]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
fusion: fix kernel-doc warnings
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
8fe833c1 47#include <linux/leds.h>
1da177e4
LT
48#include <asm/io.h>
49
50#ifdef CONFIG_MTD_PARTITIONS
51#include <linux/mtd/partitions.h>
52#endif
53
54/* Define default oob placement schemes for large and small page devices */
5bd34c09 55static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
5bd34c09
TG
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
1da177e4
LT
63};
64
5bd34c09 65static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
1da177e4
LT
71};
72
5bd34c09 73static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
74 .eccbytes = 24,
75 .eccpos = {
e0c7d767
DW
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
1da177e4
LT
82};
83
81ec5364
TG
84static struct nand_ecclayout nand_oob_128 = {
85 .eccbytes = 48,
86 .eccpos = {
87 80, 81, 82, 83, 84, 85, 86, 87,
88 88, 89, 90, 91, 92, 93, 94, 95,
89 96, 97, 98, 99, 100, 101, 102, 103,
90 104, 105, 106, 107, 108, 109, 110, 111,
91 112, 113, 114, 115, 116, 117, 118, 119,
92 120, 121, 122, 123, 124, 125, 126, 127},
93 .oobfree = {
94 {.offset = 2,
95 .length = 78}}
96};
97
ace4dfee 98static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 99 int new_state);
1da177e4 100
8593fbc6
TG
101static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
102 struct mtd_oob_ops *ops);
103
d470a97c 104/*
8e87d782 105 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
106 * compiled away when LED support is disabled.
107 */
108DEFINE_LED_TRIGGER(nand_led_trigger);
109
6fe5a6ac
VS
110static int check_offs_len(struct mtd_info *mtd,
111 loff_t ofs, uint64_t len)
112{
113 struct nand_chip *chip = mtd->priv;
114 int ret = 0;
115
116 /* Start address must align on block boundary */
117 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
118 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
119 ret = -EINVAL;
120 }
121
122 /* Length must align on block boundary */
123 if (len & ((1 << chip->phys_erase_shift) - 1)) {
124 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
125 __func__);
126 ret = -EINVAL;
127 }
128
129 /* Do not allow past end of device */
130 if (ofs + len > mtd->size) {
131 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
132 __func__);
133 ret = -EINVAL;
134 }
135
136 return ret;
137}
138
1da177e4
LT
139/**
140 * nand_release_device - [GENERIC] release chip
141 * @mtd: MTD device structure
61b03bd7
TG
142 *
143 * Deselect, release chip lock and wake up anyone waiting on the device
1da177e4 144 */
e0c7d767 145static void nand_release_device(struct mtd_info *mtd)
1da177e4 146{
ace4dfee 147 struct nand_chip *chip = mtd->priv;
1da177e4
LT
148
149 /* De-select the NAND device */
ace4dfee 150 chip->select_chip(mtd, -1);
0dfc6246 151
a36ed299 152 /* Release the controller and the chip */
ace4dfee
TG
153 spin_lock(&chip->controller->lock);
154 chip->controller->active = NULL;
155 chip->state = FL_READY;
156 wake_up(&chip->controller->wq);
157 spin_unlock(&chip->controller->lock);
1da177e4
LT
158}
159
160/**
161 * nand_read_byte - [DEFAULT] read one byte from the chip
162 * @mtd: MTD device structure
163 *
164 * Default read function for 8bit buswith
165 */
58dd8f2b 166static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 167{
ace4dfee
TG
168 struct nand_chip *chip = mtd->priv;
169 return readb(chip->IO_ADDR_R);
1da177e4
LT
170}
171
1da177e4
LT
172/**
173 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174 * @mtd: MTD device structure
175 *
61b03bd7 176 * Default read function for 16bit buswith with
1da177e4
LT
177 * endianess conversion
178 */
58dd8f2b 179static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 180{
ace4dfee
TG
181 struct nand_chip *chip = mtd->priv;
182 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
183}
184
1da177e4
LT
185/**
186 * nand_read_word - [DEFAULT] read one word from the chip
187 * @mtd: MTD device structure
188 *
61b03bd7 189 * Default read function for 16bit buswith without
1da177e4
LT
190 * endianess conversion
191 */
192static u16 nand_read_word(struct mtd_info *mtd)
193{
ace4dfee
TG
194 struct nand_chip *chip = mtd->priv;
195 return readw(chip->IO_ADDR_R);
1da177e4
LT
196}
197
1da177e4
LT
198/**
199 * nand_select_chip - [DEFAULT] control CE line
200 * @mtd: MTD device structure
844d3b42 201 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
202 *
203 * Default select function for 1 chip devices.
204 */
ace4dfee 205static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 206{
ace4dfee
TG
207 struct nand_chip *chip = mtd->priv;
208
209 switch (chipnr) {
1da177e4 210 case -1:
ace4dfee 211 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
212 break;
213 case 0:
1da177e4
LT
214 break;
215
216 default:
217 BUG();
218 }
219}
220
221/**
222 * nand_write_buf - [DEFAULT] write buffer to chip
223 * @mtd: MTD device structure
224 * @buf: data buffer
225 * @len: number of bytes to write
226 *
227 * Default write function for 8bit buswith
228 */
58dd8f2b 229static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
230{
231 int i;
ace4dfee 232 struct nand_chip *chip = mtd->priv;
1da177e4 233
e0c7d767 234 for (i = 0; i < len; i++)
ace4dfee 235 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
236}
237
238/**
61b03bd7 239 * nand_read_buf - [DEFAULT] read chip data into buffer
1da177e4
LT
240 * @mtd: MTD device structure
241 * @buf: buffer to store date
242 * @len: number of bytes to read
243 *
244 * Default read function for 8bit buswith
245 */
58dd8f2b 246static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
247{
248 int i;
ace4dfee 249 struct nand_chip *chip = mtd->priv;
1da177e4 250
e0c7d767 251 for (i = 0; i < len; i++)
ace4dfee 252 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
253}
254
255/**
61b03bd7 256 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
1da177e4
LT
257 * @mtd: MTD device structure
258 * @buf: buffer containing the data to compare
259 * @len: number of bytes to compare
260 *
261 * Default verify function for 8bit buswith
262 */
58dd8f2b 263static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
264{
265 int i;
ace4dfee 266 struct nand_chip *chip = mtd->priv;
1da177e4 267
e0c7d767 268 for (i = 0; i < len; i++)
ace4dfee 269 if (buf[i] != readb(chip->IO_ADDR_R))
1da177e4 270 return -EFAULT;
1da177e4
LT
271 return 0;
272}
273
274/**
275 * nand_write_buf16 - [DEFAULT] write buffer to chip
276 * @mtd: MTD device structure
277 * @buf: data buffer
278 * @len: number of bytes to write
279 *
280 * Default write function for 16bit buswith
281 */
58dd8f2b 282static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
283{
284 int i;
ace4dfee 285 struct nand_chip *chip = mtd->priv;
1da177e4
LT
286 u16 *p = (u16 *) buf;
287 len >>= 1;
61b03bd7 288
e0c7d767 289 for (i = 0; i < len; i++)
ace4dfee 290 writew(p[i], chip->IO_ADDR_W);
61b03bd7 291
1da177e4
LT
292}
293
294/**
61b03bd7 295 * nand_read_buf16 - [DEFAULT] read chip data into buffer
1da177e4
LT
296 * @mtd: MTD device structure
297 * @buf: buffer to store date
298 * @len: number of bytes to read
299 *
300 * Default read function for 16bit buswith
301 */
58dd8f2b 302static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
303{
304 int i;
ace4dfee 305 struct nand_chip *chip = mtd->priv;
1da177e4
LT
306 u16 *p = (u16 *) buf;
307 len >>= 1;
308
e0c7d767 309 for (i = 0; i < len; i++)
ace4dfee 310 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
311}
312
313/**
61b03bd7 314 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
1da177e4
LT
315 * @mtd: MTD device structure
316 * @buf: buffer containing the data to compare
317 * @len: number of bytes to compare
318 *
319 * Default verify function for 16bit buswith
320 */
58dd8f2b 321static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
322{
323 int i;
ace4dfee 324 struct nand_chip *chip = mtd->priv;
1da177e4
LT
325 u16 *p = (u16 *) buf;
326 len >>= 1;
327
e0c7d767 328 for (i = 0; i < len; i++)
ace4dfee 329 if (p[i] != readw(chip->IO_ADDR_R))
1da177e4
LT
330 return -EFAULT;
331
332 return 0;
333}
334
335/**
336 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337 * @mtd: MTD device structure
338 * @ofs: offset from device start
339 * @getchip: 0, if the chip is already selected
340 *
61b03bd7 341 * Check, if the block is bad.
1da177e4
LT
342 */
343static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
344{
345 int page, chipnr, res = 0;
ace4dfee 346 struct nand_chip *chip = mtd->priv;
1da177e4
LT
347 u16 bad;
348
30fe8115 349 if (chip->options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
350 ofs += mtd->erasesize - mtd->writesize;
351
1a12f46a
TK
352 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
353
1da177e4 354 if (getchip) {
ace4dfee 355 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 356
ace4dfee 357 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
358
359 /* Select the NAND device */
ace4dfee 360 chip->select_chip(mtd, chipnr);
1a12f46a 361 }
1da177e4 362
ace4dfee
TG
363 if (chip->options & NAND_BUSWIDTH_16) {
364 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
1a12f46a 365 page);
ace4dfee
TG
366 bad = cpu_to_le16(chip->read_word(mtd));
367 if (chip->badblockpos & 0x1)
49196f33 368 bad >>= 8;
e0b58d0a
ML
369 else
370 bad &= 0xFF;
1da177e4 371 } else {
1a12f46a 372 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
e0b58d0a 373 bad = chip->read_byte(mtd);
1da177e4 374 }
61b03bd7 375
e0b58d0a
ML
376 if (likely(chip->badblockbits == 8))
377 res = bad != 0xFF;
378 else
379 res = hweight8(bad) < chip->badblockbits;
380
ace4dfee 381 if (getchip)
1da177e4 382 nand_release_device(mtd);
61b03bd7 383
1da177e4
LT
384 return res;
385}
386
387/**
388 * nand_default_block_markbad - [DEFAULT] mark a block bad
389 * @mtd: MTD device structure
390 * @ofs: offset from device start
391 *
392 * This is the default implementation, which can be overridden by
393 * a hardware specific driver.
394*/
395static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
396{
ace4dfee 397 struct nand_chip *chip = mtd->priv;
58dd8f2b 398 uint8_t buf[2] = { 0, 0 };
02ed70bb 399 int block, ret, i = 0;
61b03bd7 400
30fe8115 401 if (chip->options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
402 ofs += mtd->erasesize - mtd->writesize;
403
1da177e4 404 /* Get block number */
4226b510 405 block = (int)(ofs >> chip->bbt_erase_shift);
ace4dfee
TG
406 if (chip->bbt)
407 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4
LT
408
409 /* Do we have a flash based bad block table ? */
ace4dfee 410 if (chip->options & NAND_USE_FLASH_BBT)
f1a28c02
TG
411 ret = nand_update_bbt(mtd, ofs);
412 else {
c0b8ba7b 413 nand_get_device(chip, mtd, FL_WRITING);
f1a28c02 414
02ed70bb
BN
415 /* Write to first two pages and to byte 1 and 6 if necessary.
416 * If we write to more than one location, the first error
417 * encountered quits the procedure. We write two bytes per
418 * location, so we dont have to mess with 16 bit access.
419 */
420 do {
421 chip->ops.len = chip->ops.ooblen = 2;
422 chip->ops.datbuf = NULL;
423 chip->ops.oobbuf = buf;
424 chip->ops.ooboffs = chip->badblockpos & ~0x01;
425
426 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
427
428 if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
429 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
430 & ~0x01;
431 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
432 }
433 i++;
434 ofs += mtd->writesize;
435 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
436 i < 2);
437
c0b8ba7b 438 nand_release_device(mtd);
f1a28c02
TG
439 }
440 if (!ret)
441 mtd->ecc_stats.badblocks++;
c0b8ba7b 442
f1a28c02 443 return ret;
1da177e4
LT
444}
445
61b03bd7 446/**
1da177e4
LT
447 * nand_check_wp - [GENERIC] check if the chip is write protected
448 * @mtd: MTD device structure
61b03bd7 449 * Check, if the device is write protected
1da177e4 450 *
61b03bd7 451 * The function expects, that the device is already selected
1da177e4 452 */
e0c7d767 453static int nand_check_wp(struct mtd_info *mtd)
1da177e4 454{
ace4dfee 455 struct nand_chip *chip = mtd->priv;
93edbad6
ML
456
457 /* broken xD cards report WP despite being writable */
458 if (chip->options & NAND_BROKEN_XD)
459 return 0;
460
1da177e4 461 /* Check the WP bit */
ace4dfee
TG
462 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
463 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
464}
465
466/**
467 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468 * @mtd: MTD device structure
469 * @ofs: offset from device start
470 * @getchip: 0, if the chip is already selected
471 * @allowbbt: 1, if its allowed to access the bbt area
472 *
473 * Check, if the block is bad. Either by reading the bad block table or
474 * calling of the scan function.
