aa 1044 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1045
1046 /* Shift to get chip number */
1047 chipnr = ofs >> chip->chip_shift;
1048
1049 chip->select_chip(mtd, chipnr);
1050
57d3a9a8
WD
1051 /*
1052 * Reset the chip.
1053 * If we want to check the WP through READ STATUS and check the bit 7
1054 * we must reset the chip
1055 * some operation can also clear the bit 7 of status register
1056 * eg. erase/program a locked block
1057 */
1058 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1059
7d70f334
VS
1060 /* Check, if it is write protected */
1061 if (nand_check_wp(mtd)) {
289c0522 1062 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1063 __func__);
1064 status = MTD_ERASE_FAILED;
1065 ret = -EIO;
1066 goto out;
1067 }
1068
1069 /* Submit address of first page to lock */
1070 page = ofs >> chip->page_shift;
1071 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1072
1073 /* Call wait ready function */
1074 status = chip->waitfunc(mtd, chip);
7d70f334 1075 /* See if device thinks it succeeded */
74830966 1076 if (status & NAND_STATUS_FAIL) {
289c0522 1077 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1078 __func__, status);
1079 ret = -EIO;
1080 goto out;
1081 }
1082
1083 ret = __nand_unlock(mtd, ofs, len, 0x1);
1084
1085out:
b0bb6903 1086 chip->select_chip(mtd, -1);
7d70f334
VS
1087 nand_release_device(mtd);
1088
1089 return ret;
1090}
7351d3a5 1091EXPORT_SYMBOL(nand_lock);
7d70f334 1092
730a43fb
BB
1093/**
1094 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1095 * @buf: buffer to test
1096 * @len: buffer length
1097 * @bitflips_threshold: maximum number of bitflips
1098 *
1099 * Check if a buffer contains only 0xff, which means the underlying region
1100 * has been erased and is ready to be programmed.
1101 * The bitflips_threshold specify the maximum number of bitflips before
1102 * considering the region is not erased.
1103 * Note: The logic of this function has been extracted from the memweight
1104 * implementation, except that nand_check_erased_buf function exit before
1105 * testing the whole buffer if the number of bitflips exceed the
1106 * bitflips_threshold value.
1107 *
1108 * Returns a positive number of bitflips less than or equal to
1109 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1110 * threshold.
1111 */
1112static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1113{
1114 const unsigned char *bitmap = buf;
1115 int bitflips = 0;
1116 int weight;
1117
1118 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1119 len--, bitmap++) {
1120 weight = hweight8(*bitmap);
1121 bitflips += BITS_PER_BYTE - weight;
1122 if (unlikely(bitflips > bitflips_threshold))
1123 return -EBADMSG;
1124 }
1125
1126 for (; len >= sizeof(long);
1127 len -= sizeof(long), bitmap += sizeof(long)) {
1128 weight = hweight_long(*((unsigned long *)bitmap));
1129 bitflips += BITS_PER_LONG - weight;
1130 if (unlikely(bitflips > bitflips_threshold))
1131 return -EBADMSG;
1132 }
1133
1134 for (; len > 0; len--, bitmap++) {
1135 weight = hweight8(*bitmap);
1136 bitflips += BITS_PER_BYTE - weight;
1137 if (unlikely(bitflips > bitflips_threshold))
1138 return -EBADMSG;
1139 }
1140
1141 return bitflips;
1142}
1143
1144/**
1145 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1146 * 0xff data
1147 * @data: data buffer to test
1148 * @datalen: data length
1149 * @ecc: ECC buffer
1150 * @ecclen: ECC length
1151 * @extraoob: extra OOB buffer
1152 * @extraooblen: extra OOB length
1153 * @bitflips_threshold: maximum number of bitflips
1154 *
1155 * Check if a data buffer and its associated ECC and OOB data contains only
1156 * 0xff pattern, which means the underlying region has been erased and is
1157 * ready to be programmed.
1158 * The bitflips_threshold specify the maximum number of bitflips before
1159 * considering the region as not erased.
1160 *
1161 * Note:
1162 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1163 * different from the NAND page size. When fixing bitflips, ECC engines will
1164 * report the number of errors per chunk, and the NAND core infrastructure
1165 * expect you to return the maximum number of bitflips for the whole page.
1166 * This is why you should always use this function on a single chunk and
1167 * not on the whole page. After checking each chunk you should update your
1168 * max_bitflips value accordingly.
1169 * 2/ When checking for bitflips in erased pages you should not only check
1170 * the payload data but also their associated ECC data, because a user might
1171 * have programmed almost all bits to 1 but a few. In this case, we
1172 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1173 * this case.
1174 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1175 * data are protected by the ECC engine.
1176 * It could also be used if you support subpages and want to attach some
1177 * extra OOB data to an ECC chunk.
1178 *
1179 * Returns a positive number of bitflips less than or equal to
1180 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1181 * threshold. In case of success, the passed buffers are filled with 0xff.
1182 */
1183int nand_check_erased_ecc_chunk(void *data, int datalen,
1184 void *ecc, int ecclen,
1185 void *extraoob, int extraooblen,
1186 int bitflips_threshold)
1187{
1188 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1189
1190 data_bitflips = nand_check_erased_buf(data, datalen,
1191 bitflips_threshold);
1192 if (data_bitflips < 0)
1193 return data_bitflips;
1194
1195 bitflips_threshold -= data_bitflips;
1196
1197 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1198 if (ecc_bitflips < 0)
1199 return ecc_bitflips;
1200
1201 bitflips_threshold -= ecc_bitflips;
1202
1203 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1204 bitflips_threshold);
1205 if (extraoob_bitflips < 0)
1206 return extraoob_bitflips;
1207
1208 if (data_bitflips)
1209 memset(data, 0xff, datalen);
1210
1211 if (ecc_bitflips)
1212 memset(ecc, 0xff, ecclen);
1213
1214 if (extraoob_bitflips)
1215 memset(extraoob, 0xff, extraooblen);
1216
1217 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1218}
1219EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1220
8593fbc6 1221/**
7854d3f7 1222 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1223 * @mtd: mtd info structure
1224 * @chip: nand chip info structure
1225 * @buf: buffer to store read data
1fbb938d 1226 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1227 * @page: page number to read
52ff49df 1228 *
7854d3f7 1229 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1230 */
1231static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1232 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1233{
1234 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1235 if (oob_required)
1236 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1237 return 0;
1238}
1239
52ff49df 1240/**
7854d3f7 1241 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1242 * @mtd: mtd info structure
1243 * @chip: nand chip info structure
1244 * @buf: buffer to store read data
1fbb938d 1245 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1246 * @page: page number to read
52ff49df
DB
1247 *
1248 * We need a special oob layout and handling even when OOB isn't used.
1249 */
7351d3a5 1250static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1251 struct nand_chip *chip, uint8_t *buf,
1252 int oob_required, int page)
52ff49df
DB
1253{
1254 int eccsize = chip->ecc.size;
1255 int eccbytes = chip->ecc.bytes;
1256 uint8_t *oob = chip->oob_poi;
1257 int steps, size;
1258
1259 for (steps = chip->ecc.steps; steps > 0; steps--) {
1260 chip->read_buf(mtd, buf, eccsize);
1261 buf += eccsize;
1262
1263 if (chip->ecc.prepad) {
1264 chip->read_buf(mtd, oob, chip->ecc.prepad);
1265 oob += chip->ecc.prepad;
1266 }
1267
1268 chip->read_buf(mtd, oob, eccbytes);
1269 oob += eccbytes;
1270
1271 if (chip->ecc.postpad) {
1272 chip->read_buf(mtd, oob, chip->ecc.postpad);
1273 oob += chip->ecc.postpad;
1274 }
1275 }
1276
1277 size = mtd->oobsize - (oob - chip->oob_poi);
1278 if (size)
1279 chip->read_buf(mtd, oob, size);
1280
1281 return 0;
1282}
1283
1da177e4 1284/**
7854d3f7 1285 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1286 * @mtd: mtd info structure
1287 * @chip: nand chip info structure
1288 * @buf: buffer to store read data
1fbb938d 1289 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1290 * @page: page number to read
068e3c0a 1291 */
f5bbdacc 1292static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1293 uint8_t *buf, int oob_required, int page)
1da177e4 1294{
f5bbdacc
TG
1295 int i, eccsize = chip->ecc.size;
1296 int eccbytes = chip->ecc.bytes;
1297 int eccsteps = chip->ecc.steps;
1298 uint8_t *p = buf;
4bf63fcb
DW
1299 uint8_t *ecc_calc = chip->buffers->ecccalc;
1300 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1301 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1302 unsigned int max_bitflips = 0;
f5bbdacc 1303
1fbb938d 1304 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1305
1306 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1307 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1308
1309 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1310 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1311
1312 eccsteps = chip->ecc.steps;
1313 p = buf;
1314
1315 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1316 int stat;
1317
1318 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1319 if (stat < 0) {
f5bbdacc 1320 mtd->ecc_stats.failed++;
3f91e94f 1321 } else {
f5bbdacc 1322 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1323 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1324 }
f5bbdacc 1325 }
3f91e94f 1326 return max_bitflips;
22c60f5f 1327}
1da177e4 1328
3d459559 1329/**
837a6ba4 1330 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1331 * @mtd: mtd info structure
1332 * @chip: nand chip info structure
1333 * @data_offs: offset of requested data within the page
1334 * @readlen: data length
1335 * @bufpoi: buffer to store read data
e004debd 1336 * @page: page number to read
3d459559 1337 */
7351d3a5 1338static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1339 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1340 int page)
3d459559
AK
1341{
1342 int start_step, end_step, num_steps;
1343 uint32_t *eccpos = chip->ecc.layout->eccpos;
1344 uint8_t *p;
1345 int data_col_addr, i, gaps = 0;
1346 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1347 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
4a4163ca 1348 int index;
3f91e94f 1349 unsigned int max_bitflips = 0;
3d459559 1350
7854d3f7 1351 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1352 start_step = data_offs / chip->ecc.size;
1353 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1354 num_steps = end_step - start_step + 1;
4a4163ca 1355 index = start_step * chip->ecc.bytes;
3d459559 1356
8b6e50c9 1357 /* Data size aligned to ECC ecc.size */
3d459559
AK
1358 datafrag_len = num_steps * chip->ecc.size;
1359 eccfrag_len = num_steps * chip->ecc.bytes;
1360
1361 data_col_addr = start_step * chip->ecc.size;
1362 /* If we read not a page aligned data */
1363 if (data_col_addr != 0)
1364 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1365
1366 p = bufpoi + data_col_addr;
1367 chip->read_buf(mtd, p, datafrag_len);
1368
8b6e50c9 1369 /* Calculate ECC */
3d459559
AK
1370 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1371 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1372
8b6e50c9
BN
1373 /*
1374 * The performance is faster if we position offsets according to
7854d3f7 1375 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1376 */
3d459559 1377 for (i = 0; i < eccfrag_len - 1; i++) {
47570bb1 1378 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
3d459559
AK
1379 gaps = 1;
1380 break;
1381 }
1382 }
1383 if (gaps) {
1384 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1385 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1386 } else {
8b6e50c9 1387 /*
7854d3f7 1388 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1389 * about buswidth alignment in read_buf.
1390 */
7351d3a5 1391 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1392 aligned_len = eccfrag_len;
7351d3a5 1393 if (eccpos[index] & (busw - 1))
3d459559 1394 aligned_len++;
7351d3a5 1395 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1396 aligned_len++;
1397
7351d3a5
FF
1398 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1399 mtd->writesize + aligned_pos, -1);
3d459559
AK
1400 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1401 }
1402
1403 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1404 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1405
1406 p = bufpoi + data_col_addr;
1407 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1408 int stat;
1409
7351d3a5
FF
1410 stat = chip->ecc.correct(mtd, p,
1411 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
40cbe6ee
BB
1412 if (stat == -EBADMSG &&
1413 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1414 /* check for empty pages with bitflips */
1415 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1416 &chip->buffers->ecccode[i],
1417 chip->ecc.bytes,
1418 NULL, 0,
1419 chip->ecc.strength);
1420 }
1421
3f91e94f 1422 if (stat < 0) {
3d459559 1423 mtd->ecc_stats.failed++;
3f91e94f 1424 } else {
3d459559 1425 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1426 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1427 }
3d459559 1428 }
3f91e94f 1429 return max_bitflips;
3d459559
AK
1430}
1431
068e3c0a 1432/**
7854d3f7 1433 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1434 * @mtd: mtd info structure
1435 * @chip: nand chip info structure
1436 * @buf: buffer to store read data
1fbb938d 1437 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1438 * @page: page number to read
068e3c0a 1439 *
7854d3f7 1440 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1441 */
f5bbdacc 1442static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1443 uint8_t *buf, int oob_required, int page)
1da177e4 1444{
f5bbdacc
TG
1445 int i, eccsize = chip->ecc.size;
1446 int eccbytes = chip->ecc.bytes;
1447 int eccsteps = chip->ecc.steps;
1448 uint8_t *p = buf;
4bf63fcb
DW
1449 uint8_t *ecc_calc = chip->buffers->ecccalc;
1450 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1451 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1452 unsigned int max_bitflips = 0;
f5bbdacc
TG
1453
1454 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1456 chip->read_buf(mtd, p, eccsize);
1457 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1458 }
f75e5097 1459 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1460
f5bbdacc 1461 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1462 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1463
f5bbdacc
TG
1464 eccsteps = chip->ecc.steps;
1465 p = buf;
61b03bd7 1466
f5bbdacc
TG
1467 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1468 int stat;
1da177e4 1469
f5bbdacc 1470 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
40cbe6ee
BB
1471 if (stat == -EBADMSG &&
1472 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1473 /* check for empty pages with bitflips */
1474 stat = nand_check_erased_ecc_chunk(p, eccsize,
1475 &ecc_code[i], eccbytes,
1476 NULL, 0,
1477 chip->ecc.strength);
1478 }
1479
3f91e94f 1480 if (stat < 0) {
f5bbdacc 1481 mtd->ecc_stats.failed++;
3f91e94f 1482 } else {
f5bbdacc 1483 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1484 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1485 }
f5bbdacc 1486 }
3f91e94f 1487 return max_bitflips;
f5bbdacc 1488}
1da177e4 1489
6e0cb135 1490/**
7854d3f7 1491 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1492 * @mtd: mtd info structure
1493 * @chip: nand chip info structure
1494 * @buf: buffer to store read data
1fbb938d 1495 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1496 * @page: page number to read
6e0cb135 1497 *
8b6e50c9
BN
1498 * Hardware ECC for large page chips, require OOB to be read first. For this
1499 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1500 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1501 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1502 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1503 */
1504static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1505 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1506{
1507 int i, eccsize = chip->ecc.size;
1508 int eccbytes = chip->ecc.bytes;
1509 int eccsteps = chip->ecc.steps;
1510 uint8_t *p = buf;
1511 uint8_t *ecc_code = chip->buffers->ecccode;
1512 uint32_t *eccpos = chip->ecc.layout->eccpos;
1513 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1514 unsigned int max_bitflips = 0;
6e0cb135
SN
1515
1516 /* Read the OOB area first */
1517 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1518 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1519 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1520
1521 for (i = 0; i < chip->ecc.total; i++)
1522 ecc_code[i] = chip->oob_poi[eccpos[i]];
1523
1524 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1525 int stat;
1526
1527 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1528 chip->read_buf(mtd, p, eccsize);
1529 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1530
1531 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
40cbe6ee
BB
1532 if (stat == -EBADMSG &&
1533 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1534 /* check for empty pages with bitflips */
1535 stat = nand_check_erased_ecc_chunk(p, eccsize,
1536 &ecc_code[i], eccbytes,
1537 NULL, 0,
1538 chip->ecc.strength);
1539 }
1540
3f91e94f 1541 if (stat < 0) {
6e0cb135 1542 mtd->ecc_stats.failed++;
3f91e94f 1543 } else {
6e0cb135 1544 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1545 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1546 }
6e0cb135 1547 }
3f91e94f 1548 return max_bitflips;
6e0cb135
SN
1549}
1550
f5bbdacc 1551/**
7854d3f7 1552 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1553 * @mtd: mtd info structure
1554 * @chip: nand chip info structure
1555 * @buf: buffer to store read data
1fbb938d 1556 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1557 * @page: page number to read
f5bbdacc 1558 *
8b6e50c9
BN
1559 * The hw generator calculates the error syndrome automatically. Therefore we
1560 * need a special oob layout and handling.
