]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: atmel_nand: introduce a new compatible string for sama5d4 chip
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
61b03bd7 7 *
1da177e4 8 * Additional technical information is available on
8b2b403c 9 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 10 *
1da177e4 11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 13 *
ace4dfee 14 * Credits:
61b03bd7
TG
15 * David Woodhouse for adding multichip support
16 *
1da177e4
LT
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
ace4dfee 20 * TODO:
1da177e4
LT
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 23 * if we have HW ECC support.
c0b8ba7b 24 * BBT table is not serialized, has to be fixed
1da177e4 25 *
1da177e4
LT
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
20171642
EG
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
552d9205 34#include <linux/module.h>
1da177e4
LT
35#include <linux/delay.h>
36#include <linux/errno.h>
7aa65bfd 37#include <linux/err.h>
1da177e4
LT
38#include <linux/sched.h>
39#include <linux/slab.h>
66507c7b 40#include <linux/mm.h>
1da177e4
LT
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
6a8214aa 96static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 97
8593fbc6
TG
98static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
100
d470a97c 101/*
8e87d782 102 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
103 * compiled away when LED support is disabled.
104 */
105DEFINE_LED_TRIGGER(nand_led_trigger);
106
6fe5a6ac
VS
107static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
109{
110 struct nand_chip *chip = mtd->priv;
111 int ret = 0;
112
113 /* Start address must align on block boundary */
daae74ca 114 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 115 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
116 ret = -EINVAL;
117 }
118
119 /* Length must align on block boundary */
daae74ca 120 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 121 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
122 ret = -EINVAL;
123 }
124
6fe5a6ac
VS
125 return ret;
126}
127
1da177e4
LT
128/**
129 * nand_release_device - [GENERIC] release chip
8b6e50c9 130 * @mtd: MTD device structure
61b03bd7 131 *
b0bb6903 132 * Release chip lock and wake up anyone waiting on the device.
1da177e4 133 */
e0c7d767 134static void nand_release_device(struct mtd_info *mtd)
1da177e4 135{
ace4dfee 136 struct nand_chip *chip = mtd->priv;
1da177e4 137
a36ed299 138 /* Release the controller and the chip */
ace4dfee
TG
139 spin_lock(&chip->controller->lock);
140 chip->controller->active = NULL;
141 chip->state = FL_READY;
142 wake_up(&chip->controller->wq);
143 spin_unlock(&chip->controller->lock);
1da177e4
LT
144}
145
146/**
147 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 148 * @mtd: MTD device structure
1da177e4 149 *
7854d3f7 150 * Default read function for 8bit buswidth
1da177e4 151 */
58dd8f2b 152static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 153{
ace4dfee
TG
154 struct nand_chip *chip = mtd->priv;
155 return readb(chip->IO_ADDR_R);
1da177e4
LT
156}
157
1da177e4 158/**
7854d3f7 159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 160 * @mtd: MTD device structure
1da177e4 161 *
7854d3f7
BN
162 * Default read function for 16bit buswidth with endianness conversion.
163 *
1da177e4 164 */
58dd8f2b 165static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 166{
ace4dfee
TG
167 struct nand_chip *chip = mtd->priv;
168 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
169}
170
1da177e4
LT
171/**
172 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 173 * @mtd: MTD device structure
1da177e4 174 *
7854d3f7 175 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
176 */
177static u16 nand_read_word(struct mtd_info *mtd)
178{
ace4dfee
TG
179 struct nand_chip *chip = mtd->priv;
180 return readw(chip->IO_ADDR_R);
1da177e4
LT
181}
182
1da177e4
LT
183/**
184 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
185 * @mtd: MTD device structure
186 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
187 *
188 * Default select function for 1 chip devices.
189 */
ace4dfee 190static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 191{
ace4dfee
TG
192 struct nand_chip *chip = mtd->priv;
193
194 switch (chipnr) {
1da177e4 195 case -1:
ace4dfee 196 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
197 break;
198 case 0:
1da177e4
LT
199 break;
200
201 default:
202 BUG();
203 }
204}
205
05f78359
UKK
206/**
207 * nand_write_byte - [DEFAULT] write single byte to chip
208 * @mtd: MTD device structure
209 * @byte: value to write
210 *
211 * Default function to write a byte to I/O[7:0]
212 */
213static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
214{
215 struct nand_chip *chip = mtd->priv;
216
217 chip->write_buf(mtd, &byte, 1);
218}
219
220/**
221 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222 * @mtd: MTD device structure
223 * @byte: value to write
224 *
225 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226 */
227static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
228{
229 struct nand_chip *chip = mtd->priv;
230 uint16_t word = byte;
231
232 /*
233 * It's not entirely clear what should happen to I/O[15:8] when writing
234 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235 *
236 * When the host supports a 16-bit bus width, only data is
237 * transferred at the 16-bit width. All address and command line
238 * transfers shall use only the lower 8-bits of the data bus. During
239 * command transfers, the host may place any value on the upper
240 * 8-bits of the data bus. During address transfers, the host shall
241 * set the upper 8-bits of the data bus to 00h.
242 *
243 * One user of the write_byte callback is nand_onfi_set_features. The
244 * four parameters are specified to be written to I/O[7:0], but this is
245 * neither an address nor a command transfer. Let's assume a 0 on the
246 * upper I/O lines is OK.
247 */
248 chip->write_buf(mtd, (uint8_t *)&word, 2);
249}
250
1da177e4
LT
251/**
252 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
253 * @mtd: MTD device structure
254 * @buf: data buffer
255 * @len: number of bytes to write
1da177e4 256 *
7854d3f7 257 * Default write function for 8bit buswidth.
1da177e4 258 */
58dd8f2b 259static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 260{
ace4dfee 261 struct nand_chip *chip = mtd->priv;
1da177e4 262
76413839 263 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
264}
265
266/**
61b03bd7 267 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
1da177e4 271 *
7854d3f7 272 * Default read function for 8bit buswidth.
1da177e4 273 */
58dd8f2b 274static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 275{
ace4dfee 276 struct nand_chip *chip = mtd->priv;
1da177e4 277
76413839 278 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
279}
280
1da177e4
LT
281/**
282 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
1da177e4 286 *
7854d3f7 287 * Default write function for 16bit buswidth.
1da177e4 288 */
58dd8f2b 289static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 290{
ace4dfee 291 struct nand_chip *chip = mtd->priv;
1da177e4 292 u16 *p = (u16 *) buf;
61b03bd7 293
76413839 294 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
295}
296
297/**
61b03bd7 298 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
299 * @mtd: MTD device structure
300 * @buf: buffer to store date
301 * @len: number of bytes to read
1da177e4 302 *
7854d3f7 303 * Default read function for 16bit buswidth.
1da177e4 304 */
58dd8f2b 305static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 306{
ace4dfee 307 struct nand_chip *chip = mtd->priv;
1da177e4 308 u16 *p = (u16 *) buf;
1da177e4 309
76413839 310 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
311}
312
1da177e4
LT
313/**
314 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
315 * @mtd: MTD device structure
316 * @ofs: offset from device start
317 * @getchip: 0, if the chip is already selected
1da177e4 318 *
61b03bd7 319 * Check, if the block is bad.
1da177e4
LT
320 */
321static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
322{
cdbec050 323 int page, chipnr, res = 0, i = 0;
ace4dfee 324 struct nand_chip *chip = mtd->priv;
1da177e4
LT
325 u16 bad;
326
5fb1549d 327 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
328 ofs += mtd->erasesize - mtd->writesize;
329
1a12f46a
TK
330 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
331
1da177e4 332 if (getchip) {
ace4dfee 333 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 334
6a8214aa 335 nand_get_device(mtd, FL_READING);
1da177e4
LT
336
337 /* Select the NAND device */
ace4dfee 338 chip->select_chip(mtd, chipnr);
1a12f46a 339 }
1da177e4 340
cdbec050
BN
341 do {
342 if (chip->options & NAND_BUSWIDTH_16) {
343 chip->cmdfunc(mtd, NAND_CMD_READOOB,
344 chip->badblockpos & 0xFE, page);
345 bad = cpu_to_le16(chip->read_word(mtd));
346 if (chip->badblockpos & 0x1)
347 bad >>= 8;
348 else
349 bad &= 0xFF;
350 } else {
351 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
352 page);
353 bad = chip->read_byte(mtd);
354 }
355
356 if (likely(chip->badblockbits == 8))
357 res = bad != 0xFF;
e0b58d0a 358 else
cdbec050
BN
359 res = hweight8(bad) < chip->badblockbits;
360 ofs += mtd->writesize;
361 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
362 i++;
363 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 364
b0bb6903
HS
365 if (getchip) {
366 chip->select_chip(mtd, -1);
1da177e4 367 nand_release_device(mtd);
b0bb6903 368 }
61b03bd7 369
1da177e4
LT
370 return res;
371}
372
373/**
5a0edb25 374 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
375 * @mtd: MTD device structure
376 * @ofs: offset from device start
1da177e4 377 *
8b6e50c9 378 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
379 * specific driver. It provides the details for writing a bad block marker to a
380 * block.
381 */
382static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
383{
384 struct nand_chip *chip = mtd->priv;
385 struct mtd_oob_ops ops;
386 uint8_t buf[2] = { 0, 0 };
387 int ret = 0, res, i = 0;
388
389 ops.datbuf = NULL;
390 ops.oobbuf = buf;
391 ops.ooboffs = chip->badblockpos;
392 if (chip->options & NAND_BUSWIDTH_16) {
393 ops.ooboffs &= ~0x01;
394 ops.len = ops.ooblen = 2;
395 } else {
396 ops.len = ops.ooblen = 1;
397 }
398 ops.mode = MTD_OPS_PLACE_OOB;
399
400 /* Write to first/last page(s) if necessary */
401 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
402 ofs += mtd->erasesize - mtd->writesize;
403 do {
404 res = nand_do_write_oob(mtd, ofs, &ops);
405 if (!ret)
406 ret = res;
407
408 i++;
409 ofs += mtd->writesize;
410 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
411
412 return ret;
413}
414
415/**
416 * nand_block_markbad_lowlevel - mark a block bad
417 * @mtd: MTD device structure
418 * @ofs: offset from device start
419 *
420 * This function performs the generic NAND bad block marking steps (i.e., bad
421 * block table(s) and/or marker(s)). We only allow the hardware driver to
422 * specify how to write bad block markers to OOB (chip->block_markbad).
423 *
b32843b7 424 * We try operations in the following order:
e2414f4c 425 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
426 * (2) write bad block marker to OOB area of affected block (unless flag
427 * NAND_BBT_NO_OOB_BBM is present)
428 * (3) update the BBT
429 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 430 * procedures, and dump the error in the end.
1da177e4 431*/
5a0edb25 432static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 433{
ace4dfee 434 struct nand_chip *chip = mtd->priv;
b32843b7 435 int res, ret = 0;
61b03bd7 436
b32843b7 437 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
438 struct erase_info einfo;
439
440 /* Attempt erase before marking OOB */
441 memset(&einfo, 0, sizeof(einfo));
442 einfo.mtd = mtd;
443 einfo.addr = ofs;
daae74ca 444 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 445 nand_erase_nand(mtd, &einfo, 0);
1da177e4 446
b32843b7 447 /* Write bad block marker to OOB */
6a8214aa 448 nand_get_device(mtd, FL_WRITING);
5a0edb25 449 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 450 nand_release_device(mtd);
f1a28c02 451 }
e2414f4c 452
b32843b7
BN
453 /* Mark block bad in BBT */
454 if (chip->bbt) {
455 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
456 if (!ret)
457 ret = res;
458 }
459
f1a28c02
TG
460 if (!ret)
461 mtd->ecc_stats.badblocks++;
c0b8ba7b 462
f1a28c02 463 return ret;
1da177e4
LT
464}
465
61b03bd7 466/**
1da177e4 467 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 468 * @mtd: MTD device structure
1da177e4 469 *
8b6e50c9
BN
470 * Check, if the device is write protected. The function expects, that the
471 * device is already selected.
1da177e4 472 */
e0c7d767 473static int nand_check_wp(struct mtd_info *mtd)
1da177e4 474{
ace4dfee 475 struct nand_chip *chip = mtd->priv;
93edbad6 476
8b6e50c9 477 /* Broken xD cards report WP despite being writable */
93edbad6
ML
478 if (chip->options & NAND_BROKEN_XD)
479 return 0;
480
1da177e4 481 /* Check the WP bit */
ace4dfee
TG
482 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
483 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
484}
485
8471bb73 486/**
c30e1f79 487 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
488 * @mtd: MTD device structure
489 * @ofs: offset from device start
490 *
c30e1f79 491 * Check if the block is marked as reserved.
8471bb73
EG
492 */
493static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
494{
495 struct nand_chip *chip = mtd->priv;
496
497 if (!chip->bbt)
498 return 0;
499 /* Return info from the table */
500 return nand_isreserved_bbt(mtd, ofs);
501}
502
1da177e4
LT
503/**
504 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
505 * @mtd: MTD device structure
506 * @ofs: offset from device start
507 * @getchip: 0, if the chip is already selected
508 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
509 *
510 * Check, if the block is bad. Either by reading the bad block table or
511 * calling of the scan function.
512 */
2c0a2bed
TG
513static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
514 int allowbbt)
1da177e4 515{
ace4dfee 516 struct nand_chip *chip = mtd->priv;
61b03bd7 517
ace4dfee
TG
518 if (!chip->bbt)
519 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 520
1da177e4 521 /* Return info from the table */
e0c7d767 522 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
523}
524
2af7c653
SK
525/**
526 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
527 * @mtd: MTD device structure
528 * @timeo: Timeout
2af7c653
SK
529 *
530 * Helper function for nand_wait_ready used when needing to wait in interrupt
531 * context.
532 */
533static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
534{
535 struct nand_chip *chip = mtd->priv;
536 int i;
537
538 /* Wait for the device to get ready */
539 for (i = 0; i < timeo; i++) {
540 if (chip->dev_ready(mtd))
541 break;
542 touch_softlockup_watchdog();
543 mdelay(1);
544 }
545}
546
7854d3f7 547/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 548void nand_wait_ready(struct mtd_info *mtd)
3b88775c 549{
ace4dfee 550 struct nand_chip *chip = mtd->priv;
ca6a2489 551 unsigned long timeo = jiffies + msecs_to_jiffies(20);
3b88775c 552
2af7c653
SK
553 /* 400ms timeout */
554 if (in_interrupt() || oops_in_progress)
555 return panic_nand_wait_ready(mtd, 400);
556
8fe833c1 557 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 558 /* Wait until command is processed or timeout occurs */
3b88775c 559 do {
ace4dfee 560 if (chip->dev_ready(mtd))
8fe833c1 561 break;
8446f1d3 562 touch_softlockup_watchdog();
61b03bd7 563 } while (time_before(jiffies, timeo));
8fe833c1 564 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 565}
4b648b02 566EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 567
1da177e4
LT
568/**
569 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
570 * @mtd: MTD device structure
571 * @command: the command to be sent
572 * @column: the column address for this command, -1 if none
573 * @page_addr: the page address for this command, -1 if none
1da177e4 574 *
8b6e50c9 575 * Send command to NAND device. This function is used for small page devices
51148f1f 576 * (512 Bytes per page).
1da177e4 577 */
7abd3ef9
TG
578static void nand_command(struct mtd_info *mtd, unsigned int command,
579 int column, int page_addr)
1da177e4 580{
ace4dfee 581 register struct nand_chip *chip = mtd->priv;
7abd3ef9 582 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 583
8b6e50c9 584 /* Write out the command to the device */
1da177e4
LT
585 if (command == NAND_CMD_SEQIN) {
586 int readcmd;
587
28318776 588 if (column >= mtd->writesize) {
1da177e4 589 /* OOB area */
28318776 590 column -= mtd->writesize;
1da177e4
LT
591 readcmd = NAND_CMD_READOOB;
592 } else if (column < 256) {
593 /* First 256 bytes --> READ0 */
594 readcmd = NAND_CMD_READ0;
595 } else {
596 column -= 256;
597 readcmd = NAND_CMD_READ1;
598 }
ace4dfee 599 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 600 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 601 }
ace4dfee 602 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 603
8b6e50c9 604 /* Address cycle, when necessary */
7abd3ef9
TG
605 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
606 /* Serially input address */
607 if (column != -1) {
608 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
609 if (chip->options & NAND_BUSWIDTH_16 &&
610 !nand_opcode_8bits(command))
7abd3ef9 611 column >>= 1;
ace4dfee 612 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
613 ctrl &= ~NAND_CTRL_CHANGE;
614 }
615 if (page_addr != -1) {
ace4dfee 616 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 617 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 618 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 619 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
620 if (chip->chipsize > (32 << 20))
621 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 622 }
ace4dfee 623 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
624
625 /*
8b6e50c9
BN
626 * Program and erase have their own busy handlers status and sequential
627 * in needs no delay
e0c7d767 628 */
1da177e4 629 switch (command) {
61b03bd7 630
1da177e4
LT
631 case NAND_CMD_PAGEPROG:
632 case NAND_CMD_ERASE1:
633 case NAND_CMD_ERASE2:
634 case NAND_CMD_SEQIN:
635 case NAND_CMD_STATUS:
636 return;
637
638 case NAND_CMD_RESET:
ace4dfee 639 if (chip->dev_ready)
1da177e4 640 break;
ace4dfee
TG
641 udelay(chip->chip_delay);
642 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 643 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
644 chip->cmd_ctrl(mtd,
645 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
646 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
647 ;
1da177e4
LT
648 return;
649
e0c7d767 650 /* This applies to read commands */
1da177e4 651 default:
61b03bd7 652 /*
1da177e4
LT
653 * If we don't have access to the busy pin, we apply the given
654 * command delay
e0c7d767 655 */
ace4dfee
TG
656 if (!chip->dev_ready) {
657 udelay(chip->chip_delay);
1da177e4 658 return;
61b03bd7 659 }
1da177e4 660 }
8b6e50c9
BN
661 /*
662 * Apply this short delay always to ensure that we do wait tWB in
663 * any case on any machine.
