]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: nand: add ONFI vendor block for Micron
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
61b03bd7 7 *
1da177e4 8 * Additional technical information is available on
8b2b403c 9 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 10 *
1da177e4 11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 13 *
ace4dfee 14 * Credits:
61b03bd7
TG
15 * David Woodhouse for adding multichip support
16 *
1da177e4
LT
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
ace4dfee 20 * TODO:
1da177e4
LT
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 23 * if we have HW ECC support.
c0b8ba7b 24 * BBT table is not serialized, has to be fixed
1da177e4 25 *
1da177e4
LT
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
20171642
EG
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
552d9205 34#include <linux/module.h>
1da177e4
LT
35#include <linux/delay.h>
36#include <linux/errno.h>
7aa65bfd 37#include <linux/err.h>
1da177e4
LT
38#include <linux/sched.h>
39#include <linux/slab.h>
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
193bd400 44#include <linux/mtd/nand_bch.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
8fe833c1 47#include <linux/leds.h>
7351d3a5 48#include <linux/io.h>
1da177e4 49#include <linux/mtd/partitions.h>
1da177e4
LT
50
51/* Define default oob placement schemes for large and small page devices */
5bd34c09 52static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
5bd34c09
TG
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
f8ac0414 59 .length = 2} }
1da177e4
LT
60};
61
5bd34c09 62static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
65 .oobfree = {
66 {.offset = 8,
f8ac0414 67 . length = 8} }
1da177e4
LT
68};
69
5bd34c09 70static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
71 .eccbytes = 24,
72 .eccpos = {
e0c7d767
DW
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
76 .oobfree = {
77 {.offset = 2,
f8ac0414 78 .length = 38} }
1da177e4
LT
79};
80
81ec5364
TG
81static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
f8ac0414 92 .length = 78} }
81ec5364
TG
93};
94
6a8214aa 95static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 96
8593fbc6
TG
97static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
d470a97c 100/*
8e87d782 101 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
102 * compiled away when LED support is disabled.
103 */
104DEFINE_LED_TRIGGER(nand_led_trigger);
105
6fe5a6ac
VS
106static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108{
109 struct nand_chip *chip = mtd->priv;
110 int ret = 0;
111
112 /* Start address must align on block boundary */
daae74ca 113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 114 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
daae74ca 119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 120 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
121 ret = -EINVAL;
122 }
123
6fe5a6ac
VS
124 return ret;
125}
126
1da177e4
LT
127/**
128 * nand_release_device - [GENERIC] release chip
8b6e50c9 129 * @mtd: MTD device structure
61b03bd7 130 *
b0bb6903 131 * Release chip lock and wake up anyone waiting on the device.
1da177e4 132 */
e0c7d767 133static void nand_release_device(struct mtd_info *mtd)
1da177e4 134{
ace4dfee 135 struct nand_chip *chip = mtd->priv;
1da177e4 136
a36ed299 137 /* Release the controller and the chip */
ace4dfee
TG
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
1da177e4
LT
143}
144
145/**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 147 * @mtd: MTD device structure
1da177e4 148 *
7854d3f7 149 * Default read function for 8bit buswidth
1da177e4 150 */
58dd8f2b 151static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 152{
ace4dfee
TG
153 struct nand_chip *chip = mtd->priv;
154 return readb(chip->IO_ADDR_R);
1da177e4
LT
155}
156
1da177e4 157/**
064a7694 158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
7854d3f7 159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 160 * @mtd: MTD device structure
1da177e4 161 *
7854d3f7
BN
162 * Default read function for 16bit buswidth with endianness conversion.
163 *
1da177e4 164 */
58dd8f2b 165static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 166{
ace4dfee
TG
167 struct nand_chip *chip = mtd->priv;
168 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
169}
170
1da177e4
LT
171/**
172 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 173 * @mtd: MTD device structure
1da177e4 174 *
7854d3f7 175 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
176 */
177static u16 nand_read_word(struct mtd_info *mtd)
178{
ace4dfee
TG
179 struct nand_chip *chip = mtd->priv;
180 return readw(chip->IO_ADDR_R);
1da177e4
LT
181}
182
1da177e4
LT
183/**
184 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
185 * @mtd: MTD device structure
186 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
187 *
188 * Default select function for 1 chip devices.
189 */
ace4dfee 190static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 191{
ace4dfee
TG
192 struct nand_chip *chip = mtd->priv;
193
194 switch (chipnr) {
1da177e4 195 case -1:
ace4dfee 196 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
197 break;
198 case 0:
1da177e4
LT
199 break;
200
201 default:
202 BUG();
203 }
204}
205
206/**
207 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
208 * @mtd: MTD device structure
209 * @buf: data buffer
210 * @len: number of bytes to write
1da177e4 211 *
7854d3f7 212 * Default write function for 8bit buswidth.
1da177e4 213 */
58dd8f2b 214static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 215{
ace4dfee 216 struct nand_chip *chip = mtd->priv;
1da177e4 217
76413839 218 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
219}
220
221/**
61b03bd7 222 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
223 * @mtd: MTD device structure
224 * @buf: buffer to store date
225 * @len: number of bytes to read
1da177e4 226 *
7854d3f7 227 * Default read function for 8bit buswidth.
1da177e4 228 */
58dd8f2b 229static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 230{
ace4dfee 231 struct nand_chip *chip = mtd->priv;
1da177e4 232
76413839 233 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
234}
235
1da177e4
LT
236/**
237 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
238 * @mtd: MTD device structure
239 * @buf: data buffer
240 * @len: number of bytes to write
1da177e4 241 *
7854d3f7 242 * Default write function for 16bit buswidth.
1da177e4 243 */
58dd8f2b 244static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 245{
ace4dfee 246 struct nand_chip *chip = mtd->priv;
1da177e4 247 u16 *p = (u16 *) buf;
61b03bd7 248
76413839 249 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
250}
251
252/**
61b03bd7 253 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
254 * @mtd: MTD device structure
255 * @buf: buffer to store date
256 * @len: number of bytes to read
1da177e4 257 *
7854d3f7 258 * Default read function for 16bit buswidth.
1da177e4 259 */
58dd8f2b 260static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 261{
ace4dfee 262 struct nand_chip *chip = mtd->priv;
1da177e4 263 u16 *p = (u16 *) buf;
1da177e4 264
76413839 265 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
266}
267
1da177e4
LT
268/**
269 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
270 * @mtd: MTD device structure
271 * @ofs: offset from device start
272 * @getchip: 0, if the chip is already selected
1da177e4 273 *
61b03bd7 274 * Check, if the block is bad.
1da177e4
LT
275 */
276static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
277{
cdbec050 278 int page, chipnr, res = 0, i = 0;
ace4dfee 279 struct nand_chip *chip = mtd->priv;
1da177e4
LT
280 u16 bad;
281
5fb1549d 282 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
283 ofs += mtd->erasesize - mtd->writesize;
284
1a12f46a
TK
285 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
286
1da177e4 287 if (getchip) {
ace4dfee 288 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 289
6a8214aa 290 nand_get_device(mtd, FL_READING);
1da177e4
LT
291
292 /* Select the NAND device */
ace4dfee 293 chip->select_chip(mtd, chipnr);
1a12f46a 294 }
1da177e4 295
cdbec050
BN
296 do {
297 if (chip->options & NAND_BUSWIDTH_16) {
298 chip->cmdfunc(mtd, NAND_CMD_READOOB,
299 chip->badblockpos & 0xFE, page);
300 bad = cpu_to_le16(chip->read_word(mtd));
301 if (chip->badblockpos & 0x1)
302 bad >>= 8;
303 else
304 bad &= 0xFF;
305 } else {
306 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
307 page);
308 bad = chip->read_byte(mtd);
309 }
310
311 if (likely(chip->badblockbits == 8))
312 res = bad != 0xFF;
e0b58d0a 313 else
cdbec050
BN
314 res = hweight8(bad) < chip->badblockbits;
315 ofs += mtd->writesize;
316 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
317 i++;
318 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 319
b0bb6903
HS
320 if (getchip) {
321 chip->select_chip(mtd, -1);
1da177e4 322 nand_release_device(mtd);
b0bb6903 323 }
61b03bd7 324
1da177e4
LT
325 return res;
326}
327
328/**
5a0edb25 329 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
330 * @mtd: MTD device structure
331 * @ofs: offset from device start
1da177e4 332 *
8b6e50c9 333 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
334 * specific driver. It provides the details for writing a bad block marker to a
335 * block.
336 */
337static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
338{
339 struct nand_chip *chip = mtd->priv;
340 struct mtd_oob_ops ops;
341 uint8_t buf[2] = { 0, 0 };
342 int ret = 0, res, i = 0;
343
344 ops.datbuf = NULL;
345 ops.oobbuf = buf;
346 ops.ooboffs = chip->badblockpos;
347 if (chip->options & NAND_BUSWIDTH_16) {
348 ops.ooboffs &= ~0x01;
349 ops.len = ops.ooblen = 2;
350 } else {
351 ops.len = ops.ooblen = 1;
352 }
353 ops.mode = MTD_OPS_PLACE_OOB;
354
355 /* Write to first/last page(s) if necessary */
356 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
357 ofs += mtd->erasesize - mtd->writesize;
358 do {
359 res = nand_do_write_oob(mtd, ofs, &ops);
360 if (!ret)
361 ret = res;
362
363 i++;
364 ofs += mtd->writesize;
365 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
366
367 return ret;
368}
369
370/**
371 * nand_block_markbad_lowlevel - mark a block bad
372 * @mtd: MTD device structure
373 * @ofs: offset from device start
374 *
375 * This function performs the generic NAND bad block marking steps (i.e., bad
376 * block table(s) and/or marker(s)). We only allow the hardware driver to
377 * specify how to write bad block markers to OOB (chip->block_markbad).
378 *
b32843b7 379 * We try operations in the following order:
e2414f4c 380 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
381 * (2) write bad block marker to OOB area of affected block (unless flag
382 * NAND_BBT_NO_OOB_BBM is present)
383 * (3) update the BBT
384 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 385 * procedures, and dump the error in the end.
1da177e4 386*/
5a0edb25 387static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 388{
ace4dfee 389 struct nand_chip *chip = mtd->priv;
b32843b7 390 int res, ret = 0;
61b03bd7 391
b32843b7 392 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
393 struct erase_info einfo;
394
395 /* Attempt erase before marking OOB */
396 memset(&einfo, 0, sizeof(einfo));
397 einfo.mtd = mtd;
398 einfo.addr = ofs;
daae74ca 399 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 400 nand_erase_nand(mtd, &einfo, 0);
1da177e4 401
b32843b7 402 /* Write bad block marker to OOB */
6a8214aa 403 nand_get_device(mtd, FL_WRITING);
5a0edb25 404 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 405 nand_release_device(mtd);
f1a28c02 406 }
e2414f4c 407
b32843b7
BN
408 /* Mark block bad in BBT */
409 if (chip->bbt) {
410 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
411 if (!ret)
412 ret = res;
413 }
414
f1a28c02
TG
415 if (!ret)
416 mtd->ecc_stats.badblocks++;
c0b8ba7b 417
f1a28c02 418 return ret;
1da177e4
LT
419}
420
61b03bd7 421/**
1da177e4 422 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 423 * @mtd: MTD device structure
1da177e4 424 *
8b6e50c9
BN
425 * Check, if the device is write protected. The function expects, that the
426 * device is already selected.
1da177e4 427 */
e0c7d767 428static int nand_check_wp(struct mtd_info *mtd)
1da177e4 429{
ace4dfee 430 struct nand_chip *chip = mtd->priv;
93edbad6 431
8b6e50c9 432 /* Broken xD cards report WP despite being writable */
93edbad6
ML
433 if (chip->options & NAND_BROKEN_XD)
434 return 0;
435
1da177e4 436 /* Check the WP bit */
ace4dfee
TG
437 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
438 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
439}
440
441/**
442 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
443 * @mtd: MTD device structure
444 * @ofs: offset from device start
445 * @getchip: 0, if the chip is already selected
446 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
447 *
448 * Check, if the block is bad. Either by reading the bad block table or
449 * calling of the scan function.
450 */
2c0a2bed
TG
451static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
452 int allowbbt)
1da177e4 453{
ace4dfee 454 struct nand_chip *chip = mtd->priv;
61b03bd7 455
ace4dfee
TG
456 if (!chip->bbt)
457 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 458
1da177e4 459 /* Return info from the table */
e0c7d767 460 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
461}
462
2af7c653
SK
463/**
464 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
465 * @mtd: MTD device structure
466 * @timeo: Timeout
2af7c653
SK
467 *
468 * Helper function for nand_wait_ready used when needing to wait in interrupt
469 * context.
470 */
471static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
472{
473 struct nand_chip *chip = mtd->priv;
474 int i;
475
476 /* Wait for the device to get ready */
477 for (i = 0; i < timeo; i++) {
478 if (chip->dev_ready(mtd))
479 break;
480 touch_softlockup_watchdog();
481 mdelay(1);
482 }
483}
484
7854d3f7 485/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 486void nand_wait_ready(struct mtd_info *mtd)
3b88775c 487{
ace4dfee 488 struct nand_chip *chip = mtd->priv;
ca6a2489 489 unsigned long timeo = jiffies + msecs_to_jiffies(20);
3b88775c 490
2af7c653
SK
491 /* 400ms timeout */
492 if (in_interrupt() || oops_in_progress)
493 return panic_nand_wait_ready(mtd, 400);
494
8fe833c1 495 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 496 /* Wait until command is processed or timeout occurs */
3b88775c 497 do {
ace4dfee 498 if (chip->dev_ready(mtd))
8fe833c1 499 break;
8446f1d3 500 touch_softlockup_watchdog();
61b03bd7 501 } while (time_before(jiffies, timeo));
8fe833c1 502 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 503}
4b648b02 504EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 505
1da177e4
LT
506/**
507 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
508 * @mtd: MTD device structure
509 * @command: the command to be sent
510 * @column: the column address for this command, -1 if none
511 * @page_addr: the page address for this command, -1 if none
1da177e4 512 *
8b6e50c9 513 * Send command to NAND device. This function is used for small page devices
51148f1f 514 * (512 Bytes per page).
1da177e4 515 */
7abd3ef9
TG
516static void nand_command(struct mtd_info *mtd, unsigned int command,
517 int column, int page_addr)
1da177e4 518{
ace4dfee 519 register struct nand_chip *chip = mtd->priv;
7abd3ef9 520 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 521
8b6e50c9 522 /* Write out the command to the device */
1da177e4
LT
523 if (command == NAND_CMD_SEQIN) {
524 int readcmd;
525
28318776 526 if (column >= mtd->writesize) {
1da177e4 527 /* OOB area */
28318776 528 column -= mtd->writesize;
1da177e4
LT
529 readcmd = NAND_CMD_READOOB;
530 } else if (column < 256) {
531 /* First 256 bytes --> READ0 */
532 readcmd = NAND_CMD_READ0;
533 } else {
534 column -= 256;
535 readcmd = NAND_CMD_READ1;
536 }
ace4dfee 537 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 538 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 539 }
ace4dfee 540 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 541
8b6e50c9 542 /* Address cycle, when necessary */
7abd3ef9
TG
543 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
544 /* Serially input address */
545 if (column != -1) {
546 /* Adjust columns for 16 bit buswidth */
ace4dfee 547 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 548 column >>= 1;
ace4dfee 549 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
550 ctrl &= ~NAND_CTRL_CHANGE;
551 }
552 if (page_addr != -1) {
ace4dfee 553 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 554 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 555 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 556 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
557 if (chip->chipsize > (32 << 20))
558 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 559 }
ace4dfee 560 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
561
562 /*
8b6e50c9
BN
563 * Program and erase have their own busy handlers status and sequential
564 * in needs no delay
e0c7d767 565 */
1da177e4 566 switch (command) {
61b03bd7 567
1da177e4
LT
568 case NAND_CMD_PAGEPROG:
569 case NAND_CMD_ERASE1:
570 case NAND_CMD_ERASE2:
571 case NAND_CMD_SEQIN:
572 case NAND_CMD_STATUS:
573 return;
574
575 case NAND_CMD_RESET:
ace4dfee 576 if (chip->dev_ready)
1da177e4 577 break;
ace4dfee
TG
578 udelay(chip->chip_delay);
579 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 580 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
581 chip->cmd_ctrl(mtd,
582 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
583 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
584 ;
1da177e4
LT
585 return;
586
e0c7d767 587 /* This applies to read commands */
1da177e4 588 default:
61b03bd7 589 /*
1da177e4
LT
590 * If we don't have access to the busy pin, we apply the given
591 * command delay
e0c7d767 592 */
ace4dfee
TG
593 if (!chip->dev_ready) {
594 udelay(chip->chip_delay);
1da177e4 595 return;
61b03bd7 596 }
1da177e4 597 }
8b6e50c9
BN
598 /*
599 * Apply this short delay always to ensure that we do wait tWB in
600 * any case on any machine.