f5bbdacc
TG
1561 */
1562static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1563 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1564{
1565 int i, eccsize = chip->ecc.size;
1566 int eccbytes = chip->ecc.bytes;
1567 int eccsteps = chip->ecc.steps;
40cbe6ee 1568 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
f5bbdacc 1569 uint8_t *p = buf;
f75e5097 1570 uint8_t *oob = chip->oob_poi;
3f91e94f 1571 unsigned int max_bitflips = 0;
1da177e4 1572
f5bbdacc
TG
1573 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1574 int stat;
61b03bd7 1575
f5bbdacc
TG
1576 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1577 chip->read_buf(mtd, p, eccsize);
1da177e4 1578
f5bbdacc
TG
1579 if (chip->ecc.prepad) {
1580 chip->read_buf(mtd, oob, chip->ecc.prepad);
1581 oob += chip->ecc.prepad;
1582 }
1da177e4 1583
f5bbdacc
TG
1584 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1585 chip->read_buf(mtd, oob, eccbytes);
1586 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1587
f5bbdacc 1588 oob += eccbytes;
1da177e4 1589
f5bbdacc
TG
1590 if (chip->ecc.postpad) {
1591 chip->read_buf(mtd, oob, chip->ecc.postpad);
1592 oob += chip->ecc.postpad;
61b03bd7 1593 }
40cbe6ee
BB
1594
1595 if (stat == -EBADMSG &&
1596 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1597 /* check for empty pages with bitflips */
1598 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1599 oob - eccpadbytes,
1600 eccpadbytes,
1601 NULL, 0,
1602 chip->ecc.strength);
1603 }
1604
1605 if (stat < 0) {
1606 mtd->ecc_stats.failed++;
1607 } else {
1608 mtd->ecc_stats.corrected += stat;
1609 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1610 }
f5bbdacc 1611 }
1da177e4 1612
f5bbdacc 1613 /* Calculate remaining oob bytes */
7e4178f9 1614 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1615 if (i)
1616 chip->read_buf(mtd, oob, i);
61b03bd7 1617
3f91e94f 1618 return max_bitflips;
f5bbdacc 1619}
1da177e4 1620
f5bbdacc 1621/**
7854d3f7 1622 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1623 * @chip: nand chip structure
1624 * @oob: oob destination address
1625 * @ops: oob ops structure
1626 * @len: size of oob to transfer
8593fbc6
TG
1627 */
1628static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1629 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1630{
f8ac0414 1631 switch (ops->mode) {
8593fbc6 1632
0612b9dd
BN
1633 case MTD_OPS_PLACE_OOB:
1634 case MTD_OPS_RAW:
8593fbc6
TG
1635 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1636 return oob + len;
1637
0612b9dd 1638 case MTD_OPS_AUTO_OOB: {
8593fbc6 1639 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1640 uint32_t boffs = 0, roffs = ops->ooboffs;
1641 size_t bytes = 0;
8593fbc6 1642
f8ac0414 1643 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1644 /* Read request not from offset 0? */
7bc3312b
TG
1645 if (unlikely(roffs)) {
1646 if (roffs >= free->length) {
1647 roffs -= free->length;
1648 continue;
1649 }
1650 boffs = free->offset + roffs;
1651 bytes = min_t(size_t, len,
1652 (free->length - roffs));
1653 roffs = 0;
1654 } else {
1655 bytes = min_t(size_t, len, free->length);
1656 boffs = free->offset;
1657 }
1658 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1659 oob += bytes;
1660 }
1661 return oob;
1662 }
1663 default:
1664 BUG();
1665 }
1666 return NULL;
1667}
1668
ba84fb59
BN
1669/**
1670 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1671 * @mtd: MTD device structure
1672 * @retry_mode: the retry mode to use
1673 *
1674 * Some vendors supply a special command to shift the Vt threshold, to be used
1675 * when there are too many bitflips in a page (i.e., ECC error). After setting
1676 * a new threshold, the host should retry reading the page.
1677 */
1678static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1679{
862eba51 1680 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
1681
1682 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1683
1684 if (retry_mode >= chip->read_retries)
1685 return -EINVAL;
1686
1687 if (!chip->setup_read_retry)
1688 return -EOPNOTSUPP;
1689
1690 return chip->setup_read_retry(mtd, retry_mode);
1691}
1692
8593fbc6 1693/**
7854d3f7 1694 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1695 * @mtd: MTD device structure
1696 * @from: offset to read from
1697 * @ops: oob ops structure
f5bbdacc
TG
1698 *
1699 * Internal function. Called with chip held.
1700 */
8593fbc6
TG
1701static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1702 struct mtd_oob_ops *ops)
f5bbdacc 1703{
e47f3db4 1704 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 1705 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 1706 int ret = 0;
8593fbc6 1707 uint32_t readlen = ops->len;
7014568b 1708 uint32_t oobreadlen = ops->ooblen;
29f1058a 1709 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
9aca334e 1710
8593fbc6 1711 uint8_t *bufpoi, *oob, *buf;
66507c7b 1712 int use_bufpoi;
edbc4540 1713 unsigned int max_bitflips = 0;
ba84fb59 1714 int retry_mode = 0;
b72f3dfb 1715 bool ecc_fail = false;
1da177e4 1716
f5bbdacc
TG
1717 chipnr = (int)(from >> chip->chip_shift);
1718 chip->select_chip(mtd, chipnr);
61b03bd7 1719
f5bbdacc
TG
1720 realpage = (int)(from >> chip->page_shift);
1721 page = realpage & chip->pagemask;
1da177e4 1722
f5bbdacc 1723 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1724
8593fbc6
TG
1725 buf = ops->datbuf;
1726 oob = ops->oobbuf;
e47f3db4 1727 oob_required = oob ? 1 : 0;
8593fbc6 1728
f8ac0414 1729 while (1) {
b72f3dfb
BN
1730 unsigned int ecc_failures = mtd->ecc_stats.failed;
1731
f5bbdacc
TG
1732 bytes = min(mtd->writesize - col, readlen);
1733 aligned = (bytes == mtd->writesize);
61b03bd7 1734
66507c7b
KD
1735 if (!aligned)
1736 use_bufpoi = 1;
1737 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1738 use_bufpoi = !virt_addr_valid(buf);
1739 else
1740 use_bufpoi = 0;
1741
8b6e50c9 1742 /* Is the current page in the buffer? */
8593fbc6 1743 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
1744 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1745
1746 if (use_bufpoi && aligned)
1747 pr_debug("%s: using read bounce buffer for buf@%p\n",
1748 __func__, buf);
61b03bd7 1749
ba84fb59 1750read_retry:
c00a0991 1751 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1752
edbc4540
MD
1753 /*
1754 * Now read the page into the buffer. Absent an error,
1755 * the read methods return max bitflips per ecc step.
1756 */
0612b9dd 1757 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1758 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1759 oob_required,
1760 page);
a5ff4f10
JW
1761 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1762 !oob)
7351d3a5 1763 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1764 col, bytes, bufpoi,
1765 page);
956e944c 1766 else
46a8cf2d 1767 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1768 oob_required, page);
6d77b9d0 1769 if (ret < 0) {
66507c7b 1770 if (use_bufpoi)
6d77b9d0
BN
1771 /* Invalidate page cache */
1772 chip->pagebuf = -1;
1da177e4 1773 break;
6d77b9d0 1774 }
f5bbdacc 1775
edbc4540
MD
1776 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1777
f5bbdacc 1778 /* Transfer not aligned data */
66507c7b 1779 if (use_bufpoi) {
a5ff4f10 1780 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1781 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1782 (ops->mode != MTD_OPS_RAW)) {
3d459559 1783 chip->pagebuf = realpage;
edbc4540
MD
1784 chip->pagebuf_bitflips = ret;
1785 } else {
6d77b9d0
BN
1786 /* Invalidate page cache */
1787 chip->pagebuf = -1;
edbc4540 1788 }
4bf63fcb 1789 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1790 }
1791
8593fbc6 1792 if (unlikely(oob)) {
b64d39d8
ML
1793 int toread = min(oobreadlen, max_oobsize);
1794
1795 if (toread) {
1796 oob = nand_transfer_oob(chip,
1797 oob, ops, toread);
1798 oobreadlen -= toread;
1799 }
8593fbc6 1800 }
5bc7c33c
BN
1801
1802 if (chip->options & NAND_NEED_READRDY) {
1803 /* Apply delay or wait for ready/busy pin */
1804 if (!chip->dev_ready)
1805 udelay(chip->chip_delay);
1806 else
1807 nand_wait_ready(mtd);
1808 }
b72f3dfb 1809
ba84fb59 1810 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1811 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1812 retry_mode++;
1813 ret = nand_setup_read_retry(mtd,
1814 retry_mode);
1815 if (ret < 0)
1816 break;
1817
1818 /* Reset failures; retry */
1819 mtd->ecc_stats.failed = ecc_failures;
1820 goto read_retry;
1821 } else {
1822 /* No more retry modes; real failure */
1823 ecc_fail = true;
1824 }
1825 }
1826
1827 buf += bytes;
8593fbc6 1828 } else {
4bf63fcb 1829 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1830 buf += bytes;
edbc4540
MD
1831 max_bitflips = max_t(unsigned int, max_bitflips,
1832 chip->pagebuf_bitflips);
8593fbc6 1833 }
1da177e4 1834
f5bbdacc 1835 readlen -= bytes;
61b03bd7 1836
ba84fb59
BN
1837 /* Reset to retry mode 0 */
1838 if (retry_mode) {
1839 ret = nand_setup_read_retry(mtd, 0);
1840 if (ret < 0)
1841 break;
1842 retry_mode = 0;
1843 }
1844
f5bbdacc 1845 if (!readlen)
61b03bd7 1846 break;
1da177e4 1847
8b6e50c9 1848 /* For subsequent reads align to page boundary */
1da177e4
LT
1849 col = 0;
1850 /* Increment page address */
1851 realpage++;
1852
ace4dfee 1853 page = realpage & chip->pagemask;
1da177e4
LT
1854 /* Check, if we cross a chip boundary */
1855 if (!page) {
1856 chipnr++;
ace4dfee
TG
1857 chip->select_chip(mtd, -1);
1858 chip->select_chip(mtd, chipnr);
1da177e4 1859 }
1da177e4 1860 }
b0bb6903 1861 chip->select_chip(mtd, -1);
1da177e4 1862
8593fbc6 1863 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1864 if (oob)
1865 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1866
3f91e94f 1867 if (ret < 0)
f5bbdacc
TG
1868 return ret;
1869
b72f3dfb 1870 if (ecc_fail)
9a1fcdfd
TG
1871 return -EBADMSG;
1872
edbc4540 1873 return max_bitflips;
f5bbdacc
TG
1874}
1875
1876/**
25985edc 1877 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1878 * @mtd: MTD device structure
1879 * @from: offset to read from
1880 * @len: number of bytes to read
1881 * @retlen: pointer to variable to store the number of read bytes
1882 * @buf: the databuffer to put data
f5bbdacc 1883 *
8b6e50c9 1884 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1885 */
1886static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1887 size_t *retlen, uint8_t *buf)
1888{
4a89ff88 1889 struct mtd_oob_ops ops;
f5bbdacc
TG
1890 int ret;
1891
6a8214aa 1892 nand_get_device(mtd, FL_READING);
0ec56dc4 1893 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
1894 ops.len = len;
1895 ops.datbuf = buf;
11041ae6 1896 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1897 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1898 *retlen = ops.retlen;
f5bbdacc 1899 nand_release_device(mtd);
f5bbdacc 1900 return ret;
1da177e4
LT
1901}
1902
7bc3312b 1903/**
7854d3f7 1904 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1905 * @mtd: mtd info structure
1906 * @chip: nand chip info structure
1907 * @page: page number to read
7bc3312b
TG
1908 */
1909static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1910 int page)
7bc3312b 1911{
5c2ffb11 1912 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1913 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1914 return 0;
7bc3312b
TG
1915}
1916
1917/**
7854d3f7 1918 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1919 * with syndromes
8b6e50c9
BN
1920 * @mtd: mtd info structure
1921 * @chip: nand chip info structure
1922 * @page: page number to read
7bc3312b
TG
1923 */
1924static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1925 int page)
7bc3312b 1926{
7bc3312b
TG
1927 int length = mtd->oobsize;
1928 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1929 int eccsize = chip->ecc.size;
2ea69d21 1930 uint8_t *bufpoi = chip->oob_poi;
7bc3312b
TG
1931 int i, toread, sndrnd = 0, pos;
1932
1933 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1934 for (i = 0; i < chip->ecc.steps; i++) {
1935 if (sndrnd) {
1936 pos = eccsize + i * (eccsize + chunk);
1937 if (mtd->writesize > 512)
1938 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1939 else
1940 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1941 } else
1942 sndrnd = 1;
1943 toread = min_t(int, length, chunk);
1944 chip->read_buf(mtd, bufpoi, toread);
1945 bufpoi += toread;
1946 length -= toread;
1947 }
1948 if (length > 0)
1949 chip->read_buf(mtd, bufpoi, length);
1950
5c2ffb11 1951 return 0;
7bc3312b
TG
1952}
1953
1954/**
7854d3f7 1955 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1956 * @mtd: mtd info structure
1957 * @chip: nand chip info structure
1958 * @page: page number to write
7bc3312b
TG
1959 */
1960static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1961 int page)
1962{
1963 int status = 0;
1964 const uint8_t *buf = chip->oob_poi;
1965 int length = mtd->oobsize;
1966
1967 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1968 chip->write_buf(mtd, buf, length);
1969 /* Send command to program the OOB data */
1970 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1971
1972 status = chip->waitfunc(mtd, chip);
1973
0d420f9d 1974 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1975}
1976
1977/**
7854d3f7 1978 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1979 * with syndrome - only for large page flash
1980 * @mtd: mtd info structure
1981 * @chip: nand chip info structure
1982 * @page: page number to write
7bc3312b
TG
1983 */
1984static int nand_write_oob_syndrome(struct mtd_info *mtd,
1985 struct nand_chip *chip, int page)
1986{
1987 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1988 int eccsize = chip->ecc.size, length = mtd->oobsize;
1989 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1990 const uint8_t *bufpoi = chip->oob_poi;
1991
1992 /*
1993 * data-ecc-data-ecc ... ecc-oob
1994 * or
1995 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1996 */
1997 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1998 pos = steps * (eccsize + chunk);
1999 steps = 0;
2000 } else
8b0036ee 2001 pos = eccsize;
7bc3312b
TG
2002
2003 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2004 for (i = 0; i < steps; i++) {
2005 if (sndcmd) {
2006 if (mtd->writesize <= 512) {
2007 uint32_t fill = 0xFFFFFFFF;
2008
2009 len = eccsize;
2010 while (len > 0) {
2011 int num = min_t(int, len, 4);
2012 chip->write_buf(mtd, (uint8_t *)&fill,
2013 num);
2014 len -= num;
2015 }
2016 } else {
2017 pos = eccsize + i * (eccsize + chunk);
2018 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2019 }
2020 } else
2021 sndcmd = 1;
2022 len = min_t(int, length, chunk);
2023 chip->write_buf(mtd, bufpoi, len);
2024 bufpoi += len;
2025 length -= len;
2026 }
2027 if (length > 0)
2028 chip->write_buf(mtd, bufpoi, length);
2029
2030 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2031 status = chip->waitfunc(mtd, chip);
2032
2033 return status & NAND_STATUS_FAIL ? -EIO : 0;
2034}
2035
1da177e4 2036/**
7854d3f7 2037 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
2038 * @mtd: MTD device structure
2039 * @from: offset to read from
2040 * @ops: oob operations description structure
1da177e4 2041 *
8b6e50c9 2042 * NAND read out-of-band data from the spare area.