664 */
e0c7d767 665 ndelay(100);
3b88775c
TG
666
667 nand_wait_ready(mtd);
1da177e4
LT
668}
669
670/**
671 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
672 * @mtd: MTD device structure
673 * @command: the command to be sent
674 * @column: the column address for this command, -1 if none
675 * @page_addr: the page address for this command, -1 if none
1da177e4 676 *
7abd3ef9 677 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
678 * devices. We don't have the separate regions as we have in the small page
679 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 680 */
7abd3ef9
TG
681static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
682 int column, int page_addr)
1da177e4 683{
ace4dfee 684 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
685
686 /* Emulate NAND_CMD_READOOB */
687 if (command == NAND_CMD_READOOB) {
28318776 688 column += mtd->writesize;
1da177e4
LT
689 command = NAND_CMD_READ0;
690 }
61b03bd7 691
7abd3ef9 692 /* Command latch cycle */
fb066ada 693 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
694
695 if (column != -1 || page_addr != -1) {
7abd3ef9 696 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
697
698 /* Serially input address */
699 if (column != -1) {
700 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
701 if (chip->options & NAND_BUSWIDTH_16 &&
702 !nand_opcode_8bits(command))
1da177e4 703 column >>= 1;
ace4dfee 704 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 705 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 706 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 707 }
1da177e4 708 if (page_addr != -1) {
ace4dfee
TG
709 chip->cmd_ctrl(mtd, page_addr, ctrl);
710 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 711 NAND_NCE | NAND_ALE);
1da177e4 712 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
713 if (chip->chipsize > (128 << 20))
714 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 715 NAND_NCE | NAND_ALE);
1da177e4 716 }
1da177e4 717 }
ace4dfee 718 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
719
720 /*
8b6e50c9 721 * Program and erase have their own busy handlers status, sequential
7a442f17 722 * in and status need no delay.
30f464b7 723 */
1da177e4 724 switch (command) {
61b03bd7 725
1da177e4
LT
726 case NAND_CMD_CACHEDPROG:
727 case NAND_CMD_PAGEPROG:
728 case NAND_CMD_ERASE1:
729 case NAND_CMD_ERASE2:
730 case NAND_CMD_SEQIN:
7bc3312b 731 case NAND_CMD_RNDIN:
1da177e4 732 case NAND_CMD_STATUS:
30f464b7 733 return;
1da177e4
LT
734
735 case NAND_CMD_RESET:
ace4dfee 736 if (chip->dev_ready)
1da177e4 737 break;
ace4dfee 738 udelay(chip->chip_delay);
12efdde3
TG
739 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
740 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
741 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
742 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
743 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
744 ;
1da177e4
LT
745 return;
746
7bc3312b
TG
747 case NAND_CMD_RNDOUT:
748 /* No ready / busy check necessary */
749 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
750 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
751 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
752 NAND_NCE | NAND_CTRL_CHANGE);
753 return;
754
1da177e4 755 case NAND_CMD_READ0:
12efdde3
TG
756 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
757 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
758 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
759 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 760
e0c7d767 761 /* This applies to read commands */
1da177e4 762 default:
61b03bd7 763 /*
1da177e4 764 * If we don't have access to the busy pin, we apply the given
8b6e50c9 765 * command delay.
e0c7d767 766 */
ace4dfee
TG
767 if (!chip->dev_ready) {
768 udelay(chip->chip_delay);
1da177e4 769 return;
61b03bd7 770 }
1da177e4 771 }
3b88775c 772
8b6e50c9
BN
773 /*
774 * Apply this short delay always to ensure that we do wait tWB in
775 * any case on any machine.
776 */
e0c7d767 777 ndelay(100);
3b88775c
TG
778
779 nand_wait_ready(mtd);
1da177e4
LT
780}
781
2af7c653
SK
782/**
783 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
784 * @chip: the nand chip descriptor
785 * @mtd: MTD device structure
786 * @new_state: the state which is requested
2af7c653
SK
787 *
788 * Used when in panic, no locks are taken.
789 */
790static void panic_nand_get_device(struct nand_chip *chip,
791 struct mtd_info *mtd, int new_state)
792{
7854d3f7 793 /* Hardware controller shared among independent devices */
2af7c653
SK
794 chip->controller->active = chip;
795 chip->state = new_state;
796}
797
1da177e4
LT
798/**
799 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
800 * @mtd: MTD device structure
801 * @new_state: the state which is requested
1da177e4
LT
802 *
803 * Get the device and lock it for exclusive access
804 */
2c0a2bed 805static int
6a8214aa 806nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 807{
6a8214aa 808 struct nand_chip *chip = mtd->priv;
ace4dfee
TG
809 spinlock_t *lock = &chip->controller->lock;
810 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 811 DECLARE_WAITQUEUE(wait, current);
7351d3a5 812retry:
0dfc6246
TG
813 spin_lock(lock);
814
b8b3ee9a 815 /* Hardware controller shared among independent devices */
ace4dfee
TG
816 if (!chip->controller->active)
817 chip->controller->active = chip;
a36ed299 818
ace4dfee
TG
819 if (chip->controller->active == chip && chip->state == FL_READY) {
820 chip->state = new_state;
0dfc6246 821 spin_unlock(lock);
962034f4
VW
822 return 0;
823 }
824 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
825 if (chip->controller->active->state == FL_PM_SUSPENDED) {
826 chip->state = FL_PM_SUSPENDED;
827 spin_unlock(lock);
828 return 0;
6b0d9a84 829 }
0dfc6246
TG
830 }
831 set_current_state(TASK_UNINTERRUPTIBLE);
832 add_wait_queue(wq, &wait);
833 spin_unlock(lock);
834 schedule();
835 remove_wait_queue(wq, &wait);
1da177e4
LT
836 goto retry;
837}
838
2af7c653 839/**
8b6e50c9
BN
840 * panic_nand_wait - [GENERIC] wait until the command is done
841 * @mtd: MTD device structure
842 * @chip: NAND chip structure
843 * @timeo: timeout
2af7c653
SK
844 *
845 * Wait for command done. This is a helper function for nand_wait used when
846 * we are in interrupt context. May happen when in panic and trying to write
b595076a 847 * an oops through mtdoops.
2af7c653
SK
848 */
849static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
850 unsigned long timeo)
851{
852 int i;
853 for (i = 0; i < timeo; i++) {
854 if (chip->dev_ready) {
855 if (chip->dev_ready(mtd))
856 break;
857 } else {
858 if (chip->read_byte(mtd) & NAND_STATUS_READY)
859 break;
860 }
861 mdelay(1);
f8ac0414 862 }
2af7c653
SK
863}
864
1da177e4 865/**
8b6e50c9
BN
866 * nand_wait - [DEFAULT] wait until the command is done
867 * @mtd: MTD device structure
868 * @chip: NAND chip structure
1da177e4 869 *
8b6e50c9
BN
870 * Wait for command done. This applies to erase and program only. Erase can
871 * take up to 400ms and program up to 20ms according to general NAND and
872 * SmartMedia specs.
844d3b42 873 */
7bc3312b 874static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
875{
876
7bc3312b 877 int status, state = chip->state;
6d2559f8 878 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
1da177e4 879
8fe833c1
RP
880 led_trigger_event(nand_led_trigger, LED_FULL);
881
8b6e50c9
BN
882 /*
883 * Apply this short delay always to ensure that we do wait tWB in any
884 * case on any machine.
885 */
e0c7d767 886 ndelay(100);
1da177e4 887
14c65786 888 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 889
2af7c653
SK
890 if (in_interrupt() || oops_in_progress)
891 panic_nand_wait(mtd, chip, timeo);
892 else {
6d2559f8 893 timeo = jiffies + msecs_to_jiffies(timeo);
2af7c653
SK
894 while (time_before(jiffies, timeo)) {
895 if (chip->dev_ready) {
896 if (chip->dev_ready(mtd))
897 break;
898 } else {
899 if (chip->read_byte(mtd) & NAND_STATUS_READY)
900 break;
901 }
902 cond_resched();
1da177e4 903 }
1da177e4 904 }
8fe833c1
RP
905 led_trigger_event(nand_led_trigger, LED_OFF);
906
ace4dfee 907 status = (int)chip->read_byte(mtd);
f251b8df
MC
908 /* This can happen if in case of timeout or buggy dev_ready */
909 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
910 return status;
911}
912
7d70f334 913/**
b6d676db 914 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
915 * @mtd: mtd info
916 * @ofs: offset to start unlock from
917 * @len: length to unlock
8b6e50c9
BN
918 * @invert: when = 0, unlock the range of blocks within the lower and
919 * upper boundary address
920 * when = 1, unlock the range of blocks outside the boundaries
921 * of the lower and upper boundary address
7d70f334 922 *
8b6e50c9 923 * Returs unlock status.
7d70f334
VS
924 */
925static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
926 uint64_t len, int invert)
927{
928 int ret = 0;
929 int status, page;
930 struct nand_chip *chip = mtd->priv;
931
932 /* Submit address of first page to unlock */
933 page = ofs >> chip->page_shift;
934 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
935
936 /* Submit address of last page to unlock */
937 page = (ofs + len) >> chip->page_shift;
938 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
939 (page | invert) & chip->pagemask);
940
941 /* Call wait ready function */
942 status = chip->waitfunc(mtd, chip);
7d70f334 943 /* See if device thinks it succeeded */
74830966 944 if (status & NAND_STATUS_FAIL) {
289c0522 945 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
946 __func__, status);
947 ret = -EIO;
948 }
949
950 return ret;
951}
952
953/**
b6d676db 954 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
955 * @mtd: mtd info
956 * @ofs: offset to start unlock from
957 * @len: length to unlock
7d70f334 958 *
8b6e50c9 959 * Returns unlock status.
7d70f334
VS
960 */
961int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
962{
963 int ret = 0;
964 int chipnr;
965 struct nand_chip *chip = mtd->priv;
966
289c0522 967 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
968 __func__, (unsigned long long)ofs, len);
969
970 if (check_offs_len(mtd, ofs, len))
971 ret = -EINVAL;
972
973 /* Align to last block address if size addresses end of the device */
974 if (ofs + len == mtd->size)
975 len -= mtd->erasesize;
976
6a8214aa 977 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
978
979 /* Shift to get chip number */
980 chipnr = ofs >> chip->chip_shift;
981
982 chip->select_chip(mtd, chipnr);
983
57d3a9a8
WD
984 /*
985 * Reset the chip.
986 * If we want to check the WP through READ STATUS and check the bit 7
987 * we must reset the chip
988 * some operation can also clear the bit 7 of status register
989 * eg. erase/program a locked block
990 */
991 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
992
7d70f334
VS
993 /* Check, if it is write protected */
994 if (nand_check_wp(mtd)) {
289c0522 995 pr_debug("%s: device is write protected!\n",
7d70f334
VS
996 __func__);
997 ret = -EIO;
998 goto out;
999 }
1000
1001 ret = __nand_unlock(mtd, ofs, len, 0);
1002
1003out:
b0bb6903 1004 chip->select_chip(mtd, -1);
7d70f334
VS
1005 nand_release_device(mtd);
1006
1007 return ret;
1008}
7351d3a5 1009EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1010
1011/**
b6d676db 1012 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1013 * @mtd: mtd info
1014 * @ofs: offset to start unlock from
1015 * @len: length to unlock
7d70f334 1016 *
8b6e50c9
BN
1017 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1018 * have this feature, but it allows only to lock all blocks, not for specified
1019 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1020 * now.
7d70f334 1021 *
8b6e50c9 1022 * Returns lock status.
7d70f334
VS
1023 */
1024int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1025{
1026 int ret = 0;
1027 int chipnr, status, page;
1028 struct nand_chip *chip = mtd->priv;
1029
289c0522 1030 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1031 __func__, (unsigned long long)ofs, len);
1032
1033 if (check_offs_len(mtd, ofs, len))
1034 ret = -EINVAL;
1035
6a8214aa 1036 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1037
1038 /* Shift to get chip number */
1039 chipnr = ofs >> chip->chip_shift;
1040
1041 chip->select_chip(mtd, chipnr);
1042
57d3a9a8
WD
1043 /*
1044 * Reset the chip.
1045 * If we want to check the WP through READ STATUS and check the bit 7
1046 * we must reset the chip
1047 * some operation can also clear the bit 7 of status register
1048 * eg. erase/program a locked block
1049 */
1050 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1051
7d70f334
VS
1052 /* Check, if it is write protected */
1053 if (nand_check_wp(mtd)) {
289c0522 1054 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1055 __func__);
1056 status = MTD_ERASE_FAILED;
1057 ret = -EIO;
1058 goto out;
1059 }
1060
1061 /* Submit address of first page to lock */
1062 page = ofs >> chip->page_shift;
1063 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1064
1065 /* Call wait ready function */
1066 status = chip->waitfunc(mtd, chip);
7d70f334 1067 /* See if device thinks it succeeded */
74830966 1068 if (status & NAND_STATUS_FAIL) {
289c0522 1069 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1070 __func__, status);
1071 ret = -EIO;
1072 goto out;
1073 }
1074
1075 ret = __nand_unlock(mtd, ofs, len, 0x1);
1076
1077out:
b0bb6903 1078 chip->select_chip(mtd, -1);
7d70f334
VS
1079 nand_release_device(mtd);
1080
1081 return ret;
1082}
7351d3a5 1083EXPORT_SYMBOL(nand_lock);
7d70f334 1084
8593fbc6 1085/**
7854d3f7 1086 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1087 * @mtd: mtd info structure
1088 * @chip: nand chip info structure
1089 * @buf: buffer to store read data
1fbb938d 1090 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1091 * @page: page number to read
52ff49df 1092 *
7854d3f7 1093 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1094 */
1095static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1096 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1097{
1098 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1099 if (oob_required)
1100 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1101 return 0;
1102}
1103
52ff49df 1104/**
7854d3f7 1105 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1106 * @mtd: mtd info structure
1107 * @chip: nand chip info structure
1108 * @buf: buffer to store read data
1fbb938d 1109 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1110 * @page: page number to read
52ff49df
DB
1111 *
1112 * We need a special oob layout and handling even when OOB isn't used.