601 */
e0c7d767 602 ndelay(100);
3b88775c
TG
603
604 nand_wait_ready(mtd);
1da177e4
LT
605}
606
607/**
608 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
609 * @mtd: MTD device structure
610 * @command: the command to be sent
611 * @column: the column address for this command, -1 if none
612 * @page_addr: the page address for this command, -1 if none
1da177e4 613 *
7abd3ef9 614 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
615 * devices. We don't have the separate regions as we have in the small page
616 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 617 */
7abd3ef9
TG
618static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
619 int column, int page_addr)
1da177e4 620{
ace4dfee 621 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
622
623 /* Emulate NAND_CMD_READOOB */
624 if (command == NAND_CMD_READOOB) {
28318776 625 column += mtd->writesize;
1da177e4
LT
626 command = NAND_CMD_READ0;
627 }
61b03bd7 628
7abd3ef9 629 /* Command latch cycle */
fb066ada 630 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
631
632 if (column != -1 || page_addr != -1) {
7abd3ef9 633 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
634
635 /* Serially input address */
636 if (column != -1) {
637 /* Adjust columns for 16 bit buswidth */
ace4dfee 638 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 639 column >>= 1;
ace4dfee 640 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 641 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 642 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 643 }
1da177e4 644 if (page_addr != -1) {
ace4dfee
TG
645 chip->cmd_ctrl(mtd, page_addr, ctrl);
646 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 647 NAND_NCE | NAND_ALE);
1da177e4 648 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
649 if (chip->chipsize > (128 << 20))
650 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 651 NAND_NCE | NAND_ALE);
1da177e4 652 }
1da177e4 653 }
ace4dfee 654 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
655
656 /*
8b6e50c9
BN
657 * Program and erase have their own busy handlers status, sequential
658 * in, and deplete1 need no delay.
30f464b7 659 */
1da177e4 660 switch (command) {
61b03bd7 661
1da177e4
LT
662 case NAND_CMD_CACHEDPROG:
663 case NAND_CMD_PAGEPROG:
664 case NAND_CMD_ERASE1:
665 case NAND_CMD_ERASE2:
666 case NAND_CMD_SEQIN:
7bc3312b 667 case NAND_CMD_RNDIN:
1da177e4 668 case NAND_CMD_STATUS:
30f464b7 669 return;
1da177e4
LT
670
671 case NAND_CMD_RESET:
ace4dfee 672 if (chip->dev_ready)
1da177e4 673 break;
ace4dfee 674 udelay(chip->chip_delay);
12efdde3
TG
675 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
676 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
677 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
678 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
679 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
680 ;
1da177e4
LT
681 return;
682
7bc3312b
TG
683 case NAND_CMD_RNDOUT:
684 /* No ready / busy check necessary */
685 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
686 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
687 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
688 NAND_NCE | NAND_CTRL_CHANGE);
689 return;
690
1da177e4 691 case NAND_CMD_READ0:
12efdde3
TG
692 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
693 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
694 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
695 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 696
e0c7d767 697 /* This applies to read commands */
1da177e4 698 default:
61b03bd7 699 /*
1da177e4 700 * If we don't have access to the busy pin, we apply the given
8b6e50c9 701 * command delay.
e0c7d767 702 */
ace4dfee
TG
703 if (!chip->dev_ready) {
704 udelay(chip->chip_delay);
1da177e4 705 return;
61b03bd7 706 }
1da177e4 707 }
3b88775c 708
8b6e50c9
BN
709 /*
710 * Apply this short delay always to ensure that we do wait tWB in
711 * any case on any machine.
712 */
e0c7d767 713 ndelay(100);
3b88775c
TG
714
715 nand_wait_ready(mtd);
1da177e4
LT
716}
717
2af7c653
SK
718/**
719 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
720 * @chip: the nand chip descriptor
721 * @mtd: MTD device structure
722 * @new_state: the state which is requested
2af7c653
SK
723 *
724 * Used when in panic, no locks are taken.
725 */
726static void panic_nand_get_device(struct nand_chip *chip,
727 struct mtd_info *mtd, int new_state)
728{
7854d3f7 729 /* Hardware controller shared among independent devices */
2af7c653
SK
730 chip->controller->active = chip;
731 chip->state = new_state;
732}
733
1da177e4
LT
734/**
735 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
736 * @mtd: MTD device structure
737 * @new_state: the state which is requested
1da177e4
LT
738 *
739 * Get the device and lock it for exclusive access
740 */
2c0a2bed 741static int
6a8214aa 742nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 743{
6a8214aa 744 struct nand_chip *chip = mtd->priv;
ace4dfee
TG
745 spinlock_t *lock = &chip->controller->lock;
746 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 747 DECLARE_WAITQUEUE(wait, current);
7351d3a5 748retry:
0dfc6246
TG
749 spin_lock(lock);
750
b8b3ee9a 751 /* Hardware controller shared among independent devices */
ace4dfee
TG
752 if (!chip->controller->active)
753 chip->controller->active = chip;
a36ed299 754
ace4dfee
TG
755 if (chip->controller->active == chip && chip->state == FL_READY) {
756 chip->state = new_state;
0dfc6246 757 spin_unlock(lock);
962034f4
VW
758 return 0;
759 }
760 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
761 if (chip->controller->active->state == FL_PM_SUSPENDED) {
762 chip->state = FL_PM_SUSPENDED;
763 spin_unlock(lock);
764 return 0;
6b0d9a84 765 }
0dfc6246
TG
766 }
767 set_current_state(TASK_UNINTERRUPTIBLE);
768 add_wait_queue(wq, &wait);
769 spin_unlock(lock);
770 schedule();
771 remove_wait_queue(wq, &wait);
1da177e4
LT
772 goto retry;
773}
774
2af7c653 775/**
8b6e50c9
BN
776 * panic_nand_wait - [GENERIC] wait until the command is done
777 * @mtd: MTD device structure
778 * @chip: NAND chip structure
779 * @timeo: timeout
2af7c653
SK
780 *
781 * Wait for command done. This is a helper function for nand_wait used when
782 * we are in interrupt context. May happen when in panic and trying to write
b595076a 783 * an oops through mtdoops.
2af7c653
SK
784 */
785static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
786 unsigned long timeo)
787{
788 int i;
789 for (i = 0; i < timeo; i++) {
790 if (chip->dev_ready) {
791 if (chip->dev_ready(mtd))
792 break;
793 } else {
794 if (chip->read_byte(mtd) & NAND_STATUS_READY)
795 break;
796 }
797 mdelay(1);
f8ac0414 798 }
2af7c653
SK
799}
800
1da177e4 801/**
8b6e50c9
BN
802 * nand_wait - [DEFAULT] wait until the command is done
803 * @mtd: MTD device structure
804 * @chip: NAND chip structure
1da177e4 805 *
8b6e50c9
BN
806 * Wait for command done. This applies to erase and program only. Erase can
807 * take up to 400ms and program up to 20ms according to general NAND and
808 * SmartMedia specs.
844d3b42 809 */
7bc3312b 810static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
811{
812
7bc3312b 813 int status, state = chip->state;
6d2559f8 814 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
1da177e4 815
8fe833c1
RP
816 led_trigger_event(nand_led_trigger, LED_FULL);
817
8b6e50c9
BN
818 /*
819 * Apply this short delay always to ensure that we do wait tWB in any
820 * case on any machine.
821 */
e0c7d767 822 ndelay(100);
1da177e4 823
14c65786 824 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 825
2af7c653
SK
826 if (in_interrupt() || oops_in_progress)
827 panic_nand_wait(mtd, chip, timeo);
828 else {
6d2559f8 829 timeo = jiffies + msecs_to_jiffies(timeo);
2af7c653
SK
830 while (time_before(jiffies, timeo)) {
831 if (chip->dev_ready) {
832 if (chip->dev_ready(mtd))
833 break;
834 } else {
835 if (chip->read_byte(mtd) & NAND_STATUS_READY)
836 break;
837 }
838 cond_resched();
1da177e4 839 }
1da177e4 840 }
8fe833c1
RP
841 led_trigger_event(nand_led_trigger, LED_OFF);
842
ace4dfee 843 status = (int)chip->read_byte(mtd);
f251b8df
MC
844 /* This can happen if in case of timeout or buggy dev_ready */
845 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
846 return status;
847}
848
7d70f334 849/**
b6d676db 850 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
851 * @mtd: mtd info
852 * @ofs: offset to start unlock from
853 * @len: length to unlock
8b6e50c9
BN
854 * @invert: when = 0, unlock the range of blocks within the lower and
855 * upper boundary address
856 * when = 1, unlock the range of blocks outside the boundaries
857 * of the lower and upper boundary address
7d70f334 858 *
8b6e50c9 859 * Returs unlock status.
7d70f334
VS
860 */
861static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
862 uint64_t len, int invert)
863{
864 int ret = 0;
865 int status, page;
866 struct nand_chip *chip = mtd->priv;
867
868 /* Submit address of first page to unlock */
869 page = ofs >> chip->page_shift;
870 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
871
872 /* Submit address of last page to unlock */
873 page = (ofs + len) >> chip->page_shift;
874 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
875 (page | invert) & chip->pagemask);
876
877 /* Call wait ready function */
878 status = chip->waitfunc(mtd, chip);
7d70f334 879 /* See if device thinks it succeeded */
74830966 880 if (status & NAND_STATUS_FAIL) {
289c0522 881 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
882 __func__, status);
883 ret = -EIO;
884 }
885
886 return ret;
887}
888
889/**
b6d676db 890 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
891 * @mtd: mtd info
892 * @ofs: offset to start unlock from
893 * @len: length to unlock
7d70f334 894 *
8b6e50c9 895 * Returns unlock status.
7d70f334
VS
896 */
897int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
898{
899 int ret = 0;
900 int chipnr;
901 struct nand_chip *chip = mtd->priv;
902
289c0522 903 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
904 __func__, (unsigned long long)ofs, len);
905
906 if (check_offs_len(mtd, ofs, len))
907 ret = -EINVAL;
908
909 /* Align to last block address if size addresses end of the device */
910 if (ofs + len == mtd->size)
911 len -= mtd->erasesize;
912
6a8214aa 913 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
914
915 /* Shift to get chip number */
916 chipnr = ofs >> chip->chip_shift;
917
918 chip->select_chip(mtd, chipnr);
919
920 /* Check, if it is write protected */
921 if (nand_check_wp(mtd)) {
289c0522 922 pr_debug("%s: device is write protected!\n",
7d70f334
VS
923 __func__);
924 ret = -EIO;
925 goto out;
926 }
927
928 ret = __nand_unlock(mtd, ofs, len, 0);
929
930out:
b0bb6903 931 chip->select_chip(mtd, -1);
7d70f334
VS
932 nand_release_device(mtd);
933
934 return ret;
935}
7351d3a5 936EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
937
938/**
b6d676db 939 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
940 * @mtd: mtd info
941 * @ofs: offset to start unlock from
942 * @len: length to unlock
7d70f334 943 *
8b6e50c9
BN
944 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
945 * have this feature, but it allows only to lock all blocks, not for specified
946 * range for block. Implementing 'lock' feature by making use of 'unlock', for
947 * now.
7d70f334 948 *
8b6e50c9 949 * Returns lock status.
7d70f334
VS
950 */
951int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
952{
953 int ret = 0;
954 int chipnr, status, page;
955 struct nand_chip *chip = mtd->priv;
956
289c0522 957 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
958 __func__, (unsigned long long)ofs, len);
959
960 if (check_offs_len(mtd, ofs, len))
961 ret = -EINVAL;
962
6a8214aa 963 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
964
965 /* Shift to get chip number */
966 chipnr = ofs >> chip->chip_shift;
967
968 chip->select_chip(mtd, chipnr);
969
970 /* Check, if it is write protected */
971 if (nand_check_wp(mtd)) {
289c0522 972 pr_debug("%s: device is write protected!\n",
7d70f334
VS
973 __func__);
974 status = MTD_ERASE_FAILED;
975 ret = -EIO;
976 goto out;
977 }
978
979 /* Submit address of first page to lock */
980 page = ofs >> chip->page_shift;
981 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
982
983 /* Call wait ready function */
984 status = chip->waitfunc(mtd, chip);
7d70f334 985 /* See if device thinks it succeeded */
74830966 986 if (status & NAND_STATUS_FAIL) {
289c0522 987 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
988 __func__, status);
989 ret = -EIO;
990 goto out;
991 }
992
993 ret = __nand_unlock(mtd, ofs, len, 0x1);
994
995out:
b0bb6903 996 chip->select_chip(mtd, -1);
7d70f334
VS
997 nand_release_device(mtd);
998
999 return ret;
1000}
7351d3a5 1001EXPORT_SYMBOL(nand_lock);
7d70f334 1002
8593fbc6 1003/**
7854d3f7 1004 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1005 * @mtd: mtd info structure
1006 * @chip: nand chip info structure
1007 * @buf: buffer to store read data
1fbb938d 1008 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1009 * @page: page number to read
52ff49df 1010 *
7854d3f7 1011 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1012 */
1013static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1014 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1015{
1016 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1017 if (oob_required)
1018 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1019 return 0;
1020}
1021
52ff49df 1022/**
7854d3f7 1023 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1024 * @mtd: mtd info structure
1025 * @chip: nand chip info structure
1026 * @buf: buffer to store read data
1fbb938d 1027 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1028 * @page: page number to read
52ff49df
DB
1029 *
1030 * We need a special oob layout and handling even when OOB isn't used.