1da177e4 2043 */
8593fbc6
TG
2044static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2045 struct mtd_oob_ops *ops)
1da177e4 2046{
c00a0991 2047 int page, realpage, chipnr;
862eba51 2048 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 2049 struct mtd_ecc_stats stats;
7014568b
VW
2050 int readlen = ops->ooblen;
2051 int len;
7bc3312b 2052 uint8_t *buf = ops->oobbuf;
1951f2f7 2053 int ret = 0;
61b03bd7 2054
289c0522 2055 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 2056 __func__, (unsigned long long)from, readlen);
1da177e4 2057
041e4575
BN
2058 stats = mtd->ecc_stats;
2059
29f1058a 2060 len = mtd_oobavail(mtd, ops);
03736155
AH
2061
2062 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2063 pr_debug("%s: attempt to start read outside oob\n",
2064 __func__);
03736155
AH
2065 return -EINVAL;
2066 }
2067
2068 /* Do not allow reads past end of device */
2069 if (unlikely(from >= mtd->size ||
2070 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2071 (from >> chip->page_shift)) * len)) {
289c0522
BN
2072 pr_debug("%s: attempt to read beyond end of device\n",
2073 __func__);
03736155
AH
2074 return -EINVAL;
2075 }
7014568b 2076
7314e9e7 2077 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 2078 chip->select_chip(mtd, chipnr);
1da177e4 2079
7314e9e7
TG
2080 /* Shift to get page */
2081 realpage = (int)(from >> chip->page_shift);
2082 page = realpage & chip->pagemask;
1da177e4 2083
f8ac0414 2084 while (1) {
0612b9dd 2085 if (ops->mode == MTD_OPS_RAW)
1951f2f7 2086 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 2087 else
1951f2f7
SL
2088 ret = chip->ecc.read_oob(mtd, chip, page);
2089
2090 if (ret < 0)
2091 break;
7014568b
VW
2092
2093 len = min(len, readlen);
2094 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 2095
5bc7c33c
BN
2096 if (chip->options & NAND_NEED_READRDY) {
2097 /* Apply delay or wait for ready/busy pin */
2098 if (!chip->dev_ready)
2099 udelay(chip->chip_delay);
2100 else
2101 nand_wait_ready(mtd);
2102 }
2103
7014568b 2104 readlen -= len;
0d420f9d
SZ
2105 if (!readlen)
2106 break;
2107
7314e9e7
TG
2108 /* Increment page address */
2109 realpage++;
2110
2111 page = realpage & chip->pagemask;
2112 /* Check, if we cross a chip boundary */
2113 if (!page) {
2114 chipnr++;
2115 chip->select_chip(mtd, -1);
2116 chip->select_chip(mtd, chipnr);
1da177e4
LT
2117 }
2118 }
b0bb6903 2119 chip->select_chip(mtd, -1);
1da177e4 2120
1951f2f7
SL
2121 ops->oobretlen = ops->ooblen - readlen;
2122
2123 if (ret < 0)
2124 return ret;
041e4575
BN
2125
2126 if (mtd->ecc_stats.failed - stats.failed)
2127 return -EBADMSG;
2128
2129 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
2130}
2131
2132/**
8593fbc6 2133 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
2134 * @mtd: MTD device structure
2135 * @from: offset to read from
2136 * @ops: oob operation description structure
1da177e4 2137 *
8b6e50c9 2138 * NAND read data and/or out-of-band data.
1da177e4 2139 */
8593fbc6
TG
2140static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2141 struct mtd_oob_ops *ops)
1da177e4 2142{
8593fbc6
TG
2143 int ret = -ENOTSUPP;
2144
2145 ops->retlen = 0;
1da177e4
LT
2146
2147 /* Do not allow reads past end of device */
7014568b 2148 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
2149 pr_debug("%s: attempt to read beyond end of device\n",
2150 __func__);
1da177e4
LT
2151 return -EINVAL;
2152 }
2153
6a8214aa 2154 nand_get_device(mtd, FL_READING);
1da177e4 2155
f8ac0414 2156 switch (ops->mode) {
0612b9dd
BN
2157 case MTD_OPS_PLACE_OOB:
2158 case MTD_OPS_AUTO_OOB:
2159 case MTD_OPS_RAW:
8593fbc6 2160 break;
1da177e4 2161
8593fbc6
TG
2162 default:
2163 goto out;
2164 }
1da177e4 2165
8593fbc6
TG
2166 if (!ops->datbuf)
2167 ret = nand_do_read_oob(mtd, from, ops);
2168 else
2169 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2170
7351d3a5 2171out:
8593fbc6
TG
2172 nand_release_device(mtd);
2173 return ret;
2174}
61b03bd7 2175
1da177e4 2176
8593fbc6 2177/**
7854d3f7 2178 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2179 * @mtd: mtd info structure
2180 * @chip: nand chip info structure
2181 * @buf: data buffer
1fbb938d 2182 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2183 * @page: page number to write
52ff49df 2184 *
7854d3f7 2185 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2186 */
fdbad98d 2187static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 2188 const uint8_t *buf, int oob_required, int page)
8593fbc6
TG
2189{
2190 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2191 if (oob_required)
2192 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2193
2194 return 0;
1da177e4
LT
2195}
2196
52ff49df 2197/**
7854d3f7 2198 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2199 * @mtd: mtd info structure
2200 * @chip: nand chip info structure
2201 * @buf: data buffer
1fbb938d 2202 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2203 * @page: page number to write
52ff49df
DB
2204 *
2205 * We need a special oob layout and handling even when ECC isn't checked.
2206 */
fdbad98d 2207static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2208 struct nand_chip *chip,
45aaeff9
BB
2209 const uint8_t *buf, int oob_required,
2210 int page)
52ff49df
DB
2211{
2212 int eccsize = chip->ecc.size;
2213 int eccbytes = chip->ecc.bytes;
2214 uint8_t *oob = chip->oob_poi;
2215 int steps, size;
2216
2217 for (steps = chip->ecc.steps; steps > 0; steps--) {
2218 chip->write_buf(mtd, buf, eccsize);
2219 buf += eccsize;
2220
2221 if (chip->ecc.prepad) {
2222 chip->write_buf(mtd, oob, chip->ecc.prepad);
2223 oob += chip->ecc.prepad;
2224 }
2225
60c3bc1f 2226 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2227 oob += eccbytes;
2228
2229 if (chip->ecc.postpad) {
2230 chip->write_buf(mtd, oob, chip->ecc.postpad);
2231 oob += chip->ecc.postpad;
2232 }
2233 }
2234
2235 size = mtd->oobsize - (oob - chip->oob_poi);
2236 if (size)
2237 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2238
2239 return 0;
52ff49df 2240}
9223a456 2241/**
7854d3f7 2242 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2243 * @mtd: mtd info structure
2244 * @chip: nand chip info structure
2245 * @buf: data buffer
1fbb938d 2246 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2247 * @page: page number to write
9223a456 2248 */
fdbad98d 2249static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2250 const uint8_t *buf, int oob_required,
2251 int page)
9223a456 2252{
f75e5097
TG
2253 int i, eccsize = chip->ecc.size;
2254 int eccbytes = chip->ecc.bytes;
2255 int eccsteps = chip->ecc.steps;
4bf63fcb 2256 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2257 const uint8_t *p = buf;
8b099a39 2258 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2259
7854d3f7 2260 /* Software ECC calculation */
8593fbc6
TG
2261 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2262 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2263
8593fbc6
TG
2264 for (i = 0; i < chip->ecc.total; i++)
2265 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2266
45aaeff9 2267 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 2268}
9223a456 2269
f75e5097 2270/**
7854d3f7 2271 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2272 * @mtd: mtd info structure
2273 * @chip: nand chip info structure
2274 * @buf: data buffer
1fbb938d 2275 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2276 * @page: page number to write
f75e5097 2277 */
fdbad98d 2278static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2279 const uint8_t *buf, int oob_required,
2280 int page)
f75e5097
TG
2281{
2282 int i, eccsize = chip->ecc.size;
2283 int eccbytes = chip->ecc.bytes;
2284 int eccsteps = chip->ecc.steps;
4bf63fcb 2285 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2286 const uint8_t *p = buf;
8b099a39 2287 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2288
f75e5097
TG
2289 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2290 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2291 chip->write_buf(mtd, p, eccsize);
f75e5097 2292 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2293 }
2294
f75e5097
TG
2295 for (i = 0; i < chip->ecc.total; i++)
2296 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2297
2298 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2299
2300 return 0;
9223a456
TG
2301}
2302
837a6ba4
GP
2303
2304/**
73c8aaf4 2305 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
2306 * @mtd: mtd info structure
2307 * @chip: nand chip info structure
d6a95080 2308 * @offset: column address of subpage within the page
837a6ba4 2309 * @data_len: data length
d6a95080 2310 * @buf: data buffer
837a6ba4 2311 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2312 * @page: page number to write
837a6ba4
GP
2313 */
2314static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2315 struct nand_chip *chip, uint32_t offset,
d6a95080 2316 uint32_t data_len, const uint8_t *buf,
45aaeff9 2317 int oob_required, int page)
837a6ba4
GP
2318{
2319 uint8_t *oob_buf = chip->oob_poi;
2320 uint8_t *ecc_calc = chip->buffers->ecccalc;
2321 int ecc_size = chip->ecc.size;
2322 int ecc_bytes = chip->ecc.bytes;
2323 int ecc_steps = chip->ecc.steps;
2324 uint32_t *eccpos = chip->ecc.layout->eccpos;
2325 uint32_t start_step = offset / ecc_size;
2326 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2327 int oob_bytes = mtd->oobsize / ecc_steps;
2328 int step, i;
2329
2330 for (step = 0; step < ecc_steps; step++) {
2331 /* configure controller for WRITE access */
2332 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2333
2334 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2335 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2336
2337 /* mask ECC of un-touched subpages by padding 0xFF */
2338 if ((step < start_step) || (step > end_step))
2339 memset(ecc_calc, 0xff, ecc_bytes);
2340 else
d6a95080 2341 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2342
2343 /* mask OOB of un-touched subpages by padding 0xFF */
2344 /* if oob_required, preserve OOB metadata of written subpage */
2345 if (!oob_required || (step < start_step) || (step > end_step))
2346 memset(oob_buf, 0xff, oob_bytes);
2347
d6a95080 2348 buf += ecc_size;
837a6ba4
GP
2349 ecc_calc += ecc_bytes;
2350 oob_buf += oob_bytes;
2351 }
2352
2353 /* copy calculated ECC for whole page to chip->buffer->oob */
2354 /* this include masked-value(0xFF) for unwritten subpages */
2355 ecc_calc = chip->buffers->ecccalc;
2356 for (i = 0; i < chip->ecc.total; i++)
2357 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2358
2359 /* write OOB buffer to NAND device */
2360 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2361
2362 return 0;
2363}
2364
2365
61b03bd7 2366/**
7854d3f7 2367 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2368 * @mtd: mtd info structure
2369 * @chip: nand chip info structure
2370 * @buf: data buffer
1fbb938d 2371 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2372 * @page: page number to write
1da177e4 2373 *
8b6e50c9
BN
2374 * The hw generator calculates the error syndrome automatically. Therefore we
2375 * need a special oob layout and handling.