1113 */
7351d3a5 1114static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1115 struct nand_chip *chip, uint8_t *buf,
1116 int oob_required, int page)
52ff49df
DB
1117{
1118 int eccsize = chip->ecc.size;
1119 int eccbytes = chip->ecc.bytes;
1120 uint8_t *oob = chip->oob_poi;
1121 int steps, size;
1122
1123 for (steps = chip->ecc.steps; steps > 0; steps--) {
1124 chip->read_buf(mtd, buf, eccsize);
1125 buf += eccsize;
1126
1127 if (chip->ecc.prepad) {
1128 chip->read_buf(mtd, oob, chip->ecc.prepad);
1129 oob += chip->ecc.prepad;
1130 }
1131
1132 chip->read_buf(mtd, oob, eccbytes);
1133 oob += eccbytes;
1134
1135 if (chip->ecc.postpad) {
1136 chip->read_buf(mtd, oob, chip->ecc.postpad);
1137 oob += chip->ecc.postpad;
1138 }
1139 }
1140
1141 size = mtd->oobsize - (oob - chip->oob_poi);
1142 if (size)
1143 chip->read_buf(mtd, oob, size);
1144
1145 return 0;
1146}
1147
1da177e4 1148/**
7854d3f7 1149 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1150 * @mtd: mtd info structure
1151 * @chip: nand chip info structure
1152 * @buf: buffer to store read data
1fbb938d 1153 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1154 * @page: page number to read
068e3c0a 1155 */
f5bbdacc 1156static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1157 uint8_t *buf, int oob_required, int page)
1da177e4 1158{
f5bbdacc
TG
1159 int i, eccsize = chip->ecc.size;
1160 int eccbytes = chip->ecc.bytes;
1161 int eccsteps = chip->ecc.steps;
1162 uint8_t *p = buf;
4bf63fcb
DW
1163 uint8_t *ecc_calc = chip->buffers->ecccalc;
1164 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1165 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1166 unsigned int max_bitflips = 0;
f5bbdacc 1167
1fbb938d 1168 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1169
1170 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1171 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1172
1173 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1174 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1175
1176 eccsteps = chip->ecc.steps;
1177 p = buf;
1178
1179 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1180 int stat;
1181
1182 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1183 if (stat < 0) {
f5bbdacc 1184 mtd->ecc_stats.failed++;
3f91e94f 1185 } else {
f5bbdacc 1186 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1187 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1188 }
f5bbdacc 1189 }
3f91e94f 1190 return max_bitflips;
22c60f5f 1191}
1da177e4 1192
3d459559 1193/**
837a6ba4 1194 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1195 * @mtd: mtd info structure
1196 * @chip: nand chip info structure
1197 * @data_offs: offset of requested data within the page
1198 * @readlen: data length
1199 * @bufpoi: buffer to store read data
e004debd 1200 * @page: page number to read
3d459559 1201 */
7351d3a5 1202static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1203 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1204 int page)
3d459559
AK
1205{
1206 int start_step, end_step, num_steps;
1207 uint32_t *eccpos = chip->ecc.layout->eccpos;
1208 uint8_t *p;
1209 int data_col_addr, i, gaps = 0;
1210 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1211 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
4a4163ca 1212 int index;
3f91e94f 1213 unsigned int max_bitflips = 0;
3d459559 1214
7854d3f7 1215 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1216 start_step = data_offs / chip->ecc.size;
1217 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1218 num_steps = end_step - start_step + 1;
4a4163ca 1219 index = start_step * chip->ecc.bytes;
3d459559 1220
8b6e50c9 1221 /* Data size aligned to ECC ecc.size */
3d459559
AK
1222 datafrag_len = num_steps * chip->ecc.size;
1223 eccfrag_len = num_steps * chip->ecc.bytes;
1224
1225 data_col_addr = start_step * chip->ecc.size;
1226 /* If we read not a page aligned data */
1227 if (data_col_addr != 0)
1228 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1229
1230 p = bufpoi + data_col_addr;
1231 chip->read_buf(mtd, p, datafrag_len);
1232
8b6e50c9 1233 /* Calculate ECC */
3d459559
AK
1234 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1235 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1236
8b6e50c9
BN
1237 /*
1238 * The performance is faster if we position offsets according to
7854d3f7 1239 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1240 */
3d459559 1241 for (i = 0; i < eccfrag_len - 1; i++) {
47570bb1 1242 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
3d459559
AK
1243 gaps = 1;
1244 break;
1245 }
1246 }
1247 if (gaps) {
1248 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1249 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1250 } else {
8b6e50c9 1251 /*
7854d3f7 1252 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1253 * about buswidth alignment in read_buf.
1254 */
7351d3a5 1255 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1256 aligned_len = eccfrag_len;
7351d3a5 1257 if (eccpos[index] & (busw - 1))
3d459559 1258 aligned_len++;
7351d3a5 1259 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1260 aligned_len++;
1261
7351d3a5
FF
1262 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1263 mtd->writesize + aligned_pos, -1);
3d459559
AK
1264 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1265 }
1266
1267 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1268 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1269
1270 p = bufpoi + data_col_addr;
1271 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1272 int stat;
1273
7351d3a5
FF
1274 stat = chip->ecc.correct(mtd, p,
1275 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1276 if (stat < 0) {
3d459559 1277 mtd->ecc_stats.failed++;
3f91e94f 1278 } else {
3d459559 1279 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1280 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1281 }
3d459559 1282 }
3f91e94f 1283 return max_bitflips;
3d459559
AK
1284}
1285
068e3c0a 1286/**
7854d3f7 1287 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1288 * @mtd: mtd info structure
1289 * @chip: nand chip info structure
1290 * @buf: buffer to store read data
1fbb938d 1291 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1292 * @page: page number to read
068e3c0a 1293 *
7854d3f7 1294 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1295 */
f5bbdacc 1296static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1297 uint8_t *buf, int oob_required, int page)
1da177e4 1298{
f5bbdacc
TG
1299 int i, eccsize = chip->ecc.size;
1300 int eccbytes = chip->ecc.bytes;
1301 int eccsteps = chip->ecc.steps;
1302 uint8_t *p = buf;
4bf63fcb
DW
1303 uint8_t *ecc_calc = chip->buffers->ecccalc;
1304 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1305 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1306 unsigned int max_bitflips = 0;
f5bbdacc
TG
1307
1308 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1309 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1310 chip->read_buf(mtd, p, eccsize);
1311 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1312 }
f75e5097 1313 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1314
f5bbdacc 1315 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1316 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1317
f5bbdacc
TG
1318 eccsteps = chip->ecc.steps;
1319 p = buf;
61b03bd7 1320
f5bbdacc
TG
1321 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1322 int stat;
1da177e4 1323
f5bbdacc 1324 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1325 if (stat < 0) {
f5bbdacc 1326 mtd->ecc_stats.failed++;
3f91e94f 1327 } else {
f5bbdacc 1328 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1329 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1330 }
f5bbdacc 1331 }
3f91e94f 1332 return max_bitflips;
f5bbdacc 1333}
1da177e4 1334
6e0cb135 1335/**
7854d3f7 1336 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1337 * @mtd: mtd info structure
1338 * @chip: nand chip info structure
1339 * @buf: buffer to store read data
1fbb938d 1340 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1341 * @page: page number to read
6e0cb135 1342 *
8b6e50c9
BN
1343 * Hardware ECC for large page chips, require OOB to be read first. For this
1344 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1345 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1346 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1347 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1348 */
1349static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1350 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1351{
1352 int i, eccsize = chip->ecc.size;
1353 int eccbytes = chip->ecc.bytes;
1354 int eccsteps = chip->ecc.steps;
1355 uint8_t *p = buf;
1356 uint8_t *ecc_code = chip->buffers->ecccode;
1357 uint32_t *eccpos = chip->ecc.layout->eccpos;
1358 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1359 unsigned int max_bitflips = 0;
6e0cb135
SN
1360
1361 /* Read the OOB area first */
1362 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1363 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1364 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1365
1366 for (i = 0; i < chip->ecc.total; i++)
1367 ecc_code[i] = chip->oob_poi[eccpos[i]];
1368
1369 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1370 int stat;
1371
1372 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1373 chip->read_buf(mtd, p, eccsize);
1374 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1375
1376 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1377 if (stat < 0) {
6e0cb135 1378 mtd->ecc_stats.failed++;
3f91e94f 1379 } else {
6e0cb135 1380 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1381 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1382 }
6e0cb135 1383 }
3f91e94f 1384 return max_bitflips;
6e0cb135
SN
1385}
1386
f5bbdacc 1387/**
7854d3f7 1388 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1389 * @mtd: mtd info structure
1390 * @chip: nand chip info structure
1391 * @buf: buffer to store read data
1fbb938d 1392 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1393 * @page: page number to read
f5bbdacc 1394 *
8b6e50c9
BN
1395 * The hw generator calculates the error syndrome automatically. Therefore we
1396 * need a special oob layout and handling.
f5bbdacc
TG
1397 */
1398static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1399 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1400{
1401 int i, eccsize = chip->ecc.size;
1402 int eccbytes = chip->ecc.bytes;
1403 int eccsteps = chip->ecc.steps;
1404 uint8_t *p = buf;
f75e5097 1405 uint8_t *oob = chip->oob_poi;
3f91e94f 1406 unsigned int max_bitflips = 0;
1da177e4 1407
f5bbdacc
TG
1408 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1409 int stat;
61b03bd7 1410
f5bbdacc
TG
1411 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1412 chip->read_buf(mtd, p, eccsize);
1da177e4 1413
f5bbdacc
TG
1414 if (chip->ecc.prepad) {
1415 chip->read_buf(mtd, oob, chip->ecc.prepad);
1416 oob += chip->ecc.prepad;
1417 }
1da177e4 1418
f5bbdacc
TG
1419 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1420 chip->read_buf(mtd, oob, eccbytes);
1421 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1422
3f91e94f 1423 if (stat < 0) {
f5bbdacc 1424 mtd->ecc_stats.failed++;
3f91e94f 1425 } else {
f5bbdacc 1426 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1427 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1428 }
61b03bd7 1429
f5bbdacc 1430 oob += eccbytes;
1da177e4 1431
f5bbdacc
TG
1432 if (chip->ecc.postpad) {
1433 chip->read_buf(mtd, oob, chip->ecc.postpad);
1434 oob += chip->ecc.postpad;
61b03bd7 1435 }
f5bbdacc 1436 }
1da177e4 1437
f5bbdacc 1438 /* Calculate remaining oob bytes */
7e4178f9 1439 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1440 if (i)
1441 chip->read_buf(mtd, oob, i);
61b03bd7 1442
3f91e94f 1443 return max_bitflips;
f5bbdacc 1444}
1da177e4 1445
f5bbdacc 1446/**
7854d3f7 1447 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1448 * @chip: nand chip structure
1449 * @oob: oob destination address
1450 * @ops: oob ops structure
1451 * @len: size of oob to transfer
8593fbc6
TG
1452 */
1453static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1454 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1455{
f8ac0414 1456 switch (ops->mode) {
8593fbc6 1457
0612b9dd
BN
1458 case MTD_OPS_PLACE_OOB:
1459 case MTD_OPS_RAW:
8593fbc6
TG
1460 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1461 return oob + len;
1462
0612b9dd 1463 case MTD_OPS_AUTO_OOB: {
8593fbc6 1464 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1465 uint32_t boffs = 0, roffs = ops->ooboffs;
1466 size_t bytes = 0;
8593fbc6 1467
f8ac0414 1468 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1469 /* Read request not from offset 0? */
7bc3312b
TG
1470 if (unlikely(roffs)) {
1471 if (roffs >= free->length) {
1472 roffs -= free->length;
1473 continue;
1474 }
1475 boffs = free->offset + roffs;
1476 bytes = min_t(size_t, len,
1477 (free->length - roffs));
1478 roffs = 0;
1479 } else {
1480 bytes = min_t(size_t, len, free->length);
1481 boffs = free->offset;
1482 }
1483 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1484 oob += bytes;
1485 }
1486 return oob;
1487 }
1488 default:
1489 BUG();
1490 }
1491 return NULL;
1492}
1493
ba84fb59
BN
1494/**
1495 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1496 * @mtd: MTD device structure
1497 * @retry_mode: the retry mode to use
1498 *
1499 * Some vendors supply a special command to shift the Vt threshold, to be used
1500 * when there are too many bitflips in a page (i.e., ECC error). After setting
1501 * a new threshold, the host should retry reading the page.
1502 */
1503static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1504{
1505 struct nand_chip *chip = mtd->priv;
1506
1507 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1508
1509 if (retry_mode >= chip->read_retries)
1510 return -EINVAL;
1511
1512 if (!chip->setup_read_retry)
1513 return -EOPNOTSUPP;
1514
1515 return chip->setup_read_retry(mtd, retry_mode);
1516}
1517
8593fbc6 1518/**
7854d3f7 1519 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1520 * @mtd: MTD device structure
1521 * @from: offset to read from
1522 * @ops: oob ops structure
f5bbdacc
TG
1523 *
1524 * Internal function. Called with chip held.
1525 */
8593fbc6
TG
1526static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1527 struct mtd_oob_ops *ops)
f5bbdacc 1528{
e47f3db4 1529 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc 1530 struct nand_chip *chip = mtd->priv;
f5bbdacc 1531 int ret = 0;
8593fbc6 1532 uint32_t readlen = ops->len;
7014568b 1533 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1534 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1535 mtd->oobavail : mtd->oobsize;
1536
8593fbc6 1537 uint8_t *bufpoi, *oob, *buf;
66507c7b 1538 int use_bufpoi;
edbc4540 1539 unsigned int max_bitflips = 0;
ba84fb59 1540 int retry_mode = 0;
b72f3dfb 1541 bool ecc_fail = false;
1da177e4 1542
f5bbdacc
TG
1543 chipnr = (int)(from >> chip->chip_shift);
1544 chip->select_chip(mtd, chipnr);
61b03bd7 1545
f5bbdacc
TG
1546 realpage = (int)(from >> chip->page_shift);
1547 page = realpage & chip->pagemask;
1da177e4 1548
f5bbdacc 1549 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1550
8593fbc6
TG
1551 buf = ops->datbuf;
1552 oob = ops->oobbuf;
e47f3db4 1553 oob_required = oob ? 1 : 0;
8593fbc6 1554
f8ac0414 1555 while (1) {
b72f3dfb
BN
1556 unsigned int ecc_failures = mtd->ecc_stats.failed;
1557
f5bbdacc
TG
1558 bytes = min(mtd->writesize - col, readlen);
1559 aligned = (bytes == mtd->writesize);
61b03bd7 1560
66507c7b
KD
1561 if (!aligned)
1562 use_bufpoi = 1;
1563 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1564 use_bufpoi = !virt_addr_valid(buf);
1565 else
1566 use_bufpoi = 0;
1567
8b6e50c9 1568 /* Is the current page in the buffer? */
8593fbc6 1569 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
1570 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1571
1572 if (use_bufpoi && aligned)
1573 pr_debug("%s: using read bounce buffer for buf@%p\n",
1574 __func__, buf);
61b03bd7 1575
ba84fb59 1576read_retry:
c00a0991 1577 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1578
edbc4540
MD
1579 /*
1580 * Now read the page into the buffer. Absent an error,
1581 * the read methods return max bitflips per ecc step.