1031 */
7351d3a5 1032static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1033 struct nand_chip *chip, uint8_t *buf,
1034 int oob_required, int page)
52ff49df
DB
1035{
1036 int eccsize = chip->ecc.size;
1037 int eccbytes = chip->ecc.bytes;
1038 uint8_t *oob = chip->oob_poi;
1039 int steps, size;
1040
1041 for (steps = chip->ecc.steps; steps > 0; steps--) {
1042 chip->read_buf(mtd, buf, eccsize);
1043 buf += eccsize;
1044
1045 if (chip->ecc.prepad) {
1046 chip->read_buf(mtd, oob, chip->ecc.prepad);
1047 oob += chip->ecc.prepad;
1048 }
1049
1050 chip->read_buf(mtd, oob, eccbytes);
1051 oob += eccbytes;
1052
1053 if (chip->ecc.postpad) {
1054 chip->read_buf(mtd, oob, chip->ecc.postpad);
1055 oob += chip->ecc.postpad;
1056 }
1057 }
1058
1059 size = mtd->oobsize - (oob - chip->oob_poi);
1060 if (size)
1061 chip->read_buf(mtd, oob, size);
1062
1063 return 0;
1064}
1065
1da177e4 1066/**
7854d3f7 1067 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1068 * @mtd: mtd info structure
1069 * @chip: nand chip info structure
1070 * @buf: buffer to store read data
1fbb938d 1071 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1072 * @page: page number to read
068e3c0a 1073 */
f5bbdacc 1074static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1075 uint8_t *buf, int oob_required, int page)
1da177e4 1076{
f5bbdacc
TG
1077 int i, eccsize = chip->ecc.size;
1078 int eccbytes = chip->ecc.bytes;
1079 int eccsteps = chip->ecc.steps;
1080 uint8_t *p = buf;
4bf63fcb
DW
1081 uint8_t *ecc_calc = chip->buffers->ecccalc;
1082 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1083 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1084 unsigned int max_bitflips = 0;
f5bbdacc 1085
1fbb938d 1086 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1087
1088 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1089 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1090
1091 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1092 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1093
1094 eccsteps = chip->ecc.steps;
1095 p = buf;
1096
1097 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1098 int stat;
1099
1100 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1101 if (stat < 0) {
f5bbdacc 1102 mtd->ecc_stats.failed++;
3f91e94f 1103 } else {
f5bbdacc 1104 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1105 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1106 }
f5bbdacc 1107 }
3f91e94f 1108 return max_bitflips;
22c60f5f 1109}
1da177e4 1110
3d459559 1111/**
837a6ba4 1112 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1113 * @mtd: mtd info structure
1114 * @chip: nand chip info structure
1115 * @data_offs: offset of requested data within the page
1116 * @readlen: data length
1117 * @bufpoi: buffer to store read data
3d459559 1118 */
7351d3a5
FF
1119static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1120 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1121{
1122 int start_step, end_step, num_steps;
1123 uint32_t *eccpos = chip->ecc.layout->eccpos;
1124 uint8_t *p;
1125 int data_col_addr, i, gaps = 0;
1126 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1127 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1128 int index = 0;
3f91e94f 1129 unsigned int max_bitflips = 0;
3d459559 1130
7854d3f7 1131 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1132 start_step = data_offs / chip->ecc.size;
1133 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1134 num_steps = end_step - start_step + 1;
1135
8b6e50c9 1136 /* Data size aligned to ECC ecc.size */
3d459559
AK
1137 datafrag_len = num_steps * chip->ecc.size;
1138 eccfrag_len = num_steps * chip->ecc.bytes;
1139
1140 data_col_addr = start_step * chip->ecc.size;
1141 /* If we read not a page aligned data */
1142 if (data_col_addr != 0)
1143 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1144
1145 p = bufpoi + data_col_addr;
1146 chip->read_buf(mtd, p, datafrag_len);
1147
8b6e50c9 1148 /* Calculate ECC */
3d459559
AK
1149 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1150 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1151
8b6e50c9
BN
1152 /*
1153 * The performance is faster if we position offsets according to
7854d3f7 1154 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1155 */
3d459559
AK
1156 for (i = 0; i < eccfrag_len - 1; i++) {
1157 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1158 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1159 gaps = 1;
1160 break;
1161 }
1162 }
1163 if (gaps) {
1164 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1165 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1166 } else {
8b6e50c9 1167 /*
7854d3f7 1168 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1169 * about buswidth alignment in read_buf.
1170 */
7351d3a5
FF
1171 index = start_step * chip->ecc.bytes;
1172
1173 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1174 aligned_len = eccfrag_len;
7351d3a5 1175 if (eccpos[index] & (busw - 1))
3d459559 1176 aligned_len++;
7351d3a5 1177 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1178 aligned_len++;
1179
7351d3a5
FF
1180 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1181 mtd->writesize + aligned_pos, -1);
3d459559
AK
1182 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1183 }
1184
1185 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1186 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1187
1188 p = bufpoi + data_col_addr;
1189 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1190 int stat;
1191
7351d3a5
FF
1192 stat = chip->ecc.correct(mtd, p,
1193 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1194 if (stat < 0) {
3d459559 1195 mtd->ecc_stats.failed++;
3f91e94f 1196 } else {
3d459559 1197 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1198 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1199 }
3d459559 1200 }
3f91e94f 1201 return max_bitflips;
3d459559
AK
1202}
1203
068e3c0a 1204/**
7854d3f7 1205 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1206 * @mtd: mtd info structure
1207 * @chip: nand chip info structure
1208 * @buf: buffer to store read data
1fbb938d 1209 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1210 * @page: page number to read
068e3c0a 1211 *
7854d3f7 1212 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1213 */
f5bbdacc 1214static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1215 uint8_t *buf, int oob_required, int page)
1da177e4 1216{
f5bbdacc
TG
1217 int i, eccsize = chip->ecc.size;
1218 int eccbytes = chip->ecc.bytes;
1219 int eccsteps = chip->ecc.steps;
1220 uint8_t *p = buf;
4bf63fcb
DW
1221 uint8_t *ecc_calc = chip->buffers->ecccalc;
1222 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1223 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1224 unsigned int max_bitflips = 0;
f5bbdacc
TG
1225
1226 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1227 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1228 chip->read_buf(mtd, p, eccsize);
1229 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1230 }
f75e5097 1231 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1232
f5bbdacc 1233 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1234 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1235
f5bbdacc
TG
1236 eccsteps = chip->ecc.steps;
1237 p = buf;
61b03bd7 1238
f5bbdacc
TG
1239 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1240 int stat;
1da177e4 1241
f5bbdacc 1242 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1243 if (stat < 0) {
f5bbdacc 1244 mtd->ecc_stats.failed++;
3f91e94f 1245 } else {
f5bbdacc 1246 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1247 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1248 }
f5bbdacc 1249 }
3f91e94f 1250 return max_bitflips;
f5bbdacc 1251}
1da177e4 1252
6e0cb135 1253/**
7854d3f7 1254 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1255 * @mtd: mtd info structure
1256 * @chip: nand chip info structure
1257 * @buf: buffer to store read data
1fbb938d 1258 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1259 * @page: page number to read
6e0cb135 1260 *
8b6e50c9
BN
1261 * Hardware ECC for large page chips, require OOB to be read first. For this
1262 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1263 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1264 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1265 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1266 */
1267static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1268 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1269{
1270 int i, eccsize = chip->ecc.size;
1271 int eccbytes = chip->ecc.bytes;
1272 int eccsteps = chip->ecc.steps;
1273 uint8_t *p = buf;
1274 uint8_t *ecc_code = chip->buffers->ecccode;
1275 uint32_t *eccpos = chip->ecc.layout->eccpos;
1276 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1277 unsigned int max_bitflips = 0;
6e0cb135
SN
1278
1279 /* Read the OOB area first */
1280 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1281 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1282 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1283
1284 for (i = 0; i < chip->ecc.total; i++)
1285 ecc_code[i] = chip->oob_poi[eccpos[i]];
1286
1287 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1288 int stat;
1289
1290 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1291 chip->read_buf(mtd, p, eccsize);
1292 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1293
1294 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1295 if (stat < 0) {
6e0cb135 1296 mtd->ecc_stats.failed++;
3f91e94f 1297 } else {
6e0cb135 1298 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1299 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1300 }
6e0cb135 1301 }
3f91e94f 1302 return max_bitflips;
6e0cb135
SN
1303}
1304
f5bbdacc 1305/**
7854d3f7 1306 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1307 * @mtd: mtd info structure
1308 * @chip: nand chip info structure
1309 * @buf: buffer to store read data
1fbb938d 1310 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1311 * @page: page number to read
f5bbdacc 1312 *
8b6e50c9
BN
1313 * The hw generator calculates the error syndrome automatically. Therefore we
1314 * need a special oob layout and handling.
f5bbdacc
TG
1315 */
1316static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1317 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1318{
1319 int i, eccsize = chip->ecc.size;
1320 int eccbytes = chip->ecc.bytes;
1321 int eccsteps = chip->ecc.steps;
1322 uint8_t *p = buf;
f75e5097 1323 uint8_t *oob = chip->oob_poi;
3f91e94f 1324 unsigned int max_bitflips = 0;
1da177e4 1325
f5bbdacc
TG
1326 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1327 int stat;
61b03bd7 1328
f5bbdacc
TG
1329 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1330 chip->read_buf(mtd, p, eccsize);
1da177e4 1331
f5bbdacc
TG
1332 if (chip->ecc.prepad) {
1333 chip->read_buf(mtd, oob, chip->ecc.prepad);
1334 oob += chip->ecc.prepad;
1335 }
1da177e4 1336
f5bbdacc
TG
1337 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1338 chip->read_buf(mtd, oob, eccbytes);
1339 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1340
3f91e94f 1341 if (stat < 0) {
f5bbdacc 1342 mtd->ecc_stats.failed++;
3f91e94f 1343 } else {
f5bbdacc 1344 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1345 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1346 }
61b03bd7 1347
f5bbdacc 1348 oob += eccbytes;
1da177e4 1349
f5bbdacc
TG
1350 if (chip->ecc.postpad) {
1351 chip->read_buf(mtd, oob, chip->ecc.postpad);
1352 oob += chip->ecc.postpad;
61b03bd7 1353 }
f5bbdacc 1354 }
1da177e4 1355
f5bbdacc 1356 /* Calculate remaining oob bytes */
7e4178f9 1357 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1358 if (i)
1359 chip->read_buf(mtd, oob, i);
61b03bd7 1360
3f91e94f 1361 return max_bitflips;
f5bbdacc 1362}
1da177e4 1363
f5bbdacc 1364/**
7854d3f7 1365 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1366 * @chip: nand chip structure
1367 * @oob: oob destination address
1368 * @ops: oob ops structure
1369 * @len: size of oob to transfer
8593fbc6
TG
1370 */
1371static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1372 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1373{
f8ac0414 1374 switch (ops->mode) {
8593fbc6 1375
0612b9dd
BN
1376 case MTD_OPS_PLACE_OOB:
1377 case MTD_OPS_RAW:
8593fbc6
TG
1378 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1379 return oob + len;
1380
0612b9dd 1381 case MTD_OPS_AUTO_OOB: {
8593fbc6 1382 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1383 uint32_t boffs = 0, roffs = ops->ooboffs;
1384 size_t bytes = 0;
8593fbc6 1385
f8ac0414 1386 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1387 /* Read request not from offset 0? */
7bc3312b
TG
1388 if (unlikely(roffs)) {
1389 if (roffs >= free->length) {
1390 roffs -= free->length;
1391 continue;
1392 }
1393 boffs = free->offset + roffs;
1394 bytes = min_t(size_t, len,
1395 (free->length - roffs));
1396 roffs = 0;
1397 } else {
1398 bytes = min_t(size_t, len, free->length);
1399 boffs = free->offset;
1400 }
1401 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1402 oob += bytes;
1403 }
1404 return oob;
1405 }
1406 default:
1407 BUG();
1408 }
1409 return NULL;
1410}
1411
1412/**
7854d3f7 1413 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1414 * @mtd: MTD device structure
1415 * @from: offset to read from
1416 * @ops: oob ops structure
f5bbdacc
TG
1417 *
1418 * Internal function. Called with chip held.
1419 */
8593fbc6
TG
1420static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1421 struct mtd_oob_ops *ops)
f5bbdacc 1422{
e47f3db4 1423 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc 1424 struct nand_chip *chip = mtd->priv;
f5bbdacc 1425 int ret = 0;
8593fbc6 1426 uint32_t readlen = ops->len;
7014568b 1427 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1428 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1429 mtd->oobavail : mtd->oobsize;
1430
8593fbc6 1431 uint8_t *bufpoi, *oob, *buf;
edbc4540 1432 unsigned int max_bitflips = 0;
b72f3dfb 1433 bool ecc_fail = false;
1da177e4 1434
f5bbdacc
TG
1435 chipnr = (int)(from >> chip->chip_shift);
1436 chip->select_chip(mtd, chipnr);
61b03bd7 1437
f5bbdacc
TG
1438 realpage = (int)(from >> chip->page_shift);
1439 page = realpage & chip->pagemask;
1da177e4 1440
f5bbdacc 1441 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1442
8593fbc6
TG
1443 buf = ops->datbuf;
1444 oob = ops->oobbuf;
e47f3db4 1445 oob_required = oob ? 1 : 0;
8593fbc6 1446
f8ac0414 1447 while (1) {
b72f3dfb
BN
1448 unsigned int ecc_failures = mtd->ecc_stats.failed;
1449
f5bbdacc
TG
1450 bytes = min(mtd->writesize - col, readlen);
1451 aligned = (bytes == mtd->writesize);
61b03bd7 1452
8b6e50c9 1453 /* Is the current page in the buffer? */
8593fbc6 1454 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1455 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1456
c00a0991 1457 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1458
edbc4540
MD
1459 /*
1460 * Now read the page into the buffer. Absent an error,
1461 * the read methods return max bitflips per ecc step.