475 */
2c0a2bed
TG
476static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
477 int allowbbt)
1da177e4 478{
ace4dfee 479 struct nand_chip *chip = mtd->priv;
61b03bd7 480
ace4dfee
TG
481 if (!chip->bbt)
482 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 483
1da177e4 484 /* Return info from the table */
e0c7d767 485 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
486}
487
2af7c653
SK
488/**
489 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490 * @mtd: MTD device structure
491 * @timeo: Timeout
492 *
493 * Helper function for nand_wait_ready used when needing to wait in interrupt
494 * context.
495 */
496static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
497{
498 struct nand_chip *chip = mtd->priv;
499 int i;
500
501 /* Wait for the device to get ready */
502 for (i = 0; i < timeo; i++) {
503 if (chip->dev_ready(mtd))
504 break;
505 touch_softlockup_watchdog();
506 mdelay(1);
507 }
508}
509
61b03bd7 510/*
3b88775c
TG
511 * Wait for the ready pin, after a command
512 * The timeout is catched later.
513 */
4b648b02 514void nand_wait_ready(struct mtd_info *mtd)
3b88775c 515{
ace4dfee 516 struct nand_chip *chip = mtd->priv;
e0c7d767 517 unsigned long timeo = jiffies + 2;
3b88775c 518
2af7c653
SK
519 /* 400ms timeout */
520 if (in_interrupt() || oops_in_progress)
521 return panic_nand_wait_ready(mtd, 400);
522
8fe833c1 523 led_trigger_event(nand_led_trigger, LED_FULL);
3b88775c
TG
524 /* wait until command is processed or timeout occures */
525 do {
ace4dfee 526 if (chip->dev_ready(mtd))
8fe833c1 527 break;
8446f1d3 528 touch_softlockup_watchdog();
61b03bd7 529 } while (time_before(jiffies, timeo));
8fe833c1 530 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 531}
4b648b02 532EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 533
1da177e4
LT
534/**
535 * nand_command - [DEFAULT] Send command to NAND device
536 * @mtd: MTD device structure
537 * @command: the command to be sent
538 * @column: the column address for this command, -1 if none
539 * @page_addr: the page address for this command, -1 if none
540 *
541 * Send command to NAND device. This function is used for small page
542 * devices (256/512 Bytes per page)
543 */
7abd3ef9
TG
544static void nand_command(struct mtd_info *mtd, unsigned int command,
545 int column, int page_addr)
1da177e4 546{
ace4dfee 547 register struct nand_chip *chip = mtd->priv;
7abd3ef9 548 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 549
1da177e4
LT
550 /*
551 * Write out the command to the device.
552 */
553 if (command == NAND_CMD_SEQIN) {
554 int readcmd;
555
28318776 556 if (column >= mtd->writesize) {
1da177e4 557 /* OOB area */
28318776 558 column -= mtd->writesize;
1da177e4
LT
559 readcmd = NAND_CMD_READOOB;
560 } else if (column < 256) {
561 /* First 256 bytes --> READ0 */
562 readcmd = NAND_CMD_READ0;
563 } else {
564 column -= 256;
565 readcmd = NAND_CMD_READ1;
566 }
ace4dfee 567 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 568 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 569 }
ace4dfee 570 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 571
7abd3ef9
TG
572 /*
573 * Address cycle, when necessary
574 */
575 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
576 /* Serially input address */
577 if (column != -1) {
578 /* Adjust columns for 16 bit buswidth */
ace4dfee 579 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 580 column >>= 1;
ace4dfee 581 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
582 ctrl &= ~NAND_CTRL_CHANGE;
583 }
584 if (page_addr != -1) {
ace4dfee 585 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 586 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 587 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 588 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
589 if (chip->chipsize > (32 << 20))
590 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 591 }
ace4dfee 592 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
593
594 /*
595 * program and erase have their own busy handlers
1da177e4 596 * status and sequential in needs no delay
e0c7d767 597 */
1da177e4 598 switch (command) {
61b03bd7 599
1da177e4
LT
600 case NAND_CMD_PAGEPROG:
601 case NAND_CMD_ERASE1:
602 case NAND_CMD_ERASE2:
603 case NAND_CMD_SEQIN:
604 case NAND_CMD_STATUS:
605 return;
606
607 case NAND_CMD_RESET:
ace4dfee 608 if (chip->dev_ready)
1da177e4 609 break;
ace4dfee
TG
610 udelay(chip->chip_delay);
611 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 612 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
613 chip->cmd_ctrl(mtd,
614 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
ace4dfee 615 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
616 return;
617
e0c7d767 618 /* This applies to read commands */
1da177e4 619 default:
61b03bd7 620 /*
1da177e4
LT
621 * If we don't have access to the busy pin, we apply the given
622 * command delay
e0c7d767 623 */
ace4dfee
TG
624 if (!chip->dev_ready) {
625 udelay(chip->chip_delay);
1da177e4 626 return;
61b03bd7 627 }
1da177e4 628 }
1da177e4
LT
629 /* Apply this short delay always to ensure that we do wait tWB in
630 * any case on any machine. */
e0c7d767 631 ndelay(100);
3b88775c
TG
632
633 nand_wait_ready(mtd);
1da177e4
LT
634}
635
636/**
637 * nand_command_lp - [DEFAULT] Send command to NAND large page device
638 * @mtd: MTD device structure
639 * @command: the command to be sent
640 * @column: the column address for this command, -1 if none
641 * @page_addr: the page address for this command, -1 if none
642 *
7abd3ef9
TG
643 * Send command to NAND device. This is the version for the new large page
644 * devices We dont have the separate regions as we have in the small page
645 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 646 */
7abd3ef9
TG
647static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
648 int column, int page_addr)
1da177e4 649{
ace4dfee 650 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
651
652 /* Emulate NAND_CMD_READOOB */
653 if (command == NAND_CMD_READOOB) {
28318776 654 column += mtd->writesize;
1da177e4
LT
655 command = NAND_CMD_READ0;
656 }
61b03bd7 657
7abd3ef9 658 /* Command latch cycle */
ace4dfee 659 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 660 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
661
662 if (column != -1 || page_addr != -1) {
7abd3ef9 663 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
664
665 /* Serially input address */
666 if (column != -1) {
667 /* Adjust columns for 16 bit buswidth */
ace4dfee 668 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 669 column >>= 1;
ace4dfee 670 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 671 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 672 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 673 }
1da177e4 674 if (page_addr != -1) {
ace4dfee
TG
675 chip->cmd_ctrl(mtd, page_addr, ctrl);
676 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 677 NAND_NCE | NAND_ALE);
1da177e4 678 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
679 if (chip->chipsize > (128 << 20))
680 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 681 NAND_NCE | NAND_ALE);
1da177e4 682 }
1da177e4 683 }
ace4dfee 684 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
685
686 /*
687 * program and erase have their own busy handlers
30f464b7
DM
688 * status, sequential in, and deplete1 need no delay
689 */
1da177e4 690 switch (command) {
61b03bd7 691
1da177e4
LT
692 case NAND_CMD_CACHEDPROG:
693 case NAND_CMD_PAGEPROG:
694 case NAND_CMD_ERASE1:
695 case NAND_CMD_ERASE2:
696 case NAND_CMD_SEQIN:
7bc3312b 697 case NAND_CMD_RNDIN:
1da177e4 698 case NAND_CMD_STATUS:
30f464b7 699 case NAND_CMD_DEPLETE1:
1da177e4
LT
700 return;
701
e0c7d767
DW
702 /*
703 * read error status commands require only a short delay
704 */
30f464b7
DM
705 case NAND_CMD_STATUS_ERROR:
706 case NAND_CMD_STATUS_ERROR0:
707 case NAND_CMD_STATUS_ERROR1:
708 case NAND_CMD_STATUS_ERROR2:
709 case NAND_CMD_STATUS_ERROR3:
ace4dfee 710 udelay(chip->chip_delay);
30f464b7 711 return;
1da177e4
LT
712
713 case NAND_CMD_RESET:
ace4dfee 714 if (chip->dev_ready)
1da177e4 715 break;
ace4dfee 716 udelay(chip->chip_delay);
12efdde3
TG
717 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
718 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
719 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
720 NAND_NCE | NAND_CTRL_CHANGE);
ace4dfee 721 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
722 return;
723
7bc3312b
TG
724 case NAND_CMD_RNDOUT:
725 /* No ready / busy check necessary */
726 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
727 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
729 NAND_NCE | NAND_CTRL_CHANGE);
730 return;
731
1da177e4 732 case NAND_CMD_READ0:
12efdde3
TG
733 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
734 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 737
e0c7d767 738 /* This applies to read commands */
1da177e4 739 default:
61b03bd7 740 /*
1da177e4
LT
741 * If we don't have access to the busy pin, we apply the given
742 * command delay
e0c7d767 743 */
ace4dfee
TG
744 if (!chip->dev_ready) {
745 udelay(chip->chip_delay);
1da177e4 746 return;
61b03bd7 747 }
1da177e4 748 }
3b88775c 749
1da177e4
LT
750 /* Apply this short delay always to ensure that we do wait tWB in
751 * any case on any machine. */
e0c7d767 752 ndelay(100);
3b88775c
TG
753
754 nand_wait_ready(mtd);
1da177e4
LT
755}
756
2af7c653
SK
757/**
758 * panic_nand_get_device - [GENERIC] Get chip for selected access
759 * @chip: the nand chip descriptor
760 * @mtd: MTD device structure
761 * @new_state: the state which is requested
762 *
763 * Used when in panic, no locks are taken.
764 */
765static void panic_nand_get_device(struct nand_chip *chip,
766 struct mtd_info *mtd, int new_state)
767{
768 /* Hardware controller shared among independend devices */
769 chip->controller->active = chip;
770 chip->state = new_state;
771}
772
1da177e4
LT
773/**
774 * nand_get_device - [GENERIC] Get chip for selected access
844d3b42 775 * @chip: the nand chip descriptor
1da177e4 776 * @mtd: MTD device structure
61b03bd7 777 * @new_state: the state which is requested
1da177e4
LT
778 *
779 * Get the device and lock it for exclusive access
780 */
2c0a2bed 781static int
ace4dfee 782nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 783{
ace4dfee
TG
784 spinlock_t *lock = &chip->controller->lock;
785 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 786 DECLARE_WAITQUEUE(wait, current);
e0c7d767 787 retry:
0dfc6246
TG
788 spin_lock(lock);
789
b8b3ee9a 790 /* Hardware controller shared among independent devices */
ace4dfee
TG
791 if (!chip->controller->active)
792 chip->controller->active = chip;
a36ed299 793
ace4dfee
TG
794 if (chip->controller->active == chip && chip->state == FL_READY) {
795 chip->state = new_state;
0dfc6246 796 spin_unlock(lock);
962034f4
VW
797 return 0;
798 }
799 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
800 if (chip->controller->active->state == FL_PM_SUSPENDED) {
801 chip->state = FL_PM_SUSPENDED;
802 spin_unlock(lock);
803 return 0;
6b0d9a84 804 }
0dfc6246
TG
805 }
806 set_current_state(TASK_UNINTERRUPTIBLE);
807 add_wait_queue(wq, &wait);
808 spin_unlock(lock);
809 schedule();
810 remove_wait_queue(wq, &wait);
1da177e4
LT
811 goto retry;
812}
813
2af7c653
SK
814/**
815 * panic_nand_wait - [GENERIC] wait until the command is done
816 * @mtd: MTD device structure
817 * @chip: NAND chip structure
818 * @timeo: Timeout
819 *
820 * Wait for command done. This is a helper function for nand_wait used when
821 * we are in interrupt context. May happen when in panic and trying to write
822 * an oops trough mtdoops.