f75e5097 2376 */
fdbad98d 2377static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 2378 struct nand_chip *chip,
45aaeff9
BB
2379 const uint8_t *buf, int oob_required,
2380 int page)
1da177e4 2381{
f75e5097
TG
2382 int i, eccsize = chip->ecc.size;
2383 int eccbytes = chip->ecc.bytes;
2384 int eccsteps = chip->ecc.steps;
2385 const uint8_t *p = buf;
2386 uint8_t *oob = chip->oob_poi;
1da177e4 2387
f75e5097 2388 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2389
f75e5097
TG
2390 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2391 chip->write_buf(mtd, p, eccsize);
61b03bd7 2392
f75e5097
TG
2393 if (chip->ecc.prepad) {
2394 chip->write_buf(mtd, oob, chip->ecc.prepad);
2395 oob += chip->ecc.prepad;
2396 }
2397
2398 chip->ecc.calculate(mtd, p, oob);
2399 chip->write_buf(mtd, oob, eccbytes);
2400 oob += eccbytes;
2401
2402 if (chip->ecc.postpad) {
2403 chip->write_buf(mtd, oob, chip->ecc.postpad);
2404 oob += chip->ecc.postpad;
1da177e4 2405 }
1da177e4 2406 }
f75e5097
TG
2407
2408 /* Calculate remaining oob bytes */
7e4178f9 2409 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2410 if (i)
2411 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2412
2413 return 0;
f75e5097
TG
2414}
2415
2416/**
956e944c 2417 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2418 * @mtd: MTD device structure
2419 * @chip: NAND chip descriptor
837a6ba4
GP
2420 * @offset: address offset within the page
2421 * @data_len: length of actual data to be written
8b6e50c9 2422 * @buf: the data to write
1fbb938d 2423 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2424 * @page: page number to write
2425 * @cached: cached programming
2426 * @raw: use _raw version of write_page
f75e5097
TG
2427 */
2428static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2429 uint32_t offset, int data_len, const uint8_t *buf,
2430 int oob_required, int page, int cached, int raw)
f75e5097 2431{
837a6ba4
GP
2432 int status, subpage;
2433
2434 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2435 chip->ecc.write_subpage)
2436 subpage = offset || (data_len < mtd->writesize);
2437 else
2438 subpage = 0;
f75e5097
TG
2439
2440 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2441
956e944c 2442 if (unlikely(raw))
837a6ba4 2443 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 2444 oob_required, page);
837a6ba4
GP
2445 else if (subpage)
2446 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 2447 buf, oob_required, page);
956e944c 2448 else
45aaeff9
BB
2449 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2450 page);
fdbad98d
JW
2451
2452 if (status < 0)
2453 return status;
f75e5097
TG
2454
2455 /*
7854d3f7 2456 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2457 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2458 */
2459 cached = 0;
2460
3239a6cd 2461 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2462
2463 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2464 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2465 /*
2466 * See if operation failed and additional status checks are
8b6e50c9 2467 * available.
f75e5097
TG
2468 */
2469 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2470 status = chip->errstat(mtd, chip, FL_WRITING, status,
2471 page);
2472
2473 if (status & NAND_STATUS_FAIL)
2474 return -EIO;
2475 } else {
2476 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2477 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2478 }
2479
f75e5097 2480 return 0;
1da177e4
LT
2481}
2482
8593fbc6 2483/**
7854d3f7 2484 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2485 * @mtd: MTD device structure
8b6e50c9
BN
2486 * @oob: oob data buffer
2487 * @len: oob data write length
2488 * @ops: oob ops structure
8593fbc6 2489 */
f722013e
TAA
2490static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2491 struct mtd_oob_ops *ops)
8593fbc6 2492{
862eba51 2493 struct nand_chip *chip = mtd_to_nand(mtd);
f722013e
TAA
2494
2495 /*
2496 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2497 * data from a previous OOB read.
2498 */
2499 memset(chip->oob_poi, 0xff, mtd->oobsize);
2500
f8ac0414 2501 switch (ops->mode) {
8593fbc6 2502
0612b9dd
BN
2503 case MTD_OPS_PLACE_OOB:
2504 case MTD_OPS_RAW:
8593fbc6
TG
2505 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2506 return oob + len;
2507
0612b9dd 2508 case MTD_OPS_AUTO_OOB: {
8593fbc6 2509 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2510 uint32_t boffs = 0, woffs = ops->ooboffs;
2511 size_t bytes = 0;
8593fbc6 2512
f8ac0414 2513 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2514 /* Write request not from offset 0? */
7bc3312b
TG
2515 if (unlikely(woffs)) {
2516 if (woffs >= free->length) {
2517 woffs -= free->length;
2518 continue;
2519 }
2520 boffs = free->offset + woffs;
2521 bytes = min_t(size_t, len,
2522 (free->length - woffs));
2523 woffs = 0;
2524 } else {
2525 bytes = min_t(size_t, len, free->length);
2526 boffs = free->offset;
2527 }
8b0036ee 2528 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2529 oob += bytes;
2530 }
2531 return oob;
2532 }
2533 default:
2534 BUG();
2535 }
2536 return NULL;
2537}
2538
f8ac0414 2539#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2540
2541/**
7854d3f7 2542 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2543 * @mtd: MTD device structure
2544 * @to: offset to write to
2545 * @ops: oob operations description structure
1da177e4 2546 *
8b6e50c9 2547 * NAND write with ECC.
1da177e4 2548 */
8593fbc6
TG
2549static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2550 struct mtd_oob_ops *ops)
1da177e4 2551{
29072b96 2552 int chipnr, realpage, page, blockmask, column;
862eba51 2553 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 2554 uint32_t writelen = ops->len;
782ce79a
ML
2555
2556 uint32_t oobwritelen = ops->ooblen;
29f1058a 2557 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
782ce79a 2558
8593fbc6
TG
2559 uint8_t *oob = ops->oobbuf;
2560 uint8_t *buf = ops->datbuf;
837a6ba4 2561 int ret;
e47f3db4 2562 int oob_required = oob ? 1 : 0;
1da177e4 2563
8593fbc6 2564 ops->retlen = 0;
29072b96
TG
2565 if (!writelen)
2566 return 0;
1da177e4 2567
8b6e50c9 2568 /* Reject writes, which are not page aligned */
8593fbc6 2569 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2570 pr_notice("%s: attempt to write non page aligned data\n",
2571 __func__);
1da177e4
LT
2572 return -EINVAL;
2573 }
2574
29072b96 2575 column = to & (mtd->writesize - 1);
1da177e4 2576
6a930961
TG
2577 chipnr = (int)(to >> chip->chip_shift);
2578 chip->select_chip(mtd, chipnr);
2579
1da177e4 2580 /* Check, if it is write protected */
b0bb6903
HS
2581 if (nand_check_wp(mtd)) {
2582 ret = -EIO;
2583 goto err_out;
2584 }
1da177e4 2585
f75e5097
TG
2586 realpage = (int)(to >> chip->page_shift);
2587 page = realpage & chip->pagemask;
2588 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2589
2590 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2591 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2592 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2593 chip->pagebuf = -1;
61b03bd7 2594
782ce79a 2595 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2596 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2597 ret = -EINVAL;
2598 goto err_out;
2599 }
782ce79a 2600
f8ac0414 2601 while (1) {
29072b96 2602 int bytes = mtd->writesize;
f75e5097 2603 int cached = writelen > bytes && page != blockmask;
29072b96 2604 uint8_t *wbuf = buf;
66507c7b
KD
2605 int use_bufpoi;
2606 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2607
2608 if (part_pagewr)
2609 use_bufpoi = 1;
2610 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2611 use_bufpoi = !virt_addr_valid(buf);
2612 else
2613 use_bufpoi = 0;
29072b96 2614
66507c7b
KD
2615 /* Partial page write?, or need to use bounce buffer */
2616 if (use_bufpoi) {
2617 pr_debug("%s: using write bounce buffer for buf@%p\n",
2618 __func__, buf);
29072b96 2619 cached = 0;
66507c7b
KD
2620 if (part_pagewr)
2621 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2622 chip->pagebuf = -1;
2623 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2624 memcpy(&chip->buffers->databuf[column], buf, bytes);
2625 wbuf = chip->buffers->databuf;
2626 }
1da177e4 2627
782ce79a
ML
2628 if (unlikely(oob)) {
2629 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2630 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2631 oobwritelen -= len;
f722013e
TAA
2632 } else {
2633 /* We still need to erase leftover OOB data */
2634 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2635 }
837a6ba4
GP
2636 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2637 oob_required, page, cached,
2638 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2639 if (ret)
2640 break;
2641
2642 writelen -= bytes;
2643 if (!writelen)
2644 break;
2645
29072b96 2646 column = 0;
f75e5097
TG
2647 buf += bytes;
2648 realpage++;
2649
2650 page = realpage & chip->pagemask;
2651 /* Check, if we cross a chip boundary */
2652 if (!page) {
2653 chipnr++;
2654 chip->select_chip(mtd, -1);
2655 chip->select_chip(mtd, chipnr);
1da177e4
LT
2656 }
2657 }
8593fbc6 2658
8593fbc6 2659 ops->retlen = ops->len - writelen;
7014568b
VW
2660 if (unlikely(oob))
2661 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2662
2663err_out:
2664 chip->select_chip(mtd, -1);
1da177e4
LT
2665 return ret;
2666}
2667
2af7c653
SK
2668/**
2669 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2670 * @mtd: MTD device structure
2671 * @to: offset to write to
2672 * @len: number of bytes to write
2673 * @retlen: pointer to variable to store the number of written bytes
2674 * @buf: the data to write
2af7c653
SK
2675 *
2676 * NAND write with ECC. Used when performing writes in interrupt context, this
2677 * may for example be called by mtdoops when writing an oops while in panic.
2678 */
2679static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2680 size_t *retlen, const uint8_t *buf)
2681{
862eba51 2682 struct nand_chip *chip = mtd_to_nand(mtd);
4a89ff88 2683 struct mtd_oob_ops ops;
2af7c653
SK
2684 int ret;
2685
8b6e50c9 2686 /* Wait for the device to get ready */
2af7c653
SK
2687 panic_nand_wait(mtd, chip, 400);
2688
8b6e50c9 2689 /* Grab the device */
2af7c653
SK
2690 panic_nand_get_device(chip, mtd, FL_WRITING);
2691
0ec56dc4 2692 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2693 ops.len = len;
2694 ops.datbuf = (uint8_t *)buf;
11041ae6 2695 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2696
4a89ff88 2697 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2698
4a89ff88 2699 *retlen = ops.retlen;
2af7c653
SK
2700 return ret;
2701}
2702
f75e5097 2703/**
8593fbc6 2704 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2705 * @mtd: MTD device structure
2706 * @to: offset to write to
2707 * @len: number of bytes to write
2708 * @retlen: pointer to variable to store the number of written bytes
2709 * @buf: the data to write
f75e5097 2710 *
8b6e50c9 2711 * NAND write with ECC.
f75e5097 2712 */
8593fbc6
TG
2713static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2714 size_t *retlen, const uint8_t *buf)
f75e5097 2715{
4a89ff88 2716 struct mtd_oob_ops ops;
f75e5097
TG
2717 int ret;
2718
6a8214aa 2719 nand_get_device(mtd, FL_WRITING);
0ec56dc4 2720 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2721 ops.len = len;
2722 ops.datbuf = (uint8_t *)buf;
11041ae6 2723 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2724 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2725 *retlen = ops.retlen;
f75e5097 2726 nand_release_device(mtd);
8593fbc6 2727 return ret;
f75e5097 2728}
7314e9e7 2729
1da177e4 2730/**
8593fbc6 2731 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2732 * @mtd: MTD device structure
2733 * @to: offset to write to
2734 * @ops: oob operation description structure
1da177e4 2735 *
8b6e50c9 2736 * NAND write out-of-band.
1da177e4 2737 */
8593fbc6
TG
2738static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2739 struct mtd_oob_ops *ops)
1da177e4 2740{
03736155 2741 int chipnr, page, status, len;
862eba51 2742 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2743
289c0522 2744 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2745 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2746
29f1058a 2747 len = mtd_oobavail(mtd, ops);
03736155 2748
1da177e4 2749 /* Do not allow write past end of page */
03736155 2750 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2751 pr_debug("%s: attempt to write past end of page\n",
2752 __func__);
1da177e4
LT
2753 return -EINVAL;
2754 }
2755
03736155 2756 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2757 pr_debug("%s: attempt to start write outside oob\n",
2758 __func__);
03736155
AH
2759 return -EINVAL;
2760 }
2761
775adc3d 2762 /* Do not allow write past end of device */
03736155
AH
2763 if (unlikely(to >= mtd->size ||
2764 ops->ooboffs + ops->ooblen >
2765 ((mtd->size >> chip->page_shift) -
2766 (to >> chip->page_shift)) * len)) {
289c0522
BN
2767 pr_debug("%s: attempt to write beyond end of device\n",
2768 __func__);
03736155
AH
2769 return -EINVAL;
2770 }
2771
7314e9e7 2772 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2773 chip->select_chip(mtd, chipnr);
1da177e4 2774
7314e9e7
TG
2775 /* Shift to get page */
2776 page = (int)(to >> chip->page_shift);
2777
2778 /*
2779 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2780 * of my DiskOnChip 2000 test units) will clear the whole data page too
2781 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2782 * it in the doc2000 driver in August 1999. dwmw2.