1582 */
0612b9dd 1583 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1584 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1585 oob_required,
1586 page);
a5ff4f10
JW
1587 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1588 !oob)
7351d3a5 1589 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1590 col, bytes, bufpoi,
1591 page);
956e944c 1592 else
46a8cf2d 1593 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1594 oob_required, page);
6d77b9d0 1595 if (ret < 0) {
66507c7b 1596 if (use_bufpoi)
6d77b9d0
BN
1597 /* Invalidate page cache */
1598 chip->pagebuf = -1;
1da177e4 1599 break;
6d77b9d0 1600 }
f5bbdacc 1601
edbc4540
MD
1602 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1603
f5bbdacc 1604 /* Transfer not aligned data */
66507c7b 1605 if (use_bufpoi) {
a5ff4f10 1606 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1607 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1608 (ops->mode != MTD_OPS_RAW)) {
3d459559 1609 chip->pagebuf = realpage;
edbc4540
MD
1610 chip->pagebuf_bitflips = ret;
1611 } else {
6d77b9d0
BN
1612 /* Invalidate page cache */
1613 chip->pagebuf = -1;
edbc4540 1614 }
4bf63fcb 1615 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1616 }
1617
8593fbc6 1618 if (unlikely(oob)) {
b64d39d8
ML
1619 int toread = min(oobreadlen, max_oobsize);
1620
1621 if (toread) {
1622 oob = nand_transfer_oob(chip,
1623 oob, ops, toread);
1624 oobreadlen -= toread;
1625 }
8593fbc6 1626 }
5bc7c33c
BN
1627
1628 if (chip->options & NAND_NEED_READRDY) {
1629 /* Apply delay or wait for ready/busy pin */
1630 if (!chip->dev_ready)
1631 udelay(chip->chip_delay);
1632 else
1633 nand_wait_ready(mtd);
1634 }
b72f3dfb 1635
ba84fb59 1636 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1637 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1638 retry_mode++;
1639 ret = nand_setup_read_retry(mtd,
1640 retry_mode);
1641 if (ret < 0)
1642 break;
1643
1644 /* Reset failures; retry */
1645 mtd->ecc_stats.failed = ecc_failures;
1646 goto read_retry;
1647 } else {
1648 /* No more retry modes; real failure */
1649 ecc_fail = true;
1650 }
1651 }
1652
1653 buf += bytes;
8593fbc6 1654 } else {
4bf63fcb 1655 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1656 buf += bytes;
edbc4540
MD
1657 max_bitflips = max_t(unsigned int, max_bitflips,
1658 chip->pagebuf_bitflips);
8593fbc6 1659 }
1da177e4 1660
f5bbdacc 1661 readlen -= bytes;
61b03bd7 1662
ba84fb59
BN
1663 /* Reset to retry mode 0 */
1664 if (retry_mode) {
1665 ret = nand_setup_read_retry(mtd, 0);
1666 if (ret < 0)
1667 break;
1668 retry_mode = 0;
1669 }
1670
f5bbdacc 1671 if (!readlen)
61b03bd7 1672 break;
1da177e4 1673
8b6e50c9 1674 /* For subsequent reads align to page boundary */
1da177e4
LT
1675 col = 0;
1676 /* Increment page address */
1677 realpage++;
1678
ace4dfee 1679 page = realpage & chip->pagemask;
1da177e4
LT
1680 /* Check, if we cross a chip boundary */
1681 if (!page) {
1682 chipnr++;
ace4dfee
TG
1683 chip->select_chip(mtd, -1);
1684 chip->select_chip(mtd, chipnr);
1da177e4 1685 }
1da177e4 1686 }
b0bb6903 1687 chip->select_chip(mtd, -1);
1da177e4 1688
8593fbc6 1689 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1690 if (oob)
1691 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1692
3f91e94f 1693 if (ret < 0)
f5bbdacc
TG
1694 return ret;
1695
b72f3dfb 1696 if (ecc_fail)
9a1fcdfd
TG
1697 return -EBADMSG;
1698
edbc4540 1699 return max_bitflips;
f5bbdacc
TG
1700}
1701
1702/**
25985edc 1703 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1704 * @mtd: MTD device structure
1705 * @from: offset to read from
1706 * @len: number of bytes to read
1707 * @retlen: pointer to variable to store the number of read bytes
1708 * @buf: the databuffer to put data
f5bbdacc 1709 *
8b6e50c9 1710 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1711 */
1712static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1713 size_t *retlen, uint8_t *buf)
1714{
4a89ff88 1715 struct mtd_oob_ops ops;
f5bbdacc
TG
1716 int ret;
1717
6a8214aa 1718 nand_get_device(mtd, FL_READING);
4a89ff88
BN
1719 ops.len = len;
1720 ops.datbuf = buf;
1721 ops.oobbuf = NULL;
11041ae6 1722 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1723 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1724 *retlen = ops.retlen;
f5bbdacc 1725 nand_release_device(mtd);
f5bbdacc 1726 return ret;
1da177e4
LT
1727}
1728
7bc3312b 1729/**
7854d3f7 1730 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1731 * @mtd: mtd info structure
1732 * @chip: nand chip info structure
1733 * @page: page number to read
7bc3312b
TG
1734 */
1735static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1736 int page)
7bc3312b 1737{
5c2ffb11 1738 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1739 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1740 return 0;
7bc3312b
TG
1741}
1742
1743/**
7854d3f7 1744 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1745 * with syndromes
8b6e50c9
BN
1746 * @mtd: mtd info structure
1747 * @chip: nand chip info structure
1748 * @page: page number to read
7bc3312b
TG
1749 */
1750static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1751 int page)
7bc3312b
TG
1752{
1753 uint8_t *buf = chip->oob_poi;
1754 int length = mtd->oobsize;
1755 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1756 int eccsize = chip->ecc.size;
1757 uint8_t *bufpoi = buf;
1758 int i, toread, sndrnd = 0, pos;
1759
1760 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1761 for (i = 0; i < chip->ecc.steps; i++) {
1762 if (sndrnd) {
1763 pos = eccsize + i * (eccsize + chunk);
1764 if (mtd->writesize > 512)
1765 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1766 else
1767 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1768 } else
1769 sndrnd = 1;
1770 toread = min_t(int, length, chunk);
1771 chip->read_buf(mtd, bufpoi, toread);
1772 bufpoi += toread;
1773 length -= toread;
1774 }
1775 if (length > 0)
1776 chip->read_buf(mtd, bufpoi, length);
1777
5c2ffb11 1778 return 0;
7bc3312b
TG
1779}
1780
1781/**
7854d3f7 1782 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1783 * @mtd: mtd info structure
1784 * @chip: nand chip info structure
1785 * @page: page number to write
7bc3312b
TG
1786 */
1787static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1788 int page)
1789{
1790 int status = 0;
1791 const uint8_t *buf = chip->oob_poi;
1792 int length = mtd->oobsize;
1793
1794 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1795 chip->write_buf(mtd, buf, length);
1796 /* Send command to program the OOB data */
1797 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1798
1799 status = chip->waitfunc(mtd, chip);
1800
0d420f9d 1801 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1802}
1803
1804/**
7854d3f7 1805 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1806 * with syndrome - only for large page flash
1807 * @mtd: mtd info structure
1808 * @chip: nand chip info structure
1809 * @page: page number to write
7bc3312b
TG
1810 */
1811static int nand_write_oob_syndrome(struct mtd_info *mtd,
1812 struct nand_chip *chip, int page)
1813{
1814 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1815 int eccsize = chip->ecc.size, length = mtd->oobsize;
1816 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1817 const uint8_t *bufpoi = chip->oob_poi;
1818
1819 /*
1820 * data-ecc-data-ecc ... ecc-oob
1821 * or
1822 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1823 */
1824 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1825 pos = steps * (eccsize + chunk);
1826 steps = 0;
1827 } else
8b0036ee 1828 pos = eccsize;
7bc3312b
TG
1829
1830 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1831 for (i = 0; i < steps; i++) {
1832 if (sndcmd) {
1833 if (mtd->writesize <= 512) {
1834 uint32_t fill = 0xFFFFFFFF;
1835
1836 len = eccsize;
1837 while (len > 0) {
1838 int num = min_t(int, len, 4);
1839 chip->write_buf(mtd, (uint8_t *)&fill,
1840 num);
1841 len -= num;
1842 }
1843 } else {
1844 pos = eccsize + i * (eccsize + chunk);
1845 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1846 }
1847 } else
1848 sndcmd = 1;
1849 len = min_t(int, length, chunk);
1850 chip->write_buf(mtd, bufpoi, len);
1851 bufpoi += len;
1852 length -= len;
1853 }
1854 if (length > 0)
1855 chip->write_buf(mtd, bufpoi, length);
1856
1857 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1858 status = chip->waitfunc(mtd, chip);
1859
1860 return status & NAND_STATUS_FAIL ? -EIO : 0;
1861}
1862
1da177e4 1863/**
7854d3f7 1864 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1865 * @mtd: MTD device structure
1866 * @from: offset to read from
1867 * @ops: oob operations description structure
1da177e4 1868 *
8b6e50c9 1869 * NAND read out-of-band data from the spare area.
1da177e4 1870 */
8593fbc6
TG
1871static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1872 struct mtd_oob_ops *ops)
1da177e4 1873{
c00a0991 1874 int page, realpage, chipnr;
ace4dfee 1875 struct nand_chip *chip = mtd->priv;
041e4575 1876 struct mtd_ecc_stats stats;
7014568b
VW
1877 int readlen = ops->ooblen;
1878 int len;
7bc3312b 1879 uint8_t *buf = ops->oobbuf;
1951f2f7 1880 int ret = 0;
61b03bd7 1881
289c0522 1882 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1883 __func__, (unsigned long long)from, readlen);
1da177e4 1884
041e4575
BN
1885 stats = mtd->ecc_stats;
1886
0612b9dd 1887 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1888 len = chip->ecc.layout->oobavail;
03736155
AH
1889 else
1890 len = mtd->oobsize;
1891
1892 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1893 pr_debug("%s: attempt to start read outside oob\n",
1894 __func__);
03736155
AH
1895 return -EINVAL;
1896 }
1897
1898 /* Do not allow reads past end of device */
1899 if (unlikely(from >= mtd->size ||
1900 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1901 (from >> chip->page_shift)) * len)) {
289c0522
BN
1902 pr_debug("%s: attempt to read beyond end of device\n",
1903 __func__);
03736155
AH
1904 return -EINVAL;
1905 }
7014568b 1906
7314e9e7 1907 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1908 chip->select_chip(mtd, chipnr);
1da177e4 1909
7314e9e7
TG
1910 /* Shift to get page */
1911 realpage = (int)(from >> chip->page_shift);
1912 page = realpage & chip->pagemask;
1da177e4 1913
f8ac0414 1914 while (1) {
0612b9dd 1915 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1916 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1917 else
1951f2f7
SL
1918 ret = chip->ecc.read_oob(mtd, chip, page);
1919
1920 if (ret < 0)
1921 break;
7014568b
VW
1922
1923 len = min(len, readlen);
1924 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1925
5bc7c33c
BN
1926 if (chip->options & NAND_NEED_READRDY) {
1927 /* Apply delay or wait for ready/busy pin */
1928 if (!chip->dev_ready)
1929 udelay(chip->chip_delay);
1930 else
1931 nand_wait_ready(mtd);
1932 }
1933
7014568b 1934 readlen -= len;
0d420f9d
SZ
1935 if (!readlen)
1936 break;
1937
7314e9e7
TG
1938 /* Increment page address */
1939 realpage++;
1940
1941 page = realpage & chip->pagemask;
1942 /* Check, if we cross a chip boundary */
1943 if (!page) {
1944 chipnr++;
1945 chip->select_chip(mtd, -1);
1946 chip->select_chip(mtd, chipnr);
1da177e4
LT
1947 }
1948 }
b0bb6903 1949 chip->select_chip(mtd, -1);
1da177e4 1950
1951f2f7
SL
1951 ops->oobretlen = ops->ooblen - readlen;
1952
1953 if (ret < 0)
1954 return ret;
041e4575
BN
1955
1956 if (mtd->ecc_stats.failed - stats.failed)
1957 return -EBADMSG;
1958
1959 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1960}
1961
1962/**
8593fbc6 1963 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1964 * @mtd: MTD device structure
1965 * @from: offset to read from
1966 * @ops: oob operation description structure
1da177e4 1967 *
8b6e50c9 1968 * NAND read data and/or out-of-band data.
1da177e4 1969 */
8593fbc6
TG
1970static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1971 struct mtd_oob_ops *ops)
1da177e4 1972{
8593fbc6
TG
1973 int ret = -ENOTSUPP;
1974
1975 ops->retlen = 0;
1da177e4
LT
1976
1977 /* Do not allow reads past end of device */
7014568b 1978 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1979 pr_debug("%s: attempt to read beyond end of device\n",
1980 __func__);
1da177e4
LT
1981 return -EINVAL;
1982 }
1983
6a8214aa 1984 nand_get_device(mtd, FL_READING);
1da177e4 1985
f8ac0414 1986 switch (ops->mode) {
0612b9dd
BN
1987 case MTD_OPS_PLACE_OOB:
1988 case MTD_OPS_AUTO_OOB:
1989 case MTD_OPS_RAW:
8593fbc6 1990 break;
1da177e4 1991
8593fbc6
TG
1992 default:
1993 goto out;
1994 }
1da177e4 1995
8593fbc6
TG
1996 if (!ops->datbuf)
1997 ret = nand_do_read_oob(mtd, from, ops);
1998 else
1999 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2000
7351d3a5 2001out:
8593fbc6
TG
2002 nand_release_device(mtd);
2003 return ret;
2004}
61b03bd7 2005
1da177e4 2006
8593fbc6 2007/**
7854d3f7 2008 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2009 * @mtd: mtd info structure
2010 * @chip: nand chip info structure
2011 * @buf: data buffer
1fbb938d 2012 * @oob_required: must write chip->oob_poi to OOB
52ff49df 2013 *
7854d3f7 2014 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2015 */
fdbad98d 2016static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2017 const uint8_t *buf, int oob_required)
8593fbc6
TG
2018{
2019 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2020 if (oob_required)
2021 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2022
2023 return 0;
1da177e4
LT
2024}
2025
52ff49df 2026/**
7854d3f7 2027 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2028 * @mtd: mtd info structure
2029 * @chip: nand chip info structure
2030 * @buf: data buffer
1fbb938d 2031 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
2032 *
2033 * We need a special oob layout and handling even when ECC isn't checked.
2034 */
fdbad98d 2035static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2036 struct nand_chip *chip,
1fbb938d 2037 const uint8_t *buf, int oob_required)
52ff49df
DB
2038{
2039 int eccsize = chip->ecc.size;
2040 int eccbytes = chip->ecc.bytes;
2041 uint8_t *oob = chip->oob_poi;
2042 int steps, size;
2043
2044 for (steps = chip->ecc.steps; steps > 0; steps--) {
2045 chip->write_buf(mtd, buf, eccsize);
2046 buf += eccsize;
2047
2048 if (chip->ecc.prepad) {
2049 chip->write_buf(mtd, oob, chip->ecc.prepad);
2050 oob += chip->ecc.prepad;
2051 }
2052
60c3bc1f 2053 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2054 oob += eccbytes;
2055
2056 if (chip->ecc.postpad) {
2057 chip->write_buf(mtd, oob, chip->ecc.postpad);
2058 oob += chip->ecc.postpad;
2059 }
2060 }
2061
2062 size = mtd->oobsize - (oob - chip->oob_poi);
2063 if (size)
2064 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2065
2066 return 0;
52ff49df 2067}
9223a456 2068/**
7854d3f7 2069 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2070 * @mtd: mtd info structure
2071 * @chip: nand chip info structure
2072 * @buf: data buffer
1fbb938d 2073 * @oob_required: must write chip->oob_poi to OOB
9223a456 2074 */
fdbad98d 2075static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2076 const uint8_t *buf, int oob_required)
9223a456 2077{
f75e5097
TG
2078 int i, eccsize = chip->ecc.size;
2079 int eccbytes = chip->ecc.bytes;
2080 int eccsteps = chip->ecc.steps;
4bf63fcb 2081 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2082 const uint8_t *p = buf;
8b099a39 2083 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2084
7854d3f7 2085 /* Software ECC calculation */
8593fbc6
TG
2086 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2087 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2088
8593fbc6
TG
2089 for (i = 0; i < chip->ecc.total; i++)
2090 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2091
fdbad98d 2092 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 2093}
9223a456 2094
f75e5097 2095/**
7854d3f7 2096 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2097 * @mtd: mtd info structure
2098 * @chip: nand chip info structure
2099 * @buf: data buffer
1fbb938d 2100 * @oob_required: must write chip->oob_poi to OOB
f75e5097 2101 */
fdbad98d 2102static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2103 const uint8_t *buf, int oob_required)
f75e5097
TG
2104{
2105 int i, eccsize = chip->ecc.size;
2106 int eccbytes = chip->ecc.bytes;
2107 int eccsteps = chip->ecc.steps;
4bf63fcb 2108 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2109 const uint8_t *p = buf;
8b099a39 2110 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2111
f75e5097
TG
2112 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2113 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2114 chip->write_buf(mtd, p, eccsize);
f75e5097 2115 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2116 }
2117
f75e5097
TG
2118 for (i = 0; i < chip->ecc.total; i++)
2119 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2120
2121 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2122
2123 return 0;
9223a456
TG
2124}
2125
837a6ba4
GP
2126
2127/**
2128 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2129 * @mtd: mtd info structure
2130 * @chip: nand chip info structure
d6a95080 2131 * @offset: column address of subpage within the page
837a6ba4 2132 * @data_len: data length
d6a95080 2133 * @buf: data buffer
837a6ba4
GP
2134 * @oob_required: must write chip->oob_poi to OOB
2135 */
2136static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2137 struct nand_chip *chip, uint32_t offset,
d6a95080 2138 uint32_t data_len, const uint8_t *buf,
837a6ba4
GP
2139 int oob_required)
2140{
2141 uint8_t *oob_buf = chip->oob_poi;
2142 uint8_t *ecc_calc = chip->buffers->ecccalc;
2143 int ecc_size = chip->ecc.size;
2144 int ecc_bytes = chip->ecc.bytes;
2145 int ecc_steps = chip->ecc.steps;
2146 uint32_t *eccpos = chip->ecc.layout->eccpos;
2147 uint32_t start_step = offset / ecc_size;
2148 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2149 int oob_bytes = mtd->oobsize / ecc_steps;
2150 int step, i;
2151
2152 for (step = 0; step < ecc_steps; step++) {
2153 /* configure controller for WRITE access */
2154 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2155
2156 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2157 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2158
2159 /* mask ECC of un-touched subpages by padding 0xFF */
2160 if ((step < start_step) || (step > end_step))
2161 memset(ecc_calc, 0xff, ecc_bytes);
2162 else
d6a95080 2163 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2164
2165 /* mask OOB of un-touched subpages by padding 0xFF */
2166 /* if oob_required, preserve OOB metadata of written subpage */
2167 if (!oob_required || (step < start_step) || (step > end_step))
2168 memset(oob_buf, 0xff, oob_bytes);
2169
d6a95080 2170 buf += ecc_size;
837a6ba4
GP
2171 ecc_calc += ecc_bytes;
2172 oob_buf += oob_bytes;
2173 }
2174
2175 /* copy calculated ECC for whole page to chip->buffer->oob */
2176 /* this include masked-value(0xFF) for unwritten subpages */
2177 ecc_calc = chip->buffers->ecccalc;
2178 for (i = 0; i < chip->ecc.total; i++)
2179 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2180
2181 /* write OOB buffer to NAND device */
2182 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2183
2184 return 0;
2185}
2186
2187
61b03bd7 2188/**
7854d3f7 2189 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2190 * @mtd: mtd info structure
2191 * @chip: nand chip info structure
2192 * @buf: data buffer
1fbb938d 2193 * @oob_required: must write chip->oob_poi to OOB
1da177e4 2194 *
8b6e50c9
BN
2195 * The hw generator calculates the error syndrome automatically. Therefore we
2196 * need a special oob layout and handling.