823 */
824static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
825 unsigned long timeo)
826{
827 int i;
828 for (i = 0; i < timeo; i++) {
829 if (chip->dev_ready) {
830 if (chip->dev_ready(mtd))
831 break;
832 } else {
833 if (chip->read_byte(mtd) & NAND_STATUS_READY)
834 break;
835 }
836 mdelay(1);
837 }
838}
839
1da177e4
LT
840/**
841 * nand_wait - [DEFAULT] wait until the command is done
842 * @mtd: MTD device structure
844d3b42 843 * @chip: NAND chip structure
1da177e4
LT
844 *
845 * Wait for command done. This applies to erase and program only
61b03bd7 846 * Erase can take up to 400ms and program up to 20ms according to
1da177e4 847 * general NAND and SmartMedia specs
844d3b42 848 */
7bc3312b 849static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
850{
851
e0c7d767 852 unsigned long timeo = jiffies;
7bc3312b 853 int status, state = chip->state;
61b03bd7 854
1da177e4 855 if (state == FL_ERASING)
e0c7d767 856 timeo += (HZ * 400) / 1000;
1da177e4 857 else
e0c7d767 858 timeo += (HZ * 20) / 1000;
1da177e4 859
8fe833c1
RP
860 led_trigger_event(nand_led_trigger, LED_FULL);
861
1da177e4
LT
862 /* Apply this short delay always to ensure that we do wait tWB in
863 * any case on any machine. */
e0c7d767 864 ndelay(100);
1da177e4 865
ace4dfee
TG
866 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
867 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 868 else
ace4dfee 869 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 870
2af7c653
SK
871 if (in_interrupt() || oops_in_progress)
872 panic_nand_wait(mtd, chip, timeo);
873 else {
874 while (time_before(jiffies, timeo)) {
875 if (chip->dev_ready) {
876 if (chip->dev_ready(mtd))
877 break;
878 } else {
879 if (chip->read_byte(mtd) & NAND_STATUS_READY)
880 break;
881 }
882 cond_resched();
1da177e4 883 }
1da177e4 884 }
8fe833c1
RP
885 led_trigger_event(nand_led_trigger, LED_OFF);
886
ace4dfee 887 status = (int)chip->read_byte(mtd);
1da177e4
LT
888 return status;
889}
890
7d70f334
VS
891/**
892 * __nand_unlock - [REPLACABLE] unlocks specified locked blockes
893 *
894 * @param mtd - mtd info
895 * @param ofs - offset to start unlock from
896 * @param len - length to unlock
897 * @invert - when = 0, unlock the range of blocks within the lower and
898 * upper boundary address
899 * whne = 1, unlock the range of blocks outside the boundaries
900 * of the lower and upper boundary address
901 *
902 * @return - unlock status
903 */
904static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
905 uint64_t len, int invert)
906{
907 int ret = 0;
908 int status, page;
909 struct nand_chip *chip = mtd->priv;
910
911 /* Submit address of first page to unlock */
912 page = ofs >> chip->page_shift;
913 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
914
915 /* Submit address of last page to unlock */
916 page = (ofs + len) >> chip->page_shift;
917 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
918 (page | invert) & chip->pagemask);
919
920 /* Call wait ready function */
921 status = chip->waitfunc(mtd, chip);
922 udelay(1000);
923 /* See if device thinks it succeeded */
924 if (status & 0x01) {
925 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
926 __func__, status);
927 ret = -EIO;
928 }
929
930 return ret;
931}
932
933/**
934 * nand_unlock - [REPLACABLE] unlocks specified locked blockes
935 *
936 * @param mtd - mtd info
937 * @param ofs - offset to start unlock from
938 * @param len - length to unlock
939 *
940 * @return - unlock status
941 */
942int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
943{
944 int ret = 0;
945 int chipnr;
946 struct nand_chip *chip = mtd->priv;
947
948 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
949 __func__, (unsigned long long)ofs, len);
950
951 if (check_offs_len(mtd, ofs, len))
952 ret = -EINVAL;
953
954 /* Align to last block address if size addresses end of the device */
955 if (ofs + len == mtd->size)
956 len -= mtd->erasesize;
957
958 nand_get_device(chip, mtd, FL_UNLOCKING);
959
960 /* Shift to get chip number */
961 chipnr = ofs >> chip->chip_shift;
962
963 chip->select_chip(mtd, chipnr);
964
965 /* Check, if it is write protected */
966 if (nand_check_wp(mtd)) {
967 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
968 __func__);
969 ret = -EIO;
970 goto out;
971 }
972
973 ret = __nand_unlock(mtd, ofs, len, 0);
974
975out:
976 /* de-select the NAND device */
977 chip->select_chip(mtd, -1);
978
979 nand_release_device(mtd);
980
981 return ret;
982}
983
984/**
985 * nand_lock - [REPLACABLE] locks all blockes present in the device
986 *
987 * @param mtd - mtd info
988 * @param ofs - offset to start unlock from
989 * @param len - length to unlock
990 *
991 * @return - lock status
992 *
993 * This feature is not support in many NAND parts. 'Micron' NAND parts
994 * do have this feature, but it allows only to lock all blocks not for
995 * specified range for block.
996 *
997 * Implementing 'lock' feature by making use of 'unlock', for now.
998 */
999int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1000{
1001 int ret = 0;
1002 int chipnr, status, page;
1003 struct nand_chip *chip = mtd->priv;
1004
1005 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1006 __func__, (unsigned long long)ofs, len);
1007
1008 if (check_offs_len(mtd, ofs, len))
1009 ret = -EINVAL;
1010
1011 nand_get_device(chip, mtd, FL_LOCKING);
1012
1013 /* Shift to get chip number */
1014 chipnr = ofs >> chip->chip_shift;
1015
1016 chip->select_chip(mtd, chipnr);
1017
1018 /* Check, if it is write protected */
1019 if (nand_check_wp(mtd)) {
1020 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1021 __func__);
1022 status = MTD_ERASE_FAILED;
1023 ret = -EIO;
1024 goto out;
1025 }
1026
1027 /* Submit address of first page to lock */
1028 page = ofs >> chip->page_shift;
1029 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1030
1031 /* Call wait ready function */
1032 status = chip->waitfunc(mtd, chip);
1033 udelay(1000);
1034 /* See if device thinks it succeeded */
1035 if (status & 0x01) {
1036 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1037 __func__, status);
1038 ret = -EIO;
1039 goto out;
1040 }
1041
1042 ret = __nand_unlock(mtd, ofs, len, 0x1);
1043
1044out:
1045 /* de-select the NAND device */
1046 chip->select_chip(mtd, -1);
1047
1048 nand_release_device(mtd);
1049
1050 return ret;
1051}
1052
8593fbc6
TG
1053/**
1054 * nand_read_page_raw - [Intern] read raw page data without ecc
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
58475fb9 1058 * @page: page number to read
52ff49df
DB
1059 *
1060 * Not for syndrome calculating ecc controllers, which use a special oob layout
8593fbc6
TG
1061 */
1062static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1063 uint8_t *buf, int page)
8593fbc6
TG
1064{
1065 chip->read_buf(mtd, buf, mtd->writesize);
1066 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1067 return 0;
1068}
1069
52ff49df
DB
1070/**
1071 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1072 * @mtd: mtd info structure
1073 * @chip: nand chip info structure
1074 * @buf: buffer to store read data
58475fb9 1075 * @page: page number to read
52ff49df
DB
1076 *
1077 * We need a special oob layout and handling even when OOB isn't used.
1078 */
1079static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1080 uint8_t *buf, int page)
52ff49df
DB
1081{
1082 int eccsize = chip->ecc.size;
1083 int eccbytes = chip->ecc.bytes;
1084 uint8_t *oob = chip->oob_poi;
1085 int steps, size;
1086
1087 for (steps = chip->ecc.steps; steps > 0; steps--) {
1088 chip->read_buf(mtd, buf, eccsize);
1089 buf += eccsize;
1090
1091 if (chip->ecc.prepad) {
1092 chip->read_buf(mtd, oob, chip->ecc.prepad);
1093 oob += chip->ecc.prepad;
1094 }
1095
1096 chip->read_buf(mtd, oob, eccbytes);
1097 oob += eccbytes;
1098
1099 if (chip->ecc.postpad) {
1100 chip->read_buf(mtd, oob, chip->ecc.postpad);
1101 oob += chip->ecc.postpad;
1102 }
1103 }
1104
1105 size = mtd->oobsize - (oob - chip->oob_poi);
1106 if (size)
1107 chip->read_buf(mtd, oob, size);
1108
1109 return 0;
1110}
1111
1da177e4 1112/**
d29ebdbe 1113 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
f5bbdacc
TG
1114 * @mtd: mtd info structure
1115 * @chip: nand chip info structure
1116 * @buf: buffer to store read data
58475fb9 1117 * @page: page number to read
068e3c0a 1118 */
f5bbdacc 1119static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1120 uint8_t *buf, int page)
1da177e4 1121{
f5bbdacc
TG
1122 int i, eccsize = chip->ecc.size;
1123 int eccbytes = chip->ecc.bytes;
1124 int eccsteps = chip->ecc.steps;
1125 uint8_t *p = buf;
4bf63fcb
DW
1126 uint8_t *ecc_calc = chip->buffers->ecccalc;
1127 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1128 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc 1129
46a8cf2d 1130 chip->ecc.read_page_raw(mtd, chip, buf, page);
f5bbdacc
TG
1131
1132 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1133 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1134
1135 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1136 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1137
1138 eccsteps = chip->ecc.steps;
1139 p = buf;
1140
1141 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1142 int stat;
1143
1144 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1145 if (stat < 0)
f5bbdacc
TG
1146 mtd->ecc_stats.failed++;
1147 else
1148 mtd->ecc_stats.corrected += stat;
1149 }
1150 return 0;
22c60f5f 1151}
1da177e4 1152
3d459559
AK
1153/**
1154 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1155 * @mtd: mtd info structure
1156 * @chip: nand chip info structure
17c1d2be
AK
1157 * @data_offs: offset of requested data within the page
1158 * @readlen: data length
1159 * @bufpoi: buffer to store read data
3d459559
AK
1160 */
1161static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1162{
1163 int start_step, end_step, num_steps;
1164 uint32_t *eccpos = chip->ecc.layout->eccpos;
1165 uint8_t *p;
1166 int data_col_addr, i, gaps = 0;
1167 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1168 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1169
1170 /* Column address wihin the page aligned to ECC size (256bytes). */
1171 start_step = data_offs / chip->ecc.size;
1172 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1173 num_steps = end_step - start_step + 1;
1174
1175 /* Data size aligned to ECC ecc.size*/
1176 datafrag_len = num_steps * chip->ecc.size;
1177 eccfrag_len = num_steps * chip->ecc.bytes;
1178
1179 data_col_addr = start_step * chip->ecc.size;
1180 /* If we read not a page aligned data */
1181 if (data_col_addr != 0)
1182 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1183
1184 p = bufpoi + data_col_addr;
1185 chip->read_buf(mtd, p, datafrag_len);
1186
1187 /* Calculate ECC */
1188 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1189 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1190
1191 /* The performance is faster if to position offsets
1192 according to ecc.pos. Let make sure here that
1193 there are no gaps in ecc positions */
1194 for (i = 0; i < eccfrag_len - 1; i++) {
1195 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1196 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1197 gaps = 1;
1198 break;
1199 }
1200 }
1201 if (gaps) {
1202 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1203 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1204 } else {
1205 /* send the command to read the particular ecc bytes */
1206 /* take care about buswidth alignment in read_buf */
1207 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1208 aligned_len = eccfrag_len;
1209 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1210 aligned_len++;
1211 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1212 aligned_len++;
1213
1214 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1215 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1216 }
1217
1218 for (i = 0; i < eccfrag_len; i++)
1219 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1220
1221 p = bufpoi + data_col_addr;
1222 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1223 int stat;
1224
1225 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1226 if (stat == -1)
1227 mtd->ecc_stats.failed++;
1228 else
1229 mtd->ecc_stats.corrected += stat;
1230 }
1231 return 0;
1232}
1233
068e3c0a 1234/**
d29ebdbe 1235 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
f5bbdacc
TG
1236 * @mtd: mtd info structure
1237 * @chip: nand chip info structure
1238 * @buf: buffer to store read data
58475fb9 1239 * @page: page number to read
068e3c0a 1240 *
f5bbdacc 1241 * Not for syndrome calculating ecc controllers which need a special oob layout
068e3c0a 1242 */
f5bbdacc 1243static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1244 uint8_t *buf, int page)
1da177e4 1245{
f5bbdacc
TG
1246 int i, eccsize = chip->ecc.size;
1247 int eccbytes = chip->ecc.bytes;
1248 int eccsteps = chip->ecc.steps;
1249 uint8_t *p = buf;
4bf63fcb
DW
1250 uint8_t *ecc_calc = chip->buffers->ecccalc;
1251 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1252 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc
TG
1253
1254 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1255 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1256 chip->read_buf(mtd, p, eccsize);
1257 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1258 }
f75e5097 1259 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1260
f5bbdacc 1261 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1262 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1263
f5bbdacc
TG
1264 eccsteps = chip->ecc.steps;
1265 p = buf;
61b03bd7 1266
f5bbdacc
TG
1267 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1268 int stat;
1da177e4 1269
f5bbdacc 1270 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1271 if (stat < 0)
f5bbdacc
TG
1272 mtd->ecc_stats.failed++;
1273 else
1274 mtd->ecc_stats.corrected += stat;
1275 }
1276 return 0;
1277}
1da177e4 1278
6e0cb135
SN
1279/**
1280 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1281 * @mtd: mtd info structure
1282 * @chip: nand chip info structure
1283 * @buf: buffer to store read data
58475fb9 1284 * @page: page number to read
6e0cb135
SN
1285 *
1286 * Hardware ECC for large page chips, require OOB to be read first.
1287 * For this ECC mode, the write_page method is re-used from ECC_HW.
1288 * These methods read/write ECC from the OOB area, unlike the
1289 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1290 * "infix ECC" scheme and reads/writes ECC from the data area, by
1291 * overwriting the NAND manufacturer bad block markings.