2783 */
ace4dfee 2784 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2785
2786 /* Check, if it is write protected */
b0bb6903
HS
2787 if (nand_check_wp(mtd)) {
2788 chip->select_chip(mtd, -1);
8593fbc6 2789 return -EROFS;
b0bb6903 2790 }
61b03bd7 2791
1da177e4 2792 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2793 if (page == chip->pagebuf)
2794 chip->pagebuf = -1;
1da177e4 2795
f722013e 2796 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2797
0612b9dd 2798 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2799 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2800 else
2801 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2802
b0bb6903
HS
2803 chip->select_chip(mtd, -1);
2804
7bc3312b
TG
2805 if (status)
2806 return status;
1da177e4 2807
7014568b 2808 ops->oobretlen = ops->ooblen;
1da177e4 2809
7bc3312b 2810 return 0;
8593fbc6
TG
2811}
2812
2813/**
2814 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2815 * @mtd: MTD device structure
2816 * @to: offset to write to
2817 * @ops: oob operation description structure
8593fbc6
TG
2818 */
2819static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2820 struct mtd_oob_ops *ops)
2821{
8593fbc6
TG
2822 int ret = -ENOTSUPP;
2823
2824 ops->retlen = 0;
2825
2826 /* Do not allow writes past end of device */
7014568b 2827 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2828 pr_debug("%s: attempt to write beyond end of device\n",
2829 __func__);
8593fbc6
TG
2830 return -EINVAL;
2831 }
2832
6a8214aa 2833 nand_get_device(mtd, FL_WRITING);
8593fbc6 2834
f8ac0414 2835 switch (ops->mode) {
0612b9dd
BN
2836 case MTD_OPS_PLACE_OOB:
2837 case MTD_OPS_AUTO_OOB:
2838 case MTD_OPS_RAW:
8593fbc6
TG
2839 break;
2840
2841 default:
2842 goto out;
2843 }
2844
2845 if (!ops->datbuf)
2846 ret = nand_do_write_oob(mtd, to, ops);
2847 else
2848 ret = nand_do_write_ops(mtd, to, ops);
2849
7351d3a5 2850out:
1da177e4 2851 nand_release_device(mtd);
1da177e4
LT
2852 return ret;
2853}
2854
1da177e4 2855/**
49c50b97 2856 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2857 * @mtd: MTD device structure
2858 * @page: the page address of the block which will be erased
1da177e4 2859 *
49c50b97 2860 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 2861 */
49c50b97 2862static int single_erase(struct mtd_info *mtd, int page)
1da177e4 2863{
862eba51 2864 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2865 /* Send commands to erase a block */
ace4dfee
TG
2866 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2867 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
2868
2869 return chip->waitfunc(mtd, chip);
1da177e4
LT
2870}
2871
1da177e4
LT
2872/**
2873 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2874 * @mtd: MTD device structure
2875 * @instr: erase instruction
1da177e4 2876 *
8b6e50c9 2877 * Erase one ore more blocks.
1da177e4 2878 */
e0c7d767 2879static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2880{
e0c7d767 2881 return nand_erase_nand(mtd, instr, 0);
1da177e4 2882}
61b03bd7 2883
1da177e4 2884/**
7854d3f7 2885 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2886 * @mtd: MTD device structure
2887 * @instr: erase instruction
2888 * @allowbbt: allow erasing the bbt area
1da177e4 2889 *
8b6e50c9 2890 * Erase one ore more blocks.
1da177e4 2891 */
ace4dfee
TG
2892int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2893 int allowbbt)
1da177e4 2894{
69423d99 2895 int page, status, pages_per_block, ret, chipnr;
862eba51 2896 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 2897 loff_t len;
1da177e4 2898
289c0522
BN
2899 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2900 __func__, (unsigned long long)instr->addr,
2901 (unsigned long long)instr->len);
1da177e4 2902
6fe5a6ac 2903 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2904 return -EINVAL;
1da177e4 2905
1da177e4 2906 /* Grab the lock and see if the device is available */
6a8214aa 2907 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2908
2909 /* Shift to get first page */
ace4dfee
TG
2910 page = (int)(instr->addr >> chip->page_shift);
2911 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2912
2913 /* Calculate pages in each block */
ace4dfee 2914 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2915
2916 /* Select the NAND device */
ace4dfee 2917 chip->select_chip(mtd, chipnr);
1da177e4 2918
1da177e4
LT
2919 /* Check, if it is write protected */
2920 if (nand_check_wp(mtd)) {
289c0522
BN
2921 pr_debug("%s: device is write protected!\n",
2922 __func__);
1da177e4
LT
2923 instr->state = MTD_ERASE_FAILED;
2924 goto erase_exit;
2925 }
2926
2927 /* Loop through the pages */
2928 len = instr->len;
2929
2930 instr->state = MTD_ERASING;
2931
2932 while (len) {
12183a20 2933 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee 2934 if (nand_block_checkbad(mtd, ((loff_t) page) <<
9f3e0429 2935 chip->page_shift, allowbbt)) {
d0370219
BN
2936 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2937 __func__, page);
1da177e4
LT
2938 instr->state = MTD_ERASE_FAILED;
2939 goto erase_exit;
2940 }
61b03bd7 2941
ace4dfee
TG
2942 /*
2943 * Invalidate the page cache, if we erase the block which
8b6e50c9 2944 * contains the current cached page.
ace4dfee
TG
2945 */
2946 if (page <= chip->pagebuf && chip->pagebuf <
2947 (page + pages_per_block))
2948 chip->pagebuf = -1;
1da177e4 2949
49c50b97 2950 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 2951
ace4dfee
TG
2952 /*
2953 * See if operation failed and additional status checks are
2954 * available
2955 */
2956 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2957 status = chip->errstat(mtd, chip, FL_ERASING,
2958 status, page);
068e3c0a 2959
1da177e4 2960 /* See if block erase succeeded */
a4ab4c5d 2961 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2962 pr_debug("%s: failed erase, page 0x%08x\n",
2963 __func__, page);
1da177e4 2964 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2965 instr->fail_addr =
2966 ((loff_t)page << chip->page_shift);
1da177e4
LT
2967 goto erase_exit;
2968 }
30f464b7 2969
1da177e4 2970 /* Increment page address and decrement length */
daae74ca 2971 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2972 page += pages_per_block;
2973
2974 /* Check, if we cross a chip boundary */
ace4dfee 2975 if (len && !(page & chip->pagemask)) {
1da177e4 2976 chipnr++;
ace4dfee
TG
2977 chip->select_chip(mtd, -1);
2978 chip->select_chip(mtd, chipnr);
1da177e4
LT
2979 }
2980 }
2981 instr->state = MTD_ERASE_DONE;
2982
7351d3a5 2983erase_exit:
1da177e4
LT
2984
2985 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2986
2987 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2988 chip->select_chip(mtd, -1);
1da177e4
LT
2989 nand_release_device(mtd);
2990
49defc01
DW
2991 /* Do call back function */
2992 if (!ret)
2993 mtd_erase_callback(instr);
2994
1da177e4
LT
2995 /* Return more or less happy */
2996 return ret;
2997}
2998
2999/**
3000 * nand_sync - [MTD Interface] sync
8b6e50c9 3001 * @mtd: MTD device structure
1da177e4 3002 *
8b6e50c9 3003 * Sync is actually a wait for chip ready function.
1da177e4 3004 */
e0c7d767 3005static void nand_sync(struct mtd_info *mtd)
1da177e4 3006{
289c0522 3007 pr_debug("%s: called\n", __func__);
1da177e4
LT
3008
3009 /* Grab the lock and see if the device is available */
6a8214aa 3010 nand_get_device(mtd, FL_SYNCING);
1da177e4 3011 /* Release it and go back */
e0c7d767 3012 nand_release_device(mtd);
1da177e4
LT
3013}
3014
1da177e4 3015/**
ace4dfee 3016 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
3017 * @mtd: MTD device structure
3018 * @offs: offset relative to mtd start
1da177e4 3019 */
ace4dfee 3020static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 3021{
9f3e0429
AT
3022 struct nand_chip *chip = mtd_to_nand(mtd);
3023 int chipnr = (int)(offs >> chip->chip_shift);
3024 int ret;
3025
3026 /* Select the NAND device */
3027 nand_get_device(mtd, FL_READING);
3028 chip->select_chip(mtd, chipnr);
3029
3030 ret = nand_block_checkbad(mtd, offs, 0);
3031
3032 chip->select_chip(mtd, -1);
3033 nand_release_device(mtd);
3034
3035 return ret;
1da177e4
LT
3036}
3037
3038/**
ace4dfee 3039 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
3040 * @mtd: MTD device structure
3041 * @ofs: offset relative to mtd start
1da177e4 3042 */
e0c7d767 3043static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 3044{
1da177e4
LT
3045 int ret;
3046
f8ac0414
FF
3047 ret = nand_block_isbad(mtd, ofs);
3048 if (ret) {
8b6e50c9 3049 /* If it was bad already, return success and do nothing */
1da177e4
LT
3050 if (ret > 0)
3051 return 0;
e0c7d767
DW
3052 return ret;
3053 }
1da177e4 3054
5a0edb25 3055 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
3056}
3057
7db03ecc
HS
3058/**
3059 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3060 * @mtd: MTD device structure
3061 * @chip: nand chip info structure
3062 * @addr: feature address.
3063 * @subfeature_param: the subfeature parameters, a four bytes array.
3064 */
3065static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3066 int addr, uint8_t *subfeature_param)
3067{
3068 int status;
05f78359 3069 int i;
7db03ecc 3070
d914c932
DM
3071 if (!chip->onfi_version ||
3072 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3073 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3074 return -EINVAL;
3075
3076 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
3077 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3078 chip->write_byte(mtd, subfeature_param[i]);
3079
7db03ecc
HS
3080 status = chip->waitfunc(mtd, chip);
3081 if (status & NAND_STATUS_FAIL)
3082 return -EIO;
3083 return 0;
3084}
3085
3086/**
3087 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3088 * @mtd: MTD device structure
3089 * @chip: nand chip info structure
3090 * @addr: feature address.
3091 * @subfeature_param: the subfeature parameters, a four bytes array.
3092 */
3093static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3094 int addr, uint8_t *subfeature_param)
3095{
05f78359
UKK
3096 int i;
3097
d914c932
DM
3098 if (!chip->onfi_version ||
3099 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3100 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3101 return -EINVAL;
3102
7db03ecc 3103 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
3104 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3105 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
3106 return 0;
3107}
3108
962034f4
VW
3109/**
3110 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 3111 * @mtd: MTD device structure
962034f4
VW
3112 */
3113static int nand_suspend(struct mtd_info *mtd)
3114{
6a8214aa 3115 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
3116}
3117
3118/**
3119 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 3120 * @mtd: MTD device structure
962034f4
VW
3121 */
3122static void nand_resume(struct mtd_info *mtd)
3123{
862eba51 3124 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 3125
ace4dfee 3126 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
3127 nand_release_device(mtd);
3128 else
d0370219
BN
3129 pr_err("%s called for a chip which is not in suspended state\n",
3130 __func__);
962034f4
VW
3131}
3132
72ea4036
SB
3133/**
3134 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3135 * prevent further operations
3136 * @mtd: MTD device structure
3137 */
3138static void nand_shutdown(struct mtd_info *mtd)
3139{
9ca641b0 3140 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
3141}
3142
8b6e50c9 3143/* Set default functions */
ace4dfee 3144static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 3145{
1da177e4 3146 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
3147 if (!chip->chip_delay)
3148 chip->chip_delay = 20;
1da177e4
LT
3149
3150 /* check, if a user supplied command function given */
ace4dfee
TG
3151 if (chip->cmdfunc == NULL)
3152 chip->cmdfunc = nand_command;
1da177e4
LT
3153
3154 /* check, if a user supplied wait function given */
ace4dfee
TG
3155 if (chip->waitfunc == NULL)
3156 chip->waitfunc = nand_wait;
3157
3158 if (!chip->select_chip)
3159 chip->select_chip = nand_select_chip;
68e80780 3160
4204cccd
HS
3161 /* set for ONFI nand */
3162 if (!chip->onfi_set_features)
3163 chip->onfi_set_features = nand_onfi_set_features;
3164 if (!chip->onfi_get_features)
3165 chip->onfi_get_features = nand_onfi_get_features;
3166
68e80780
BN
3167 /* If called twice, pointers that depend on busw may need to be reset */
3168 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
3169 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3170 if (!chip->read_word)
3171 chip->read_word = nand_read_word;
3172 if (!chip->block_bad)
3173 chip->block_bad = nand_block_bad;
3174 if (!chip->block_markbad)
3175 chip->block_markbad = nand_default_block_markbad;
68e80780 3176 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 3177 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
3178 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3179 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 3180 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 3181 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
3182 if (!chip->scan_bbt)
3183 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
3184
3185 if (!chip->controller) {
3186 chip->controller = &chip->hwcontrol;
3187 spin_lock_init(&chip->controller->lock);
3188 init_waitqueue_head(&chip->controller->wq);
3189 }
3190
7aa65bfd
TG
3191}
3192
8b6e50c9 3193/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3194static void sanitize_string(uint8_t *s, size_t len)
3195{
3196 ssize_t i;
3197
8b6e50c9 3198 /* Null terminate */
d1e1f4e4
FF
3199 s[len - 1] = 0;
3200
8b6e50c9 3201 /* Remove non printable chars */
d1e1f4e4
FF
3202 for (i = 0; i < len - 1; i++) {
3203 if (s[i] < ' ' || s[i] > 127)
3204 s[i] = '?';
3205 }
3206
8b6e50c9 3207 /* Remove trailing spaces */
d1e1f4e4
FF
3208 strim(s);
3209}
3210
3211static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3212{
3213 int i;
3214 while (len--) {
3215 crc ^= *p++ << 8;
3216 for (i = 0; i < 8; i++)
3217 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3218 }
3219
3220 return crc;
3221}
3222
6dcbe0cd
HS
3223/* Parse the Extended Parameter Page. */
3224static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3225 struct nand_chip *chip, struct nand_onfi_params *p)
3226{
3227 struct onfi_ext_param_page *ep;
3228 struct onfi_ext_section *s;
3229 struct onfi_ext_ecc_info *ecc;
3230 uint8_t *cursor;
3231 int ret = -EINVAL;
3232 int len;
3233 int i;
3234
3235 len = le16_to_cpu(p->ext_param_page_length) * 16;
3236 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3237 if (!ep)
3238 return -ENOMEM;
6dcbe0cd
HS
3239
3240 /* Send our own NAND_CMD_PARAM. */
3241 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3242
3243 /* Use the Change Read Column command to skip the ONFI param pages. */
3244 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3245 sizeof(*p) * p->num_of_param_pages , -1);
3246
3247 /* Read out the Extended Parameter Page. */
3248 chip->read_buf(mtd, (uint8_t *)ep, len);
3249 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3250 != le16_to_cpu(ep->crc))) {
3251 pr_debug("fail in the CRC.\n");
3252 goto ext_out;
3253 }
3254
3255 /*
3256 * Check the signature.