1462 */
0612b9dd 1463 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1464 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1465 oob_required,
1466 page);
a5ff4f10
JW
1467 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1468 !oob)
7351d3a5
FF
1469 ret = chip->ecc.read_subpage(mtd, chip,
1470 col, bytes, bufpoi);
956e944c 1471 else
46a8cf2d 1472 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1473 oob_required, page);
6d77b9d0
BN
1474 if (ret < 0) {
1475 if (!aligned)
1476 /* Invalidate page cache */
1477 chip->pagebuf = -1;
1da177e4 1478 break;
6d77b9d0 1479 }
f5bbdacc 1480
edbc4540
MD
1481 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1482
f5bbdacc
TG
1483 /* Transfer not aligned data */
1484 if (!aligned) {
a5ff4f10 1485 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1486 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1487 (ops->mode != MTD_OPS_RAW)) {
3d459559 1488 chip->pagebuf = realpage;
edbc4540
MD
1489 chip->pagebuf_bitflips = ret;
1490 } else {
6d77b9d0
BN
1491 /* Invalidate page cache */
1492 chip->pagebuf = -1;
edbc4540 1493 }
4bf63fcb 1494 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1495 }
1496
8593fbc6
TG
1497 buf += bytes;
1498
1499 if (unlikely(oob)) {
b64d39d8
ML
1500 int toread = min(oobreadlen, max_oobsize);
1501
1502 if (toread) {
1503 oob = nand_transfer_oob(chip,
1504 oob, ops, toread);
1505 oobreadlen -= toread;
1506 }
8593fbc6 1507 }
5bc7c33c
BN
1508
1509 if (chip->options & NAND_NEED_READRDY) {
1510 /* Apply delay or wait for ready/busy pin */
1511 if (!chip->dev_ready)
1512 udelay(chip->chip_delay);
1513 else
1514 nand_wait_ready(mtd);
1515 }
b72f3dfb
BN
1516
1517 if (mtd->ecc_stats.failed - ecc_failures)
1518 ecc_fail = true;
8593fbc6 1519 } else {
4bf63fcb 1520 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1521 buf += bytes;
edbc4540
MD
1522 max_bitflips = max_t(unsigned int, max_bitflips,
1523 chip->pagebuf_bitflips);
8593fbc6 1524 }
1da177e4 1525
f5bbdacc 1526 readlen -= bytes;
61b03bd7 1527
f5bbdacc 1528 if (!readlen)
61b03bd7 1529 break;
1da177e4 1530
8b6e50c9 1531 /* For subsequent reads align to page boundary */
1da177e4
LT
1532 col = 0;
1533 /* Increment page address */
1534 realpage++;
1535
ace4dfee 1536 page = realpage & chip->pagemask;
1da177e4
LT
1537 /* Check, if we cross a chip boundary */
1538 if (!page) {
1539 chipnr++;
ace4dfee
TG
1540 chip->select_chip(mtd, -1);
1541 chip->select_chip(mtd, chipnr);
1da177e4 1542 }
1da177e4 1543 }
b0bb6903 1544 chip->select_chip(mtd, -1);
1da177e4 1545
8593fbc6 1546 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1547 if (oob)
1548 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1549
3f91e94f 1550 if (ret < 0)
f5bbdacc
TG
1551 return ret;
1552
b72f3dfb 1553 if (ecc_fail)
9a1fcdfd
TG
1554 return -EBADMSG;
1555
edbc4540 1556 return max_bitflips;
f5bbdacc
TG
1557}
1558
1559/**
25985edc 1560 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1561 * @mtd: MTD device structure
1562 * @from: offset to read from
1563 * @len: number of bytes to read
1564 * @retlen: pointer to variable to store the number of read bytes
1565 * @buf: the databuffer to put data
f5bbdacc 1566 *
8b6e50c9 1567 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1568 */
1569static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1570 size_t *retlen, uint8_t *buf)
1571{
4a89ff88 1572 struct mtd_oob_ops ops;
f5bbdacc
TG
1573 int ret;
1574
6a8214aa 1575 nand_get_device(mtd, FL_READING);
4a89ff88
BN
1576 ops.len = len;
1577 ops.datbuf = buf;
1578 ops.oobbuf = NULL;
11041ae6 1579 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1580 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1581 *retlen = ops.retlen;
f5bbdacc 1582 nand_release_device(mtd);
f5bbdacc 1583 return ret;
1da177e4
LT
1584}
1585
7bc3312b 1586/**
7854d3f7 1587 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1588 * @mtd: mtd info structure
1589 * @chip: nand chip info structure
1590 * @page: page number to read
7bc3312b
TG
1591 */
1592static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1593 int page)
7bc3312b 1594{
5c2ffb11 1595 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1596 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1597 return 0;
7bc3312b
TG
1598}
1599
1600/**
7854d3f7 1601 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1602 * with syndromes
8b6e50c9
BN
1603 * @mtd: mtd info structure
1604 * @chip: nand chip info structure
1605 * @page: page number to read
7bc3312b
TG
1606 */
1607static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1608 int page)
7bc3312b
TG
1609{
1610 uint8_t *buf = chip->oob_poi;
1611 int length = mtd->oobsize;
1612 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1613 int eccsize = chip->ecc.size;
1614 uint8_t *bufpoi = buf;
1615 int i, toread, sndrnd = 0, pos;
1616
1617 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1618 for (i = 0; i < chip->ecc.steps; i++) {
1619 if (sndrnd) {
1620 pos = eccsize + i * (eccsize + chunk);
1621 if (mtd->writesize > 512)
1622 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1623 else
1624 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1625 } else
1626 sndrnd = 1;
1627 toread = min_t(int, length, chunk);
1628 chip->read_buf(mtd, bufpoi, toread);
1629 bufpoi += toread;
1630 length -= toread;
1631 }
1632 if (length > 0)
1633 chip->read_buf(mtd, bufpoi, length);
1634
5c2ffb11 1635 return 0;
7bc3312b
TG
1636}
1637
1638/**
7854d3f7 1639 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1640 * @mtd: mtd info structure
1641 * @chip: nand chip info structure
1642 * @page: page number to write
7bc3312b
TG
1643 */
1644static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1645 int page)
1646{
1647 int status = 0;
1648 const uint8_t *buf = chip->oob_poi;
1649 int length = mtd->oobsize;
1650
1651 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1652 chip->write_buf(mtd, buf, length);
1653 /* Send command to program the OOB data */
1654 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1655
1656 status = chip->waitfunc(mtd, chip);
1657
0d420f9d 1658 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1659}
1660
1661/**
7854d3f7 1662 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1663 * with syndrome - only for large page flash
1664 * @mtd: mtd info structure
1665 * @chip: nand chip info structure
1666 * @page: page number to write
7bc3312b
TG
1667 */
1668static int nand_write_oob_syndrome(struct mtd_info *mtd,
1669 struct nand_chip *chip, int page)
1670{
1671 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1672 int eccsize = chip->ecc.size, length = mtd->oobsize;
1673 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1674 const uint8_t *bufpoi = chip->oob_poi;
1675
1676 /*
1677 * data-ecc-data-ecc ... ecc-oob
1678 * or
1679 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1680 */
1681 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1682 pos = steps * (eccsize + chunk);
1683 steps = 0;
1684 } else
8b0036ee 1685 pos = eccsize;
7bc3312b
TG
1686
1687 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1688 for (i = 0; i < steps; i++) {
1689 if (sndcmd) {
1690 if (mtd->writesize <= 512) {
1691 uint32_t fill = 0xFFFFFFFF;
1692
1693 len = eccsize;
1694 while (len > 0) {
1695 int num = min_t(int, len, 4);
1696 chip->write_buf(mtd, (uint8_t *)&fill,
1697 num);
1698 len -= num;
1699 }
1700 } else {
1701 pos = eccsize + i * (eccsize + chunk);
1702 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1703 }
1704 } else
1705 sndcmd = 1;
1706 len = min_t(int, length, chunk);
1707 chip->write_buf(mtd, bufpoi, len);
1708 bufpoi += len;
1709 length -= len;
1710 }
1711 if (length > 0)
1712 chip->write_buf(mtd, bufpoi, length);
1713
1714 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1715 status = chip->waitfunc(mtd, chip);
1716
1717 return status & NAND_STATUS_FAIL ? -EIO : 0;
1718}
1719
1da177e4 1720/**
7854d3f7 1721 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1722 * @mtd: MTD device structure
1723 * @from: offset to read from
1724 * @ops: oob operations description structure
1da177e4 1725 *
8b6e50c9 1726 * NAND read out-of-band data from the spare area.
1da177e4 1727 */
8593fbc6
TG
1728static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1729 struct mtd_oob_ops *ops)
1da177e4 1730{
c00a0991 1731 int page, realpage, chipnr;
ace4dfee 1732 struct nand_chip *chip = mtd->priv;
041e4575 1733 struct mtd_ecc_stats stats;
7014568b
VW
1734 int readlen = ops->ooblen;
1735 int len;
7bc3312b 1736 uint8_t *buf = ops->oobbuf;
1951f2f7 1737 int ret = 0;
61b03bd7 1738
289c0522 1739 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1740 __func__, (unsigned long long)from, readlen);
1da177e4 1741
041e4575
BN
1742 stats = mtd->ecc_stats;
1743
0612b9dd 1744 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1745 len = chip->ecc.layout->oobavail;
03736155
AH
1746 else
1747 len = mtd->oobsize;
1748
1749 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1750 pr_debug("%s: attempt to start read outside oob\n",
1751 __func__);
03736155
AH
1752 return -EINVAL;
1753 }
1754
1755 /* Do not allow reads past end of device */
1756 if (unlikely(from >= mtd->size ||
1757 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1758 (from >> chip->page_shift)) * len)) {
289c0522
BN
1759 pr_debug("%s: attempt to read beyond end of device\n",
1760 __func__);
03736155
AH
1761 return -EINVAL;
1762 }
7014568b 1763
7314e9e7 1764 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1765 chip->select_chip(mtd, chipnr);
1da177e4 1766
7314e9e7
TG
1767 /* Shift to get page */
1768 realpage = (int)(from >> chip->page_shift);
1769 page = realpage & chip->pagemask;
1da177e4 1770
f8ac0414 1771 while (1) {
0612b9dd 1772 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1773 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1774 else
1951f2f7
SL
1775 ret = chip->ecc.read_oob(mtd, chip, page);
1776
1777 if (ret < 0)
1778 break;
7014568b
VW
1779
1780 len = min(len, readlen);
1781 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1782
5bc7c33c
BN
1783 if (chip->options & NAND_NEED_READRDY) {
1784 /* Apply delay or wait for ready/busy pin */
1785 if (!chip->dev_ready)
1786 udelay(chip->chip_delay);
1787 else
1788 nand_wait_ready(mtd);
1789 }
1790
7014568b 1791 readlen -= len;
0d420f9d
SZ
1792 if (!readlen)
1793 break;
1794
7314e9e7
TG
1795 /* Increment page address */
1796 realpage++;
1797
1798 page = realpage & chip->pagemask;
1799 /* Check, if we cross a chip boundary */
1800 if (!page) {
1801 chipnr++;
1802 chip->select_chip(mtd, -1);
1803 chip->select_chip(mtd, chipnr);
1da177e4
LT
1804 }
1805 }
b0bb6903 1806 chip->select_chip(mtd, -1);
1da177e4 1807
1951f2f7
SL
1808 ops->oobretlen = ops->ooblen - readlen;
1809
1810 if (ret < 0)
1811 return ret;
041e4575
BN
1812
1813 if (mtd->ecc_stats.failed - stats.failed)
1814 return -EBADMSG;
1815
1816 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1817}
1818
1819/**
8593fbc6 1820 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1821 * @mtd: MTD device structure
1822 * @from: offset to read from
1823 * @ops: oob operation description structure
1da177e4 1824 *
8b6e50c9 1825 * NAND read data and/or out-of-band data.
1da177e4 1826 */
8593fbc6
TG
1827static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1828 struct mtd_oob_ops *ops)
1da177e4 1829{
8593fbc6
TG
1830 int ret = -ENOTSUPP;
1831
1832 ops->retlen = 0;
1da177e4
LT
1833
1834 /* Do not allow reads past end of device */
7014568b 1835 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1836 pr_debug("%s: attempt to read beyond end of device\n",
1837 __func__);
1da177e4
LT
1838 return -EINVAL;
1839 }
1840
6a8214aa 1841 nand_get_device(mtd, FL_READING);
1da177e4 1842
f8ac0414 1843 switch (ops->mode) {
0612b9dd
BN
1844 case MTD_OPS_PLACE_OOB:
1845 case MTD_OPS_AUTO_OOB:
1846 case MTD_OPS_RAW:
8593fbc6 1847 break;
1da177e4 1848
8593fbc6
TG
1849 default:
1850 goto out;
1851 }
1da177e4 1852
8593fbc6
TG
1853 if (!ops->datbuf)
1854 ret = nand_do_read_oob(mtd, from, ops);
1855 else
1856 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1857
7351d3a5 1858out:
8593fbc6
TG
1859 nand_release_device(mtd);
1860 return ret;
1861}
61b03bd7 1862
1da177e4 1863
8593fbc6 1864/**
7854d3f7 1865 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1866 * @mtd: mtd info structure
1867 * @chip: nand chip info structure
1868 * @buf: data buffer
1fbb938d 1869 * @oob_required: must write chip->oob_poi to OOB
52ff49df 1870 *
7854d3f7 1871 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1872 */
fdbad98d 1873static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1874 const uint8_t *buf, int oob_required)
8593fbc6
TG
1875{
1876 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1877 if (oob_required)
1878 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1879
1880 return 0;
1da177e4
LT
1881}
1882
52ff49df 1883/**
7854d3f7 1884 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1885 * @mtd: mtd info structure
1886 * @chip: nand chip info structure
1887 * @buf: data buffer
1fbb938d 1888 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
1889 *
1890 * We need a special oob layout and handling even when ECC isn't checked.
1891 */
fdbad98d 1892static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 1893 struct nand_chip *chip,
1fbb938d 1894 const uint8_t *buf, int oob_required)
52ff49df
DB
1895{
1896 int eccsize = chip->ecc.size;
1897 int eccbytes = chip->ecc.bytes;
1898 uint8_t *oob = chip->oob_poi;
1899 int steps, size;
1900
1901 for (steps = chip->ecc.steps; steps > 0; steps--) {
1902 chip->write_buf(mtd, buf, eccsize);
1903 buf += eccsize;
1904
1905 if (chip->ecc.prepad) {
1906 chip->write_buf(mtd, oob, chip->ecc.prepad);
1907 oob += chip->ecc.prepad;
1908 }
1909
1910 chip->read_buf(mtd, oob, eccbytes);
1911 oob += eccbytes;
1912
1913 if (chip->ecc.postpad) {
1914 chip->write_buf(mtd, oob, chip->ecc.postpad);
1915 oob += chip->ecc.postpad;
1916 }
1917 }
1918
1919 size = mtd->oobsize - (oob - chip->oob_poi);
1920 if (size)
1921 chip->write_buf(mtd, oob, size);
fdbad98d
JW
1922
1923 return 0;
52ff49df 1924}
9223a456 1925/**
7854d3f7 1926 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
1927 * @mtd: mtd info structure
1928 * @chip: nand chip info structure
1929 * @buf: data buffer
1fbb938d 1930 * @oob_required: must write chip->oob_poi to OOB
9223a456 1931 */
fdbad98d 1932static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1933 const uint8_t *buf, int oob_required)
9223a456 1934{
f75e5097
TG
1935 int i, eccsize = chip->ecc.size;
1936 int eccbytes = chip->ecc.bytes;
1937 int eccsteps = chip->ecc.steps;
4bf63fcb 1938 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1939 const uint8_t *p = buf;
8b099a39 1940 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1941
7854d3f7 1942 /* Software ECC calculation */
8593fbc6
TG
1943 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1944 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1945
8593fbc6
TG
1946 for (i = 0; i < chip->ecc.total; i++)
1947 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1948
fdbad98d 1949 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 1950}
9223a456 1951
f75e5097 1952/**
7854d3f7 1953 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
1954 * @mtd: mtd info structure
1955 * @chip: nand chip info structure
1956 * @buf: data buffer
1fbb938d 1957 * @oob_required: must write chip->oob_poi to OOB
f75e5097 1958 */
fdbad98d 1959static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1960 const uint8_t *buf, int oob_required)
f75e5097
TG
1961{
1962 int i, eccsize = chip->ecc.size;
1963 int eccbytes = chip->ecc.bytes;
1964 int eccsteps = chip->ecc.steps;
4bf63fcb 1965 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1966 const uint8_t *p = buf;
8b099a39 1967 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1968
f75e5097
TG
1969 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1970 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1971 chip->write_buf(mtd, p, eccsize);
f75e5097 1972 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1973 }
1974
f75e5097
TG
1975 for (i = 0; i < chip->ecc.total; i++)
1976 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1977
1978 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1979
1980 return 0;
9223a456
TG
1981}
1982
837a6ba4
GP
1983
1984/**
1985 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
1986 * @mtd: mtd info structure
1987 * @chip: nand chip info structure
d6a95080 1988 * @offset: column address of subpage within the page
837a6ba4 1989 * @data_len: data length
d6a95080 1990 * @buf: data buffer
837a6ba4
GP
1991 * @oob_required: must write chip->oob_poi to OOB
1992 */
1993static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1994 struct nand_chip *chip, uint32_t offset,
d6a95080 1995 uint32_t data_len, const uint8_t *buf,
837a6ba4
GP
1996 int oob_required)
1997{
1998 uint8_t *oob_buf = chip->oob_poi;
1999 uint8_t *ecc_calc = chip->buffers->ecccalc;
2000 int ecc_size = chip->ecc.size;
2001 int ecc_bytes = chip->ecc.bytes;
2002 int ecc_steps = chip->ecc.steps;
2003 uint32_t *eccpos = chip->ecc.layout->eccpos;
2004 uint32_t start_step = offset / ecc_size;
2005 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2006 int oob_bytes = mtd->oobsize / ecc_steps;
2007 int step, i;
2008
2009 for (step = 0; step < ecc_steps; step++) {
2010 /* configure controller for WRITE access */
2011 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2012
2013 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2014 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2015
2016 /* mask ECC of un-touched subpages by padding 0xFF */
2017 if ((step < start_step) || (step > end_step))
2018 memset(ecc_calc, 0xff, ecc_bytes);
2019 else
d6a95080 2020 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2021
2022 /* mask OOB of un-touched subpages by padding 0xFF */
2023 /* if oob_required, preserve OOB metadata of written subpage */
2024 if (!oob_required || (step < start_step) || (step > end_step))
2025 memset(oob_buf, 0xff, oob_bytes);
2026
d6a95080 2027 buf += ecc_size;
837a6ba4
GP
2028 ecc_calc += ecc_bytes;
2029 oob_buf += oob_bytes;
2030 }
2031
2032 /* copy calculated ECC for whole page to chip->buffer->oob */
2033 /* this include masked-value(0xFF) for unwritten subpages */
2034 ecc_calc = chip->buffers->ecccalc;
2035 for (i = 0; i < chip->ecc.total; i++)
2036 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2037
2038 /* write OOB buffer to NAND device */
2039 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2040
2041 return 0;
2042}
2043
2044
61b03bd7 2045/**
7854d3f7 2046 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2047 * @mtd: mtd info structure
2048 * @chip: nand chip info structure
2049 * @buf: data buffer
1fbb938d 2050 * @oob_required: must write chip->oob_poi to OOB
1da177e4 2051 *
8b6e50c9
BN
2052 * The hw generator calculates the error syndrome automatically. Therefore we
2053 * need a special oob layout and handling.