f75e5097 2197 */
fdbad98d 2198static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
2199 struct nand_chip *chip,
2200 const uint8_t *buf, int oob_required)
1da177e4 2201{
f75e5097
TG
2202 int i, eccsize = chip->ecc.size;
2203 int eccbytes = chip->ecc.bytes;
2204 int eccsteps = chip->ecc.steps;
2205 const uint8_t *p = buf;
2206 uint8_t *oob = chip->oob_poi;
1da177e4 2207
f75e5097 2208 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2209
f75e5097
TG
2210 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2211 chip->write_buf(mtd, p, eccsize);
61b03bd7 2212
f75e5097
TG
2213 if (chip->ecc.prepad) {
2214 chip->write_buf(mtd, oob, chip->ecc.prepad);
2215 oob += chip->ecc.prepad;
2216 }
2217
2218 chip->ecc.calculate(mtd, p, oob);
2219 chip->write_buf(mtd, oob, eccbytes);
2220 oob += eccbytes;
2221
2222 if (chip->ecc.postpad) {
2223 chip->write_buf(mtd, oob, chip->ecc.postpad);
2224 oob += chip->ecc.postpad;
1da177e4 2225 }
1da177e4 2226 }
f75e5097
TG
2227
2228 /* Calculate remaining oob bytes */
7e4178f9 2229 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2230 if (i)
2231 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2232
2233 return 0;
f75e5097
TG
2234}
2235
2236/**
956e944c 2237 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2238 * @mtd: MTD device structure
2239 * @chip: NAND chip descriptor
837a6ba4
GP
2240 * @offset: address offset within the page
2241 * @data_len: length of actual data to be written
8b6e50c9 2242 * @buf: the data to write
1fbb938d 2243 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2244 * @page: page number to write
2245 * @cached: cached programming
2246 * @raw: use _raw version of write_page
f75e5097
TG
2247 */
2248static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2249 uint32_t offset, int data_len, const uint8_t *buf,
2250 int oob_required, int page, int cached, int raw)
f75e5097 2251{
837a6ba4
GP
2252 int status, subpage;
2253
2254 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2255 chip->ecc.write_subpage)
2256 subpage = offset || (data_len < mtd->writesize);
2257 else
2258 subpage = 0;
f75e5097
TG
2259
2260 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2261
956e944c 2262 if (unlikely(raw))
837a6ba4
GP
2263 status = chip->ecc.write_page_raw(mtd, chip, buf,
2264 oob_required);
2265 else if (subpage)
2266 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2267 buf, oob_required);
956e944c 2268 else
fdbad98d
JW
2269 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2270
2271 if (status < 0)
2272 return status;
f75e5097
TG
2273
2274 /*
7854d3f7 2275 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2276 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2277 */
2278 cached = 0;
2279
3239a6cd 2280 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2281
2282 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2283 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2284 /*
2285 * See if operation failed and additional status checks are
8b6e50c9 2286 * available.
f75e5097
TG
2287 */
2288 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2289 status = chip->errstat(mtd, chip, FL_WRITING, status,
2290 page);
2291
2292 if (status & NAND_STATUS_FAIL)
2293 return -EIO;
2294 } else {
2295 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2296 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2297 }
2298
f75e5097 2299 return 0;
1da177e4
LT
2300}
2301
8593fbc6 2302/**
7854d3f7 2303 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2304 * @mtd: MTD device structure
8b6e50c9
BN
2305 * @oob: oob data buffer
2306 * @len: oob data write length
2307 * @ops: oob ops structure
8593fbc6 2308 */
f722013e
TAA
2309static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2310 struct mtd_oob_ops *ops)
8593fbc6 2311{
f722013e
TAA
2312 struct nand_chip *chip = mtd->priv;
2313
2314 /*
2315 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2316 * data from a previous OOB read.
2317 */
2318 memset(chip->oob_poi, 0xff, mtd->oobsize);
2319
f8ac0414 2320 switch (ops->mode) {
8593fbc6 2321
0612b9dd
BN
2322 case MTD_OPS_PLACE_OOB:
2323 case MTD_OPS_RAW:
8593fbc6
TG
2324 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2325 return oob + len;
2326
0612b9dd 2327 case MTD_OPS_AUTO_OOB: {
8593fbc6 2328 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2329 uint32_t boffs = 0, woffs = ops->ooboffs;
2330 size_t bytes = 0;
8593fbc6 2331
f8ac0414 2332 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2333 /* Write request not from offset 0? */
7bc3312b
TG
2334 if (unlikely(woffs)) {
2335 if (woffs >= free->length) {
2336 woffs -= free->length;
2337 continue;
2338 }
2339 boffs = free->offset + woffs;
2340 bytes = min_t(size_t, len,
2341 (free->length - woffs));
2342 woffs = 0;
2343 } else {
2344 bytes = min_t(size_t, len, free->length);
2345 boffs = free->offset;
2346 }
8b0036ee 2347 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2348 oob += bytes;
2349 }
2350 return oob;
2351 }
2352 default:
2353 BUG();
2354 }
2355 return NULL;
2356}
2357
f8ac0414 2358#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2359
2360/**
7854d3f7 2361 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2362 * @mtd: MTD device structure
2363 * @to: offset to write to
2364 * @ops: oob operations description structure
1da177e4 2365 *
8b6e50c9 2366 * NAND write with ECC.
1da177e4 2367 */
8593fbc6
TG
2368static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2369 struct mtd_oob_ops *ops)
1da177e4 2370{
29072b96 2371 int chipnr, realpage, page, blockmask, column;
ace4dfee 2372 struct nand_chip *chip = mtd->priv;
8593fbc6 2373 uint32_t writelen = ops->len;
782ce79a
ML
2374
2375 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2376 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2377 mtd->oobavail : mtd->oobsize;
2378
8593fbc6
TG
2379 uint8_t *oob = ops->oobbuf;
2380 uint8_t *buf = ops->datbuf;
837a6ba4 2381 int ret;
e47f3db4 2382 int oob_required = oob ? 1 : 0;
1da177e4 2383
8593fbc6 2384 ops->retlen = 0;
29072b96
TG
2385 if (!writelen)
2386 return 0;
1da177e4 2387
8b6e50c9 2388 /* Reject writes, which are not page aligned */
8593fbc6 2389 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2390 pr_notice("%s: attempt to write non page aligned data\n",
2391 __func__);
1da177e4
LT
2392 return -EINVAL;
2393 }
2394
29072b96 2395 column = to & (mtd->writesize - 1);
1da177e4 2396
6a930961
TG
2397 chipnr = (int)(to >> chip->chip_shift);
2398 chip->select_chip(mtd, chipnr);
2399
1da177e4 2400 /* Check, if it is write protected */
b0bb6903
HS
2401 if (nand_check_wp(mtd)) {
2402 ret = -EIO;
2403 goto err_out;
2404 }
1da177e4 2405
f75e5097
TG
2406 realpage = (int)(to >> chip->page_shift);
2407 page = realpage & chip->pagemask;
2408 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2409
2410 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2411 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2412 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2413 chip->pagebuf = -1;
61b03bd7 2414
782ce79a 2415 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2416 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2417 ret = -EINVAL;
2418 goto err_out;
2419 }
782ce79a 2420
f8ac0414 2421 while (1) {
29072b96 2422 int bytes = mtd->writesize;
f75e5097 2423 int cached = writelen > bytes && page != blockmask;
29072b96 2424 uint8_t *wbuf = buf;
66507c7b
KD
2425 int use_bufpoi;
2426 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2427
2428 if (part_pagewr)
2429 use_bufpoi = 1;
2430 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2431 use_bufpoi = !virt_addr_valid(buf);
2432 else
2433 use_bufpoi = 0;
29072b96 2434
66507c7b
KD
2435 /* Partial page write?, or need to use bounce buffer */
2436 if (use_bufpoi) {
2437 pr_debug("%s: using write bounce buffer for buf@%p\n",
2438 __func__, buf);
29072b96 2439 cached = 0;
66507c7b
KD
2440 if (part_pagewr)
2441 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2442 chip->pagebuf = -1;
2443 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2444 memcpy(&chip->buffers->databuf[column], buf, bytes);
2445 wbuf = chip->buffers->databuf;
2446 }
1da177e4 2447
782ce79a
ML
2448 if (unlikely(oob)) {
2449 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2450 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2451 oobwritelen -= len;
f722013e
TAA
2452 } else {
2453 /* We still need to erase leftover OOB data */
2454 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2455 }
837a6ba4
GP
2456 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2457 oob_required, page, cached,
2458 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2459 if (ret)
2460 break;
2461
2462 writelen -= bytes;
2463 if (!writelen)
2464 break;
2465
29072b96 2466 column = 0;
f75e5097
TG
2467 buf += bytes;
2468 realpage++;
2469
2470 page = realpage & chip->pagemask;
2471 /* Check, if we cross a chip boundary */
2472 if (!page) {
2473 chipnr++;
2474 chip->select_chip(mtd, -1);
2475 chip->select_chip(mtd, chipnr);
1da177e4
LT
2476 }
2477 }
8593fbc6 2478
8593fbc6 2479 ops->retlen = ops->len - writelen;
7014568b
VW
2480 if (unlikely(oob))
2481 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2482
2483err_out:
2484 chip->select_chip(mtd, -1);
1da177e4
LT
2485 return ret;
2486}
2487
2af7c653
SK
2488/**
2489 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2490 * @mtd: MTD device structure
2491 * @to: offset to write to
2492 * @len: number of bytes to write
2493 * @retlen: pointer to variable to store the number of written bytes
2494 * @buf: the data to write
2af7c653
SK
2495 *
2496 * NAND write with ECC. Used when performing writes in interrupt context, this
2497 * may for example be called by mtdoops when writing an oops while in panic.
2498 */
2499static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2500 size_t *retlen, const uint8_t *buf)
2501{
2502 struct nand_chip *chip = mtd->priv;
4a89ff88 2503 struct mtd_oob_ops ops;
2af7c653
SK
2504 int ret;
2505
8b6e50c9 2506 /* Wait for the device to get ready */
2af7c653
SK
2507 panic_nand_wait(mtd, chip, 400);
2508
8b6e50c9 2509 /* Grab the device */
2af7c653
SK
2510 panic_nand_get_device(chip, mtd, FL_WRITING);
2511
4a89ff88
BN
2512 ops.len = len;
2513 ops.datbuf = (uint8_t *)buf;
2514 ops.oobbuf = NULL;
11041ae6 2515 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2516
4a89ff88 2517 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2518
4a89ff88 2519 *retlen = ops.retlen;
2af7c653
SK
2520 return ret;
2521}
2522
f75e5097 2523/**
8593fbc6 2524 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2525 * @mtd: MTD device structure
2526 * @to: offset to write to
2527 * @len: number of bytes to write
2528 * @retlen: pointer to variable to store the number of written bytes
2529 * @buf: the data to write
f75e5097 2530 *
8b6e50c9 2531 * NAND write with ECC.
f75e5097 2532 */
8593fbc6
TG
2533static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2534 size_t *retlen, const uint8_t *buf)
f75e5097 2535{
4a89ff88 2536 struct mtd_oob_ops ops;
f75e5097
TG
2537 int ret;
2538
6a8214aa 2539 nand_get_device(mtd, FL_WRITING);
4a89ff88
BN
2540 ops.len = len;
2541 ops.datbuf = (uint8_t *)buf;
2542 ops.oobbuf = NULL;
11041ae6 2543 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2544 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2545 *retlen = ops.retlen;
f75e5097 2546 nand_release_device(mtd);
8593fbc6 2547 return ret;
f75e5097 2548}
7314e9e7 2549
1da177e4 2550/**
8593fbc6 2551 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2552 * @mtd: MTD device structure
2553 * @to: offset to write to
2554 * @ops: oob operation description structure
1da177e4 2555 *
8b6e50c9 2556 * NAND write out-of-band.
1da177e4 2557 */
8593fbc6
TG
2558static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2559 struct mtd_oob_ops *ops)
1da177e4 2560{
03736155 2561 int chipnr, page, status, len;
ace4dfee 2562 struct nand_chip *chip = mtd->priv;
1da177e4 2563
289c0522 2564 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2565 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2566
0612b9dd 2567 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2568 len = chip->ecc.layout->oobavail;
2569 else
2570 len = mtd->oobsize;
2571
1da177e4 2572 /* Do not allow write past end of page */
03736155 2573 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2574 pr_debug("%s: attempt to write past end of page\n",
2575 __func__);
1da177e4
LT
2576 return -EINVAL;
2577 }
2578
03736155 2579 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2580 pr_debug("%s: attempt to start write outside oob\n",
2581 __func__);
03736155
AH
2582 return -EINVAL;
2583 }
2584
775adc3d 2585 /* Do not allow write past end of device */
03736155
AH
2586 if (unlikely(to >= mtd->size ||
2587 ops->ooboffs + ops->ooblen >
2588 ((mtd->size >> chip->page_shift) -
2589 (to >> chip->page_shift)) * len)) {
289c0522
BN
2590 pr_debug("%s: attempt to write beyond end of device\n",
2591 __func__);
03736155
AH
2592 return -EINVAL;
2593 }
2594
7314e9e7 2595 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2596 chip->select_chip(mtd, chipnr);
1da177e4 2597
7314e9e7
TG
2598 /* Shift to get page */
2599 page = (int)(to >> chip->page_shift);
2600
2601 /*
2602 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2603 * of my DiskOnChip 2000 test units) will clear the whole data page too
2604 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2605 * it in the doc2000 driver in August 1999. dwmw2.
2606 */
ace4dfee 2607 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2608
2609 /* Check, if it is write protected */
b0bb6903
HS
2610 if (nand_check_wp(mtd)) {
2611 chip->select_chip(mtd, -1);
8593fbc6 2612 return -EROFS;
b0bb6903 2613 }
61b03bd7 2614
1da177e4 2615 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2616 if (page == chip->pagebuf)
2617 chip->pagebuf = -1;
1da177e4 2618
f722013e 2619 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2620
0612b9dd 2621 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2622 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2623 else
2624 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2625
b0bb6903
HS
2626 chip->select_chip(mtd, -1);
2627
7bc3312b
TG
2628 if (status)
2629 return status;
1da177e4 2630
7014568b 2631 ops->oobretlen = ops->ooblen;
1da177e4 2632
7bc3312b 2633 return 0;
8593fbc6
TG
2634}
2635
2636/**
2637 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2638 * @mtd: MTD device structure
2639 * @to: offset to write to
2640 * @ops: oob operation description structure
8593fbc6
TG
2641 */
2642static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2643 struct mtd_oob_ops *ops)
2644{
8593fbc6
TG
2645 int ret = -ENOTSUPP;
2646
2647 ops->retlen = 0;
2648
2649 /* Do not allow writes past end of device */
7014568b 2650 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2651 pr_debug("%s: attempt to write beyond end of device\n",
2652 __func__);
8593fbc6
TG
2653 return -EINVAL;
2654 }
2655
6a8214aa 2656 nand_get_device(mtd, FL_WRITING);
8593fbc6 2657
f8ac0414 2658 switch (ops->mode) {
0612b9dd
BN
2659 case MTD_OPS_PLACE_OOB:
2660 case MTD_OPS_AUTO_OOB:
2661 case MTD_OPS_RAW:
8593fbc6
TG
2662 break;
2663
2664 default:
2665 goto out;
2666 }
2667
2668 if (!ops->datbuf)
2669 ret = nand_do_write_oob(mtd, to, ops);
2670 else
2671 ret = nand_do_write_ops(mtd, to, ops);
2672
7351d3a5 2673out:
1da177e4 2674 nand_release_device(mtd);
1da177e4
LT
2675 return ret;
2676}
2677
1da177e4 2678/**
49c50b97 2679 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2680 * @mtd: MTD device structure
2681 * @page: the page address of the block which will be erased
1da177e4 2682 *
49c50b97 2683 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 2684 */
49c50b97 2685static int single_erase(struct mtd_info *mtd, int page)
1da177e4 2686{
ace4dfee 2687 struct nand_chip *chip = mtd->priv;
1da177e4 2688 /* Send commands to erase a block */
ace4dfee
TG
2689 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2690 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
2691
2692 return chip->waitfunc(mtd, chip);
1da177e4
LT
2693}
2694
1da177e4
LT
2695/**
2696 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2697 * @mtd: MTD device structure
2698 * @instr: erase instruction
1da177e4 2699 *
8b6e50c9 2700 * Erase one ore more blocks.