1292 */
1293static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1294 struct nand_chip *chip, uint8_t *buf, int page)
1295{
1296 int i, eccsize = chip->ecc.size;
1297 int eccbytes = chip->ecc.bytes;
1298 int eccsteps = chip->ecc.steps;
1299 uint8_t *p = buf;
1300 uint8_t *ecc_code = chip->buffers->ecccode;
1301 uint32_t *eccpos = chip->ecc.layout->eccpos;
1302 uint8_t *ecc_calc = chip->buffers->ecccalc;
1303
1304 /* Read the OOB area first */
1305 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1306 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1307 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1308
1309 for (i = 0; i < chip->ecc.total; i++)
1310 ecc_code[i] = chip->oob_poi[eccpos[i]];
1311
1312 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1313 int stat;
1314
1315 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1316 chip->read_buf(mtd, p, eccsize);
1317 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1318
1319 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1320 if (stat < 0)
1321 mtd->ecc_stats.failed++;
1322 else
1323 mtd->ecc_stats.corrected += stat;
1324 }
1325 return 0;
1326}
1327
f5bbdacc 1328/**
d29ebdbe 1329 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
f5bbdacc
TG
1330 * @mtd: mtd info structure
1331 * @chip: nand chip info structure
1332 * @buf: buffer to store read data
58475fb9 1333 * @page: page number to read
f5bbdacc
TG
1334 *
1335 * The hw generator calculates the error syndrome automatically. Therefor
f75e5097 1336 * we need a special oob layout and handling.
f5bbdacc
TG
1337 */
1338static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1339 uint8_t *buf, int page)
f5bbdacc
TG
1340{
1341 int i, eccsize = chip->ecc.size;
1342 int eccbytes = chip->ecc.bytes;
1343 int eccsteps = chip->ecc.steps;
1344 uint8_t *p = buf;
f75e5097 1345 uint8_t *oob = chip->oob_poi;
1da177e4 1346
f5bbdacc
TG
1347 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1348 int stat;
61b03bd7 1349
f5bbdacc
TG
1350 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1351 chip->read_buf(mtd, p, eccsize);
1da177e4 1352
f5bbdacc
TG
1353 if (chip->ecc.prepad) {
1354 chip->read_buf(mtd, oob, chip->ecc.prepad);
1355 oob += chip->ecc.prepad;
1356 }
1da177e4 1357
f5bbdacc
TG
1358 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1359 chip->read_buf(mtd, oob, eccbytes);
1360 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1361
c32b8dcc 1362 if (stat < 0)
f5bbdacc 1363 mtd->ecc_stats.failed++;
61b03bd7 1364 else
f5bbdacc 1365 mtd->ecc_stats.corrected += stat;
61b03bd7 1366
f5bbdacc 1367 oob += eccbytes;
1da177e4 1368
f5bbdacc
TG
1369 if (chip->ecc.postpad) {
1370 chip->read_buf(mtd, oob, chip->ecc.postpad);
1371 oob += chip->ecc.postpad;
61b03bd7 1372 }
f5bbdacc 1373 }
1da177e4 1374
f5bbdacc 1375 /* Calculate remaining oob bytes */
7e4178f9 1376 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1377 if (i)
1378 chip->read_buf(mtd, oob, i);
61b03bd7 1379
f5bbdacc
TG
1380 return 0;
1381}
1da177e4 1382
f5bbdacc 1383/**
8593fbc6
TG
1384 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1385 * @chip: nand chip structure
844d3b42 1386 * @oob: oob destination address
8593fbc6 1387 * @ops: oob ops structure
7014568b 1388 * @len: size of oob to transfer
8593fbc6
TG
1389 */
1390static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1391 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1392{
8593fbc6
TG
1393 switch(ops->mode) {
1394
1395 case MTD_OOB_PLACE:
1396 case MTD_OOB_RAW:
1397 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1398 return oob + len;
1399
1400 case MTD_OOB_AUTO: {
1401 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1402 uint32_t boffs = 0, roffs = ops->ooboffs;
1403 size_t bytes = 0;
8593fbc6
TG
1404
1405 for(; free->length && len; free++, len -= bytes) {
7bc3312b
TG
1406 /* Read request not from offset 0 ? */
1407 if (unlikely(roffs)) {
1408 if (roffs >= free->length) {
1409 roffs -= free->length;
1410 continue;
1411 }
1412 boffs = free->offset + roffs;
1413 bytes = min_t(size_t, len,
1414 (free->length - roffs));
1415 roffs = 0;
1416 } else {
1417 bytes = min_t(size_t, len, free->length);
1418 boffs = free->offset;
1419 }
1420 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1421 oob += bytes;
1422 }
1423 return oob;
1424 }
1425 default:
1426 BUG();
1427 }
1428 return NULL;
1429}
1430
1431/**
1432 * nand_do_read_ops - [Internal] Read data with ECC
f5bbdacc
TG
1433 *
1434 * @mtd: MTD device structure
1435 * @from: offset to read from
844d3b42 1436 * @ops: oob ops structure
f5bbdacc
TG
1437 *
1438 * Internal function. Called with chip held.
1439 */
8593fbc6
TG
1440static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1441 struct mtd_oob_ops *ops)
f5bbdacc
TG
1442{
1443 int chipnr, page, realpage, col, bytes, aligned;
1444 struct nand_chip *chip = mtd->priv;
1445 struct mtd_ecc_stats stats;
1446 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1447 int sndcmd = 1;
1448 int ret = 0;
8593fbc6 1449 uint32_t readlen = ops->len;
7014568b 1450 uint32_t oobreadlen = ops->ooblen;
9aca334e
ML
1451 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1452 mtd->oobavail : mtd->oobsize;
1453
8593fbc6 1454 uint8_t *bufpoi, *oob, *buf;
1da177e4 1455
f5bbdacc 1456 stats = mtd->ecc_stats;
1da177e4 1457
f5bbdacc
TG
1458 chipnr = (int)(from >> chip->chip_shift);
1459 chip->select_chip(mtd, chipnr);
61b03bd7 1460
f5bbdacc
TG
1461 realpage = (int)(from >> chip->page_shift);
1462 page = realpage & chip->pagemask;
1da177e4 1463
f5bbdacc 1464 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1465
8593fbc6
TG
1466 buf = ops->datbuf;
1467 oob = ops->oobbuf;
1468
f5bbdacc
TG
1469 while(1) {
1470 bytes = min(mtd->writesize - col, readlen);
1471 aligned = (bytes == mtd->writesize);
61b03bd7 1472
f5bbdacc 1473 /* Is the current page in the buffer ? */
8593fbc6 1474 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1475 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1476
f5bbdacc
TG
1477 if (likely(sndcmd)) {
1478 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1479 sndcmd = 0;
1da177e4 1480 }
1da177e4 1481
f5bbdacc 1482 /* Now read the page into the buffer */
956e944c 1483 if (unlikely(ops->mode == MTD_OOB_RAW))
46a8cf2d
SN
1484 ret = chip->ecc.read_page_raw(mtd, chip,
1485 bufpoi, page);
3d459559
AK
1486 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1487 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
956e944c 1488 else
46a8cf2d
SN
1489 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1490 page);
f5bbdacc 1491 if (ret < 0)
1da177e4 1492 break;
f5bbdacc
TG
1493
1494 /* Transfer not aligned data */
1495 if (!aligned) {
3d459559
AK
1496 if (!NAND_SUBPAGE_READ(chip) && !oob)
1497 chip->pagebuf = realpage;
4bf63fcb 1498 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1499 }
1500
8593fbc6
TG
1501 buf += bytes;
1502
1503 if (unlikely(oob)) {
9aca334e 1504
b64d39d8
ML
1505 int toread = min(oobreadlen, max_oobsize);
1506
1507 if (toread) {
1508 oob = nand_transfer_oob(chip,
1509 oob, ops, toread);
1510 oobreadlen -= toread;
1511 }
8593fbc6
TG
1512 }
1513
f5bbdacc
TG
1514 if (!(chip->options & NAND_NO_READRDY)) {
1515 /*
1516 * Apply delay or wait for ready/busy pin. Do
1517 * this before the AUTOINCR check, so no
1518 * problems arise if a chip which does auto
1519 * increment is marked as NOAUTOINCR by the
1520 * board driver.
1521 */
1522 if (!chip->dev_ready)
1523 udelay(chip->chip_delay);
1524 else
1525 nand_wait_ready(mtd);
1da177e4 1526 }
8593fbc6 1527 } else {
4bf63fcb 1528 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6
TG
1529 buf += bytes;
1530 }
1da177e4 1531
f5bbdacc 1532 readlen -= bytes;
61b03bd7 1533
f5bbdacc 1534 if (!readlen)
61b03bd7 1535 break;
1da177e4
LT
1536
1537 /* For subsequent reads align to page boundary. */
1538 col = 0;
1539 /* Increment page address */
1540 realpage++;
1541
ace4dfee 1542 page = realpage & chip->pagemask;
1da177e4
LT
1543 /* Check, if we cross a chip boundary */
1544 if (!page) {
1545 chipnr++;
ace4dfee
TG
1546 chip->select_chip(mtd, -1);
1547 chip->select_chip(mtd, chipnr);
1da177e4 1548 }
f5bbdacc 1549
61b03bd7
TG
1550 /* Check, if the chip supports auto page increment
1551 * or if we have hit a block boundary.
e0c7d767 1552 */
f5bbdacc 1553 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
61b03bd7 1554 sndcmd = 1;
1da177e4
LT
1555 }
1556
8593fbc6 1557 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1558 if (oob)
1559 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1560
f5bbdacc
TG
1561 if (ret)
1562 return ret;
1563
9a1fcdfd
TG
1564 if (mtd->ecc_stats.failed - stats.failed)
1565 return -EBADMSG;
1566
1567 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
f5bbdacc
TG
1568}
1569
1570/**
1571 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1572 * @mtd: MTD device structure
1573 * @from: offset to read from
1574 * @len: number of bytes to read
1575 * @retlen: pointer to variable to store the number of read bytes
1576 * @buf: the databuffer to put data
1577 *
1578 * Get hold of the chip and call nand_do_read
1579 */
1580static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1581 size_t *retlen, uint8_t *buf)
1582{
8593fbc6 1583 struct nand_chip *chip = mtd->priv;
f5bbdacc
TG
1584 int ret;
1585
f5bbdacc
TG
1586 /* Do not allow reads past end of device */
1587 if ((from + len) > mtd->size)
1588 return -EINVAL;
1589 if (!len)
1590 return 0;
1591
8593fbc6 1592 nand_get_device(chip, mtd, FL_READING);
f5bbdacc 1593
8593fbc6
TG
1594 chip->ops.len = len;
1595 chip->ops.datbuf = buf;
1596 chip->ops.oobbuf = NULL;
1597
1598 ret = nand_do_read_ops(mtd, from, &chip->ops);
f5bbdacc 1599
7fd5aecc
RP
1600 *retlen = chip->ops.retlen;
1601
f5bbdacc
TG
1602 nand_release_device(mtd);
1603
1604 return ret;
1da177e4
LT
1605}
1606
7bc3312b
TG
1607/**
1608 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1609 * @mtd: mtd info structure
1610 * @chip: nand chip info structure
1611 * @page: page number to read
1612 * @sndcmd: flag whether to issue read command or not
1613 */
1614static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1615 int page, int sndcmd)
1616{
1617 if (sndcmd) {
1618 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1619 sndcmd = 0;
1620 }
1621 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1622 return sndcmd;
1623}
1624
1625/**
1626 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1627 * with syndromes
1628 * @mtd: mtd info structure
1629 * @chip: nand chip info structure
1630 * @page: page number to read
1631 * @sndcmd: flag whether to issue read command or not
1632 */
1633static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1634 int page, int sndcmd)
1635{
1636 uint8_t *buf = chip->oob_poi;
1637 int length = mtd->oobsize;
1638 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1639 int eccsize = chip->ecc.size;
1640 uint8_t *bufpoi = buf;
1641 int i, toread, sndrnd = 0, pos;
1642
1643 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1644 for (i = 0; i < chip->ecc.steps; i++) {
1645 if (sndrnd) {
1646 pos = eccsize + i * (eccsize + chunk);
1647 if (mtd->writesize > 512)
1648 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1649 else
1650 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1651 } else
1652 sndrnd = 1;
1653 toread = min_t(int, length, chunk);
1654 chip->read_buf(mtd, bufpoi, toread);
1655 bufpoi += toread;
1656 length -= toread;
1657 }
1658 if (length > 0)
1659 chip->read_buf(mtd, bufpoi, length);
1660
1661 return 1;
1662}
1663
1664/**
1665 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1666 * @mtd: mtd info structure
1667 * @chip: nand chip info structure
1668 * @page: page number to write
1669 */
1670static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1671 int page)
1672{
1673 int status = 0;
1674 const uint8_t *buf = chip->oob_poi;
1675 int length = mtd->oobsize;
1676
1677 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1678 chip->write_buf(mtd, buf, length);
1679 /* Send command to program the OOB data */
1680 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1681
1682 status = chip->waitfunc(mtd, chip);
1683
0d420f9d 1684 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1685}
1686
1687/**
1688 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1689 * with syndrome - only for large page flash !