3257 * Do not strictly follow the ONFI spec, maybe changed in future.
3258 */
3259 if (strncmp(ep->sig, "EPPS", 4)) {
3260 pr_debug("The signature is invalid.\n");
3261 goto ext_out;
3262 }
3263
3264 /* find the ECC section. */
3265 cursor = (uint8_t *)(ep + 1);
3266 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3267 s = ep->sections + i;
3268 if (s->type == ONFI_SECTION_TYPE_2)
3269 break;
3270 cursor += s->length * 16;
3271 }
3272 if (i == ONFI_EXT_SECTION_MAX) {
3273 pr_debug("We can not find the ECC section.\n");
3274 goto ext_out;
3275 }
3276
3277 /* get the info we want. */
3278 ecc = (struct onfi_ext_ecc_info *)cursor;
3279
4ae7d228
BN
3280 if (!ecc->codeword_size) {
3281 pr_debug("Invalid codeword size\n");
3282 goto ext_out;
6dcbe0cd
HS
3283 }
3284
4ae7d228
BN
3285 chip->ecc_strength_ds = ecc->ecc_bits;
3286 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3287 ret = 0;
6dcbe0cd
HS
3288
3289ext_out:
3290 kfree(ep);
3291 return ret;
3292}
3293
8429bb39
BN
3294static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3295{
862eba51 3296 struct nand_chip *chip = mtd_to_nand(mtd);
8429bb39
BN
3297 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3298
3299 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3300 feature);
3301}
3302
3303/*
3304 * Configure chip properties from Micron vendor-specific ONFI table
3305 */
3306static void nand_onfi_detect_micron(struct nand_chip *chip,
3307 struct nand_onfi_params *p)
3308{
3309 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3310
3311 if (le16_to_cpu(p->vendor_revision) < 1)
3312 return;
3313
3314 chip->read_retries = micron->read_retry_options;
3315 chip->setup_read_retry = nand_setup_read_retry_micron;
3316}
3317
6fb277ba 3318/*
8b6e50c9 3319 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3320 */
3321static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3322 int *busw)
6fb277ba
FF
3323{
3324 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3325 int i, j;
6fb277ba
FF
3326 int val;
3327
7854d3f7 3328 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3329 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3330 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3331 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3332 return 0;
3333
6fb277ba
FF
3334 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3335 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3336 for (j = 0; j < sizeof(*p); j++)
3337 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3338 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3339 le16_to_cpu(p->crc)) {
6fb277ba
FF
3340 break;
3341 }
3342 }
3343
c7f23a70
BN
3344 if (i == 3) {
3345 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3346 return 0;
c7f23a70 3347 }
6fb277ba 3348
8b6e50c9 3349 /* Check version */
6fb277ba 3350 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3351 if (val & (1 << 5))
3352 chip->onfi_version = 23;
3353 else if (val & (1 << 4))
6fb277ba
FF
3354 chip->onfi_version = 22;
3355 else if (val & (1 << 3))
3356 chip->onfi_version = 21;
3357 else if (val & (1 << 2))
3358 chip->onfi_version = 20;
b7b1a29d 3359 else if (val & (1 << 1))
6fb277ba 3360 chip->onfi_version = 10;
b7b1a29d
BN
3361
3362 if (!chip->onfi_version) {
20171642 3363 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3364 return 0;
3365 }
6fb277ba
FF
3366
3367 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3368 sanitize_string(p->model, sizeof(p->model));
3369 if (!mtd->name)
3370 mtd->name = p->model;
4355b70c 3371
6fb277ba 3372 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3373
3374 /*
3375 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3376 * (don't ask me who thought of this...). MTD assumes that these
3377 * dimensions will be power-of-2, so just truncate the remaining area.
3378 */
3379 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3380 mtd->erasesize *= mtd->writesize;
3381
6fb277ba 3382 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3383
3384 /* See erasesize comment */
3385 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3386 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3387 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3388
3389 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3390 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3391 else
3392 *busw = 0;
6fb277ba 3393
10c86bab
HS
3394 if (p->ecc_bits != 0xff) {
3395 chip->ecc_strength_ds = p->ecc_bits;
3396 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3397 } else if (chip->onfi_version >= 21 &&
3398 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3399
3400 /*
3401 * The nand_flash_detect_ext_param_page() uses the
3402 * Change Read Column command which maybe not supported
3403 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3404 * now. We do not replace user supplied command function.
3405 */
3406 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3407 chip->cmdfunc = nand_command_lp;
3408
3409 /* The Extended Parameter Page is supported since ONFI 2.1. */
3410 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3411 pr_warn("Failed to detect ONFI extended param page\n");
3412 } else {
3413 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3414 }
3415
8429bb39
BN
3416 if (p->jedec_id == NAND_MFR_MICRON)
3417 nand_onfi_detect_micron(chip, p);
3418
6fb277ba
FF
3419 return 1;
3420}
3421
91361818
HS
3422/*
3423 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3424 */
3425static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3426 int *busw)
3427{
3428 struct nand_jedec_params *p = &chip->jedec_params;
3429 struct jedec_ecc_info *ecc;
3430 int val;
3431 int i, j;
3432
3433 /* Try JEDEC for unknown chip or LP */
3434 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3435 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3436 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3437 chip->read_byte(mtd) != 'C')
3438 return 0;
3439
3440 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3441 for (i = 0; i < 3; i++) {
3442 for (j = 0; j < sizeof(*p); j++)
3443 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3444
3445 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3446 le16_to_cpu(p->crc))
3447 break;
3448 }
3449
3450 if (i == 3) {
3451 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3452 return 0;
3453 }
3454
3455 /* Check version */
3456 val = le16_to_cpu(p->revision);
3457 if (val & (1 << 2))
3458 chip->jedec_version = 10;
3459 else if (val & (1 << 1))
3460 chip->jedec_version = 1; /* vendor specific version */
3461
3462 if (!chip->jedec_version) {
3463 pr_info("unsupported JEDEC version: %d\n", val);
3464 return 0;
3465 }
3466
3467 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3468 sanitize_string(p->model, sizeof(p->model));
3469 if (!mtd->name)
3470 mtd->name = p->model;
3471
3472 mtd->writesize = le32_to_cpu(p->byte_per_page);
3473
3474 /* Please reference to the comment for nand_flash_detect_onfi. */
3475 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3476 mtd->erasesize *= mtd->writesize;
3477
3478 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3479
3480 /* Please reference to the comment for nand_flash_detect_onfi. */
3481 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3482 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3483 chip->bits_per_cell = p->bits_per_cell;
3484
3485 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3486 *busw = NAND_BUSWIDTH_16;
3487 else
3488 *busw = 0;
3489
3490 /* ECC info */
3491 ecc = &p->ecc_info[0];
3492
3493 if (ecc->codeword_size >= 9) {
3494 chip->ecc_strength_ds = ecc->ecc_bits;
3495 chip->ecc_step_ds = 1 << ecc->codeword_size;
3496 } else {
3497 pr_warn("Invalid codeword size\n");
3498 }
3499
3500 return 1;
3501}
3502
e3b88bd6
BN
3503/*
3504 * nand_id_has_period - Check if an ID string has a given wraparound period
3505 * @id_data: the ID string
3506 * @arrlen: the length of the @id_data array
3507 * @period: the period of repitition
3508 *
3509 * Check if an ID string is repeated within a given sequence of bytes at
3510 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3511 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3512 * if the repetition has a period of @period; otherwise, returns zero.
3513 */
3514static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3515{
3516 int i, j;
3517 for (i = 0; i < period; i++)
3518 for (j = i + period; j < arrlen; j += period)
3519 if (id_data[i] != id_data[j])
3520 return 0;
3521 return 1;
3522}
3523
3524/*
3525 * nand_id_len - Get the length of an ID string returned by CMD_READID
3526 * @id_data: the ID string
3527 * @arrlen: the length of the @id_data array
3528
3529 * Returns the length of the ID string, according to known wraparound/trailing
3530 * zero patterns. If no pattern exists, returns the length of the array.
3531 */
3532static int nand_id_len(u8 *id_data, int arrlen)
3533{
3534 int last_nonzero, period;
3535
3536 /* Find last non-zero byte */
3537 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3538 if (id_data[last_nonzero])
3539 break;
3540
3541 /* All zeros */
3542 if (last_nonzero < 0)
3543 return 0;
3544
3545 /* Calculate wraparound period */
3546 for (period = 1; period < arrlen; period++)
3547 if (nand_id_has_period(id_data, arrlen, period))
3548 break;
3549
3550 /* There's a repeated pattern */
3551 if (period < arrlen)
3552 return period;
3553
3554 /* There are trailing zeros */
3555 if (last_nonzero < arrlen - 1)
3556 return last_nonzero + 1;
3557
3558 /* No pattern detected */
3559 return arrlen;
3560}
3561
7db906b7
HS
3562/* Extract the bits of per cell from the 3rd byte of the extended ID */
3563static int nand_get_bits_per_cell(u8 cellinfo)
3564{
3565 int bits;
3566
3567 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3568 bits >>= NAND_CI_CELLTYPE_SHIFT;
3569 return bits + 1;
3570}
3571
fc09bbc0
BN
3572/*
3573 * Many new NAND share similar device ID codes, which represent the size of the
3574 * chip. The rest of the parameters must be decoded according to generic or
3575 * manufacturer-specific "extended ID" decoding patterns.
3576 */
3577static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3578 u8 id_data[8], int *busw)
3579{
e3b88bd6 3580 int extid, id_len;
fc09bbc0 3581 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3582 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3583 /* The 4th id byte is the important one */
3584 extid = id_data[3];
3585
e3b88bd6
BN
3586 id_len = nand_id_len(id_data, 8);
3587
fc09bbc0
BN
3588 /*
3589 * Field definitions are in the following datasheets:
3590 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3591 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3592 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3593 *
af451af4
BN
3594 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3595 * ID to decide what to do.
fc09bbc0 3596 */
af451af4 3597 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3598 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3599 /* Calc pagesize */
3600 mtd->writesize = 2048 << (extid & 0x03);
3601 extid >>= 2;
3602 /* Calc oobsize */
e2d3a35e 3603 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3604 case 1:
3605 mtd->oobsize = 128;
3606 break;
3607 case 2:
3608 mtd->oobsize = 218;
3609 break;
3610 case 3:
3611 mtd->oobsize = 400;
3612 break;
e2d3a35e 3613 case 4:
fc09bbc0
BN
3614 mtd->oobsize = 436;
3615 break;
e2d3a35e
BN
3616 case 5:
3617 mtd->oobsize = 512;
3618 break;
3619 case 6:
e2d3a35e
BN
3620 mtd->oobsize = 640;
3621 break;
94d04e82
HS
3622 case 7:
3623 default: /* Other cases are "reserved" (unknown) */
3624 mtd->oobsize = 1024;
3625 break;
fc09bbc0
BN
3626 }
3627 extid >>= 2;
3628 /* Calc blocksize */
3629 mtd->erasesize = (128 * 1024) <<
3630 (((extid >> 1) & 0x04) | (extid & 0x03));
3631 *busw = 0;
73ca392f 3632 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3633 !nand_is_slc(chip)) {
73ca392f
BN
3634 unsigned int tmp;
3635
3636 /* Calc pagesize */
3637 mtd->writesize = 2048 << (extid & 0x03);
3638 extid >>= 2;
3639 /* Calc oobsize */
3640 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3641 case 0:
3642 mtd->oobsize = 128;
3643 break;
3644 case 1:
3645 mtd->oobsize = 224;
3646 break;
3647 case 2:
3648 mtd->oobsize = 448;
3649 break;
3650 case 3:
3651 mtd->oobsize = 64;
3652 break;
3653 case 4:
3654 mtd->oobsize = 32;
3655 break;
3656 case 5:
3657 mtd->oobsize = 16;
3658 break;
3659 default:
3660 mtd->oobsize = 640;
3661 break;
3662 }
3663 extid >>= 2;
3664 /* Calc blocksize */
3665 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3666 if (tmp < 0x03)
3667 mtd->erasesize = (128 * 1024) << tmp;
3668 else if (tmp == 0x03)
3669 mtd->erasesize = 768 * 1024;
3670 else
3671 mtd->erasesize = (64 * 1024) << tmp;
3672 *busw = 0;
fc09bbc0
BN
3673 } else {
3674 /* Calc pagesize */
3675 mtd->writesize = 1024 << (extid & 0x03);
3676 extid >>= 2;
3677 /* Calc oobsize */
3678 mtd->oobsize = (8 << (extid & 0x01)) *
3679 (mtd->writesize >> 9);
3680 extid >>= 2;
3681 /* Calc blocksize. Blocksize is multiples of 64KiB */
3682 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3683 extid >>= 2;
3684 /* Get buswidth information */
3685 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3686
3687 /*
3688 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3689 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3690 * follows:
3691 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3692 * 110b -> 24nm
3693 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3694 */
3695 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3696 nand_is_slc(chip) &&
60c67382
BN
3697 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3698 !(id_data[4] & 0x80) /* !BENAND */) {
3699 mtd->oobsize = 32 * mtd->writesize >> 9;
3700 }
3701
fc09bbc0
BN
3702 }
3703}
3704
f23a481c
BN
3705/*
3706 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3707 * decodes a matching ID table entry and assigns the MTD size parameters for
3708 * the chip.