1da177e4 2701 */
e0c7d767 2702static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2703{
e0c7d767 2704 return nand_erase_nand(mtd, instr, 0);
1da177e4 2705}
61b03bd7 2706
1da177e4 2707/**
7854d3f7 2708 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2709 * @mtd: MTD device structure
2710 * @instr: erase instruction
2711 * @allowbbt: allow erasing the bbt area
1da177e4 2712 *
8b6e50c9 2713 * Erase one ore more blocks.
1da177e4 2714 */
ace4dfee
TG
2715int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2716 int allowbbt)
1da177e4 2717{
69423d99 2718 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2719 struct nand_chip *chip = mtd->priv;
69423d99 2720 loff_t len;
1da177e4 2721
289c0522
BN
2722 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2723 __func__, (unsigned long long)instr->addr,
2724 (unsigned long long)instr->len);
1da177e4 2725
6fe5a6ac 2726 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2727 return -EINVAL;
1da177e4 2728
1da177e4 2729 /* Grab the lock and see if the device is available */
6a8214aa 2730 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2731
2732 /* Shift to get first page */
ace4dfee
TG
2733 page = (int)(instr->addr >> chip->page_shift);
2734 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2735
2736 /* Calculate pages in each block */
ace4dfee 2737 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2738
2739 /* Select the NAND device */
ace4dfee 2740 chip->select_chip(mtd, chipnr);
1da177e4 2741
1da177e4
LT
2742 /* Check, if it is write protected */
2743 if (nand_check_wp(mtd)) {
289c0522
BN
2744 pr_debug("%s: device is write protected!\n",
2745 __func__);
1da177e4
LT
2746 instr->state = MTD_ERASE_FAILED;
2747 goto erase_exit;
2748 }
2749
2750 /* Loop through the pages */
2751 len = instr->len;
2752
2753 instr->state = MTD_ERASING;
2754
2755 while (len) {
12183a20 2756 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2757 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2758 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2759 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2760 __func__, page);
1da177e4
LT
2761 instr->state = MTD_ERASE_FAILED;
2762 goto erase_exit;
2763 }
61b03bd7 2764
ace4dfee
TG
2765 /*
2766 * Invalidate the page cache, if we erase the block which
8b6e50c9 2767 * contains the current cached page.
ace4dfee
TG
2768 */
2769 if (page <= chip->pagebuf && chip->pagebuf <
2770 (page + pages_per_block))
2771 chip->pagebuf = -1;
1da177e4 2772
49c50b97 2773 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 2774
ace4dfee
TG
2775 /*
2776 * See if operation failed and additional status checks are
2777 * available
2778 */
2779 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2780 status = chip->errstat(mtd, chip, FL_ERASING,
2781 status, page);
068e3c0a 2782
1da177e4 2783 /* See if block erase succeeded */
a4ab4c5d 2784 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2785 pr_debug("%s: failed erase, page 0x%08x\n",
2786 __func__, page);
1da177e4 2787 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2788 instr->fail_addr =
2789 ((loff_t)page << chip->page_shift);
1da177e4
LT
2790 goto erase_exit;
2791 }
30f464b7 2792
1da177e4 2793 /* Increment page address and decrement length */
daae74ca 2794 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2795 page += pages_per_block;
2796
2797 /* Check, if we cross a chip boundary */
ace4dfee 2798 if (len && !(page & chip->pagemask)) {
1da177e4 2799 chipnr++;
ace4dfee
TG
2800 chip->select_chip(mtd, -1);
2801 chip->select_chip(mtd, chipnr);
1da177e4
LT
2802 }
2803 }
2804 instr->state = MTD_ERASE_DONE;
2805
7351d3a5 2806erase_exit:
1da177e4
LT
2807
2808 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2809
2810 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2811 chip->select_chip(mtd, -1);
1da177e4
LT
2812 nand_release_device(mtd);
2813
49defc01
DW
2814 /* Do call back function */
2815 if (!ret)
2816 mtd_erase_callback(instr);
2817
1da177e4
LT
2818 /* Return more or less happy */
2819 return ret;
2820}
2821
2822/**
2823 * nand_sync - [MTD Interface] sync
8b6e50c9 2824 * @mtd: MTD device structure
1da177e4 2825 *
8b6e50c9 2826 * Sync is actually a wait for chip ready function.
1da177e4 2827 */
e0c7d767 2828static void nand_sync(struct mtd_info *mtd)
1da177e4 2829{
289c0522 2830 pr_debug("%s: called\n", __func__);
1da177e4
LT
2831
2832 /* Grab the lock and see if the device is available */
6a8214aa 2833 nand_get_device(mtd, FL_SYNCING);
1da177e4 2834 /* Release it and go back */
e0c7d767 2835 nand_release_device(mtd);
1da177e4
LT
2836}
2837
1da177e4 2838/**
ace4dfee 2839 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2840 * @mtd: MTD device structure
2841 * @offs: offset relative to mtd start
1da177e4 2842 */
ace4dfee 2843static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2844{
ace4dfee 2845 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2846}
2847
2848/**
ace4dfee 2849 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2850 * @mtd: MTD device structure
2851 * @ofs: offset relative to mtd start
1da177e4 2852 */
e0c7d767 2853static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2854{
1da177e4
LT
2855 int ret;
2856
f8ac0414
FF
2857 ret = nand_block_isbad(mtd, ofs);
2858 if (ret) {
8b6e50c9 2859 /* If it was bad already, return success and do nothing */
1da177e4
LT
2860 if (ret > 0)
2861 return 0;
e0c7d767
DW
2862 return ret;
2863 }
1da177e4 2864
5a0edb25 2865 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
2866}
2867
7db03ecc
HS
2868/**
2869 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2870 * @mtd: MTD device structure
2871 * @chip: nand chip info structure
2872 * @addr: feature address.
2873 * @subfeature_param: the subfeature parameters, a four bytes array.
2874 */
2875static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2876 int addr, uint8_t *subfeature_param)
2877{
2878 int status;
05f78359 2879 int i;
7db03ecc 2880
d914c932
DM
2881 if (!chip->onfi_version ||
2882 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2883 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2884 return -EINVAL;
2885
2886 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
2887 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2888 chip->write_byte(mtd, subfeature_param[i]);
2889
7db03ecc
HS
2890 status = chip->waitfunc(mtd, chip);
2891 if (status & NAND_STATUS_FAIL)
2892 return -EIO;
2893 return 0;
2894}
2895
2896/**
2897 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2898 * @mtd: MTD device structure
2899 * @chip: nand chip info structure
2900 * @addr: feature address.
2901 * @subfeature_param: the subfeature parameters, a four bytes array.
2902 */
2903static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2904 int addr, uint8_t *subfeature_param)
2905{
05f78359
UKK
2906 int i;
2907
d914c932
DM
2908 if (!chip->onfi_version ||
2909 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2910 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2911 return -EINVAL;
2912
2913 /* clear the sub feature parameters */
2914 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2915
2916 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
2917 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2918 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
2919 return 0;
2920}
2921
962034f4
VW
2922/**
2923 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2924 * @mtd: MTD device structure
962034f4
VW
2925 */
2926static int nand_suspend(struct mtd_info *mtd)
2927{
6a8214aa 2928 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
2929}
2930
2931/**
2932 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2933 * @mtd: MTD device structure
962034f4
VW
2934 */
2935static void nand_resume(struct mtd_info *mtd)
2936{
ace4dfee 2937 struct nand_chip *chip = mtd->priv;
962034f4 2938
ace4dfee 2939 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2940 nand_release_device(mtd);
2941 else
d0370219
BN
2942 pr_err("%s called for a chip which is not in suspended state\n",
2943 __func__);
962034f4
VW
2944}
2945
72ea4036
SB
2946/**
2947 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
2948 * prevent further operations
2949 * @mtd: MTD device structure
2950 */
2951static void nand_shutdown(struct mtd_info *mtd)
2952{
2953 nand_get_device(mtd, FL_SHUTDOWN);
2954}
2955
8b6e50c9 2956/* Set default functions */
ace4dfee 2957static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2958{
1da177e4 2959 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2960 if (!chip->chip_delay)
2961 chip->chip_delay = 20;
1da177e4
LT
2962
2963 /* check, if a user supplied command function given */
ace4dfee
TG
2964 if (chip->cmdfunc == NULL)
2965 chip->cmdfunc = nand_command;
1da177e4
LT
2966
2967 /* check, if a user supplied wait function given */
ace4dfee
TG
2968 if (chip->waitfunc == NULL)
2969 chip->waitfunc = nand_wait;
2970
2971 if (!chip->select_chip)
2972 chip->select_chip = nand_select_chip;
68e80780 2973
4204cccd
HS
2974 /* set for ONFI nand */
2975 if (!chip->onfi_set_features)
2976 chip->onfi_set_features = nand_onfi_set_features;
2977 if (!chip->onfi_get_features)
2978 chip->onfi_get_features = nand_onfi_get_features;
2979
68e80780
BN
2980 /* If called twice, pointers that depend on busw may need to be reset */
2981 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
2982 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2983 if (!chip->read_word)
2984 chip->read_word = nand_read_word;
2985 if (!chip->block_bad)
2986 chip->block_bad = nand_block_bad;
2987 if (!chip->block_markbad)
2988 chip->block_markbad = nand_default_block_markbad;
68e80780 2989 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 2990 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
2991 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2992 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 2993 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 2994 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2995 if (!chip->scan_bbt)
2996 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2997
2998 if (!chip->controller) {
2999 chip->controller = &chip->hwcontrol;
3000 spin_lock_init(&chip->controller->lock);
3001 init_waitqueue_head(&chip->controller->wq);
3002 }
3003
7aa65bfd
TG
3004}
3005
8b6e50c9 3006/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3007static void sanitize_string(uint8_t *s, size_t len)
3008{
3009 ssize_t i;
3010
8b6e50c9 3011 /* Null terminate */
d1e1f4e4
FF
3012 s[len - 1] = 0;
3013
8b6e50c9 3014 /* Remove non printable chars */
d1e1f4e4
FF
3015 for (i = 0; i < len - 1; i++) {
3016 if (s[i] < ' ' || s[i] > 127)
3017 s[i] = '?';
3018 }
3019
8b6e50c9 3020 /* Remove trailing spaces */
d1e1f4e4
FF
3021 strim(s);
3022}
3023
3024static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3025{
3026 int i;
3027 while (len--) {
3028 crc ^= *p++ << 8;
3029 for (i = 0; i < 8; i++)
3030 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3031 }
3032
3033 return crc;
3034}
3035
6dcbe0cd
HS
3036/* Parse the Extended Parameter Page. */
3037static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3038 struct nand_chip *chip, struct nand_onfi_params *p)
3039{
3040 struct onfi_ext_param_page *ep;
3041 struct onfi_ext_section *s;
3042 struct onfi_ext_ecc_info *ecc;
3043 uint8_t *cursor;
3044 int ret = -EINVAL;
3045 int len;
3046 int i;
3047
3048 len = le16_to_cpu(p->ext_param_page_length) * 16;
3049 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3050 if (!ep)
3051 return -ENOMEM;
6dcbe0cd
HS
3052
3053 /* Send our own NAND_CMD_PARAM. */
3054 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3055
3056 /* Use the Change Read Column command to skip the ONFI param pages. */
3057 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3058 sizeof(*p) * p->num_of_param_pages , -1);
3059
3060 /* Read out the Extended Parameter Page. */
3061 chip->read_buf(mtd, (uint8_t *)ep, len);
3062 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3063 != le16_to_cpu(ep->crc))) {
3064 pr_debug("fail in the CRC.\n");
3065 goto ext_out;
3066 }
3067
3068 /*
3069 * Check the signature.
3070 * Do not strictly follow the ONFI spec, maybe changed in future.
3071 */
3072 if (strncmp(ep->sig, "EPPS", 4)) {
3073 pr_debug("The signature is invalid.\n");
3074 goto ext_out;
3075 }
3076
3077 /* find the ECC section. */
3078 cursor = (uint8_t *)(ep + 1);
3079 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3080 s = ep->sections + i;
3081 if (s->type == ONFI_SECTION_TYPE_2)
3082 break;
3083 cursor += s->length * 16;
3084 }
3085 if (i == ONFI_EXT_SECTION_MAX) {
3086 pr_debug("We can not find the ECC section.\n");
3087 goto ext_out;
3088 }
3089
3090 /* get the info we want. */
3091 ecc = (struct onfi_ext_ecc_info *)cursor;
3092
4ae7d228
BN
3093 if (!ecc->codeword_size) {
3094 pr_debug("Invalid codeword size\n");
3095 goto ext_out;
6dcbe0cd
HS
3096 }
3097
4ae7d228
BN
3098 chip->ecc_strength_ds = ecc->ecc_bits;
3099 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3100 ret = 0;
6dcbe0cd
HS
3101
3102ext_out:
3103 kfree(ep);
3104 return ret;
3105}
3106
8429bb39
BN
3107static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3108{
3109 struct nand_chip *chip = mtd->priv;
3110 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3111
3112 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3113 feature);
3114}
3115
3116/*
3117 * Configure chip properties from Micron vendor-specific ONFI table
3118 */
3119static void nand_onfi_detect_micron(struct nand_chip *chip,
3120 struct nand_onfi_params *p)
3121{
3122 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3123
3124 if (le16_to_cpu(p->vendor_revision) < 1)
3125 return;
3126
3127 chip->read_retries = micron->read_retry_options;
3128 chip->setup_read_retry = nand_setup_read_retry_micron;
3129}
3130
6fb277ba 3131/*
8b6e50c9 3132 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3133 */
3134static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3135 int *busw)
6fb277ba
FF
3136{
3137 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3138 int i, j;
6fb277ba
FF
3139 int val;
3140
7854d3f7 3141 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3142 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3143 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3144 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3145 return 0;
3146
6fb277ba
FF
3147 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3148 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3149 for (j = 0; j < sizeof(*p); j++)
3150 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3151 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3152 le16_to_cpu(p->crc)) {
6fb277ba
FF
3153 break;
3154 }
3155 }
3156
c7f23a70
BN
3157 if (i == 3) {
3158 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3159 return 0;
c7f23a70 3160 }
6fb277ba 3161
8b6e50c9 3162 /* Check version */
6fb277ba 3163 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3164 if (val & (1 << 5))
3165 chip->onfi_version = 23;
3166 else if (val & (1 << 4))
6fb277ba
FF
3167 chip->onfi_version = 22;
3168 else if (val & (1 << 3))
3169 chip->onfi_version = 21;
3170 else if (val & (1 << 2))
3171 chip->onfi_version = 20;
b7b1a29d 3172 else if (val & (1 << 1))
6fb277ba 3173 chip->onfi_version = 10;
b7b1a29d
BN
3174
3175 if (!chip->onfi_version) {
20171642 3176 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3177 return 0;
3178 }
6fb277ba
FF
3179
3180 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3181 sanitize_string(p->model, sizeof(p->model));
3182 if (!mtd->name)
3183 mtd->name = p->model;
4355b70c 3184
6fb277ba 3185 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3186
3187 /*
3188 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3189 * (don't ask me who thought of this...). MTD assumes that these
3190 * dimensions will be power-of-2, so just truncate the remaining area.
3191 */
3192 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3193 mtd->erasesize *= mtd->writesize;
3194
6fb277ba 3195 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3196
3197 /* See erasesize comment */
3198 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3199 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3200 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3201
3202 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3203 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3204 else
3205 *busw = 0;
6fb277ba 3206
10c86bab
HS
3207 if (p->ecc_bits != 0xff) {
3208 chip->ecc_strength_ds = p->ecc_bits;
3209 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3210 } else if (chip->onfi_version >= 21 &&
3211 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3212
3213 /*
3214 * The nand_flash_detect_ext_param_page() uses the
3215 * Change Read Column command which maybe not supported
3216 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3217 * now. We do not replace user supplied command function.