1690 * @mtd: mtd info structure
1691 * @chip: nand chip info structure
1692 * @page: page number to write
1693 */
1694static int nand_write_oob_syndrome(struct mtd_info *mtd,
1695 struct nand_chip *chip, int page)
1696{
1697 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1698 int eccsize = chip->ecc.size, length = mtd->oobsize;
1699 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1700 const uint8_t *bufpoi = chip->oob_poi;
1701
1702 /*
1703 * data-ecc-data-ecc ... ecc-oob
1704 * or
1705 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1706 */
1707 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1708 pos = steps * (eccsize + chunk);
1709 steps = 0;
1710 } else
8b0036ee 1711 pos = eccsize;
7bc3312b
TG
1712
1713 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1714 for (i = 0; i < steps; i++) {
1715 if (sndcmd) {
1716 if (mtd->writesize <= 512) {
1717 uint32_t fill = 0xFFFFFFFF;
1718
1719 len = eccsize;
1720 while (len > 0) {
1721 int num = min_t(int, len, 4);
1722 chip->write_buf(mtd, (uint8_t *)&fill,
1723 num);
1724 len -= num;
1725 }
1726 } else {
1727 pos = eccsize + i * (eccsize + chunk);
1728 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1729 }
1730 } else
1731 sndcmd = 1;
1732 len = min_t(int, length, chunk);
1733 chip->write_buf(mtd, bufpoi, len);
1734 bufpoi += len;
1735 length -= len;
1736 }
1737 if (length > 0)
1738 chip->write_buf(mtd, bufpoi, length);
1739
1740 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1741 status = chip->waitfunc(mtd, chip);
1742
1743 return status & NAND_STATUS_FAIL ? -EIO : 0;
1744}
1745
1da177e4 1746/**
8593fbc6 1747 * nand_do_read_oob - [Intern] NAND read out-of-band
1da177e4
LT
1748 * @mtd: MTD device structure
1749 * @from: offset to read from
8593fbc6 1750 * @ops: oob operations description structure
1da177e4
LT
1751 *
1752 * NAND read out-of-band data from the spare area
1753 */
8593fbc6
TG
1754static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1755 struct mtd_oob_ops *ops)
1da177e4 1756{
7bc3312b 1757 int page, realpage, chipnr, sndcmd = 1;
ace4dfee 1758 struct nand_chip *chip = mtd->priv;
7314e9e7 1759 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
7014568b
VW
1760 int readlen = ops->ooblen;
1761 int len;
7bc3312b 1762 uint8_t *buf = ops->oobbuf;
61b03bd7 1763
20d8e248 1764 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1765 __func__, (unsigned long long)from, readlen);
1da177e4 1766
03736155 1767 if (ops->mode == MTD_OOB_AUTO)
7014568b 1768 len = chip->ecc.layout->oobavail;
03736155
AH
1769 else
1770 len = mtd->oobsize;
1771
1772 if (unlikely(ops->ooboffs >= len)) {
20d8e248 1773 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1774 "outside oob\n", __func__);
03736155
AH
1775 return -EINVAL;
1776 }
1777
1778 /* Do not allow reads past end of device */
1779 if (unlikely(from >= mtd->size ||
1780 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1781 (from >> chip->page_shift)) * len)) {
20d8e248 1782 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1783 "of device\n", __func__);
03736155
AH
1784 return -EINVAL;
1785 }
7014568b 1786
7314e9e7 1787 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1788 chip->select_chip(mtd, chipnr);
1da177e4 1789
7314e9e7
TG
1790 /* Shift to get page */
1791 realpage = (int)(from >> chip->page_shift);
1792 page = realpage & chip->pagemask;
1da177e4 1793
7314e9e7 1794 while(1) {
7bc3312b 1795 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
7014568b
VW
1796
1797 len = min(len, readlen);
1798 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1799
7314e9e7
TG
1800 if (!(chip->options & NAND_NO_READRDY)) {
1801 /*
1802 * Apply delay or wait for ready/busy pin. Do this
1803 * before the AUTOINCR check, so no problems arise if a
1804 * chip which does auto increment is marked as
1805 * NOAUTOINCR by the board driver.
19870da7 1806 */
ace4dfee
TG
1807 if (!chip->dev_ready)
1808 udelay(chip->chip_delay);
19870da7
TG
1809 else
1810 nand_wait_ready(mtd);
7314e9e7 1811 }
19870da7 1812
7014568b 1813 readlen -= len;
0d420f9d
SZ
1814 if (!readlen)
1815 break;
1816
7314e9e7
TG
1817 /* Increment page address */
1818 realpage++;
1819
1820 page = realpage & chip->pagemask;
1821 /* Check, if we cross a chip boundary */
1822 if (!page) {
1823 chipnr++;
1824 chip->select_chip(mtd, -1);
1825 chip->select_chip(mtd, chipnr);
1da177e4 1826 }
7314e9e7
TG
1827
1828 /* Check, if the chip supports auto page increment
1829 * or if we have hit a block boundary.
1830 */
1831 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1832 sndcmd = 1;
1da177e4
LT
1833 }
1834
7014568b 1835 ops->oobretlen = ops->ooblen;
1da177e4
LT
1836 return 0;
1837}
1838
1839/**
8593fbc6 1840 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1da177e4 1841 * @mtd: MTD device structure
1da177e4 1842 * @from: offset to read from
8593fbc6 1843 * @ops: oob operation description structure
1da177e4 1844 *
8593fbc6 1845 * NAND read data and/or out-of-band data
1da177e4 1846 */
8593fbc6
TG
1847static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1848 struct mtd_oob_ops *ops)
1da177e4 1849{
ace4dfee 1850 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1851 int ret = -ENOTSUPP;
1852
1853 ops->retlen = 0;
1da177e4
LT
1854
1855 /* Do not allow reads past end of device */
7014568b 1856 if (ops->datbuf && (from + ops->len) > mtd->size) {
20d8e248 1857 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1858 "beyond end of device\n", __func__);
1da177e4
LT
1859 return -EINVAL;
1860 }
1861
ace4dfee 1862 nand_get_device(chip, mtd, FL_READING);
1da177e4 1863
8593fbc6
TG
1864 switch(ops->mode) {
1865 case MTD_OOB_PLACE:
1866 case MTD_OOB_AUTO:
8593fbc6 1867 case MTD_OOB_RAW:
8593fbc6 1868 break;
1da177e4 1869
8593fbc6
TG
1870 default:
1871 goto out;
1872 }
1da177e4 1873
8593fbc6
TG
1874 if (!ops->datbuf)
1875 ret = nand_do_read_oob(mtd, from, ops);
1876 else
1877 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1878
8593fbc6
TG
1879 out:
1880 nand_release_device(mtd);
1881 return ret;
1882}
61b03bd7 1883
1da177e4 1884
8593fbc6
TG
1885/**
1886 * nand_write_page_raw - [Intern] raw page write function
1887 * @mtd: mtd info structure
1888 * @chip: nand chip info structure
1889 * @buf: data buffer
52ff49df
DB
1890 *
1891 * Not for syndrome calculating ecc controllers, which use a special oob layout
8593fbc6
TG
1892 */
1893static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1894 const uint8_t *buf)
1895{
1896 chip->write_buf(mtd, buf, mtd->writesize);
1897 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4
LT
1898}
1899
52ff49df
DB
1900/**
1901 * nand_write_page_raw_syndrome - [Intern] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1904 * @buf: data buffer
1905 *
1906 * We need a special oob layout and handling even when ECC isn't checked.
1907 */
1908static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1909 const uint8_t *buf)
1910{
1911 int eccsize = chip->ecc.size;
1912 int eccbytes = chip->ecc.bytes;
1913 uint8_t *oob = chip->oob_poi;
1914 int steps, size;
1915
1916 for (steps = chip->ecc.steps; steps > 0; steps--) {
1917 chip->write_buf(mtd, buf, eccsize);
1918 buf += eccsize;
1919
1920 if (chip->ecc.prepad) {
1921 chip->write_buf(mtd, oob, chip->ecc.prepad);
1922 oob += chip->ecc.prepad;
1923 }
1924
1925 chip->read_buf(mtd, oob, eccbytes);
1926 oob += eccbytes;
1927
1928 if (chip->ecc.postpad) {
1929 chip->write_buf(mtd, oob, chip->ecc.postpad);
1930 oob += chip->ecc.postpad;
1931 }
1932 }
1933
1934 size = mtd->oobsize - (oob - chip->oob_poi);
1935 if (size)
1936 chip->write_buf(mtd, oob, size);
1937}
9223a456 1938/**
d29ebdbe 1939 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
f75e5097
TG
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1942 * @buf: data buffer
9223a456 1943 */
f75e5097
TG
1944static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1945 const uint8_t *buf)
9223a456 1946{
f75e5097
TG
1947 int i, eccsize = chip->ecc.size;
1948 int eccbytes = chip->ecc.bytes;
1949 int eccsteps = chip->ecc.steps;
4bf63fcb 1950 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1951 const uint8_t *p = buf;
8b099a39 1952 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1953
8593fbc6
TG
1954 /* Software ecc calculation */
1955 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1956 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1957
8593fbc6
TG
1958 for (i = 0; i < chip->ecc.total; i++)
1959 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1960
90424de8 1961 chip->ecc.write_page_raw(mtd, chip, buf);
f75e5097 1962}
9223a456 1963
f75e5097 1964/**
d29ebdbe 1965 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
f75e5097
TG
1966 * @mtd: mtd info structure
1967 * @chip: nand chip info structure
1968 * @buf: data buffer
1969 */
1970static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1971 const uint8_t *buf)
1972{
1973 int i, eccsize = chip->ecc.size;
1974 int eccbytes = chip->ecc.bytes;
1975 int eccsteps = chip->ecc.steps;
4bf63fcb 1976 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1977 const uint8_t *p = buf;
8b099a39 1978 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1979
f75e5097
TG
1980 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1981 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1982 chip->write_buf(mtd, p, eccsize);
f75e5097 1983 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1984 }
1985
f75e5097
TG
1986 for (i = 0; i < chip->ecc.total; i++)
1987 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1988
1989 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
9223a456
TG
1990}
1991
61b03bd7 1992/**
d29ebdbe 1993 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
f75e5097
TG
1994 * @mtd: mtd info structure
1995 * @chip: nand chip info structure
1996 * @buf: data buffer
1da177e4 1997 *
f75e5097
TG
1998 * The hw generator calculates the error syndrome automatically. Therefor
1999 * we need a special oob layout and handling.