f75e5097 2054 */
fdbad98d 2055static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
2056 struct nand_chip *chip,
2057 const uint8_t *buf, int oob_required)
1da177e4 2058{
f75e5097
TG
2059 int i, eccsize = chip->ecc.size;
2060 int eccbytes = chip->ecc.bytes;
2061 int eccsteps = chip->ecc.steps;
2062 const uint8_t *p = buf;
2063 uint8_t *oob = chip->oob_poi;
1da177e4 2064
f75e5097 2065 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2066
f75e5097
TG
2067 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2068 chip->write_buf(mtd, p, eccsize);
61b03bd7 2069
f75e5097
TG
2070 if (chip->ecc.prepad) {
2071 chip->write_buf(mtd, oob, chip->ecc.prepad);
2072 oob += chip->ecc.prepad;
2073 }
2074
2075 chip->ecc.calculate(mtd, p, oob);
2076 chip->write_buf(mtd, oob, eccbytes);
2077 oob += eccbytes;
2078
2079 if (chip->ecc.postpad) {
2080 chip->write_buf(mtd, oob, chip->ecc.postpad);
2081 oob += chip->ecc.postpad;
1da177e4 2082 }
1da177e4 2083 }
f75e5097
TG
2084
2085 /* Calculate remaining oob bytes */
7e4178f9 2086 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2087 if (i)
2088 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2089
2090 return 0;
f75e5097
TG
2091}
2092
2093/**
956e944c 2094 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2095 * @mtd: MTD device structure
2096 * @chip: NAND chip descriptor
837a6ba4
GP
2097 * @offset: address offset within the page
2098 * @data_len: length of actual data to be written
8b6e50c9 2099 * @buf: the data to write
1fbb938d 2100 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2101 * @page: page number to write
2102 * @cached: cached programming
2103 * @raw: use _raw version of write_page
f75e5097
TG
2104 */
2105static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2106 uint32_t offset, int data_len, const uint8_t *buf,
2107 int oob_required, int page, int cached, int raw)
f75e5097 2108{
837a6ba4
GP
2109 int status, subpage;
2110
2111 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2112 chip->ecc.write_subpage)
2113 subpage = offset || (data_len < mtd->writesize);
2114 else
2115 subpage = 0;
f75e5097
TG
2116
2117 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2118
956e944c 2119 if (unlikely(raw))
837a6ba4
GP
2120 status = chip->ecc.write_page_raw(mtd, chip, buf,
2121 oob_required);
2122 else if (subpage)
2123 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2124 buf, oob_required);
956e944c 2125 else
fdbad98d
JW
2126 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2127
2128 if (status < 0)
2129 return status;
f75e5097
TG
2130
2131 /*
7854d3f7 2132 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2133 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2134 */
2135 cached = 0;
2136
3239a6cd 2137 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2138
2139 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2140 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2141 /*
2142 * See if operation failed and additional status checks are
8b6e50c9 2143 * available.
f75e5097
TG
2144 */
2145 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2146 status = chip->errstat(mtd, chip, FL_WRITING, status,
2147 page);
2148
2149 if (status & NAND_STATUS_FAIL)
2150 return -EIO;
2151 } else {
2152 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2153 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2154 }
2155
f75e5097 2156 return 0;
1da177e4
LT
2157}
2158
8593fbc6 2159/**
7854d3f7 2160 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2161 * @mtd: MTD device structure
8b6e50c9
BN
2162 * @oob: oob data buffer
2163 * @len: oob data write length
2164 * @ops: oob ops structure
8593fbc6 2165 */
f722013e
TAA
2166static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2167 struct mtd_oob_ops *ops)
8593fbc6 2168{
f722013e
TAA
2169 struct nand_chip *chip = mtd->priv;
2170
2171 /*
2172 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2173 * data from a previous OOB read.
2174 */
2175 memset(chip->oob_poi, 0xff, mtd->oobsize);
2176
f8ac0414 2177 switch (ops->mode) {
8593fbc6 2178
0612b9dd
BN
2179 case MTD_OPS_PLACE_OOB:
2180 case MTD_OPS_RAW:
8593fbc6
TG
2181 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2182 return oob + len;
2183
0612b9dd 2184 case MTD_OPS_AUTO_OOB: {
8593fbc6 2185 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2186 uint32_t boffs = 0, woffs = ops->ooboffs;
2187 size_t bytes = 0;
8593fbc6 2188
f8ac0414 2189 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2190 /* Write request not from offset 0? */
7bc3312b
TG
2191 if (unlikely(woffs)) {
2192 if (woffs >= free->length) {
2193 woffs -= free->length;
2194 continue;
2195 }
2196 boffs = free->offset + woffs;
2197 bytes = min_t(size_t, len,
2198 (free->length - woffs));
2199 woffs = 0;
2200 } else {
2201 bytes = min_t(size_t, len, free->length);
2202 boffs = free->offset;
2203 }
8b0036ee 2204 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2205 oob += bytes;
2206 }
2207 return oob;
2208 }
2209 default:
2210 BUG();
2211 }
2212 return NULL;
2213}
2214
f8ac0414 2215#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2216
2217/**
7854d3f7 2218 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2219 * @mtd: MTD device structure
2220 * @to: offset to write to
2221 * @ops: oob operations description structure
1da177e4 2222 *
8b6e50c9 2223 * NAND write with ECC.
1da177e4 2224 */
8593fbc6
TG
2225static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2226 struct mtd_oob_ops *ops)
1da177e4 2227{
29072b96 2228 int chipnr, realpage, page, blockmask, column;
ace4dfee 2229 struct nand_chip *chip = mtd->priv;
8593fbc6 2230 uint32_t writelen = ops->len;
782ce79a
ML
2231
2232 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2233 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2234 mtd->oobavail : mtd->oobsize;
2235
8593fbc6
TG
2236 uint8_t *oob = ops->oobbuf;
2237 uint8_t *buf = ops->datbuf;
837a6ba4 2238 int ret;
e47f3db4 2239 int oob_required = oob ? 1 : 0;
1da177e4 2240
8593fbc6 2241 ops->retlen = 0;
29072b96
TG
2242 if (!writelen)
2243 return 0;
1da177e4 2244
8b6e50c9 2245 /* Reject writes, which are not page aligned */
8593fbc6 2246 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2247 pr_notice("%s: attempt to write non page aligned data\n",
2248 __func__);
1da177e4
LT
2249 return -EINVAL;
2250 }
2251
29072b96 2252 column = to & (mtd->writesize - 1);
1da177e4 2253
6a930961
TG
2254 chipnr = (int)(to >> chip->chip_shift);
2255 chip->select_chip(mtd, chipnr);
2256
1da177e4 2257 /* Check, if it is write protected */
b0bb6903
HS
2258 if (nand_check_wp(mtd)) {
2259 ret = -EIO;
2260 goto err_out;
2261 }
1da177e4 2262
f75e5097
TG
2263 realpage = (int)(to >> chip->page_shift);
2264 page = realpage & chip->pagemask;
2265 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2266
2267 /* Invalidate the page cache, when we write to the cached page */
2268 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2269 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2270 chip->pagebuf = -1;
61b03bd7 2271
782ce79a 2272 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2273 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2274 ret = -EINVAL;
2275 goto err_out;
2276 }
782ce79a 2277
f8ac0414 2278 while (1) {
29072b96 2279 int bytes = mtd->writesize;
f75e5097 2280 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2281 uint8_t *wbuf = buf;
2282
8b6e50c9 2283 /* Partial page write? */
29072b96
TG
2284 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2285 cached = 0;
2286 bytes = min_t(int, bytes - column, (int) writelen);
2287 chip->pagebuf = -1;
2288 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2289 memcpy(&chip->buffers->databuf[column], buf, bytes);
2290 wbuf = chip->buffers->databuf;
2291 }
1da177e4 2292
782ce79a
ML
2293 if (unlikely(oob)) {
2294 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2295 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2296 oobwritelen -= len;
f722013e
TAA
2297 } else {
2298 /* We still need to erase leftover OOB data */
2299 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2300 }
837a6ba4
GP
2301 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2302 oob_required, page, cached,
2303 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2304 if (ret)
2305 break;
2306
2307 writelen -= bytes;
2308 if (!writelen)
2309 break;
2310
29072b96 2311 column = 0;
f75e5097
TG
2312 buf += bytes;
2313 realpage++;
2314
2315 page = realpage & chip->pagemask;
2316 /* Check, if we cross a chip boundary */
2317 if (!page) {
2318 chipnr++;
2319 chip->select_chip(mtd, -1);
2320 chip->select_chip(mtd, chipnr);
1da177e4
LT
2321 }
2322 }
8593fbc6 2323
8593fbc6 2324 ops->retlen = ops->len - writelen;
7014568b
VW
2325 if (unlikely(oob))
2326 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2327
2328err_out:
2329 chip->select_chip(mtd, -1);
1da177e4
LT
2330 return ret;
2331}
2332
2af7c653
SK
2333/**
2334 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2335 * @mtd: MTD device structure
2336 * @to: offset to write to
2337 * @len: number of bytes to write
2338 * @retlen: pointer to variable to store the number of written bytes
2339 * @buf: the data to write
2af7c653
SK
2340 *
2341 * NAND write with ECC. Used when performing writes in interrupt context, this
2342 * may for example be called by mtdoops when writing an oops while in panic.
2343 */
2344static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2345 size_t *retlen, const uint8_t *buf)
2346{
2347 struct nand_chip *chip = mtd->priv;
4a89ff88 2348 struct mtd_oob_ops ops;
2af7c653
SK
2349 int ret;
2350
8b6e50c9 2351 /* Wait for the device to get ready */
2af7c653
SK
2352 panic_nand_wait(mtd, chip, 400);
2353
8b6e50c9 2354 /* Grab the device */
2af7c653
SK
2355 panic_nand_get_device(chip, mtd, FL_WRITING);
2356
4a89ff88
BN
2357 ops.len = len;
2358 ops.datbuf = (uint8_t *)buf;
2359 ops.oobbuf = NULL;
11041ae6 2360 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2361
4a89ff88 2362 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2363
4a89ff88 2364 *retlen = ops.retlen;
2af7c653
SK
2365 return ret;
2366}
2367
f75e5097 2368/**
8593fbc6 2369 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2370 * @mtd: MTD device structure
2371 * @to: offset to write to
2372 * @len: number of bytes to write
2373 * @retlen: pointer to variable to store the number of written bytes
2374 * @buf: the data to write
f75e5097 2375 *
8b6e50c9 2376 * NAND write with ECC.
f75e5097 2377 */
8593fbc6
TG
2378static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2379 size_t *retlen, const uint8_t *buf)
f75e5097 2380{
4a89ff88 2381 struct mtd_oob_ops ops;
f75e5097
TG
2382 int ret;
2383
6a8214aa 2384 nand_get_device(mtd, FL_WRITING);
4a89ff88
BN
2385 ops.len = len;
2386 ops.datbuf = (uint8_t *)buf;
2387 ops.oobbuf = NULL;
11041ae6 2388 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2389 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2390 *retlen = ops.retlen;
f75e5097 2391 nand_release_device(mtd);
8593fbc6 2392 return ret;
f75e5097 2393}
7314e9e7 2394
1da177e4 2395/**
8593fbc6 2396 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2397 * @mtd: MTD device structure
2398 * @to: offset to write to
2399 * @ops: oob operation description structure
1da177e4 2400 *
8b6e50c9 2401 * NAND write out-of-band.
1da177e4 2402 */
8593fbc6
TG
2403static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2404 struct mtd_oob_ops *ops)
1da177e4 2405{
03736155 2406 int chipnr, page, status, len;
ace4dfee 2407 struct nand_chip *chip = mtd->priv;
1da177e4 2408
289c0522 2409 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2410 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2411
0612b9dd 2412 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2413 len = chip->ecc.layout->oobavail;
2414 else
2415 len = mtd->oobsize;
2416
1da177e4 2417 /* Do not allow write past end of page */
03736155 2418 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2419 pr_debug("%s: attempt to write past end of page\n",
2420 __func__);
1da177e4
LT
2421 return -EINVAL;
2422 }
2423
03736155 2424 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2425 pr_debug("%s: attempt to start write outside oob\n",
2426 __func__);
03736155
AH
2427 return -EINVAL;
2428 }
2429
775adc3d 2430 /* Do not allow write past end of device */
03736155
AH
2431 if (unlikely(to >= mtd->size ||
2432 ops->ooboffs + ops->ooblen >
2433 ((mtd->size >> chip->page_shift) -
2434 (to >> chip->page_shift)) * len)) {
289c0522
BN
2435 pr_debug("%s: attempt to write beyond end of device\n",
2436 __func__);
03736155
AH
2437 return -EINVAL;
2438 }
2439
7314e9e7 2440 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2441 chip->select_chip(mtd, chipnr);
1da177e4 2442
7314e9e7
TG
2443 /* Shift to get page */
2444 page = (int)(to >> chip->page_shift);
2445
2446 /*
2447 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2448 * of my DiskOnChip 2000 test units) will clear the whole data page too
2449 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2450 * it in the doc2000 driver in August 1999. dwmw2.
2451 */
ace4dfee 2452 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2453
2454 /* Check, if it is write protected */
b0bb6903
HS
2455 if (nand_check_wp(mtd)) {
2456 chip->select_chip(mtd, -1);
8593fbc6 2457 return -EROFS;
b0bb6903 2458 }
61b03bd7 2459
1da177e4 2460 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2461 if (page == chip->pagebuf)
2462 chip->pagebuf = -1;
1da177e4 2463
f722013e 2464 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2465
0612b9dd 2466 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2467 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2468 else
2469 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2470
b0bb6903
HS
2471 chip->select_chip(mtd, -1);
2472
7bc3312b
TG
2473 if (status)
2474 return status;
1da177e4 2475
7014568b 2476 ops->oobretlen = ops->ooblen;
1da177e4 2477
7bc3312b 2478 return 0;
8593fbc6
TG
2479}
2480
2481/**
2482 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2483 * @mtd: MTD device structure
2484 * @to: offset to write to
2485 * @ops: oob operation description structure
8593fbc6
TG
2486 */
2487static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2488 struct mtd_oob_ops *ops)
2489{
8593fbc6
TG
2490 int ret = -ENOTSUPP;
2491
2492 ops->retlen = 0;
2493
2494 /* Do not allow writes past end of device */
7014568b 2495 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2496 pr_debug("%s: attempt to write beyond end of device\n",
2497 __func__);
8593fbc6
TG
2498 return -EINVAL;
2499 }
2500
6a8214aa 2501 nand_get_device(mtd, FL_WRITING);
8593fbc6 2502
f8ac0414 2503 switch (ops->mode) {
0612b9dd
BN
2504 case MTD_OPS_PLACE_OOB:
2505 case MTD_OPS_AUTO_OOB:
2506 case MTD_OPS_RAW:
8593fbc6
TG
2507 break;
2508
2509 default:
2510 goto out;
2511 }
2512
2513 if (!ops->datbuf)
2514 ret = nand_do_write_oob(mtd, to, ops);
2515 else
2516 ret = nand_do_write_ops(mtd, to, ops);
2517
7351d3a5 2518out:
1da177e4 2519 nand_release_device(mtd);
1da177e4
LT
2520 return ret;
2521}
2522
1da177e4 2523/**
7854d3f7 2524 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2525 * @mtd: MTD device structure
2526 * @page: the page address of the block which will be erased
1da177e4 2527 *
8b6e50c9 2528 * Standard erase command for NAND chips.