3709 */
3710static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3711 struct nand_flash_dev *type, u8 id_data[8],
3712 int *busw)
3713{
3714 int maf_id = id_data[0];
3715
3716 mtd->erasesize = type->erasesize;
3717 mtd->writesize = type->pagesize;
3718 mtd->oobsize = mtd->writesize / 32;
3719 *busw = type->options & NAND_BUSWIDTH_16;
3720
1c195e90
HS
3721 /* All legacy ID NAND are small-page, SLC */
3722 chip->bits_per_cell = 1;
3723
f23a481c
BN
3724 /*
3725 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3726 * some Spansion chips have erasesize that conflicts with size
3727 * listed in nand_ids table.
3728 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3729 */
3730 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3731 && id_data[6] == 0x00 && id_data[7] == 0x00
3732 && mtd->writesize == 512) {
3733 mtd->erasesize = 128 * 1024;
3734 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3735 }
3736}
3737
7e74c2d7
BN
3738/*
3739 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3740 * heuristic patterns using various detected parameters (e.g., manufacturer,
3741 * page size, cell-type information).
3742 */
3743static void nand_decode_bbm_options(struct mtd_info *mtd,
3744 struct nand_chip *chip, u8 id_data[8])
3745{
3746 int maf_id = id_data[0];
3747
3748 /* Set the bad block position */
3749 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3750 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3751 else
3752 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3753
3754 /*
3755 * Bad block marker is stored in the last page of each block on Samsung
3756 * and Hynix MLC devices; stored in first two pages of each block on
3757 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3758 * AMD/Spansion, and Macronix. All others scan only the first page.
3759 */
1d0ed69d 3760 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3761 (maf_id == NAND_MFR_SAMSUNG ||
3762 maf_id == NAND_MFR_HYNIX))
3763 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3764 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3765 (maf_id == NAND_MFR_SAMSUNG ||
3766 maf_id == NAND_MFR_HYNIX ||
3767 maf_id == NAND_MFR_TOSHIBA ||
3768 maf_id == NAND_MFR_AMD ||
3769 maf_id == NAND_MFR_MACRONIX)) ||
3770 (mtd->writesize == 2048 &&
3771 maf_id == NAND_MFR_MICRON))
3772 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3773}
3774
ec6e87e3
HS
3775static inline bool is_full_id_nand(struct nand_flash_dev *type)
3776{
3777 return type->id_len;
3778}
3779
3780static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3781 struct nand_flash_dev *type, u8 *id_data, int *busw)
3782{
3783 if (!strncmp(type->id, id_data, type->id_len)) {
3784 mtd->writesize = type->pagesize;
3785 mtd->erasesize = type->erasesize;
3786 mtd->oobsize = type->oobsize;
3787
7db906b7 3788 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3789 chip->chipsize = (uint64_t)type->chipsize << 20;
3790 chip->options |= type->options;
57219342
HS
3791 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3792 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3793 chip->onfi_timing_mode_default =
3794 type->onfi_timing_mode_default;
ec6e87e3
HS
3795
3796 *busw = type->options & NAND_BUSWIDTH_16;
3797
092b6a1d
CZ
3798 if (!mtd->name)
3799 mtd->name = type->name;
3800
ec6e87e3
HS
3801 return true;
3802 }
3803 return false;
3804}
3805
7aa65bfd 3806/*
8b6e50c9 3807 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3808 */
3809static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3810 struct nand_chip *chip,
7351d3a5 3811 int *maf_id, int *dev_id,
5e81e88a 3812 struct nand_flash_dev *type)
7aa65bfd 3813{
bb77082f 3814 int busw;
d1e1f4e4 3815 int i, maf_idx;
426c457a 3816 u8 id_data[8];
1da177e4
LT
3817
3818 /* Select the device */
ace4dfee 3819 chip->select_chip(mtd, 0);
1da177e4 3820
ef89a880
KB
3821 /*
3822 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3823 * after power-up.
ef89a880
KB
3824 */
3825 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3826
1da177e4 3827 /* Send the command for reading device ID */
ace4dfee 3828 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3829
3830 /* Read manufacturer and device IDs */
ace4dfee 3831 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3832 *dev_id = chip->read_byte(mtd);
1da177e4 3833
8b6e50c9
BN
3834 /*
3835 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3836 * interface concerns can cause random data which looks like a
3837 * possibly credible NAND flash to appear. If the two results do
3838 * not match, ignore the device completely.
3839 */
3840
3841 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3842
4aef9b78
BN
3843 /* Read entire ID string */
3844 for (i = 0; i < 8; i++)
426c457a 3845 id_data[i] = chip->read_byte(mtd);
ed8165c7 3846
d1e1f4e4 3847 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3848 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3849 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3850 return ERR_PTR(-ENODEV);
3851 }
3852
7aa65bfd 3853 if (!type)
5e81e88a
DW
3854 type = nand_flash_ids;
3855
ec6e87e3
HS
3856 for (; type->name != NULL; type++) {
3857 if (is_full_id_nand(type)) {
3858 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3859 goto ident_done;
3860 } else if (*dev_id == type->dev_id) {
db5b09f6 3861 break;
ec6e87e3
HS
3862 }
3863 }
5e81e88a 3864
d1e1f4e4
FF
3865 chip->onfi_version = 0;
3866 if (!type->name || !type->pagesize) {
35fc5195 3867 /* Check if the chip is ONFI compliant */
47450b35 3868 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3869 goto ident_done;
91361818
HS
3870
3871 /* Check if the chip is JEDEC compliant */
3872 if (nand_flash_detect_jedec(mtd, chip, &busw))
3873 goto ident_done;
d1e1f4e4
FF
3874 }
3875
5e81e88a 3876 if (!type->name)
7aa65bfd
TG
3877 return ERR_PTR(-ENODEV);
3878
ba0251fe
TG
3879 if (!mtd->name)
3880 mtd->name = type->name;
3881
69423d99 3882 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3883
a7f5ba40 3884 if (!type->pagesize) {
fc09bbc0
BN
3885 /* Decode parameters from extended ID */
3886 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3887 } else {
f23a481c 3888 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3889 }
bf7a01bf
BN
3890 /* Get chip options */
3891 chip->options |= type->options;
d1e1f4e4 3892
8b6e50c9
BN
3893 /*
3894 * Check if chip is not a Samsung device. Do not clear the
3895 * options for chips which do not have an extended id.
d1e1f4e4
FF
3896 */
3897 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3898 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3899ident_done:
3900
7aa65bfd 3901 /* Try to identify manufacturer */
9a909867 3902 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3903 if (nand_manuf_ids[maf_idx].id == *maf_id)
3904 break;
3905 }
0ea4a755 3906
64b37b2a
MC
3907 if (chip->options & NAND_BUSWIDTH_AUTO) {
3908 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3909 chip->options |= busw;
3910 nand_set_defaults(chip, busw);
3911 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3912 /*
3913 * Check, if buswidth is correct. Hardware drivers should set
3914 * chip correct!
3915 */
20171642
EG
3916 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3917 *maf_id, *dev_id);
3918 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3919 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3920 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3921 busw ? 16 : 8);
7aa65bfd
TG
3922 return ERR_PTR(-EINVAL);
3923 }
61b03bd7 3924
7e74c2d7
BN
3925 nand_decode_bbm_options(mtd, chip, id_data);
3926
7aa65bfd 3927 /* Calculate the address shift from the page size */
ace4dfee 3928 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3929 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3930 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3931
ace4dfee 3932 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3933 ffs(mtd->erasesize) - 1;
69423d99
AH
3934 if (chip->chipsize & 0xffffffff)
3935 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3936 else {
3937 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3938 chip->chip_shift += 32 - 1;
3939 }
1da177e4 3940
26d9be11 3941 chip->badblockbits = 8;
49c50b97 3942 chip->erase = single_erase;
7aa65bfd 3943
8b6e50c9 3944 /* Do not replace user supplied command function! */
ace4dfee
TG
3945 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3946 chip->cmdfunc = nand_command_lp;
7aa65bfd 3947
20171642
EG
3948 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3949 *maf_id, *dev_id);
ffdac6cd
HS
3950
3951 if (chip->onfi_version)
3952 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3953 chip->onfi_params.model);
3954 else if (chip->jedec_version)
3955 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3956 chip->jedec_params.model);
3957 else
3958 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3959 type->name);
3960
3755a991 3961 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 3962 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 3963 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3964 return type;
3965}
3966
7194a29a 3967static int nand_dt_init(struct nand_chip *chip)
5844feea 3968{
7194a29a 3969 struct device_node *dn = nand_get_flash_node(chip);
5844feea
BN
3970 int ecc_mode, ecc_strength, ecc_step;
3971
7194a29a
BB
3972 if (!dn)
3973 return 0;
3974
5844feea
BN
3975 if (of_get_nand_bus_width(dn) == 16)
3976 chip->options |= NAND_BUSWIDTH_16;
3977
3978 if (of_get_nand_on_flash_bbt(dn))
3979 chip->bbt_options |= NAND_BBT_USE_FLASH;
3980
3981 ecc_mode = of_get_nand_ecc_mode(dn);
3982 ecc_strength = of_get_nand_ecc_strength(dn);
3983 ecc_step = of_get_nand_ecc_step_size(dn);
3984
3985 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3986 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3987 pr_err("must set both strength and step size in DT\n");
3988 return -EINVAL;
3989 }
3990
3991 if (ecc_mode >= 0)
3992 chip->ecc.mode = ecc_mode;
3993
3994 if (ecc_strength >= 0)
3995 chip->ecc.strength = ecc_strength;
3996
3997 if (ecc_step > 0)
3998 chip->ecc.size = ecc_step;
3999
4000 return 0;
4001}
4002
7aa65bfd 4003/**
3b85c321 4004 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4005 * @mtd: MTD device structure
4006 * @maxchips: number of chips to scan for
4007 * @table: alternative NAND ID table
7aa65bfd 4008 *
8b6e50c9
BN
4009 * This is the first phase of the normal nand_scan() function. It reads the
4010 * flash ID and sets up MTD fields accordingly.
7aa65bfd 4011 *
3b85c321 4012 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 4013 */
5e81e88a
DW
4014int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4015 struct nand_flash_dev *table)
7aa65bfd 4016{
bb77082f 4017 int i, nand_maf_id, nand_dev_id;
862eba51 4018 struct nand_chip *chip = mtd_to_nand(mtd);
7aa65bfd 4019 struct nand_flash_dev *type;
5844feea
BN
4020 int ret;
4021
7194a29a
BB
4022 ret = nand_dt_init(chip);
4023 if (ret)
4024 return ret;
7aa65bfd 4025
f7a8e38f
BN
4026 if (!mtd->name && mtd->dev.parent)
4027 mtd->name = dev_name(mtd->dev.parent);
4028
7aa65bfd 4029 /* Set the default functions */
bb77082f 4030 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
4031
4032 /* Read the flash type */
bb77082f
CZ
4033 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4034 &nand_dev_id, table);
7aa65bfd
TG
4035
4036 if (IS_ERR(type)) {
b1c6e6db 4037 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 4038 pr_warn("No NAND device found\n");
ace4dfee 4039 chip->select_chip(mtd, -1);
7aa65bfd 4040 return PTR_ERR(type);
1da177e4
LT
4041 }
4042
07300164
HS
4043 chip->select_chip(mtd, -1);
4044
7aa65bfd 4045 /* Check for a chip array */
e0c7d767 4046 for (i = 1; i < maxchips; i++) {
ace4dfee 4047 chip->select_chip(mtd, i);
ef89a880
KB
4048 /* See comment in nand_get_flash_type for reset */
4049 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 4050 /* Send the command for reading device ID */
ace4dfee 4051 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 4052 /* Read manufacturer and device IDs */
ace4dfee 4053 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
4054 nand_dev_id != chip->read_byte(mtd)) {
4055 chip->select_chip(mtd, -1);
1da177e4 4056 break;
07300164
HS
4057 }
4058 chip->select_chip(mtd, -1);
1da177e4
LT
4059 }
4060 if (i > 1)
20171642 4061 pr_info("%d chips detected\n", i);
61b03bd7 4062
1da177e4 4063 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
4064 chip->numchips = i;
4065 mtd->size = i * chip->chipsize;
7aa65bfd 4066
3b85c321
DW
4067 return 0;
4068}
7351d3a5 4069EXPORT_SYMBOL(nand_scan_ident);
3b85c321 4070
67a9ad9b
EG
4071/*
4072 * Check if the chip configuration meet the datasheet requirements.
4073
4074 * If our configuration corrects A bits per B bytes and the minimum
4075 * required correction level is X bits per Y bytes, then we must ensure
4076 * both of the following are true:
4077 *
4078 * (1) A / B >= X / Y
4079 * (2) A >= X
4080 *
4081 * Requirement (1) ensures we can correct for the required bitflip density.
4082 * Requirement (2) ensures we can correct even when all bitflips are clumped
4083 * in the same sector.
4084 */
4085static bool nand_ecc_strength_good(struct mtd_info *mtd)
4086{
862eba51 4087 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
4088 struct nand_ecc_ctrl *ecc = &chip->ecc;
4089 int corr, ds_corr;
4090
4091 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4092 /* Not enough information */
4093 return true;
4094
4095 /*
4096 * We get the number of corrected bits per page to compare
4097 * the correction density.
4098 */
4099 corr = (mtd->writesize * ecc->strength) / ecc->size;
4100 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4101
4102 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4103}
3b85c321
DW
4104
4105/**
4106 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 4107 * @mtd: MTD device structure
3b85c321 4108 *
8b6e50c9
BN
4109 * This is the second phase of the normal nand_scan() function. It fills out
4110 * all the uninitialized function pointers with the defaults and scans for a
4111 * bad block table if appropriate.