2000 */
2001static void nand_write_page_syndrome(struct mtd_info *mtd,
2002 struct nand_chip *chip, const uint8_t *buf)
1da177e4 2003{
f75e5097
TG
2004 int i, eccsize = chip->ecc.size;
2005 int eccbytes = chip->ecc.bytes;
2006 int eccsteps = chip->ecc.steps;
2007 const uint8_t *p = buf;
2008 uint8_t *oob = chip->oob_poi;
1da177e4 2009
f75e5097 2010 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2011
f75e5097
TG
2012 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2013 chip->write_buf(mtd, p, eccsize);
61b03bd7 2014
f75e5097
TG
2015 if (chip->ecc.prepad) {
2016 chip->write_buf(mtd, oob, chip->ecc.prepad);
2017 oob += chip->ecc.prepad;
2018 }
2019
2020 chip->ecc.calculate(mtd, p, oob);
2021 chip->write_buf(mtd, oob, eccbytes);
2022 oob += eccbytes;
2023
2024 if (chip->ecc.postpad) {
2025 chip->write_buf(mtd, oob, chip->ecc.postpad);
2026 oob += chip->ecc.postpad;
1da177e4 2027 }
1da177e4 2028 }
f75e5097
TG
2029
2030 /* Calculate remaining oob bytes */
7e4178f9 2031 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2032 if (i)
2033 chip->write_buf(mtd, oob, i);
2034}
2035
2036/**
956e944c 2037 * nand_write_page - [REPLACEABLE] write one page
f75e5097
TG
2038 * @mtd: MTD device structure
2039 * @chip: NAND chip descriptor
2040 * @buf: the data to write
2041 * @page: page number to write
2042 * @cached: cached programming
efbfe96c 2043 * @raw: use _raw version of write_page
f75e5097
TG
2044 */
2045static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
956e944c 2046 const uint8_t *buf, int page, int cached, int raw)
f75e5097
TG
2047{
2048 int status;
2049
2050 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2051
956e944c
DW
2052 if (unlikely(raw))
2053 chip->ecc.write_page_raw(mtd, chip, buf);
2054 else
2055 chip->ecc.write_page(mtd, chip, buf);
f75e5097
TG
2056
2057 /*
2058 * Cached progamming disabled for now, Not sure if its worth the
2059 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2060 */
2061 cached = 0;
2062
2063 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2064
2065 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2066 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2067 /*
2068 * See if operation failed and additional status checks are
2069 * available
2070 */
2071 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2072 status = chip->errstat(mtd, chip, FL_WRITING, status,
2073 page);
2074
2075 if (status & NAND_STATUS_FAIL)
2076 return -EIO;
2077 } else {
2078 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2079 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2080 }
2081
2082#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2083 /* Send command to read back the data */
2084 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2085
2086 if (chip->verify_buf(mtd, buf, mtd->writesize))
2087 return -EIO;
2088#endif
2089 return 0;
1da177e4
LT
2090}
2091
8593fbc6
TG
2092/**
2093 * nand_fill_oob - [Internal] Transfer client buffer to oob
2094 * @chip: nand chip structure
2095 * @oob: oob data buffer
2096 * @ops: oob ops structure
2097 */
782ce79a
ML
2098static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2099 struct mtd_oob_ops *ops)
8593fbc6 2100{
8593fbc6
TG
2101 switch(ops->mode) {
2102
2103 case MTD_OOB_PLACE:
2104 case MTD_OOB_RAW:
2105 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2106 return oob + len;
2107
2108 case MTD_OOB_AUTO: {
2109 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2110 uint32_t boffs = 0, woffs = ops->ooboffs;
2111 size_t bytes = 0;
8593fbc6
TG
2112
2113 for(; free->length && len; free++, len -= bytes) {
7bc3312b
TG
2114 /* Write request not from offset 0 ? */
2115 if (unlikely(woffs)) {
2116 if (woffs >= free->length) {
2117 woffs -= free->length;
2118 continue;
2119 }
2120 boffs = free->offset + woffs;
2121 bytes = min_t(size_t, len,
2122 (free->length - woffs));
2123 woffs = 0;
2124 } else {
2125 bytes = min_t(size_t, len, free->length);
2126 boffs = free->offset;
2127 }
8b0036ee 2128 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2129 oob += bytes;
2130 }
2131 return oob;
2132 }
2133 default:
2134 BUG();
2135 }
2136 return NULL;
2137}
2138
29072b96 2139#define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1da177e4
LT
2140
2141/**
8593fbc6 2142 * nand_do_write_ops - [Internal] NAND write with ECC
1da177e4
LT
2143 * @mtd: MTD device structure
2144 * @to: offset to write to
8593fbc6 2145 * @ops: oob operations description structure
1da177e4
LT
2146 *
2147 * NAND write with ECC
2148 */
8593fbc6
TG
2149static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2150 struct mtd_oob_ops *ops)
1da177e4 2151{
29072b96 2152 int chipnr, realpage, page, blockmask, column;
ace4dfee 2153 struct nand_chip *chip = mtd->priv;
8593fbc6 2154 uint32_t writelen = ops->len;
782ce79a
ML
2155
2156 uint32_t oobwritelen = ops->ooblen;
2157 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2158 mtd->oobavail : mtd->oobsize;
2159
8593fbc6
TG
2160 uint8_t *oob = ops->oobbuf;
2161 uint8_t *buf = ops->datbuf;
29072b96 2162 int ret, subpage;
1da177e4 2163
8593fbc6 2164 ops->retlen = 0;
29072b96
TG
2165 if (!writelen)
2166 return 0;
1da177e4 2167
61b03bd7 2168 /* reject writes, which are not page aligned */
8593fbc6 2169 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
20d8e248 2170 printk(KERN_NOTICE "%s: Attempt to write not "
2171 "page aligned data\n", __func__);
1da177e4
LT
2172 return -EINVAL;
2173 }
2174
29072b96
TG
2175 column = to & (mtd->writesize - 1);
2176 subpage = column || (writelen & (mtd->writesize - 1));
2177
2178 if (subpage && oob)
2179 return -EINVAL;
1da177e4 2180
6a930961
TG
2181 chipnr = (int)(to >> chip->chip_shift);
2182 chip->select_chip(mtd, chipnr);
2183
1da177e4
LT
2184 /* Check, if it is write protected */
2185 if (nand_check_wp(mtd))
8593fbc6 2186 return -EIO;
1da177e4 2187
f75e5097
TG
2188 realpage = (int)(to >> chip->page_shift);
2189 page = realpage & chip->pagemask;
2190 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2191
2192 /* Invalidate the page cache, when we write to the cached page */
2193 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2194 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2195 chip->pagebuf = -1;
61b03bd7 2196
7dcdcbef
DW
2197 /* If we're not given explicit OOB data, let it be 0xFF */
2198 if (likely(!oob))
2199 memset(chip->oob_poi, 0xff, mtd->oobsize);
61b03bd7 2200
782ce79a
ML
2201 /* Don't allow multipage oob writes with offset */
2202 if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2203 return -EINVAL;
2204
f75e5097 2205 while(1) {
29072b96 2206 int bytes = mtd->writesize;
f75e5097 2207 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2208 uint8_t *wbuf = buf;
2209
2210 /* Partial page write ? */
2211 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2212 cached = 0;
2213 bytes = min_t(int, bytes - column, (int) writelen);
2214 chip->pagebuf = -1;
2215 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2216 memcpy(&chip->buffers->databuf[column], buf, bytes);
2217 wbuf = chip->buffers->databuf;
2218 }
1da177e4 2219
782ce79a
ML
2220 if (unlikely(oob)) {
2221 size_t len = min(oobwritelen, oobmaxlen);
2222 oob = nand_fill_oob(chip, oob, len, ops);
2223 oobwritelen -= len;
2224 }
8593fbc6 2225
29072b96 2226 ret = chip->write_page(mtd, chip, wbuf, page, cached,
956e944c 2227 (ops->mode == MTD_OOB_RAW));
f75e5097
TG
2228 if (ret)
2229 break;
2230
2231 writelen -= bytes;
2232 if (!writelen)
2233 break;
2234
29072b96 2235 column = 0;
f75e5097
TG
2236 buf += bytes;
2237 realpage++;
2238
2239 page = realpage & chip->pagemask;
2240 /* Check, if we cross a chip boundary */
2241 if (!page) {
2242 chipnr++;
2243 chip->select_chip(mtd, -1);
2244 chip->select_chip(mtd, chipnr);
1da177e4
LT
2245 }
2246 }
8593fbc6 2247
8593fbc6 2248 ops->retlen = ops->len - writelen;
7014568b
VW
2249 if (unlikely(oob))
2250 ops->oobretlen = ops->ooblen;
1da177e4
LT
2251 return ret;
2252}
2253
2af7c653
SK
2254/**
2255 * panic_nand_write - [MTD Interface] NAND write with ECC
2256 * @mtd: MTD device structure
2257 * @to: offset to write to
2258 * @len: number of bytes to write
2259 * @retlen: pointer to variable to store the number of written bytes
2260 * @buf: the data to write
2261 *
2262 * NAND write with ECC. Used when performing writes in interrupt context, this
2263 * may for example be called by mtdoops when writing an oops while in panic.
2264 */
2265static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2266 size_t *retlen, const uint8_t *buf)
2267{
2268 struct nand_chip *chip = mtd->priv;
2269 int ret;
2270
2271 /* Do not allow reads past end of device */
2272 if ((to + len) > mtd->size)
2273 return -EINVAL;
2274 if (!len)
2275 return 0;
2276
2277 /* Wait for the device to get ready. */
2278 panic_nand_wait(mtd, chip, 400);
2279
2280 /* Grab the device. */
2281 panic_nand_get_device(chip, mtd, FL_WRITING);
2282
2283 chip->ops.len = len;
2284 chip->ops.datbuf = (uint8_t *)buf;
2285 chip->ops.oobbuf = NULL;
2286
2287 ret = nand_do_write_ops(mtd, to, &chip->ops);
2288
2289 *retlen = chip->ops.retlen;
2290 return ret;
2291}
2292
f75e5097 2293/**
8593fbc6 2294 * nand_write - [MTD Interface] NAND write with ECC
f75e5097 2295 * @mtd: MTD device structure
f75e5097
TG
2296 * @to: offset to write to
2297 * @len: number of bytes to write
8593fbc6
TG
2298 * @retlen: pointer to variable to store the number of written bytes
2299 * @buf: the data to write
f75e5097 2300 *
8593fbc6 2301 * NAND write with ECC
f75e5097 2302 */
8593fbc6
TG
2303static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2304 size_t *retlen, const uint8_t *buf)
f75e5097
TG
2305{
2306 struct nand_chip *chip = mtd->priv;
f75e5097
TG
2307 int ret;
2308
8593fbc6
TG
2309 /* Do not allow reads past end of device */
2310 if ((to + len) > mtd->size)
f75e5097 2311 return -EINVAL;
8593fbc6
TG
2312 if (!len)
2313 return 0;
f75e5097 2314
7bc3312b 2315 nand_get_device(chip, mtd, FL_WRITING);
f75e5097 2316
8593fbc6
TG
2317 chip->ops.len = len;
2318 chip->ops.datbuf = (uint8_t *)buf;
2319 chip->ops.oobbuf = NULL;
f75e5097 2320
8593fbc6 2321 ret = nand_do_write_ops(mtd, to, &chip->ops);
f75e5097 2322
7fd5aecc
RP
2323 *retlen = chip->ops.retlen;
2324
f75e5097 2325 nand_release_device(mtd);
8593fbc6 2326
8593fbc6 2327 return ret;
f75e5097 2328}
7314e9e7 2329
1da177e4 2330/**
8593fbc6 2331 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1da177e4
LT
2332 * @mtd: MTD device structure
2333 * @to: offset to write to
8593fbc6 2334 * @ops: oob operation description structure
1da177e4
LT
2335 *
2336 * NAND write out-of-band
2337 */
8593fbc6
TG
2338static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2339 struct mtd_oob_ops *ops)
1da177e4 2340{
03736155 2341 int chipnr, page, status, len;
ace4dfee 2342 struct nand_chip *chip = mtd->priv;
1da177e4 2343
20d8e248 2344 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2345 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2346
03736155
AH
2347 if (ops->mode == MTD_OOB_AUTO)
2348 len = chip->ecc.layout->oobavail;
2349 else
2350 len = mtd->oobsize;
2351
1da177e4 2352 /* Do not allow write past end of page */
03736155 2353 if ((ops->ooboffs + ops->ooblen) > len) {
20d8e248 2354 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2355 "past end of page\n", __func__);
1da177e4
LT
2356 return -EINVAL;
2357 }
2358
03736155 2359 if (unlikely(ops->ooboffs >= len)) {
20d8e248 2360 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2361 "write outside oob\n", __func__);
03736155
AH
2362 return -EINVAL;
2363 }
2364
2365 /* Do not allow reads past end of device */
2366 if (unlikely(to >= mtd->size ||
2367 ops->ooboffs + ops->ooblen >
2368 ((mtd->size >> chip->page_shift) -
2369 (to >> chip->page_shift)) * len)) {
20d8e248 2370 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2371 "end of device\n", __func__);
03736155
AH
2372 return -EINVAL;
2373 }
2374
7314e9e7 2375 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2376 chip->select_chip(mtd, chipnr);
1da177e4 2377
7314e9e7
TG
2378 /* Shift to get page */
2379 page = (int)(to >> chip->page_shift);
2380
2381 /*
2382 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2383 * of my DiskOnChip 2000 test units) will clear the whole data page too
2384 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2385 * it in the doc2000 driver in August 1999. dwmw2.