1da177e4 2529 */
e0c7d767 2530static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2531{
ace4dfee 2532 struct nand_chip *chip = mtd->priv;
1da177e4 2533 /* Send commands to erase a block */
ace4dfee
TG
2534 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2535 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2536}
2537
1da177e4
LT
2538/**
2539 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2540 * @mtd: MTD device structure
2541 * @instr: erase instruction
1da177e4 2542 *
8b6e50c9 2543 * Erase one ore more blocks.
1da177e4 2544 */
e0c7d767 2545static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2546{
e0c7d767 2547 return nand_erase_nand(mtd, instr, 0);
1da177e4 2548}
61b03bd7 2549
1da177e4 2550/**
7854d3f7 2551 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2552 * @mtd: MTD device structure
2553 * @instr: erase instruction
2554 * @allowbbt: allow erasing the bbt area
1da177e4 2555 *
8b6e50c9 2556 * Erase one ore more blocks.
1da177e4 2557 */
ace4dfee
TG
2558int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2559 int allowbbt)
1da177e4 2560{
69423d99 2561 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2562 struct nand_chip *chip = mtd->priv;
69423d99 2563 loff_t len;
1da177e4 2564
289c0522
BN
2565 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2566 __func__, (unsigned long long)instr->addr,
2567 (unsigned long long)instr->len);
1da177e4 2568
6fe5a6ac 2569 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2570 return -EINVAL;
1da177e4 2571
1da177e4 2572 /* Grab the lock and see if the device is available */
6a8214aa 2573 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2574
2575 /* Shift to get first page */
ace4dfee
TG
2576 page = (int)(instr->addr >> chip->page_shift);
2577 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2578
2579 /* Calculate pages in each block */
ace4dfee 2580 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2581
2582 /* Select the NAND device */
ace4dfee 2583 chip->select_chip(mtd, chipnr);
1da177e4 2584
1da177e4
LT
2585 /* Check, if it is write protected */
2586 if (nand_check_wp(mtd)) {
289c0522
BN
2587 pr_debug("%s: device is write protected!\n",
2588 __func__);
1da177e4
LT
2589 instr->state = MTD_ERASE_FAILED;
2590 goto erase_exit;
2591 }
2592
2593 /* Loop through the pages */
2594 len = instr->len;
2595
2596 instr->state = MTD_ERASING;
2597
2598 while (len) {
12183a20 2599 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2600 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2601 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2602 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2603 __func__, page);
1da177e4
LT
2604 instr->state = MTD_ERASE_FAILED;
2605 goto erase_exit;
2606 }
61b03bd7 2607
ace4dfee
TG
2608 /*
2609 * Invalidate the page cache, if we erase the block which
8b6e50c9 2610 * contains the current cached page.
ace4dfee
TG
2611 */
2612 if (page <= chip->pagebuf && chip->pagebuf <
2613 (page + pages_per_block))
2614 chip->pagebuf = -1;
1da177e4 2615
ace4dfee 2616 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2617
7bc3312b 2618 status = chip->waitfunc(mtd, chip);
1da177e4 2619
ace4dfee
TG
2620 /*
2621 * See if operation failed and additional status checks are
2622 * available
2623 */
2624 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2625 status = chip->errstat(mtd, chip, FL_ERASING,
2626 status, page);
068e3c0a 2627
1da177e4 2628 /* See if block erase succeeded */
a4ab4c5d 2629 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2630 pr_debug("%s: failed erase, page 0x%08x\n",
2631 __func__, page);
1da177e4 2632 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2633 instr->fail_addr =
2634 ((loff_t)page << chip->page_shift);
1da177e4
LT
2635 goto erase_exit;
2636 }
30f464b7 2637
1da177e4 2638 /* Increment page address and decrement length */
daae74ca 2639 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2640 page += pages_per_block;
2641
2642 /* Check, if we cross a chip boundary */
ace4dfee 2643 if (len && !(page & chip->pagemask)) {
1da177e4 2644 chipnr++;
ace4dfee
TG
2645 chip->select_chip(mtd, -1);
2646 chip->select_chip(mtd, chipnr);
1da177e4
LT
2647 }
2648 }
2649 instr->state = MTD_ERASE_DONE;
2650
7351d3a5 2651erase_exit:
1da177e4
LT
2652
2653 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2654
2655 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2656 chip->select_chip(mtd, -1);
1da177e4
LT
2657 nand_release_device(mtd);
2658
49defc01
DW
2659 /* Do call back function */
2660 if (!ret)
2661 mtd_erase_callback(instr);
2662
1da177e4
LT
2663 /* Return more or less happy */
2664 return ret;
2665}
2666
2667/**
2668 * nand_sync - [MTD Interface] sync
8b6e50c9 2669 * @mtd: MTD device structure
1da177e4 2670 *
8b6e50c9 2671 * Sync is actually a wait for chip ready function.
1da177e4 2672 */
e0c7d767 2673static void nand_sync(struct mtd_info *mtd)
1da177e4 2674{
289c0522 2675 pr_debug("%s: called\n", __func__);
1da177e4
LT
2676
2677 /* Grab the lock and see if the device is available */
6a8214aa 2678 nand_get_device(mtd, FL_SYNCING);
1da177e4 2679 /* Release it and go back */
e0c7d767 2680 nand_release_device(mtd);
1da177e4
LT
2681}
2682
1da177e4 2683/**
ace4dfee 2684 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2685 * @mtd: MTD device structure
2686 * @offs: offset relative to mtd start
1da177e4 2687 */
ace4dfee 2688static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2689{
ace4dfee 2690 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2691}
2692
2693/**
ace4dfee 2694 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2695 * @mtd: MTD device structure
2696 * @ofs: offset relative to mtd start
1da177e4 2697 */
e0c7d767 2698static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2699{
1da177e4
LT
2700 int ret;
2701
f8ac0414
FF
2702 ret = nand_block_isbad(mtd, ofs);
2703 if (ret) {
8b6e50c9 2704 /* If it was bad already, return success and do nothing */
1da177e4
LT
2705 if (ret > 0)
2706 return 0;
e0c7d767
DW
2707 return ret;
2708 }
1da177e4 2709
5a0edb25 2710 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
2711}
2712
7db03ecc
HS
2713/**
2714 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2715 * @mtd: MTD device structure
2716 * @chip: nand chip info structure
2717 * @addr: feature address.
2718 * @subfeature_param: the subfeature parameters, a four bytes array.
2719 */
2720static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2721 int addr, uint8_t *subfeature_param)
2722{
2723 int status;
2724
d914c932
DM
2725 if (!chip->onfi_version ||
2726 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2727 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2728 return -EINVAL;
2729
2730 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2731 chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2732 status = chip->waitfunc(mtd, chip);
2733 if (status & NAND_STATUS_FAIL)
2734 return -EIO;
2735 return 0;
2736}
2737
2738/**
2739 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2740 * @mtd: MTD device structure
2741 * @chip: nand chip info structure
2742 * @addr: feature address.
2743 * @subfeature_param: the subfeature parameters, a four bytes array.
2744 */
2745static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2746 int addr, uint8_t *subfeature_param)
2747{
d914c932
DM
2748 if (!chip->onfi_version ||
2749 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2750 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2751 return -EINVAL;
2752
2753 /* clear the sub feature parameters */
2754 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2755
2756 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2757 chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2758 return 0;
2759}
2760
962034f4
VW
2761/**
2762 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2763 * @mtd: MTD device structure
962034f4
VW
2764 */
2765static int nand_suspend(struct mtd_info *mtd)
2766{
6a8214aa 2767 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
2768}
2769
2770/**
2771 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2772 * @mtd: MTD device structure
962034f4
VW
2773 */
2774static void nand_resume(struct mtd_info *mtd)
2775{
ace4dfee 2776 struct nand_chip *chip = mtd->priv;
962034f4 2777
ace4dfee 2778 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2779 nand_release_device(mtd);
2780 else
d0370219
BN
2781 pr_err("%s called for a chip which is not in suspended state\n",
2782 __func__);
962034f4
VW
2783}
2784
8b6e50c9 2785/* Set default functions */
ace4dfee 2786static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2787{
1da177e4 2788 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2789 if (!chip->chip_delay)
2790 chip->chip_delay = 20;
1da177e4
LT
2791
2792 /* check, if a user supplied command function given */
ace4dfee
TG
2793 if (chip->cmdfunc == NULL)
2794 chip->cmdfunc = nand_command;
1da177e4
LT
2795
2796 /* check, if a user supplied wait function given */
ace4dfee
TG
2797 if (chip->waitfunc == NULL)
2798 chip->waitfunc = nand_wait;
2799
2800 if (!chip->select_chip)
2801 chip->select_chip = nand_select_chip;
68e80780 2802
4204cccd
HS
2803 /* set for ONFI nand */
2804 if (!chip->onfi_set_features)
2805 chip->onfi_set_features = nand_onfi_set_features;
2806 if (!chip->onfi_get_features)
2807 chip->onfi_get_features = nand_onfi_get_features;
2808
68e80780
BN
2809 /* If called twice, pointers that depend on busw may need to be reset */
2810 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
2811 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2812 if (!chip->read_word)
2813 chip->read_word = nand_read_word;
2814 if (!chip->block_bad)
2815 chip->block_bad = nand_block_bad;
2816 if (!chip->block_markbad)
2817 chip->block_markbad = nand_default_block_markbad;
68e80780 2818 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 2819 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
68e80780 2820 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 2821 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2822 if (!chip->scan_bbt)
2823 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2824
2825 if (!chip->controller) {
2826 chip->controller = &chip->hwcontrol;
2827 spin_lock_init(&chip->controller->lock);
2828 init_waitqueue_head(&chip->controller->wq);
2829 }
2830
7aa65bfd
TG
2831}
2832
8b6e50c9 2833/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2834static void sanitize_string(uint8_t *s, size_t len)
2835{
2836 ssize_t i;
2837
8b6e50c9 2838 /* Null terminate */
d1e1f4e4
FF
2839 s[len - 1] = 0;
2840
8b6e50c9 2841 /* Remove non printable chars */
d1e1f4e4
FF
2842 for (i = 0; i < len - 1; i++) {
2843 if (s[i] < ' ' || s[i] > 127)
2844 s[i] = '?';
2845 }
2846
8b6e50c9 2847 /* Remove trailing spaces */
d1e1f4e4
FF
2848 strim(s);
2849}
2850
2851static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2852{
2853 int i;
2854 while (len--) {
2855 crc ^= *p++ << 8;
2856 for (i = 0; i < 8; i++)
2857 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2858 }
2859
2860 return crc;
2861}
2862
6dcbe0cd
HS
2863/* Parse the Extended Parameter Page. */
2864static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2865 struct nand_chip *chip, struct nand_onfi_params *p)
2866{
2867 struct onfi_ext_param_page *ep;
2868 struct onfi_ext_section *s;
2869 struct onfi_ext_ecc_info *ecc;
2870 uint8_t *cursor;
2871 int ret = -EINVAL;
2872 int len;
2873 int i;
2874
2875 len = le16_to_cpu(p->ext_param_page_length) * 16;
2876 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
2877 if (!ep)
2878 return -ENOMEM;
6dcbe0cd
HS
2879
2880 /* Send our own NAND_CMD_PARAM. */
2881 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2882
2883 /* Use the Change Read Column command to skip the ONFI param pages. */
2884 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2885 sizeof(*p) * p->num_of_param_pages , -1);
2886
2887 /* Read out the Extended Parameter Page. */
2888 chip->read_buf(mtd, (uint8_t *)ep, len);
2889 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2890 != le16_to_cpu(ep->crc))) {
2891 pr_debug("fail in the CRC.\n");
2892 goto ext_out;
2893 }
2894
2895 /*
2896 * Check the signature.
2897 * Do not strictly follow the ONFI spec, maybe changed in future.
2898 */
2899 if (strncmp(ep->sig, "EPPS", 4)) {
2900 pr_debug("The signature is invalid.\n");
2901 goto ext_out;
2902 }
2903
2904 /* find the ECC section. */
2905 cursor = (uint8_t *)(ep + 1);
2906 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
2907 s = ep->sections + i;
2908 if (s->type == ONFI_SECTION_TYPE_2)
2909 break;
2910 cursor += s->length * 16;
2911 }
2912 if (i == ONFI_EXT_SECTION_MAX) {
2913 pr_debug("We can not find the ECC section.\n");
2914 goto ext_out;
2915 }
2916
2917 /* get the info we want. */
2918 ecc = (struct onfi_ext_ecc_info *)cursor;
2919
4ae7d228
BN
2920 if (!ecc->codeword_size) {
2921 pr_debug("Invalid codeword size\n");
2922 goto ext_out;
6dcbe0cd
HS
2923 }
2924
4ae7d228
BN
2925 chip->ecc_strength_ds = ecc->ecc_bits;
2926 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 2927 ret = 0;
6dcbe0cd
HS
2928
2929ext_out:
2930 kfree(ep);
2931 return ret;
2932}
2933
6fb277ba 2934/*
8b6e50c9 2935 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
2936 */
2937static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 2938 int *busw)
6fb277ba
FF
2939{
2940 struct nand_onfi_params *p = &chip->onfi_params;
2941 int i;
2942 int val;
2943
7854d3f7 2944 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
2945 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2946 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2947 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2948 return 0;
2949
c7f23a70
BN
2950 /*
2951 * ONFI must be probed in 8-bit mode or with NAND_BUSWIDTH_AUTO, not
2952 * with NAND_BUSWIDTH_16
2953 */
2954 if (chip->options & NAND_BUSWIDTH_16) {
2955 pr_err("ONFI cannot be probed in 16-bit mode; aborting\n");
2956 return 0;
2957 }
2958
6fb277ba
FF
2959 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2960 for (i = 0; i < 3; i++) {
2961 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2962 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2963 le16_to_cpu(p->crc)) {
6fb277ba
FF
2964 break;
2965 }
2966 }
2967
c7f23a70
BN
2968 if (i == 3) {
2969 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 2970 return 0;
c7f23a70 2971 }
6fb277ba 2972
8b6e50c9 2973 /* Check version */
6fb277ba 2974 val = le16_to_cpu(p->revision);
b7b1a29d
BN
2975 if (val & (1 << 5))
2976 chip->onfi_version = 23;
2977 else if (val & (1 << 4))
6fb277ba
FF
2978 chip->onfi_version = 22;
2979 else if (val & (1 << 3))
2980 chip->onfi_version = 21;
2981 else if (val & (1 << 2))
2982 chip->onfi_version = 20;
b7b1a29d 2983 else if (val & (1 << 1))
6fb277ba 2984 chip->onfi_version = 10;
b7b1a29d
BN
2985
2986 if (!chip->onfi_version) {
20171642 2987 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
2988 return 0;
2989 }
6fb277ba
FF
2990
2991 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2992 sanitize_string(p->model, sizeof(p->model));
2993 if (!mtd->name)
2994 mtd->name = p->model;
4355b70c 2995
6fb277ba 2996 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
2997
2998 /*
2999 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3000 * (don't ask me who thought of this...). MTD assumes that these
3001 * dimensions will be power-of-2, so just truncate the remaining area.