3218 */
3219 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3220 chip->cmdfunc = nand_command_lp;
3221
3222 /* The Extended Parameter Page is supported since ONFI 2.1. */
3223 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3224 pr_warn("Failed to detect ONFI extended param page\n");
3225 } else {
3226 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3227 }
3228
8429bb39
BN
3229 if (p->jedec_id == NAND_MFR_MICRON)
3230 nand_onfi_detect_micron(chip, p);
3231
6fb277ba
FF
3232 return 1;
3233}
3234
91361818
HS
3235/*
3236 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3237 */
3238static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3239 int *busw)
3240{
3241 struct nand_jedec_params *p = &chip->jedec_params;
3242 struct jedec_ecc_info *ecc;
3243 int val;
3244 int i, j;
3245
3246 /* Try JEDEC for unknown chip or LP */
3247 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3248 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3249 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3250 chip->read_byte(mtd) != 'C')
3251 return 0;
3252
3253 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3254 for (i = 0; i < 3; i++) {
3255 for (j = 0; j < sizeof(*p); j++)
3256 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3257
3258 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3259 le16_to_cpu(p->crc))
3260 break;
3261 }
3262
3263 if (i == 3) {
3264 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3265 return 0;
3266 }
3267
3268 /* Check version */
3269 val = le16_to_cpu(p->revision);
3270 if (val & (1 << 2))
3271 chip->jedec_version = 10;
3272 else if (val & (1 << 1))
3273 chip->jedec_version = 1; /* vendor specific version */
3274
3275 if (!chip->jedec_version) {
3276 pr_info("unsupported JEDEC version: %d\n", val);
3277 return 0;
3278 }
3279
3280 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3281 sanitize_string(p->model, sizeof(p->model));
3282 if (!mtd->name)
3283 mtd->name = p->model;
3284
3285 mtd->writesize = le32_to_cpu(p->byte_per_page);
3286
3287 /* Please reference to the comment for nand_flash_detect_onfi. */
3288 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3289 mtd->erasesize *= mtd->writesize;
3290
3291 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3292
3293 /* Please reference to the comment for nand_flash_detect_onfi. */
3294 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3295 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3296 chip->bits_per_cell = p->bits_per_cell;
3297
3298 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3299 *busw = NAND_BUSWIDTH_16;
3300 else
3301 *busw = 0;
3302
3303 /* ECC info */
3304 ecc = &p->ecc_info[0];
3305
3306 if (ecc->codeword_size >= 9) {
3307 chip->ecc_strength_ds = ecc->ecc_bits;
3308 chip->ecc_step_ds = 1 << ecc->codeword_size;
3309 } else {
3310 pr_warn("Invalid codeword size\n");
3311 }
3312
3313 return 1;
3314}
3315
e3b88bd6
BN
3316/*
3317 * nand_id_has_period - Check if an ID string has a given wraparound period
3318 * @id_data: the ID string
3319 * @arrlen: the length of the @id_data array
3320 * @period: the period of repitition
3321 *
3322 * Check if an ID string is repeated within a given sequence of bytes at
3323 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3324 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3325 * if the repetition has a period of @period; otherwise, returns zero.
3326 */
3327static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3328{
3329 int i, j;
3330 for (i = 0; i < period; i++)
3331 for (j = i + period; j < arrlen; j += period)
3332 if (id_data[i] != id_data[j])
3333 return 0;
3334 return 1;
3335}
3336
3337/*
3338 * nand_id_len - Get the length of an ID string returned by CMD_READID
3339 * @id_data: the ID string
3340 * @arrlen: the length of the @id_data array
3341
3342 * Returns the length of the ID string, according to known wraparound/trailing
3343 * zero patterns. If no pattern exists, returns the length of the array.
3344 */
3345static int nand_id_len(u8 *id_data, int arrlen)
3346{
3347 int last_nonzero, period;
3348
3349 /* Find last non-zero byte */
3350 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3351 if (id_data[last_nonzero])
3352 break;
3353
3354 /* All zeros */
3355 if (last_nonzero < 0)
3356 return 0;
3357
3358 /* Calculate wraparound period */
3359 for (period = 1; period < arrlen; period++)
3360 if (nand_id_has_period(id_data, arrlen, period))
3361 break;
3362
3363 /* There's a repeated pattern */
3364 if (period < arrlen)
3365 return period;
3366
3367 /* There are trailing zeros */
3368 if (last_nonzero < arrlen - 1)
3369 return last_nonzero + 1;
3370
3371 /* No pattern detected */
3372 return arrlen;
3373}
3374
7db906b7
HS
3375/* Extract the bits of per cell from the 3rd byte of the extended ID */
3376static int nand_get_bits_per_cell(u8 cellinfo)
3377{
3378 int bits;
3379
3380 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3381 bits >>= NAND_CI_CELLTYPE_SHIFT;
3382 return bits + 1;
3383}
3384
fc09bbc0
BN
3385/*
3386 * Many new NAND share similar device ID codes, which represent the size of the
3387 * chip. The rest of the parameters must be decoded according to generic or
3388 * manufacturer-specific "extended ID" decoding patterns.
3389 */
3390static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3391 u8 id_data[8], int *busw)
3392{
e3b88bd6 3393 int extid, id_len;
fc09bbc0 3394 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3395 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3396 /* The 4th id byte is the important one */
3397 extid = id_data[3];
3398
e3b88bd6
BN
3399 id_len = nand_id_len(id_data, 8);
3400
fc09bbc0
BN
3401 /*
3402 * Field definitions are in the following datasheets:
3403 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3404 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3405 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3406 *
af451af4
BN
3407 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3408 * ID to decide what to do.
fc09bbc0 3409 */
af451af4 3410 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3411 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3412 /* Calc pagesize */
3413 mtd->writesize = 2048 << (extid & 0x03);
3414 extid >>= 2;
3415 /* Calc oobsize */
e2d3a35e 3416 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3417 case 1:
3418 mtd->oobsize = 128;
3419 break;
3420 case 2:
3421 mtd->oobsize = 218;
3422 break;
3423 case 3:
3424 mtd->oobsize = 400;
3425 break;
e2d3a35e 3426 case 4:
fc09bbc0
BN
3427 mtd->oobsize = 436;
3428 break;
e2d3a35e
BN
3429 case 5:
3430 mtd->oobsize = 512;
3431 break;
3432 case 6:
e2d3a35e
BN
3433 mtd->oobsize = 640;
3434 break;
94d04e82
HS
3435 case 7:
3436 default: /* Other cases are "reserved" (unknown) */
3437 mtd->oobsize = 1024;
3438 break;
fc09bbc0
BN
3439 }
3440 extid >>= 2;
3441 /* Calc blocksize */
3442 mtd->erasesize = (128 * 1024) <<
3443 (((extid >> 1) & 0x04) | (extid & 0x03));
3444 *busw = 0;
73ca392f 3445 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3446 !nand_is_slc(chip)) {
73ca392f
BN
3447 unsigned int tmp;
3448
3449 /* Calc pagesize */
3450 mtd->writesize = 2048 << (extid & 0x03);
3451 extid >>= 2;
3452 /* Calc oobsize */
3453 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3454 case 0:
3455 mtd->oobsize = 128;
3456 break;
3457 case 1:
3458 mtd->oobsize = 224;
3459 break;
3460 case 2:
3461 mtd->oobsize = 448;
3462 break;
3463 case 3:
3464 mtd->oobsize = 64;
3465 break;
3466 case 4:
3467 mtd->oobsize = 32;
3468 break;
3469 case 5:
3470 mtd->oobsize = 16;
3471 break;
3472 default:
3473 mtd->oobsize = 640;
3474 break;
3475 }
3476 extid >>= 2;
3477 /* Calc blocksize */
3478 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3479 if (tmp < 0x03)
3480 mtd->erasesize = (128 * 1024) << tmp;
3481 else if (tmp == 0x03)
3482 mtd->erasesize = 768 * 1024;
3483 else
3484 mtd->erasesize = (64 * 1024) << tmp;
3485 *busw = 0;
fc09bbc0
BN
3486 } else {
3487 /* Calc pagesize */
3488 mtd->writesize = 1024 << (extid & 0x03);
3489 extid >>= 2;
3490 /* Calc oobsize */
3491 mtd->oobsize = (8 << (extid & 0x01)) *
3492 (mtd->writesize >> 9);
3493 extid >>= 2;
3494 /* Calc blocksize. Blocksize is multiples of 64KiB */
3495 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3496 extid >>= 2;
3497 /* Get buswidth information */
3498 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3499
3500 /*
3501 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3502 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3503 * follows:
3504 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3505 * 110b -> 24nm
3506 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3507 */
3508 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3509 nand_is_slc(chip) &&
60c67382
BN
3510 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3511 !(id_data[4] & 0x80) /* !BENAND */) {
3512 mtd->oobsize = 32 * mtd->writesize >> 9;
3513 }
3514
fc09bbc0
BN
3515 }
3516}
3517
f23a481c
BN
3518/*
3519 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3520 * decodes a matching ID table entry and assigns the MTD size parameters for
3521 * the chip.
3522 */
3523static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3524 struct nand_flash_dev *type, u8 id_data[8],
3525 int *busw)
3526{
3527 int maf_id = id_data[0];
3528
3529 mtd->erasesize = type->erasesize;
3530 mtd->writesize = type->pagesize;
3531 mtd->oobsize = mtd->writesize / 32;
3532 *busw = type->options & NAND_BUSWIDTH_16;
3533
1c195e90
HS
3534 /* All legacy ID NAND are small-page, SLC */
3535 chip->bits_per_cell = 1;
3536
f23a481c
BN
3537 /*
3538 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3539 * some Spansion chips have erasesize that conflicts with size
3540 * listed in nand_ids table.
3541 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3542 */
3543 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3544 && id_data[6] == 0x00 && id_data[7] == 0x00
3545 && mtd->writesize == 512) {
3546 mtd->erasesize = 128 * 1024;
3547 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3548 }
3549}
3550
7e74c2d7
BN
3551/*
3552 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3553 * heuristic patterns using various detected parameters (e.g., manufacturer,
3554 * page size, cell-type information).
3555 */
3556static void nand_decode_bbm_options(struct mtd_info *mtd,
3557 struct nand_chip *chip, u8 id_data[8])
3558{
3559 int maf_id = id_data[0];
3560
3561 /* Set the bad block position */
3562 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3563 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3564 else
3565 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3566
3567 /*
3568 * Bad block marker is stored in the last page of each block on Samsung
3569 * and Hynix MLC devices; stored in first two pages of each block on
3570 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3571 * AMD/Spansion, and Macronix. All others scan only the first page.
3572 */
1d0ed69d 3573 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3574 (maf_id == NAND_MFR_SAMSUNG ||
3575 maf_id == NAND_MFR_HYNIX))
3576 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3577 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3578 (maf_id == NAND_MFR_SAMSUNG ||
3579 maf_id == NAND_MFR_HYNIX ||
3580 maf_id == NAND_MFR_TOSHIBA ||
3581 maf_id == NAND_MFR_AMD ||
3582 maf_id == NAND_MFR_MACRONIX)) ||
3583 (mtd->writesize == 2048 &&
3584 maf_id == NAND_MFR_MICRON))
3585 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3586}
3587
ec6e87e3
HS
3588static inline bool is_full_id_nand(struct nand_flash_dev *type)
3589{
3590 return type->id_len;
3591}
3592
3593static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3594 struct nand_flash_dev *type, u8 *id_data, int *busw)
3595{
3596 if (!strncmp(type->id, id_data, type->id_len)) {
3597 mtd->writesize = type->pagesize;
3598 mtd->erasesize = type->erasesize;
3599 mtd->oobsize = type->oobsize;
3600
7db906b7 3601 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3602 chip->chipsize = (uint64_t)type->chipsize << 20;
3603 chip->options |= type->options;
57219342
HS
3604 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3605 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3606 chip->onfi_timing_mode_default =
3607 type->onfi_timing_mode_default;
ec6e87e3
HS
3608
3609 *busw = type->options & NAND_BUSWIDTH_16;
3610
092b6a1d
CZ
3611 if (!mtd->name)
3612 mtd->name = type->name;
3613
ec6e87e3
HS
3614 return true;
3615 }
3616 return false;
3617}
3618
7aa65bfd 3619/*
8b6e50c9 3620 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3621 */
3622static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3623 struct nand_chip *chip,
7351d3a5 3624 int *maf_id, int *dev_id,
5e81e88a 3625 struct nand_flash_dev *type)
7aa65bfd 3626{
bb77082f 3627 int busw;
d1e1f4e4 3628 int i, maf_idx;
426c457a 3629 u8 id_data[8];
1da177e4
LT
3630
3631 /* Select the device */
ace4dfee 3632 chip->select_chip(mtd, 0);
1da177e4 3633
ef89a880
KB
3634 /*
3635 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3636 * after power-up.
ef89a880
KB
3637 */
3638 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3639
1da177e4 3640 /* Send the command for reading device ID */
ace4dfee 3641 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3642
3643 /* Read manufacturer and device IDs */
ace4dfee 3644 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3645 *dev_id = chip->read_byte(mtd);
1da177e4 3646
8b6e50c9
BN
3647 /*
3648 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3649 * interface concerns can cause random data which looks like a
3650 * possibly credible NAND flash to appear. If the two results do
3651 * not match, ignore the device completely.
3652 */
3653
3654 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3655
4aef9b78
BN
3656 /* Read entire ID string */
3657 for (i = 0; i < 8; i++)
426c457a 3658 id_data[i] = chip->read_byte(mtd);
ed8165c7 3659
d1e1f4e4 3660 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3661 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3662 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3663 return ERR_PTR(-ENODEV);
3664 }
3665
7aa65bfd 3666 if (!type)
5e81e88a
DW
3667 type = nand_flash_ids;
3668
ec6e87e3
HS
3669 for (; type->name != NULL; type++) {
3670 if (is_full_id_nand(type)) {
3671 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3672 goto ident_done;
3673 } else if (*dev_id == type->dev_id) {
3674 break;
3675 }
3676 }
5e81e88a 3677
d1e1f4e4
FF
3678 chip->onfi_version = 0;
3679 if (!type->name || !type->pagesize) {
35fc5195 3680 /* Check if the chip is ONFI compliant */
47450b35 3681 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3682 goto ident_done;
91361818
HS
3683
3684 /* Check if the chip is JEDEC compliant */
3685 if (nand_flash_detect_jedec(mtd, chip, &busw))
3686 goto ident_done;
d1e1f4e4
FF
3687 }
3688
5e81e88a 3689 if (!type->name)
7aa65bfd
TG
3690 return ERR_PTR(-ENODEV);
3691
ba0251fe
TG
3692 if (!mtd->name)
3693 mtd->name = type->name;
3694
69423d99 3695 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3696
12a40a57 3697 if (!type->pagesize && chip->init_size) {
8b6e50c9 3698 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3699 busw = chip->init_size(mtd, chip, id_data);
3700 } else if (!type->pagesize) {
fc09bbc0
BN
3701 /* Decode parameters from extended ID */
3702 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3703 } else {
f23a481c 3704 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3705 }
bf7a01bf
BN
3706 /* Get chip options */
3707 chip->options |= type->options;
d1e1f4e4 3708
8b6e50c9
BN
3709 /*
3710 * Check if chip is not a Samsung device. Do not clear the
3711 * options for chips which do not have an extended id.
d1e1f4e4
FF
3712 */
3713 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3714 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3715ident_done:
3716
7aa65bfd 3717 /* Try to identify manufacturer */
9a909867 3718 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3719 if (nand_manuf_ids[maf_idx].id == *maf_id)
3720 break;
3721 }
0ea4a755 3722
64b37b2a
MC
3723 if (chip->options & NAND_BUSWIDTH_AUTO) {
3724 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3725 chip->options |= busw;
3726 nand_set_defaults(chip, busw);
3727 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3728 /*
3729 * Check, if buswidth is correct. Hardware drivers should set
3730 * chip correct!
3731 */
20171642
EG
3732 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3733 *maf_id, *dev_id);
3734 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3735 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3736 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3737 busw ? 16 : 8);
7aa65bfd
TG
3738 return ERR_PTR(-EINVAL);
3739 }
61b03bd7 3740
7e74c2d7
BN
3741 nand_decode_bbm_options(mtd, chip, id_data);
3742
7aa65bfd 3743 /* Calculate the address shift from the page size */
ace4dfee 3744 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3745 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3746 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3747
ace4dfee 3748 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3749 ffs(mtd->erasesize) - 1;
69423d99
AH
3750 if (chip->chipsize & 0xffffffff)
3751 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3752 else {
3753 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3754 chip->chip_shift += 32 - 1;
3755 }
1da177e4 3756
26d9be11 3757 chip->badblockbits = 8;
49c50b97 3758 chip->erase = single_erase;
7aa65bfd 3759
8b6e50c9 3760 /* Do not replace user supplied command function! */
ace4dfee
TG
3761 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3762 chip->cmdfunc = nand_command_lp;
7aa65bfd 3763
20171642
EG
3764 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3765 *maf_id, *dev_id);
ffdac6cd
HS
3766
3767 if (chip->onfi_version)
3768 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3769 chip->onfi_params.model);
3770 else if (chip->jedec_version)
3771 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3772 chip->jedec_params.model);
3773 else
3774 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3775 type->name);
3776
3755a991 3777 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 3778 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 3779 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3780 return type;
3781}
3782
7aa65bfd 3783/**
3b85c321 3784 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3785 * @mtd: MTD device structure
3786 * @maxchips: number of chips to scan for
3787 * @table: alternative NAND ID table
7aa65bfd 3788 *
8b6e50c9
BN
3789 * This is the first phase of the normal nand_scan() function. It reads the
3790 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3791 *
3b85c321 3792 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3793 */
5e81e88a
DW
3794int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3795 struct nand_flash_dev *table)
7aa65bfd 3796{
bb77082f 3797 int i, nand_maf_id, nand_dev_id;
ace4dfee 3798 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3799 struct nand_flash_dev *type;
3800
7aa65bfd 3801 /* Set the default functions */
bb77082f 3802 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
3803
3804 /* Read the flash type */
bb77082f
CZ
3805 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3806 &nand_dev_id, table);
7aa65bfd
TG
3807
3808 if (IS_ERR(type)) {
b1c6e6db 3809 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3810 pr_warn("No NAND device found\n");
ace4dfee 3811 chip->select_chip(mtd, -1);
7aa65bfd 3812 return PTR_ERR(type);
1da177e4
LT
3813 }
3814
07300164
HS
3815 chip->select_chip(mtd, -1);
3816
7aa65bfd 3817 /* Check for a chip array */
e0c7d767 3818 for (i = 1; i < maxchips; i++) {
ace4dfee 3819 chip->select_chip(mtd, i);
ef89a880
KB
3820 /* See comment in nand_get_flash_type for reset */
3821 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3822 /* Send the command for reading device ID */
ace4dfee 3823 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3824 /* Read manufacturer and device IDs */
ace4dfee 3825 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
3826 nand_dev_id != chip->read_byte(mtd)) {
3827 chip->select_chip(mtd, -1);
1da177e4 3828 break;
07300164
HS
3829 }
3830 chip->select_chip(mtd, -1);
1da177e4
LT
3831 }
3832 if (i > 1)
20171642 3833 pr_info("%d chips detected\n", i);
61b03bd7 3834
1da177e4 3835 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3836 chip->numchips = i;
3837 mtd->size = i * chip->chipsize;
7aa65bfd 3838
3b85c321
DW
3839 return 0;
3840}
7351d3a5 3841EXPORT_SYMBOL(nand_scan_ident);
3b85c321 3842
67a9ad9b
EG
3843/*
3844 * Check if the chip configuration meet the datasheet requirements.