2386 */
ace4dfee 2387 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2388
2389 /* Check, if it is write protected */
2390 if (nand_check_wp(mtd))
8593fbc6 2391 return -EROFS;
61b03bd7 2392
1da177e4 2393 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2394 if (page == chip->pagebuf)
2395 chip->pagebuf = -1;
1da177e4 2396
7bc3312b 2397 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2398 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
7bc3312b
TG
2399 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2400 memset(chip->oob_poi, 0xff, mtd->oobsize);
1da177e4 2401
7bc3312b
TG
2402 if (status)
2403 return status;
1da177e4 2404
7014568b 2405 ops->oobretlen = ops->ooblen;
1da177e4 2406
7bc3312b 2407 return 0;
8593fbc6
TG
2408}
2409
2410/**
2411 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2412 * @mtd: MTD device structure
844d3b42 2413 * @to: offset to write to
8593fbc6
TG
2414 * @ops: oob operation description structure
2415 */
2416static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2417 struct mtd_oob_ops *ops)
2418{
8593fbc6
TG
2419 struct nand_chip *chip = mtd->priv;
2420 int ret = -ENOTSUPP;
2421
2422 ops->retlen = 0;
2423
2424 /* Do not allow writes past end of device */
7014568b 2425 if (ops->datbuf && (to + ops->len) > mtd->size) {
20d8e248 2426 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2427 "end of device\n", __func__);
8593fbc6
TG
2428 return -EINVAL;
2429 }
2430
7bc3312b 2431 nand_get_device(chip, mtd, FL_WRITING);
8593fbc6
TG
2432
2433 switch(ops->mode) {
2434 case MTD_OOB_PLACE:
2435 case MTD_OOB_AUTO:
8593fbc6 2436 case MTD_OOB_RAW:
8593fbc6
TG
2437 break;
2438
2439 default:
2440 goto out;
2441 }
2442
2443 if (!ops->datbuf)
2444 ret = nand_do_write_oob(mtd, to, ops);
2445 else
2446 ret = nand_do_write_ops(mtd, to, ops);
2447
e0c7d767 2448 out:
1da177e4 2449 nand_release_device(mtd);
1da177e4
LT
2450 return ret;
2451}
2452
1da177e4
LT
2453/**
2454 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2455 * @mtd: MTD device structure
2456 * @page: the page address of the block which will be erased
2457 *
2458 * Standard erase command for NAND chips
2459 */
e0c7d767 2460static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2461{
ace4dfee 2462 struct nand_chip *chip = mtd->priv;
1da177e4 2463 /* Send commands to erase a block */
ace4dfee
TG
2464 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2465 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2466}
2467
2468/**
2469 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2470 * @mtd: MTD device structure
2471 * @page: the page address of the block which will be erased
2472 *
2473 * AND multi block erase command function
2474 * Erase 4 consecutive blocks
2475 */
e0c7d767 2476static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2477{
ace4dfee 2478 struct nand_chip *chip = mtd->priv;
1da177e4 2479 /* Send commands to erase a block */
ace4dfee
TG
2480 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2481 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2482 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2483 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2484 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2485}
2486
2487/**
2488 * nand_erase - [MTD Interface] erase block(s)
2489 * @mtd: MTD device structure
2490 * @instr: erase instruction
2491 *
2492 * Erase one ore more blocks
2493 */
e0c7d767 2494static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2495{
e0c7d767 2496 return nand_erase_nand(mtd, instr, 0);
1da177e4 2497}
61b03bd7 2498
30f464b7 2499#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2500/**
ace4dfee 2501 * nand_erase_nand - [Internal] erase block(s)
1da177e4
LT
2502 * @mtd: MTD device structure
2503 * @instr: erase instruction
2504 * @allowbbt: allow erasing the bbt area
2505 *
2506 * Erase one ore more blocks
2507 */
ace4dfee
TG
2508int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2509 int allowbbt)
1da177e4 2510{
69423d99 2511 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2512 struct nand_chip *chip = mtd->priv;
69423d99 2513 loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
ace4dfee 2514 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2515 loff_t len;
1da177e4 2516
20d8e248 2517 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2518 __func__, (unsigned long long)instr->addr,
2519 (unsigned long long)instr->len);
1da177e4 2520
6fe5a6ac 2521 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2522 return -EINVAL;
1da177e4 2523
bb0eb217 2524 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1da177e4
LT
2525
2526 /* Grab the lock and see if the device is available */
ace4dfee 2527 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
2528
2529 /* Shift to get first page */
ace4dfee
TG
2530 page = (int)(instr->addr >> chip->page_shift);
2531 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2532
2533 /* Calculate pages in each block */
ace4dfee 2534 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2535
2536 /* Select the NAND device */
ace4dfee 2537 chip->select_chip(mtd, chipnr);
1da177e4 2538
1da177e4
LT
2539 /* Check, if it is write protected */
2540 if (nand_check_wp(mtd)) {
20d8e248 2541 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2542 __func__);
1da177e4
LT
2543 instr->state = MTD_ERASE_FAILED;
2544 goto erase_exit;
2545 }
2546
ace4dfee
TG
2547 /*
2548 * If BBT requires refresh, set the BBT page mask to see if the BBT
2549 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2550 * can not be matched. This is also done when the bbt is actually
2551 * erased to avoid recusrsive updates
2552 */
2553 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2554 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2555
1da177e4
LT
2556 /* Loop through the pages */
2557 len = instr->len;
2558
2559 instr->state = MTD_ERASING;
2560
2561 while (len) {
ace4dfee
TG
2562 /*
2563 * heck if we have a bad block, we do not erase bad blocks !
2564 */
2565 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2566 chip->page_shift, 0, allowbbt)) {
20d8e248 2567 printk(KERN_WARNING "%s: attempt to erase a bad block "
2568 "at page 0x%08x\n", __func__, page);
1da177e4
LT
2569 instr->state = MTD_ERASE_FAILED;
2570 goto erase_exit;
2571 }
61b03bd7 2572
ace4dfee
TG
2573 /*
2574 * Invalidate the page cache, if we erase the block which
2575 * contains the current cached page
2576 */
2577 if (page <= chip->pagebuf && chip->pagebuf <
2578 (page + pages_per_block))
2579 chip->pagebuf = -1;
1da177e4 2580
ace4dfee 2581 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2582
7bc3312b 2583 status = chip->waitfunc(mtd, chip);
1da177e4 2584
ace4dfee
TG
2585 /*
2586 * See if operation failed and additional status checks are
2587 * available
2588 */
2589 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2590 status = chip->errstat(mtd, chip, FL_ERASING,
2591 status, page);
068e3c0a 2592
1da177e4 2593 /* See if block erase succeeded */
a4ab4c5d 2594 if (status & NAND_STATUS_FAIL) {
20d8e248 2595 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2596 "page 0x%08x\n", __func__, page);
1da177e4 2597 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2598 instr->fail_addr =
2599 ((loff_t)page << chip->page_shift);
1da177e4
LT
2600 goto erase_exit;
2601 }
30f464b7 2602
ace4dfee
TG
2603 /*
2604 * If BBT requires refresh, set the BBT rewrite flag to the
2605 * page being erased
2606 */
2607 if (bbt_masked_page != 0xffffffff &&
2608 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2609 rewrite_bbt[chipnr] =
2610 ((loff_t)page << chip->page_shift);
61b03bd7 2611
1da177e4 2612 /* Increment page address and decrement length */
ace4dfee 2613 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2614 page += pages_per_block;
2615
2616 /* Check, if we cross a chip boundary */
ace4dfee 2617 if (len && !(page & chip->pagemask)) {
1da177e4 2618 chipnr++;
ace4dfee
TG
2619 chip->select_chip(mtd, -1);
2620 chip->select_chip(mtd, chipnr);
30f464b7 2621
ace4dfee
TG
2622 /*
2623 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2624 * page mask to see if this BBT should be rewritten
2625 */
2626 if (bbt_masked_page != 0xffffffff &&
2627 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2628 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2629 BBT_PAGE_MASK;
1da177e4
LT
2630 }
2631 }
2632 instr->state = MTD_ERASE_DONE;
2633
e0c7d767 2634 erase_exit:
1da177e4
LT
2635
2636 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2637
2638 /* Deselect and wake up anyone waiting on the device */
2639 nand_release_device(mtd);
2640
49defc01
DW
2641 /* Do call back function */
2642 if (!ret)
2643 mtd_erase_callback(instr);
2644
ace4dfee
TG
2645 /*
2646 * If BBT requires refresh and erase was successful, rewrite any
2647 * selected bad block tables
2648 */
2649 if (bbt_masked_page == 0xffffffff || ret)
2650 return ret;
2651
2652 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2653 if (!rewrite_bbt[chipnr])
2654 continue;
2655 /* update the BBT for chip */
20d8e248 2656 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2657 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2658 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
ace4dfee 2659 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2660 }
2661
1da177e4
LT
2662 /* Return more or less happy */
2663 return ret;
2664}
2665
2666/**
2667 * nand_sync - [MTD Interface] sync
2668 * @mtd: MTD device structure
2669 *
2670 * Sync is actually a wait for chip ready function
2671 */
e0c7d767 2672static void nand_sync(struct mtd_info *mtd)
1da177e4 2673{
ace4dfee 2674 struct nand_chip *chip = mtd->priv;
1da177e4 2675
20d8e248 2676 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
1da177e4
LT
2677
2678 /* Grab the lock and see if the device is available */
ace4dfee 2679 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 2680 /* Release it and go back */
e0c7d767 2681 nand_release_device(mtd);
1da177e4
LT
2682}
2683
1da177e4 2684/**
ace4dfee 2685 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
1da177e4 2686 * @mtd: MTD device structure
844d3b42 2687 * @offs: offset relative to mtd start
1da177e4 2688 */
ace4dfee 2689static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4
LT
2690{
2691 /* Check for invalid offset */
ace4dfee 2692 if (offs > mtd->size)
1da177e4 2693 return -EINVAL;
61b03bd7 2694
ace4dfee 2695 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2696}
2697
2698/**
ace4dfee 2699 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
1da177e4
LT
2700 * @mtd: MTD device structure
2701 * @ofs: offset relative to mtd start
2702 */
e0c7d767 2703static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2704{
ace4dfee 2705 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2706 int ret;
2707
e0c7d767
DW
2708 if ((ret = nand_block_isbad(mtd, ofs))) {
2709 /* If it was bad already, return success and do nothing. */
1da177e4
LT
2710 if (ret > 0)
2711 return 0;
e0c7d767
DW
2712 return ret;
2713 }
1da177e4 2714
ace4dfee 2715 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2716}
2717
962034f4
VW
2718/**
2719 * nand_suspend - [MTD Interface] Suspend the NAND flash
2720 * @mtd: MTD device structure
2721 */
2722static int nand_suspend(struct mtd_info *mtd)
2723{
ace4dfee 2724 struct nand_chip *chip = mtd->priv;
962034f4 2725
ace4dfee 2726 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
2727}
2728
2729/**
2730 * nand_resume - [MTD Interface] Resume the NAND flash
2731 * @mtd: MTD device structure
2732 */
2733static void nand_resume(struct mtd_info *mtd)
2734{
ace4dfee 2735 struct nand_chip *chip = mtd->priv;
962034f4 2736
ace4dfee 2737 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2738 nand_release_device(mtd);
2739 else
20d8e248 2740 printk(KERN_ERR "%s called for a chip which is not "
2741 "in suspended state\n", __func__);
962034f4
VW
2742}
2743
7aa65bfd
TG
2744/*
2745 * Set default functions
2746 */
ace4dfee 2747static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2748{
1da177e4 2749 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2750 if (!chip->chip_delay)
2751 chip->chip_delay = 20;
1da177e4
LT
2752
2753 /* check, if a user supplied command function given */
ace4dfee
TG
2754 if (chip->cmdfunc == NULL)
2755 chip->cmdfunc = nand_command;
1da177e4
LT
2756
2757 /* check, if a user supplied wait function given */
ace4dfee
TG
2758 if (chip->waitfunc == NULL)
2759 chip->waitfunc = nand_wait;
2760
2761 if (!chip->select_chip)
2762 chip->select_chip = nand_select_chip;
2763 if (!chip->read_byte)
2764 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2765 if (!chip->read_word)
2766 chip->read_word = nand_read_word;
2767 if (!chip->block_bad)
2768 chip->block_bad = nand_block_bad;
2769 if (!chip->block_markbad)
2770 chip->block_markbad = nand_default_block_markbad;
2771 if (!chip->write_buf)
2772 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2773 if (!chip->read_buf)
2774 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2775 if (!chip->verify_buf)
2776 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2777 if (!chip->scan_bbt)
2778 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2779
2780 if (!chip->controller) {
2781 chip->controller = &chip->hwcontrol;
2782 spin_lock_init(&chip->controller->lock);
2783 init_waitqueue_head(&chip->controller->wq);
2784 }
2785
7aa65bfd
TG
2786}
2787
2788/*
ace4dfee 2789 * Get the flash and manufacturer id and lookup if the type is supported
7aa65bfd
TG
2790 */
2791static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 2792 struct nand_chip *chip,
5e81e88a
DW
2793 int busw, int *maf_id,
2794 struct nand_flash_dev *type)
7aa65bfd 2795{
426c457a
KC
2796 int i, dev_id, maf_idx;
2797 u8 id_data[8];
1da177e4
LT
2798
2799 /* Select the device */
ace4dfee 2800 chip->select_chip(mtd, 0);
1da177e4 2801
ef89a880
KB
2802 /*
2803 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2804 * after power-up
2805 */
2806 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2807
1da177e4 2808 /* Send the command for reading device ID */
ace4dfee 2809 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2810
2811 /* Read manufacturer and device IDs */
ace4dfee
TG
2812 *maf_id = chip->read_byte(mtd);
2813 dev_id = chip->read_byte(mtd);
1da177e4 2814
ed8165c7
BD
2815 /* Try again to make sure, as some systems the bus-hold or other
2816 * interface concerns can cause random data which looks like a
2817 * possibly credible NAND flash to appear. If the two results do
2818 * not match, ignore the device completely.