3b85c321
DW
4112 */
4113int nand_scan_tail(struct mtd_info *mtd)
4114{
4115 int i;
862eba51 4116 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 4117 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 4118 struct nand_buffers *nbuf;
3b85c321 4119
e2414f4c
BN
4120 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4121 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4122 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4123
f02ea4e6
HS
4124 if (!(chip->options & NAND_OWN_BUFFERS)) {
4125 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4126 + mtd->oobsize * 3, GFP_KERNEL);
4127 if (!nbuf)
4128 return -ENOMEM;
4129 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4130 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4131 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4132
4133 chip->buffers = nbuf;
4134 } else {
4135 if (!chip->buffers)
4136 return -ENOMEM;
4137 }
4bf63fcb 4138
7dcdcbef 4139 /* Set the internal oob buffer location, just after the page data */
784f4d5e 4140 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 4141
7aa65bfd 4142 /*
8b6e50c9 4143 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 4144 */
97de79e0 4145 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 4146 switch (mtd->oobsize) {
1da177e4 4147 case 8:
97de79e0 4148 ecc->layout = &nand_oob_8;
1da177e4
LT
4149 break;
4150 case 16:
97de79e0 4151 ecc->layout = &nand_oob_16;
1da177e4
LT
4152 break;
4153 case 64:
97de79e0 4154 ecc->layout = &nand_oob_64;
1da177e4 4155 break;
81ec5364 4156 case 128:
97de79e0 4157 ecc->layout = &nand_oob_128;
81ec5364 4158 break;
1da177e4 4159 default:
d0370219
BN
4160 pr_warn("No oob scheme defined for oobsize %d\n",
4161 mtd->oobsize);
1da177e4
LT
4162 BUG();
4163 }
4164 }
61b03bd7 4165
956e944c
DW
4166 if (!chip->write_page)
4167 chip->write_page = nand_write_page;
4168
61b03bd7 4169 /*
8b6e50c9 4170 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 4171 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 4172 */
956e944c 4173
97de79e0 4174 switch (ecc->mode) {
6e0cb135
SN
4175 case NAND_ECC_HW_OOB_FIRST:
4176 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 4177 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
2ac63d90 4178 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6e0cb135
SN
4179 BUG();
4180 }
97de79e0
HS
4181 if (!ecc->read_page)
4182 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 4183
6dfc6d25 4184 case NAND_ECC_HW:
8b6e50c9 4185 /* Use standard hwecc read page function? */
97de79e0
HS
4186 if (!ecc->read_page)
4187 ecc->read_page = nand_read_page_hwecc;
4188 if (!ecc->write_page)
4189 ecc->write_page = nand_write_page_hwecc;
4190 if (!ecc->read_page_raw)
4191 ecc->read_page_raw = nand_read_page_raw;
4192 if (!ecc->write_page_raw)
4193 ecc->write_page_raw = nand_write_page_raw;
4194 if (!ecc->read_oob)
4195 ecc->read_oob = nand_read_oob_std;
4196 if (!ecc->write_oob)
4197 ecc->write_oob = nand_write_oob_std;
4198 if (!ecc->read_subpage)
4199 ecc->read_subpage = nand_read_subpage;
44991b3d 4200 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
97de79e0 4201 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 4202
6dfc6d25 4203 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
4204 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4205 (!ecc->read_page ||
4206 ecc->read_page == nand_read_page_hwecc ||
4207 !ecc->write_page ||
4208 ecc->write_page == nand_write_page_hwecc)) {
2ac63d90 4209 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6dfc6d25
TG
4210 BUG();
4211 }
8b6e50c9 4212 /* Use standard syndrome read/write page function? */
97de79e0
HS
4213 if (!ecc->read_page)
4214 ecc->read_page = nand_read_page_syndrome;
4215 if (!ecc->write_page)
4216 ecc->write_page = nand_write_page_syndrome;
4217 if (!ecc->read_page_raw)
4218 ecc->read_page_raw = nand_read_page_raw_syndrome;
4219 if (!ecc->write_page_raw)
4220 ecc->write_page_raw = nand_write_page_raw_syndrome;
4221 if (!ecc->read_oob)
4222 ecc->read_oob = nand_read_oob_syndrome;
4223 if (!ecc->write_oob)
4224 ecc->write_oob = nand_write_oob_syndrome;
4225
4226 if (mtd->writesize >= ecc->size) {
4227 if (!ecc->strength) {
e2788c98
MD
4228 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4229 BUG();
4230 }
6dfc6d25 4231 break;
e2788c98 4232 }
2ac63d90
RM
4233 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4234 ecc->size, mtd->writesize);
97de79e0 4235 ecc->mode = NAND_ECC_SOFT;
61b03bd7 4236
6dfc6d25 4237 case NAND_ECC_SOFT:
97de79e0
HS
4238 ecc->calculate = nand_calculate_ecc;
4239 ecc->correct = nand_correct_data;
4240 ecc->read_page = nand_read_page_swecc;
4241 ecc->read_subpage = nand_read_subpage;
4242 ecc->write_page = nand_write_page_swecc;
4243 ecc->read_page_raw = nand_read_page_raw;
4244 ecc->write_page_raw = nand_write_page_raw;
4245 ecc->read_oob = nand_read_oob_std;
4246 ecc->write_oob = nand_write_oob_std;
4247 if (!ecc->size)
4248 ecc->size = 256;
4249 ecc->bytes = 3;
4250 ecc->strength = 1;
1da177e4 4251 break;
61b03bd7 4252
193bd400
ID
4253 case NAND_ECC_SOFT_BCH:
4254 if (!mtd_nand_has_bch()) {
148256fa 4255 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
193bd400
ID
4256 BUG();
4257 }
97de79e0
HS
4258 ecc->calculate = nand_bch_calculate_ecc;
4259 ecc->correct = nand_bch_correct_data;
4260 ecc->read_page = nand_read_page_swecc;
4261 ecc->read_subpage = nand_read_subpage;
4262 ecc->write_page = nand_write_page_swecc;
4263 ecc->read_page_raw = nand_read_page_raw;
4264 ecc->write_page_raw = nand_write_page_raw;
4265 ecc->read_oob = nand_read_oob_std;
4266 ecc->write_oob = nand_write_oob_std;
193bd400 4267 /*
e0377cde
AS
4268 * Board driver should supply ecc.size and ecc.strength values
4269 * to select how many bits are correctable. Otherwise, default
4270 * to 4 bits for large page devices.
193bd400 4271 */
97de79e0
HS
4272 if (!ecc->size && (mtd->oobsize >= 64)) {
4273 ecc->size = 512;
e0377cde 4274 ecc->strength = 4;
193bd400 4275 }
e0377cde
AS
4276
4277 /* See nand_bch_init() for details. */
a8c65d50
BB
4278 ecc->bytes = 0;
4279 ecc->priv = nand_bch_init(mtd);
97de79e0 4280 if (!ecc->priv) {
9a4d4d69 4281 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
4282 BUG();
4283 }
4284 break;
4285
61b03bd7 4286 case NAND_ECC_NONE:
2ac63d90 4287 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4288 ecc->read_page = nand_read_page_raw;
4289 ecc->write_page = nand_write_page_raw;
4290 ecc->read_oob = nand_read_oob_std;
4291 ecc->read_page_raw = nand_read_page_raw;
4292 ecc->write_page_raw = nand_write_page_raw;
4293 ecc->write_oob = nand_write_oob_std;
4294 ecc->size = mtd->writesize;
4295 ecc->bytes = 0;
4296 ecc->strength = 0;
1da177e4 4297 break;
956e944c 4298
1da177e4 4299 default:
97de79e0 4300 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 4301 BUG();
1da177e4 4302 }
61b03bd7 4303
9ce244b3 4304 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4305 if (!ecc->read_oob_raw)
4306 ecc->read_oob_raw = ecc->read_oob;
4307 if (!ecc->write_oob_raw)
4308 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4309
5bd34c09
TG
4310 /*
4311 * The number of bytes available for a client to place data into
8b6e50c9 4312 * the out of band area.
5bd34c09 4313 */
f5b8aa78
BB
4314 mtd->oobavail = 0;
4315 if (ecc->layout) {
4316 for (i = 0; ecc->layout->oobfree[i].length; i++)
4317 mtd->oobavail += ecc->layout->oobfree[i].length;
4318 }
5bd34c09 4319
54c39e9b
TP
4320 /* ECC sanity check: warn if it's too weak */
4321 if (!nand_ecc_strength_good(mtd))
4322 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4323 mtd->name);
67a9ad9b 4324
7aa65bfd
TG
4325 /*
4326 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4327 * mode.
7aa65bfd 4328 */
97de79e0
HS
4329 ecc->steps = mtd->writesize / ecc->size;
4330 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 4331 pr_warn("Invalid ECC parameters\n");
6dfc6d25 4332 BUG();
1da177e4 4333 }
97de79e0 4334 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4335
8b6e50c9 4336 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4337 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4338 switch (ecc->steps) {
29072b96
TG
4339 case 2:
4340 mtd->subpage_sft = 1;
4341 break;
4342 case 4:
4343 case 8:
81ec5364 4344 case 16:
29072b96
TG
4345 mtd->subpage_sft = 2;
4346 break;
4347 }
4348 }
4349 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4350
04bbd0ea 4351 /* Initialize state */
ace4dfee 4352 chip->state = FL_READY;
1da177e4 4353
1da177e4 4354 /* Invalidate the pagebuffer reference */
ace4dfee 4355 chip->pagebuf = -1;
1da177e4 4356
a5ff4f10 4357 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4358 switch (ecc->mode) {
4359 case NAND_ECC_SOFT:
4360 case NAND_ECC_SOFT_BCH:
4361 if (chip->page_shift > 9)
4362 chip->options |= NAND_SUBPAGE_READ;
4363 break;
4364
4365 default:
4366 break;
4367 }
a5ff4f10 4368
1da177e4 4369 /* Fill in remaining MTD driver data */
963d1c28 4370 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4371 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4372 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4373 mtd->_erase = nand_erase;
4374 mtd->_point = NULL;
4375 mtd->_unpoint = NULL;
4376 mtd->_read = nand_read;
4377 mtd->_write = nand_write;
4378 mtd->_panic_write = panic_nand_write;
4379 mtd->_read_oob = nand_read_oob;
4380 mtd->_write_oob = nand_write_oob;
4381 mtd->_sync = nand_sync;
4382 mtd->_lock = NULL;
4383 mtd->_unlock = NULL;
4384 mtd->_suspend = nand_suspend;
4385 mtd->_resume = nand_resume;
72ea4036 4386 mtd->_reboot = nand_shutdown;
8471bb73 4387 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4388 mtd->_block_isbad = nand_block_isbad;
4389 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4390 mtd->writebufsize = mtd->writesize;
1da177e4 4391
6a918bad 4392 /* propagate ecc info to mtd_info */
97de79e0
HS
4393 mtd->ecclayout = ecc->layout;
4394 mtd->ecc_strength = ecc->strength;
4395 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4396 /*
4397 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4398 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4399 * properly set.
4400 */
4401 if (!mtd->bitflip_threshold)
240181fd 4402 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 4403
0040bf38 4404 /* Check, if we should skip the bad block table scan */
ace4dfee 4405 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4406 return 0;
1da177e4
LT
4407
4408 /* Build bad block table */
ace4dfee 4409 return chip->scan_bbt(mtd);
1da177e4 4410}
7351d3a5 4411EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4412
8b6e50c9
BN
4413/*
4414 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4415 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4416 * to call us from in-kernel code if the core NAND support is modular.
4417 */
3b85c321
DW
4418#ifdef MODULE
4419#define caller_is_module() (1)
4420#else
4421#define caller_is_module() \
a6e6abd5 4422 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4423#endif
4424
4425/**
4426 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4427 * @mtd: MTD device structure
4428 * @maxchips: number of chips to scan for
3b85c321 4429 *
8b6e50c9
BN
4430 * This fills out all the uninitialized function pointers with the defaults.
4431 * The flash ID is read and the mtd/chip structures are filled with the
4432 * appropriate values. The mtd->owner field must be set to the module of the
4433 * caller.
3b85c321
DW
4434 */
4435int nand_scan(struct mtd_info *mtd, int maxchips)
4436{
4437 int ret;
4438
4439 /* Many callers got this wrong, so check for it for a while... */
4440 if (!mtd->owner && caller_is_module()) {
d0370219 4441 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4442 BUG();
4443 }
4444
5e81e88a 4445 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4446 if (!ret)
4447 ret = nand_scan_tail(mtd);
4448 return ret;
4449}
7351d3a5 4450EXPORT_SYMBOL(nand_scan);
3b85c321 4451
1da177e4 4452/**
61b03bd7 4453 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4454 * @mtd: MTD device structure
4455 */
e0c7d767 4456void nand_release(struct mtd_info *mtd)
1da177e4 4457{
862eba51 4458 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 4459
193bd400
ID
4460 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4461 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4462
5ffcaf3d 4463 mtd_device_unregister(mtd);
1da177e4 4464
fa671646 4465 /* Free bad block table memory */
ace4dfee 4466 kfree(chip->bbt);
4bf63fcb
DW
4467 if (!(chip->options & NAND_OWN_BUFFERS))
4468 kfree(chip->buffers);
58373ff0
BN
4469
4470 /* Free bad block descriptor memory */
4471 if (chip->badblock_pattern && chip->badblock_pattern->options
4472 & NAND_BBT_DYNAMICSTRUCT)
4473 kfree(chip->badblock_pattern);
1da177e4 4474}
e0c7d767 4475EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
4476
4477static int __init nand_base_init(void)
4478{
4479 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4480 return 0;
4481}
4482
4483static void __exit nand_base_exit(void)
4484{
4485 led_trigger_unregister_simple(nand_led_trigger);
4486}
4487
4488module_init(nand_base_init);
4489module_exit(nand_base_exit);
4490
e0c7d767 4491MODULE_LICENSE("GPL");
7351d3a5
FF
4492MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4493MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4494MODULE_DESCRIPTION("Generic NAND flash driver code");