3002 */
3003 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3004 mtd->erasesize *= mtd->writesize;
3005
6fb277ba 3006 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3007
3008 /* See erasesize comment */
3009 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3010 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3011 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3012
3013 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3014 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3015 else
3016 *busw = 0;
6fb277ba 3017
10c86bab
HS
3018 if (p->ecc_bits != 0xff) {
3019 chip->ecc_strength_ds = p->ecc_bits;
3020 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3021 } else if (chip->onfi_version >= 21 &&
3022 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3023
3024 /*
3025 * The nand_flash_detect_ext_param_page() uses the
3026 * Change Read Column command which maybe not supported
3027 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3028 * now. We do not replace user supplied command function.
3029 */
3030 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3031 chip->cmdfunc = nand_command_lp;
3032
3033 /* The Extended Parameter Page is supported since ONFI 2.1. */
3034 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3035 pr_warn("Failed to detect ONFI extended param page\n");
3036 } else {
3037 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3038 }
3039
6fb277ba
FF
3040 return 1;
3041}
3042
e3b88bd6
BN
3043/*
3044 * nand_id_has_period - Check if an ID string has a given wraparound period
3045 * @id_data: the ID string
3046 * @arrlen: the length of the @id_data array
3047 * @period: the period of repitition
3048 *
3049 * Check if an ID string is repeated within a given sequence of bytes at
3050 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3051 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3052 * if the repetition has a period of @period; otherwise, returns zero.
3053 */
3054static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3055{
3056 int i, j;
3057 for (i = 0; i < period; i++)
3058 for (j = i + period; j < arrlen; j += period)
3059 if (id_data[i] != id_data[j])
3060 return 0;
3061 return 1;
3062}
3063
3064/*
3065 * nand_id_len - Get the length of an ID string returned by CMD_READID
3066 * @id_data: the ID string
3067 * @arrlen: the length of the @id_data array
3068
3069 * Returns the length of the ID string, according to known wraparound/trailing
3070 * zero patterns. If no pattern exists, returns the length of the array.
3071 */
3072static int nand_id_len(u8 *id_data, int arrlen)
3073{
3074 int last_nonzero, period;
3075
3076 /* Find last non-zero byte */
3077 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3078 if (id_data[last_nonzero])
3079 break;
3080
3081 /* All zeros */
3082 if (last_nonzero < 0)
3083 return 0;
3084
3085 /* Calculate wraparound period */
3086 for (period = 1; period < arrlen; period++)
3087 if (nand_id_has_period(id_data, arrlen, period))
3088 break;
3089
3090 /* There's a repeated pattern */
3091 if (period < arrlen)
3092 return period;
3093
3094 /* There are trailing zeros */
3095 if (last_nonzero < arrlen - 1)
3096 return last_nonzero + 1;
3097
3098 /* No pattern detected */
3099 return arrlen;
3100}
3101
7db906b7
HS
3102/* Extract the bits of per cell from the 3rd byte of the extended ID */
3103static int nand_get_bits_per_cell(u8 cellinfo)
3104{
3105 int bits;
3106
3107 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3108 bits >>= NAND_CI_CELLTYPE_SHIFT;
3109 return bits + 1;
3110}
3111
fc09bbc0
BN
3112/*
3113 * Many new NAND share similar device ID codes, which represent the size of the
3114 * chip. The rest of the parameters must be decoded according to generic or
3115 * manufacturer-specific "extended ID" decoding patterns.
3116 */
3117static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3118 u8 id_data[8], int *busw)
3119{
e3b88bd6 3120 int extid, id_len;
fc09bbc0 3121 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3122 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3123 /* The 4th id byte is the important one */
3124 extid = id_data[3];
3125
e3b88bd6
BN
3126 id_len = nand_id_len(id_data, 8);
3127
fc09bbc0
BN
3128 /*
3129 * Field definitions are in the following datasheets:
3130 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3131 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3132 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3133 *
af451af4
BN
3134 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3135 * ID to decide what to do.
fc09bbc0 3136 */
af451af4 3137 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3138 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3139 /* Calc pagesize */
3140 mtd->writesize = 2048 << (extid & 0x03);
3141 extid >>= 2;
3142 /* Calc oobsize */
e2d3a35e 3143 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3144 case 1:
3145 mtd->oobsize = 128;
3146 break;
3147 case 2:
3148 mtd->oobsize = 218;
3149 break;
3150 case 3:
3151 mtd->oobsize = 400;
3152 break;
e2d3a35e 3153 case 4:
fc09bbc0
BN
3154 mtd->oobsize = 436;
3155 break;
e2d3a35e
BN
3156 case 5:
3157 mtd->oobsize = 512;
3158 break;
3159 case 6:
3160 default: /* Other cases are "reserved" (unknown) */
3161 mtd->oobsize = 640;
3162 break;
fc09bbc0
BN
3163 }
3164 extid >>= 2;
3165 /* Calc blocksize */
3166 mtd->erasesize = (128 * 1024) <<
3167 (((extid >> 1) & 0x04) | (extid & 0x03));
3168 *busw = 0;
73ca392f 3169 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3170 !nand_is_slc(chip)) {
73ca392f
BN
3171 unsigned int tmp;
3172
3173 /* Calc pagesize */
3174 mtd->writesize = 2048 << (extid & 0x03);
3175 extid >>= 2;
3176 /* Calc oobsize */
3177 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3178 case 0:
3179 mtd->oobsize = 128;
3180 break;
3181 case 1:
3182 mtd->oobsize = 224;
3183 break;
3184 case 2:
3185 mtd->oobsize = 448;
3186 break;
3187 case 3:
3188 mtd->oobsize = 64;
3189 break;
3190 case 4:
3191 mtd->oobsize = 32;
3192 break;
3193 case 5:
3194 mtd->oobsize = 16;
3195 break;
3196 default:
3197 mtd->oobsize = 640;
3198 break;
3199 }
3200 extid >>= 2;
3201 /* Calc blocksize */
3202 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3203 if (tmp < 0x03)
3204 mtd->erasesize = (128 * 1024) << tmp;
3205 else if (tmp == 0x03)
3206 mtd->erasesize = 768 * 1024;
3207 else
3208 mtd->erasesize = (64 * 1024) << tmp;
3209 *busw = 0;
fc09bbc0
BN
3210 } else {
3211 /* Calc pagesize */
3212 mtd->writesize = 1024 << (extid & 0x03);
3213 extid >>= 2;
3214 /* Calc oobsize */
3215 mtd->oobsize = (8 << (extid & 0x01)) *
3216 (mtd->writesize >> 9);
3217 extid >>= 2;
3218 /* Calc blocksize. Blocksize is multiples of 64KiB */
3219 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3220 extid >>= 2;
3221 /* Get buswidth information */
3222 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3223
3224 /*
3225 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3226 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3227 * follows:
3228 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3229 * 110b -> 24nm
3230 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3231 */
3232 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3233 nand_is_slc(chip) &&
60c67382
BN
3234 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3235 !(id_data[4] & 0x80) /* !BENAND */) {
3236 mtd->oobsize = 32 * mtd->writesize >> 9;
3237 }
3238
fc09bbc0
BN
3239 }
3240}
3241
f23a481c
BN
3242/*
3243 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3244 * decodes a matching ID table entry and assigns the MTD size parameters for
3245 * the chip.
3246 */
3247static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3248 struct nand_flash_dev *type, u8 id_data[8],
3249 int *busw)
3250{
3251 int maf_id = id_data[0];
3252
3253 mtd->erasesize = type->erasesize;
3254 mtd->writesize = type->pagesize;
3255 mtd->oobsize = mtd->writesize / 32;
3256 *busw = type->options & NAND_BUSWIDTH_16;
3257
1c195e90
HS
3258 /* All legacy ID NAND are small-page, SLC */
3259 chip->bits_per_cell = 1;
3260
f23a481c
BN
3261 /*
3262 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3263 * some Spansion chips have erasesize that conflicts with size
3264 * listed in nand_ids table.
3265 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3266 */
3267 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3268 && id_data[6] == 0x00 && id_data[7] == 0x00
3269 && mtd->writesize == 512) {
3270 mtd->erasesize = 128 * 1024;
3271 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3272 }
3273}
3274
7e74c2d7
BN
3275/*
3276 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3277 * heuristic patterns using various detected parameters (e.g., manufacturer,
3278 * page size, cell-type information).
3279 */
3280static void nand_decode_bbm_options(struct mtd_info *mtd,
3281 struct nand_chip *chip, u8 id_data[8])
3282{
3283 int maf_id = id_data[0];
3284
3285 /* Set the bad block position */
3286 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3287 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3288 else
3289 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3290
3291 /*
3292 * Bad block marker is stored in the last page of each block on Samsung
3293 * and Hynix MLC devices; stored in first two pages of each block on
3294 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3295 * AMD/Spansion, and Macronix. All others scan only the first page.
3296 */
1d0ed69d 3297 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3298 (maf_id == NAND_MFR_SAMSUNG ||
3299 maf_id == NAND_MFR_HYNIX))
3300 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3301 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3302 (maf_id == NAND_MFR_SAMSUNG ||
3303 maf_id == NAND_MFR_HYNIX ||
3304 maf_id == NAND_MFR_TOSHIBA ||
3305 maf_id == NAND_MFR_AMD ||
3306 maf_id == NAND_MFR_MACRONIX)) ||
3307 (mtd->writesize == 2048 &&
3308 maf_id == NAND_MFR_MICRON))
3309 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3310}
3311
ec6e87e3
HS
3312static inline bool is_full_id_nand(struct nand_flash_dev *type)
3313{
3314 return type->id_len;
3315}
3316
3317static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3318 struct nand_flash_dev *type, u8 *id_data, int *busw)
3319{
3320 if (!strncmp(type->id, id_data, type->id_len)) {
3321 mtd->writesize = type->pagesize;
3322 mtd->erasesize = type->erasesize;
3323 mtd->oobsize = type->oobsize;
3324
7db906b7 3325 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3326 chip->chipsize = (uint64_t)type->chipsize << 20;
3327 chip->options |= type->options;
57219342
HS
3328 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3329 chip->ecc_step_ds = NAND_ECC_STEP(type);
ec6e87e3
HS
3330
3331 *busw = type->options & NAND_BUSWIDTH_16;
3332
092b6a1d
CZ
3333 if (!mtd->name)
3334 mtd->name = type->name;
3335
ec6e87e3
HS
3336 return true;
3337 }
3338 return false;
3339}
3340
7aa65bfd 3341/*
8b6e50c9 3342 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3343 */
3344static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3345 struct nand_chip *chip,
7351d3a5
FF
3346 int busw,
3347 int *maf_id, int *dev_id,
5e81e88a 3348 struct nand_flash_dev *type)
7aa65bfd 3349{
d1e1f4e4 3350 int i, maf_idx;
426c457a 3351 u8 id_data[8];
1da177e4
LT
3352
3353 /* Select the device */
ace4dfee 3354 chip->select_chip(mtd, 0);
1da177e4 3355
ef89a880
KB
3356 /*
3357 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3358 * after power-up.
ef89a880
KB
3359 */
3360 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3361
1da177e4 3362 /* Send the command for reading device ID */
ace4dfee 3363 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3364
3365 /* Read manufacturer and device IDs */
ace4dfee 3366 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3367 *dev_id = chip->read_byte(mtd);
1da177e4 3368
8b6e50c9
BN
3369 /*
3370 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3371 * interface concerns can cause random data which looks like a
3372 * possibly credible NAND flash to appear. If the two results do
3373 * not match, ignore the device completely.
3374 */
3375
3376 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3377
4aef9b78
BN
3378 /* Read entire ID string */
3379 for (i = 0; i < 8; i++)
426c457a 3380 id_data[i] = chip->read_byte(mtd);
ed8165c7 3381
d1e1f4e4 3382 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3383 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3384 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3385 return ERR_PTR(-ENODEV);
3386 }
3387
7aa65bfd 3388 if (!type)
5e81e88a
DW
3389 type = nand_flash_ids;
3390
ec6e87e3
HS
3391 for (; type->name != NULL; type++) {
3392 if (is_full_id_nand(type)) {
3393 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3394 goto ident_done;
3395 } else if (*dev_id == type->dev_id) {
3396 break;
3397 }
3398 }
5e81e88a 3399
d1e1f4e4
FF
3400 chip->onfi_version = 0;
3401 if (!type->name || !type->pagesize) {
6fb277ba 3402 /* Check is chip is ONFI compliant */
47450b35 3403 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3404 goto ident_done;
d1e1f4e4
FF
3405 }
3406
5e81e88a 3407 if (!type->name)
7aa65bfd
TG
3408 return ERR_PTR(-ENODEV);
3409
ba0251fe
TG
3410 if (!mtd->name)
3411 mtd->name = type->name;
3412
69423d99 3413 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3414
12a40a57 3415 if (!type->pagesize && chip->init_size) {
8b6e50c9 3416 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3417 busw = chip->init_size(mtd, chip, id_data);
3418 } else if (!type->pagesize) {
fc09bbc0
BN
3419 /* Decode parameters from extended ID */
3420 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3421 } else {
f23a481c 3422 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3423 }
bf7a01bf
BN
3424 /* Get chip options */
3425 chip->options |= type->options;
d1e1f4e4 3426
8b6e50c9
BN
3427 /*
3428 * Check if chip is not a Samsung device. Do not clear the
3429 * options for chips which do not have an extended id.
d1e1f4e4
FF
3430 */
3431 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3432 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3433ident_done:
3434
7aa65bfd 3435 /* Try to identify manufacturer */
9a909867 3436 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3437 if (nand_manuf_ids[maf_idx].id == *maf_id)
3438 break;
3439 }
0ea4a755 3440
64b37b2a
MC
3441 if (chip->options & NAND_BUSWIDTH_AUTO) {
3442 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3443 chip->options |= busw;
3444 nand_set_defaults(chip, busw);
3445 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3446 /*
3447 * Check, if buswidth is correct. Hardware drivers should set
3448 * chip correct!