3845
3846 * If our configuration corrects A bits per B bytes and the minimum
3847 * required correction level is X bits per Y bytes, then we must ensure
3848 * both of the following are true:
3849 *
3850 * (1) A / B >= X / Y
3851 * (2) A >= X
3852 *
3853 * Requirement (1) ensures we can correct for the required bitflip density.
3854 * Requirement (2) ensures we can correct even when all bitflips are clumped
3855 * in the same sector.
3856 */
3857static bool nand_ecc_strength_good(struct mtd_info *mtd)
3858{
3859 struct nand_chip *chip = mtd->priv;
3860 struct nand_ecc_ctrl *ecc = &chip->ecc;
3861 int corr, ds_corr;
3862
3863 if (ecc->size == 0 || chip->ecc_step_ds == 0)
3864 /* Not enough information */
3865 return true;
3866
3867 /*
3868 * We get the number of corrected bits per page to compare
3869 * the correction density.
3870 */
3871 corr = (mtd->writesize * ecc->strength) / ecc->size;
3872 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3873
3874 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3875}
3b85c321
DW
3876
3877/**
3878 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3879 * @mtd: MTD device structure
3b85c321 3880 *
8b6e50c9
BN
3881 * This is the second phase of the normal nand_scan() function. It fills out
3882 * all the uninitialized function pointers with the defaults and scans for a
3883 * bad block table if appropriate.
3b85c321
DW
3884 */
3885int nand_scan_tail(struct mtd_info *mtd)
3886{
3887 int i;
3888 struct nand_chip *chip = mtd->priv;
97de79e0 3889 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 3890 struct nand_buffers *nbuf;
3b85c321 3891
e2414f4c
BN
3892 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3893 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3894 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3895
f02ea4e6
HS
3896 if (!(chip->options & NAND_OWN_BUFFERS)) {
3897 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3898 + mtd->oobsize * 3, GFP_KERNEL);
3899 if (!nbuf)
3900 return -ENOMEM;
3901 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3902 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3903 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3904
3905 chip->buffers = nbuf;
3906 } else {
3907 if (!chip->buffers)
3908 return -ENOMEM;
3909 }
4bf63fcb 3910
7dcdcbef 3911 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3912 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3913
7aa65bfd 3914 /*
8b6e50c9 3915 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3916 */
97de79e0 3917 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3918 switch (mtd->oobsize) {
1da177e4 3919 case 8:
97de79e0 3920 ecc->layout = &nand_oob_8;
1da177e4
LT
3921 break;
3922 case 16:
97de79e0 3923 ecc->layout = &nand_oob_16;
1da177e4
LT
3924 break;
3925 case 64:
97de79e0 3926 ecc->layout = &nand_oob_64;
1da177e4 3927 break;
81ec5364 3928 case 128:
97de79e0 3929 ecc->layout = &nand_oob_128;
81ec5364 3930 break;
1da177e4 3931 default:
d0370219
BN
3932 pr_warn("No oob scheme defined for oobsize %d\n",
3933 mtd->oobsize);
1da177e4
LT
3934 BUG();
3935 }
3936 }
61b03bd7 3937
956e944c
DW
3938 if (!chip->write_page)
3939 chip->write_page = nand_write_page;
3940
61b03bd7 3941 /*
8b6e50c9 3942 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3943 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3944 */
956e944c 3945
97de79e0 3946 switch (ecc->mode) {
6e0cb135
SN
3947 case NAND_ECC_HW_OOB_FIRST:
3948 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 3949 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
2ac63d90 3950 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6e0cb135
SN
3951 BUG();
3952 }
97de79e0
HS
3953 if (!ecc->read_page)
3954 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 3955
6dfc6d25 3956 case NAND_ECC_HW:
8b6e50c9 3957 /* Use standard hwecc read page function? */
97de79e0
HS
3958 if (!ecc->read_page)
3959 ecc->read_page = nand_read_page_hwecc;
3960 if (!ecc->write_page)
3961 ecc->write_page = nand_write_page_hwecc;
3962 if (!ecc->read_page_raw)
3963 ecc->read_page_raw = nand_read_page_raw;
3964 if (!ecc->write_page_raw)
3965 ecc->write_page_raw = nand_write_page_raw;
3966 if (!ecc->read_oob)
3967 ecc->read_oob = nand_read_oob_std;
3968 if (!ecc->write_oob)
3969 ecc->write_oob = nand_write_oob_std;
3970 if (!ecc->read_subpage)
3971 ecc->read_subpage = nand_read_subpage;
3972 if (!ecc->write_subpage)
3973 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 3974
6dfc6d25 3975 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
3976 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3977 (!ecc->read_page ||
3978 ecc->read_page == nand_read_page_hwecc ||
3979 !ecc->write_page ||
3980 ecc->write_page == nand_write_page_hwecc)) {
2ac63d90 3981 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6dfc6d25
TG
3982 BUG();
3983 }
8b6e50c9 3984 /* Use standard syndrome read/write page function? */
97de79e0
HS
3985 if (!ecc->read_page)
3986 ecc->read_page = nand_read_page_syndrome;
3987 if (!ecc->write_page)
3988 ecc->write_page = nand_write_page_syndrome;
3989 if (!ecc->read_page_raw)
3990 ecc->read_page_raw = nand_read_page_raw_syndrome;
3991 if (!ecc->write_page_raw)
3992 ecc->write_page_raw = nand_write_page_raw_syndrome;
3993 if (!ecc->read_oob)
3994 ecc->read_oob = nand_read_oob_syndrome;
3995 if (!ecc->write_oob)
3996 ecc->write_oob = nand_write_oob_syndrome;
3997
3998 if (mtd->writesize >= ecc->size) {
3999 if (!ecc->strength) {
e2788c98
MD
4000 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4001 BUG();
4002 }
6dfc6d25 4003 break;
e2788c98 4004 }
2ac63d90
RM
4005 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4006 ecc->size, mtd->writesize);
97de79e0 4007 ecc->mode = NAND_ECC_SOFT;
61b03bd7 4008
6dfc6d25 4009 case NAND_ECC_SOFT:
97de79e0
HS
4010 ecc->calculate = nand_calculate_ecc;
4011 ecc->correct = nand_correct_data;
4012 ecc->read_page = nand_read_page_swecc;
4013 ecc->read_subpage = nand_read_subpage;
4014 ecc->write_page = nand_write_page_swecc;
4015 ecc->read_page_raw = nand_read_page_raw;
4016 ecc->write_page_raw = nand_write_page_raw;
4017 ecc->read_oob = nand_read_oob_std;
4018 ecc->write_oob = nand_write_oob_std;
4019 if (!ecc->size)
4020 ecc->size = 256;
4021 ecc->bytes = 3;
4022 ecc->strength = 1;
1da177e4 4023 break;
61b03bd7 4024
193bd400
ID
4025 case NAND_ECC_SOFT_BCH:
4026 if (!mtd_nand_has_bch()) {
148256fa 4027 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
193bd400
ID
4028 BUG();
4029 }
97de79e0
HS
4030 ecc->calculate = nand_bch_calculate_ecc;
4031 ecc->correct = nand_bch_correct_data;
4032 ecc->read_page = nand_read_page_swecc;
4033 ecc->read_subpage = nand_read_subpage;
4034 ecc->write_page = nand_write_page_swecc;
4035 ecc->read_page_raw = nand_read_page_raw;
4036 ecc->write_page_raw = nand_write_page_raw;
4037 ecc->read_oob = nand_read_oob_std;
4038 ecc->write_oob = nand_write_oob_std;
193bd400
ID
4039 /*
4040 * Board driver should supply ecc.size and ecc.bytes values to
4041 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
4042 * for details. Otherwise, default to 4 bits for large page
4043 * devices.
193bd400 4044 */
97de79e0
HS
4045 if (!ecc->size && (mtd->oobsize >= 64)) {
4046 ecc->size = 512;
438320dd 4047 ecc->bytes = DIV_ROUND_UP(13 * ecc->strength, 8);
193bd400 4048 }
97de79e0
HS
4049 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4050 &ecc->layout);
4051 if (!ecc->priv) {
9a4d4d69 4052 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
4053 BUG();
4054 }
97de79e0 4055 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
193bd400
ID
4056 break;
4057
61b03bd7 4058 case NAND_ECC_NONE:
2ac63d90 4059 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4060 ecc->read_page = nand_read_page_raw;
4061 ecc->write_page = nand_write_page_raw;
4062 ecc->read_oob = nand_read_oob_std;
4063 ecc->read_page_raw = nand_read_page_raw;
4064 ecc->write_page_raw = nand_write_page_raw;
4065 ecc->write_oob = nand_write_oob_std;
4066 ecc->size = mtd->writesize;
4067 ecc->bytes = 0;
4068 ecc->strength = 0;
1da177e4 4069 break;
956e944c 4070
1da177e4 4071 default:
97de79e0 4072 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 4073 BUG();
1da177e4 4074 }
61b03bd7 4075
9ce244b3 4076 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4077 if (!ecc->read_oob_raw)
4078 ecc->read_oob_raw = ecc->read_oob;
4079 if (!ecc->write_oob_raw)
4080 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4081
5bd34c09
TG
4082 /*
4083 * The number of bytes available for a client to place data into
8b6e50c9 4084 * the out of band area.
5bd34c09 4085 */
97de79e0
HS
4086 ecc->layout->oobavail = 0;
4087 for (i = 0; ecc->layout->oobfree[i].length
4088 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4089 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4090 mtd->oobavail = ecc->layout->oobavail;
5bd34c09 4091
54c39e9b
TP
4092 /* ECC sanity check: warn if it's too weak */
4093 if (!nand_ecc_strength_good(mtd))
4094 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4095 mtd->name);
67a9ad9b 4096
7aa65bfd
TG
4097 /*
4098 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4099 * mode.
7aa65bfd 4100 */
97de79e0
HS
4101 ecc->steps = mtd->writesize / ecc->size;
4102 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 4103 pr_warn("Invalid ECC parameters\n");
6dfc6d25 4104 BUG();
1da177e4 4105 }
97de79e0 4106 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4107
8b6e50c9 4108 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4109 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4110 switch (ecc->steps) {
29072b96
TG
4111 case 2:
4112 mtd->subpage_sft = 1;
4113 break;
4114 case 4:
4115 case 8:
81ec5364 4116 case 16:
29072b96
TG
4117 mtd->subpage_sft = 2;
4118 break;
4119 }
4120 }
4121 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4122
04bbd0ea 4123 /* Initialize state */
ace4dfee 4124 chip->state = FL_READY;
1da177e4 4125
1da177e4 4126 /* Invalidate the pagebuffer reference */
ace4dfee 4127 chip->pagebuf = -1;
1da177e4 4128
a5ff4f10 4129 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4130 switch (ecc->mode) {
4131 case NAND_ECC_SOFT:
4132 case NAND_ECC_SOFT_BCH:
4133 if (chip->page_shift > 9)
4134 chip->options |= NAND_SUBPAGE_READ;
4135 break;
4136
4137 default:
4138 break;
4139 }
a5ff4f10 4140
1da177e4 4141 /* Fill in remaining MTD driver data */
963d1c28 4142 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4143 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4144 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4145 mtd->_erase = nand_erase;
4146 mtd->_point = NULL;
4147 mtd->_unpoint = NULL;
4148 mtd->_read = nand_read;
4149 mtd->_write = nand_write;
4150 mtd->_panic_write = panic_nand_write;
4151 mtd->_read_oob = nand_read_oob;
4152 mtd->_write_oob = nand_write_oob;
4153 mtd->_sync = nand_sync;
4154 mtd->_lock = NULL;
4155 mtd->_unlock = NULL;
4156 mtd->_suspend = nand_suspend;
4157 mtd->_resume = nand_resume;
72ea4036 4158 mtd->_reboot = nand_shutdown;
8471bb73 4159 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4160 mtd->_block_isbad = nand_block_isbad;
4161 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4162 mtd->writebufsize = mtd->writesize;
1da177e4 4163
6a918bad 4164 /* propagate ecc info to mtd_info */
97de79e0
HS
4165 mtd->ecclayout = ecc->layout;
4166 mtd->ecc_strength = ecc->strength;
4167 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4168 /*
4169 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4170 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4171 * properly set.
4172 */
4173 if (!mtd->bitflip_threshold)
4174 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 4175
0040bf38 4176 /* Check, if we should skip the bad block table scan */
ace4dfee 4177 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4178 return 0;
1da177e4
LT
4179
4180 /* Build bad block table */
ace4dfee 4181 return chip->scan_bbt(mtd);
1da177e4 4182}
7351d3a5 4183EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4184
8b6e50c9
BN
4185/*
4186 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4187 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4188 * to call us from in-kernel code if the core NAND support is modular.
4189 */
3b85c321
DW
4190#ifdef MODULE
4191#define caller_is_module() (1)
4192#else
4193#define caller_is_module() \
a6e6abd5 4194 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4195#endif
4196
4197/**
4198 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4199 * @mtd: MTD device structure
4200 * @maxchips: number of chips to scan for
3b85c321 4201 *
8b6e50c9
BN
4202 * This fills out all the uninitialized function pointers with the defaults.
4203 * The flash ID is read and the mtd/chip structures are filled with the
4204 * appropriate values. The mtd->owner field must be set to the module of the
4205 * caller.
3b85c321
DW
4206 */
4207int nand_scan(struct mtd_info *mtd, int maxchips)
4208{
4209 int ret;
4210
4211 /* Many callers got this wrong, so check for it for a while... */
4212 if (!mtd->owner && caller_is_module()) {
d0370219 4213 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4214 BUG();
4215 }
4216
5e81e88a 4217 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4218 if (!ret)
4219 ret = nand_scan_tail(mtd);
4220 return ret;
4221}
7351d3a5 4222EXPORT_SYMBOL(nand_scan);
3b85c321 4223
1da177e4 4224/**
61b03bd7 4225 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4226 * @mtd: MTD device structure
4227 */
e0c7d767 4228void nand_release(struct mtd_info *mtd)
1da177e4 4229{
ace4dfee 4230 struct nand_chip *chip = mtd->priv;
1da177e4 4231
193bd400
ID
4232 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4233 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4234
5ffcaf3d 4235 mtd_device_unregister(mtd);
1da177e4 4236
fa671646 4237 /* Free bad block table memory */
ace4dfee 4238 kfree(chip->bbt);
4bf63fcb
DW
4239 if (!(chip->options & NAND_OWN_BUFFERS))
4240 kfree(chip->buffers);
58373ff0
BN
4241
4242 /* Free bad block descriptor memory */
4243 if (chip->badblock_pattern && chip->badblock_pattern->options
4244 & NAND_BBT_DYNAMICSTRUCT)
4245 kfree(chip->badblock_pattern);
1da177e4 4246}
e0c7d767 4247EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
4248
4249static int __init nand_base_init(void)
4250{
4251 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4252 return 0;
4253}
4254
4255static void __exit nand_base_exit(void)
4256{
4257 led_trigger_unregister_simple(nand_led_trigger);
4258}
4259
4260module_init(nand_base_init);
4261module_exit(nand_base_exit);
4262
e0c7d767 4263MODULE_LICENSE("GPL");
7351d3a5
FF
4264MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4265MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4266MODULE_DESCRIPTION("Generic NAND flash driver code");