3449 */
20171642
EG
3450 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3451 *maf_id, *dev_id);
3452 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3453 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3454 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3455 busw ? 16 : 8);
7aa65bfd
TG
3456 return ERR_PTR(-EINVAL);
3457 }
61b03bd7 3458
7e74c2d7
BN
3459 nand_decode_bbm_options(mtd, chip, id_data);
3460
7aa65bfd 3461 /* Calculate the address shift from the page size */
ace4dfee 3462 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3463 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3464 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3465
ace4dfee 3466 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3467 ffs(mtd->erasesize) - 1;
69423d99
AH
3468 if (chip->chipsize & 0xffffffff)
3469 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3470 else {
3471 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3472 chip->chip_shift += 32 - 1;
3473 }
1da177e4 3474
26d9be11 3475 chip->badblockbits = 8;
14c65786 3476 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3477
8b6e50c9 3478 /* Do not replace user supplied command function! */
ace4dfee
TG
3479 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3480 chip->cmdfunc = nand_command_lp;
7aa65bfd 3481
20171642
EG
3482 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3483 *maf_id, *dev_id);
3484 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3723e93c 3485 chip->onfi_version ? chip->onfi_params.model : type->name);
20171642 3486 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3723e93c
HS
3487 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3488 mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3489 return type;
3490}
3491
7aa65bfd 3492/**
3b85c321 3493 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3494 * @mtd: MTD device structure
3495 * @maxchips: number of chips to scan for
3496 * @table: alternative NAND ID table
7aa65bfd 3497 *
8b6e50c9
BN
3498 * This is the first phase of the normal nand_scan() function. It reads the
3499 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3500 *
3b85c321 3501 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3502 */
5e81e88a
DW
3503int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3504 struct nand_flash_dev *table)
7aa65bfd 3505{
d1e1f4e4 3506 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3507 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3508 struct nand_flash_dev *type;
3509
7aa65bfd 3510 /* Get buswidth to select the correct functions */
ace4dfee 3511 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3512 /* Set the default functions */
ace4dfee 3513 nand_set_defaults(chip, busw);
7aa65bfd
TG
3514
3515 /* Read the flash type */
7351d3a5
FF
3516 type = nand_get_flash_type(mtd, chip, busw,
3517 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3518
3519 if (IS_ERR(type)) {
b1c6e6db 3520 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3521 pr_warn("No NAND device found\n");
ace4dfee 3522 chip->select_chip(mtd, -1);
7aa65bfd 3523 return PTR_ERR(type);
1da177e4
LT
3524 }
3525
07300164
HS
3526 chip->select_chip(mtd, -1);
3527
7aa65bfd 3528 /* Check for a chip array */
e0c7d767 3529 for (i = 1; i < maxchips; i++) {
ace4dfee 3530 chip->select_chip(mtd, i);
ef89a880
KB
3531 /* See comment in nand_get_flash_type for reset */
3532 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3533 /* Send the command for reading device ID */
ace4dfee 3534 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3535 /* Read manufacturer and device IDs */
ace4dfee 3536 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
3537 nand_dev_id != chip->read_byte(mtd)) {
3538 chip->select_chip(mtd, -1);
1da177e4 3539 break;
07300164
HS
3540 }
3541 chip->select_chip(mtd, -1);
1da177e4
LT
3542 }
3543 if (i > 1)
20171642 3544 pr_info("%d chips detected\n", i);
61b03bd7 3545
1da177e4 3546 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3547 chip->numchips = i;
3548 mtd->size = i * chip->chipsize;
7aa65bfd 3549
3b85c321
DW
3550 return 0;
3551}
7351d3a5 3552EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3553
3554
3555/**
3556 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3557 * @mtd: MTD device structure
3b85c321 3558 *
8b6e50c9
BN
3559 * This is the second phase of the normal nand_scan() function. It fills out
3560 * all the uninitialized function pointers with the defaults and scans for a
3561 * bad block table if appropriate.
3b85c321
DW
3562 */
3563int nand_scan_tail(struct mtd_info *mtd)
3564{
3565 int i;
3566 struct nand_chip *chip = mtd->priv;
97de79e0 3567 struct nand_ecc_ctrl *ecc = &chip->ecc;
3b85c321 3568
e2414f4c
BN
3569 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3570 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3571 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3572
4bf63fcb
DW
3573 if (!(chip->options & NAND_OWN_BUFFERS))
3574 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3575 if (!chip->buffers)
3576 return -ENOMEM;
3577
7dcdcbef 3578 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3579 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3580
7aa65bfd 3581 /*
8b6e50c9 3582 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3583 */
97de79e0 3584 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3585 switch (mtd->oobsize) {
1da177e4 3586 case 8:
97de79e0 3587 ecc->layout = &nand_oob_8;
1da177e4
LT
3588 break;
3589 case 16:
97de79e0 3590 ecc->layout = &nand_oob_16;
1da177e4
LT
3591 break;
3592 case 64:
97de79e0 3593 ecc->layout = &nand_oob_64;
1da177e4 3594 break;
81ec5364 3595 case 128:
97de79e0 3596 ecc->layout = &nand_oob_128;
81ec5364 3597 break;
1da177e4 3598 default:
d0370219
BN
3599 pr_warn("No oob scheme defined for oobsize %d\n",
3600 mtd->oobsize);
1da177e4
LT
3601 BUG();
3602 }
3603 }
61b03bd7 3604
956e944c
DW
3605 if (!chip->write_page)
3606 chip->write_page = nand_write_page;
3607
61b03bd7 3608 /*
8b6e50c9 3609 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3610 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3611 */
956e944c 3612
97de79e0 3613 switch (ecc->mode) {
6e0cb135
SN
3614 case NAND_ECC_HW_OOB_FIRST:
3615 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 3616 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
9a4d4d69 3617 pr_warn("No ECC functions supplied; "
d0370219 3618 "hardware ECC not possible\n");
6e0cb135
SN
3619 BUG();
3620 }
97de79e0
HS
3621 if (!ecc->read_page)
3622 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 3623
6dfc6d25 3624 case NAND_ECC_HW:
8b6e50c9 3625 /* Use standard hwecc read page function? */
97de79e0
HS
3626 if (!ecc->read_page)
3627 ecc->read_page = nand_read_page_hwecc;
3628 if (!ecc->write_page)
3629 ecc->write_page = nand_write_page_hwecc;
3630 if (!ecc->read_page_raw)
3631 ecc->read_page_raw = nand_read_page_raw;
3632 if (!ecc->write_page_raw)
3633 ecc->write_page_raw = nand_write_page_raw;
3634 if (!ecc->read_oob)
3635 ecc->read_oob = nand_read_oob_std;
3636 if (!ecc->write_oob)
3637 ecc->write_oob = nand_write_oob_std;
3638 if (!ecc->read_subpage)
3639 ecc->read_subpage = nand_read_subpage;
3640 if (!ecc->write_subpage)
3641 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 3642
6dfc6d25 3643 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
3644 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3645 (!ecc->read_page ||
3646 ecc->read_page == nand_read_page_hwecc ||
3647 !ecc->write_page ||
3648 ecc->write_page == nand_write_page_hwecc)) {
9a4d4d69 3649 pr_warn("No ECC functions supplied; "
d0370219 3650 "hardware ECC not possible\n");
6dfc6d25
TG
3651 BUG();
3652 }
8b6e50c9 3653 /* Use standard syndrome read/write page function? */
97de79e0
HS
3654 if (!ecc->read_page)
3655 ecc->read_page = nand_read_page_syndrome;
3656 if (!ecc->write_page)
3657 ecc->write_page = nand_write_page_syndrome;
3658 if (!ecc->read_page_raw)
3659 ecc->read_page_raw = nand_read_page_raw_syndrome;
3660 if (!ecc->write_page_raw)
3661 ecc->write_page_raw = nand_write_page_raw_syndrome;
3662 if (!ecc->read_oob)
3663 ecc->read_oob = nand_read_oob_syndrome;
3664 if (!ecc->write_oob)
3665 ecc->write_oob = nand_write_oob_syndrome;
3666
3667 if (mtd->writesize >= ecc->size) {
3668 if (!ecc->strength) {
e2788c98
MD
3669 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3670 BUG();
3671 }
6dfc6d25 3672 break;
e2788c98 3673 }
9a4d4d69 3674 pr_warn("%d byte HW ECC not possible on "
d0370219 3675 "%d byte page size, fallback to SW ECC\n",
97de79e0
HS
3676 ecc->size, mtd->writesize);
3677 ecc->mode = NAND_ECC_SOFT;
61b03bd7 3678
6dfc6d25 3679 case NAND_ECC_SOFT:
97de79e0
HS
3680 ecc->calculate = nand_calculate_ecc;
3681 ecc->correct = nand_correct_data;
3682 ecc->read_page = nand_read_page_swecc;
3683 ecc->read_subpage = nand_read_subpage;
3684 ecc->write_page = nand_write_page_swecc;
3685 ecc->read_page_raw = nand_read_page_raw;
3686 ecc->write_page_raw = nand_write_page_raw;
3687 ecc->read_oob = nand_read_oob_std;
3688 ecc->write_oob = nand_write_oob_std;
3689 if (!ecc->size)
3690 ecc->size = 256;
3691 ecc->bytes = 3;
3692 ecc->strength = 1;
1da177e4 3693 break;
61b03bd7 3694
193bd400
ID
3695 case NAND_ECC_SOFT_BCH:
3696 if (!mtd_nand_has_bch()) {
9a4d4d69 3697 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
193bd400
ID
3698 BUG();
3699 }
97de79e0
HS
3700 ecc->calculate = nand_bch_calculate_ecc;
3701 ecc->correct = nand_bch_correct_data;
3702 ecc->read_page = nand_read_page_swecc;
3703 ecc->read_subpage = nand_read_subpage;
3704 ecc->write_page = nand_write_page_swecc;
3705 ecc->read_page_raw = nand_read_page_raw;
3706 ecc->write_page_raw = nand_write_page_raw;
3707 ecc->read_oob = nand_read_oob_std;
3708 ecc->write_oob = nand_write_oob_std;
193bd400
ID
3709 /*
3710 * Board driver should supply ecc.size and ecc.bytes values to
3711 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3712 * for details. Otherwise, default to 4 bits for large page
3713 * devices.
193bd400 3714 */
97de79e0
HS
3715 if (!ecc->size && (mtd->oobsize >= 64)) {
3716 ecc->size = 512;
3717 ecc->bytes = 7;
193bd400 3718 }
97de79e0
HS
3719 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
3720 &ecc->layout);
3721 if (!ecc->priv) {
9a4d4d69 3722 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3723 BUG();
3724 }
97de79e0 3725 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
193bd400
ID
3726 break;
3727
61b03bd7 3728 case NAND_ECC_NONE:
9a4d4d69 3729 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3730 "This is not recommended!\n");
97de79e0
HS
3731 ecc->read_page = nand_read_page_raw;
3732 ecc->write_page = nand_write_page_raw;
3733 ecc->read_oob = nand_read_oob_std;
3734 ecc->read_page_raw = nand_read_page_raw;
3735 ecc->write_page_raw = nand_write_page_raw;
3736 ecc->write_oob = nand_write_oob_std;
3737 ecc->size = mtd->writesize;
3738 ecc->bytes = 0;
3739 ecc->strength = 0;
1da177e4 3740 break;
956e944c 3741
1da177e4 3742 default:
97de79e0 3743 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 3744 BUG();
1da177e4 3745 }
61b03bd7 3746
9ce244b3 3747 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
3748 if (!ecc->read_oob_raw)
3749 ecc->read_oob_raw = ecc->read_oob;
3750 if (!ecc->write_oob_raw)
3751 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 3752
5bd34c09
TG
3753 /*
3754 * The number of bytes available for a client to place data into
8b6e50c9 3755 * the out of band area.
5bd34c09 3756 */
97de79e0
HS
3757 ecc->layout->oobavail = 0;
3758 for (i = 0; ecc->layout->oobfree[i].length
3759 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
3760 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
3761 mtd->oobavail = ecc->layout->oobavail;
5bd34c09 3762
7aa65bfd
TG
3763 /*
3764 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3765 * mode.
7aa65bfd 3766 */
97de79e0
HS
3767 ecc->steps = mtd->writesize / ecc->size;
3768 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 3769 pr_warn("Invalid ECC parameters\n");
6dfc6d25 3770 BUG();
1da177e4 3771 }
97de79e0 3772 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 3773
8b6e50c9 3774 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 3775 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 3776 switch (ecc->steps) {
29072b96
TG
3777 case 2:
3778 mtd->subpage_sft = 1;
3779 break;
3780 case 4:
3781 case 8:
81ec5364 3782 case 16:
29072b96
TG
3783 mtd->subpage_sft = 2;
3784 break;
3785 }
3786 }
3787 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3788
04bbd0ea 3789 /* Initialize state */
ace4dfee 3790 chip->state = FL_READY;
1da177e4 3791
1da177e4 3792 /* Invalidate the pagebuffer reference */
ace4dfee 3793 chip->pagebuf = -1;
1da177e4 3794
a5ff4f10 3795 /* Large page NAND with SOFT_ECC should support subpage reads */
97de79e0 3796 if ((ecc->mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
a5ff4f10
JW
3797 chip->options |= NAND_SUBPAGE_READ;
3798
1da177e4 3799 /* Fill in remaining MTD driver data */
963d1c28 3800 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
3801 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3802 MTD_CAP_NANDFLASH;
3c3c10bb
AB
3803 mtd->_erase = nand_erase;
3804 mtd->_point = NULL;
3805 mtd->_unpoint = NULL;
3806 mtd->_read = nand_read;
3807 mtd->_write = nand_write;
3808 mtd->_panic_write = panic_nand_write;
3809 mtd->_read_oob = nand_read_oob;
3810 mtd->_write_oob = nand_write_oob;
3811 mtd->_sync = nand_sync;
3812 mtd->_lock = NULL;
3813 mtd->_unlock = NULL;
3814 mtd->_suspend = nand_suspend;
3815 mtd->_resume = nand_resume;
3816 mtd->_block_isbad = nand_block_isbad;
3817 mtd->_block_markbad = nand_block_markbad;
cbcab65a 3818 mtd->writebufsize = mtd->writesize;
1da177e4 3819
6a918bad 3820 /* propagate ecc info to mtd_info */
97de79e0
HS
3821 mtd->ecclayout = ecc->layout;
3822 mtd->ecc_strength = ecc->strength;
3823 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
3824 /*
3825 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3826 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3827 * properly set.
3828 */
3829 if (!mtd->bitflip_threshold)
3830 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 3831
0040bf38 3832 /* Check, if we should skip the bad block table scan */
ace4dfee 3833 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3834 return 0;
1da177e4
LT
3835
3836 /* Build bad block table */
ace4dfee 3837 return chip->scan_bbt(mtd);
1da177e4 3838}
7351d3a5 3839EXPORT_SYMBOL(nand_scan_tail);
1da177e4 3840
8b6e50c9
BN
3841/*
3842 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 3843 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
3844 * to call us from in-kernel code if the core NAND support is modular.
3845 */
3b85c321
DW
3846#ifdef MODULE
3847#define caller_is_module() (1)
3848#else
3849#define caller_is_module() \
a6e6abd5 3850 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3851#endif
3852
3853/**
3854 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3855 * @mtd: MTD device structure
3856 * @maxchips: number of chips to scan for
3b85c321 3857 *
8b6e50c9
BN
3858 * This fills out all the uninitialized function pointers with the defaults.
3859 * The flash ID is read and the mtd/chip structures are filled with the
3860 * appropriate values. The mtd->owner field must be set to the module of the
3861 * caller.
3b85c321
DW
3862 */
3863int nand_scan(struct mtd_info *mtd, int maxchips)
3864{
3865 int ret;
3866
3867 /* Many callers got this wrong, so check for it for a while... */
3868 if (!mtd->owner && caller_is_module()) {
d0370219 3869 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
3870 BUG();
3871 }
3872
5e81e88a 3873 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3874 if (!ret)
3875 ret = nand_scan_tail(mtd);
3876 return ret;
3877}
7351d3a5 3878EXPORT_SYMBOL(nand_scan);
3b85c321 3879
1da177e4 3880/**
61b03bd7 3881 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
3882 * @mtd: MTD device structure
3883 */
e0c7d767 3884void nand_release(struct mtd_info *mtd)
1da177e4 3885{
ace4dfee 3886 struct nand_chip *chip = mtd->priv;
1da177e4 3887
193bd400
ID
3888 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3889 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3890
5ffcaf3d 3891 mtd_device_unregister(mtd);
1da177e4 3892
fa671646 3893 /* Free bad block table memory */
ace4dfee 3894 kfree(chip->bbt);
4bf63fcb
DW
3895 if (!(chip->options & NAND_OWN_BUFFERS))
3896 kfree(chip->buffers);
58373ff0
BN
3897
3898 /* Free bad block descriptor memory */
3899 if (chip->badblock_pattern && chip->badblock_pattern->options
3900 & NAND_BBT_DYNAMICSTRUCT)
3901 kfree(chip->badblock_pattern);
1da177e4 3902}
e0c7d767 3903EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3904
3905static int __init nand_base_init(void)
3906{
3907 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3908 return 0;
3909}
3910
3911static void __exit nand_base_exit(void)
3912{
3913 led_trigger_unregister_simple(nand_led_trigger);
3914}
3915
3916module_init(nand_base_init);
3917module_exit(nand_base_exit);
3918
e0c7d767 3919MODULE_LICENSE("GPL");
7351d3a5
FF
3920MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3921MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 3922MODULE_DESCRIPTION("Generic NAND flash driver code");