2819 */
2820
2821 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2822
426c457a 2823 /* Read entire ID string */
ed8165c7 2824
426c457a
KC
2825 for (i = 0; i < 8; i++)
2826 id_data[i] = chip->read_byte(mtd);
ed8165c7 2827
426c457a 2828 if (id_data[0] != *maf_id || id_data[1] != dev_id) {
ed8165c7
BD
2829 printk(KERN_INFO "%s: second ID read did not match "
2830 "%02x,%02x against %02x,%02x\n", __func__,
426c457a 2831 *maf_id, dev_id, id_data[0], id_data[1]);
ed8165c7
BD
2832 return ERR_PTR(-ENODEV);
2833 }
2834
7aa65bfd 2835 if (!type)
5e81e88a
DW
2836 type = nand_flash_ids;
2837
2838 for (; type->name != NULL; type++)
2839 if (dev_id == type->id)
2840 break;
2841
2842 if (!type->name)
7aa65bfd
TG
2843 return ERR_PTR(-ENODEV);
2844
ba0251fe
TG
2845 if (!mtd->name)
2846 mtd->name = type->name;
2847
69423d99 2848 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd
TG
2849
2850 /* Newer devices have all the information in additional id bytes */
ba0251fe 2851 if (!type->pagesize) {
7aa65bfd 2852 int extid;
29072b96 2853 /* The 3rd id byte holds MLC / multichip data */
426c457a 2854 chip->cellinfo = id_data[2];
7aa65bfd 2855 /* The 4th id byte is the important one */
426c457a 2856 extid = id_data[3];
61b03bd7 2857
426c457a
KC
2858 /*
2859 * Field definitions are in the following datasheets:
2860 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2861 * New style (6 byte ID): Samsung K9GAG08U0D (p.40)
2862 *
2863 * Check for wraparound + Samsung ID + nonzero 6th byte
2864 * to decide what to do.
2865 */
2866 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2867 id_data[0] == NAND_MFR_SAMSUNG &&
2868 id_data[5] != 0x00) {
2869 /* Calc pagesize */
2870 mtd->writesize = 2048 << (extid & 0x03);
2871 extid >>= 2;
2872 /* Calc oobsize */
2873 mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2874 extid >>= 2;
2875 /* Calc blocksize */
2876 mtd->erasesize = (128 * 1024) <<
2877 (((extid >> 1) & 0x04) | (extid & 0x03));
2878 busw = 0;
2879 } else {
2880 /* Calc pagesize */
2881 mtd->writesize = 1024 << (extid & 0x03);
2882 extid >>= 2;
2883 /* Calc oobsize */
2884 mtd->oobsize = (8 << (extid & 0x01)) *
2885 (mtd->writesize >> 9);
2886 extid >>= 2;
2887 /* Calc blocksize. Blocksize is multiples of 64KiB */
2888 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2889 extid >>= 2;
2890 /* Get buswidth information */
2891 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2892 }
7aa65bfd
TG
2893 } else {
2894 /*
ace4dfee 2895 * Old devices have chip data hardcoded in the device id table
7aa65bfd 2896 */
ba0251fe
TG
2897 mtd->erasesize = type->erasesize;
2898 mtd->writesize = type->pagesize;
4cbb9b80 2899 mtd->oobsize = mtd->writesize / 32;
ba0251fe 2900 busw = type->options & NAND_BUSWIDTH_16;
7aa65bfd 2901 }
1da177e4 2902
7aa65bfd 2903 /* Try to identify manufacturer */
9a909867 2904 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
2905 if (nand_manuf_ids[maf_idx].id == *maf_id)
2906 break;
2907 }
0ea4a755 2908
7aa65bfd
TG
2909 /*
2910 * Check, if buswidth is correct. Hardware drivers should set
ace4dfee 2911 * chip correct !
7aa65bfd 2912 */
ace4dfee 2913 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
7aa65bfd
TG
2914 printk(KERN_INFO "NAND device: Manufacturer ID:"
2915 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2916 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2917 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
ace4dfee 2918 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
7aa65bfd
TG
2919 busw ? 16 : 8);
2920 return ERR_PTR(-EINVAL);
2921 }
61b03bd7 2922
7aa65bfd 2923 /* Calculate the address shift from the page size */
ace4dfee 2924 chip->page_shift = ffs(mtd->writesize) - 1;
7aa65bfd 2925 /* Convert chipsize to number of pages per chip -1. */
ace4dfee 2926 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 2927
ace4dfee 2928 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 2929 ffs(mtd->erasesize) - 1;
69423d99
AH
2930 if (chip->chipsize & 0xffffffff)
2931 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2932 else
2933 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
1da177e4 2934
7aa65bfd 2935 /* Set the bad block position */
c7b28e25
BN
2936 if (!(busw & NAND_BUSWIDTH_16) && (*maf_id == NAND_MFR_STMICRO ||
2937 (*maf_id == NAND_MFR_SAMSUNG &&
2938 mtd->writesize == 512) ||
2939 *maf_id == NAND_MFR_AMD))
2940 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
2941 else
2942 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
2943
61b03bd7 2944
7aa65bfd 2945 /* Get chip options, preserve non chip based options */
ace4dfee 2946 chip->options &= ~NAND_CHIPOPTIONS_MSK;
ba0251fe 2947 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
7aa65bfd
TG
2948
2949 /*
ace4dfee 2950 * Set chip as a default. Board drivers can override it, if necessary
7aa65bfd 2951 */
ace4dfee 2952 chip->options |= NAND_NO_AUTOINCR;
7aa65bfd 2953
ace4dfee 2954 /* Check if chip is a not a samsung device. Do not clear the
7aa65bfd
TG
2955 * options for chips which are not having an extended id.
2956 */
ba0251fe 2957 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
ace4dfee 2958 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
7aa65bfd 2959
b60b08b0
KC
2960 /*
2961 * Bad block marker is stored in the last page of each block
c7b28e25
BN
2962 * on Samsung and Hynix MLC devices; stored in first two pages
2963 * of each block on Micron devices with 2KiB pages and on
2964 * SLC Samsung, Hynix, and AMD/Spansion. All others scan only
2965 * the first page.
b60b08b0
KC
2966 */
2967 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2968 (*maf_id == NAND_MFR_SAMSUNG ||
2969 *maf_id == NAND_MFR_HYNIX))
30fe8115 2970 chip->options |= NAND_BBT_SCANLASTPAGE;
c7b28e25
BN
2971 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2972 (*maf_id == NAND_MFR_SAMSUNG ||
2973 *maf_id == NAND_MFR_HYNIX ||
2974 *maf_id == NAND_MFR_AMD)) ||
2975 (mtd->writesize == 2048 &&
2976 *maf_id == NAND_MFR_MICRON))
2977 chip->options |= NAND_BBT_SCAN2NDPAGE;
2978
58373ff0
BN
2979 /*
2980 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
2981 */
2982 if (!(busw & NAND_BUSWIDTH_16) &&
2983 *maf_id == NAND_MFR_STMICRO &&
2984 mtd->writesize == 2048) {
2985 chip->options |= NAND_BBT_SCANBYTE1AND6;
2986 chip->badblockpos = 0;
2987 }
b60b08b0 2988
7aa65bfd 2989 /* Check for AND chips with 4 page planes */
ace4dfee
TG
2990 if (chip->options & NAND_4PAGE_ARRAY)
2991 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 2992 else
ace4dfee 2993 chip->erase_cmd = single_erase_cmd;
7aa65bfd
TG
2994
2995 /* Do not replace user supplied command function ! */
ace4dfee
TG
2996 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2997 chip->cmdfunc = nand_command_lp;
7aa65bfd
TG
2998
2999 printk(KERN_INFO "NAND device: Manufacturer ID:"
3000 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
3001 nand_manuf_ids[maf_idx].name, type->name);
3002
3003 return type;
3004}
3005
7aa65bfd 3006/**
3b85c321
DW
3007 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3008 * @mtd: MTD device structure
3009 * @maxchips: Number of chips to scan for
5e81e88a 3010 * @table: Alternative NAND ID table
7aa65bfd 3011 *
3b85c321
DW
3012 * This is the first phase of the normal nand_scan() function. It
3013 * reads the flash ID and sets up MTD fields accordingly.
7aa65bfd 3014 *
3b85c321 3015 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3016 */
5e81e88a
DW
3017int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3018 struct nand_flash_dev *table)
7aa65bfd
TG
3019{
3020 int i, busw, nand_maf_id;
ace4dfee 3021 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3022 struct nand_flash_dev *type;
3023
7aa65bfd 3024 /* Get buswidth to select the correct functions */
ace4dfee 3025 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3026 /* Set the default functions */
ace4dfee 3027 nand_set_defaults(chip, busw);
7aa65bfd
TG
3028
3029 /* Read the flash type */
5e81e88a 3030 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
7aa65bfd
TG
3031
3032 if (IS_ERR(type)) {
b1c6e6db
BD
3033 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3034 printk(KERN_WARNING "No NAND device found.\n");
ace4dfee 3035 chip->select_chip(mtd, -1);
7aa65bfd 3036 return PTR_ERR(type);
1da177e4
LT
3037 }
3038
7aa65bfd 3039 /* Check for a chip array */
e0c7d767 3040 for (i = 1; i < maxchips; i++) {
ace4dfee 3041 chip->select_chip(mtd, i);
ef89a880
KB
3042 /* See comment in nand_get_flash_type for reset */
3043 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3044 /* Send the command for reading device ID */
ace4dfee 3045 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3046 /* Read manufacturer and device IDs */
ace4dfee
TG
3047 if (nand_maf_id != chip->read_byte(mtd) ||
3048 type->id != chip->read_byte(mtd))
1da177e4
LT
3049 break;
3050 }
3051 if (i > 1)
3052 printk(KERN_INFO "%d NAND chips detected\n", i);
61b03bd7 3053
1da177e4 3054 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3055 chip->numchips = i;
3056 mtd->size = i * chip->chipsize;
7aa65bfd 3057
3b85c321
DW
3058 return 0;
3059}
3060
3061
3062/**
3063 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3064 * @mtd: MTD device structure
3b85c321
DW
3065 *
3066 * This is the second phase of the normal nand_scan() function. It
3067 * fills out all the uninitialized function pointers with the defaults
3068 * and scans for a bad block table if appropriate.
3069 */
3070int nand_scan_tail(struct mtd_info *mtd)
3071{
3072 int i;
3073 struct nand_chip *chip = mtd->priv;
3074
4bf63fcb
DW
3075 if (!(chip->options & NAND_OWN_BUFFERS))
3076 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3077 if (!chip->buffers)
3078 return -ENOMEM;
3079
7dcdcbef 3080 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3081 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3082
7aa65bfd
TG
3083 /*
3084 * If no default placement scheme is given, select an appropriate one
3085 */
5bd34c09 3086 if (!chip->ecc.layout) {
61b03bd7 3087 switch (mtd->oobsize) {
1da177e4 3088 case 8:
5bd34c09 3089 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3090 break;
3091 case 16:
5bd34c09 3092 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3093 break;
3094 case 64:
5bd34c09 3095 chip->ecc.layout = &nand_oob_64;
1da177e4 3096 break;
81ec5364
TG
3097 case 128:
3098 chip->ecc.layout = &nand_oob_128;
3099 break;
1da177e4 3100 default:
7aa65bfd
TG
3101 printk(KERN_WARNING "No oob scheme defined for "
3102 "oobsize %d\n", mtd->oobsize);
1da177e4
LT
3103 BUG();
3104 }
3105 }
61b03bd7 3106
956e944c
DW
3107 if (!chip->write_page)
3108 chip->write_page = nand_write_page;
3109
61b03bd7 3110 /*
7aa65bfd
TG
3111 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3112 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3113 */
956e944c 3114
ace4dfee 3115 switch (chip->ecc.mode) {
6e0cb135
SN
3116 case NAND_ECC_HW_OOB_FIRST:
3117 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3118 if (!chip->ecc.calculate || !chip->ecc.correct ||
3119 !chip->ecc.hwctl) {
3120 printk(KERN_WARNING "No ECC functions supplied; "
3121 "Hardware ECC not possible\n");
3122 BUG();
3123 }
3124 if (!chip->ecc.read_page)
3125 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3126
6dfc6d25 3127 case NAND_ECC_HW:
f5bbdacc
TG
3128 /* Use standard hwecc read page function ? */
3129 if (!chip->ecc.read_page)
3130 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3131 if (!chip->ecc.write_page)
3132 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3133 if (!chip->ecc.read_page_raw)
3134 chip->ecc.read_page_raw = nand_read_page_raw;
3135 if (!chip->ecc.write_page_raw)
3136 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3137 if (!chip->ecc.read_oob)
3138 chip->ecc.read_oob = nand_read_oob_std;
3139 if (!chip->ecc.write_oob)
3140 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3141
6dfc6d25 3142 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3143 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3144 !chip->ecc.hwctl) &&
3145 (!chip->ecc.read_page ||
1c45f604 3146 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3147 !chip->ecc.write_page ||
1c45f604 3148 chip->ecc.write_page == nand_write_page_hwecc)) {
6e0cb135 3149 printk(KERN_WARNING "No ECC functions supplied; "
6dfc6d25
TG
3150 "Hardware ECC not possible\n");
3151 BUG();
3152 }
f75e5097 3153 /* Use standard syndrome read/write page function ? */
f5bbdacc
TG
3154 if (!chip->ecc.read_page)
3155 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3156 if (!chip->ecc.write_page)
3157 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3158 if (!chip->ecc.read_page_raw)
3159 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3160 if (!chip->ecc.write_page_raw)
3161 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3162 if (!chip->ecc.read_oob)
3163 chip->ecc.read_oob = nand_read_oob_syndrome;
3164 if (!chip->ecc.write_oob)
3165 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3166
ace4dfee 3167 if (mtd->writesize >= chip->ecc.size)
6dfc6d25
TG
3168 break;
3169 printk(KERN_WARNING "%d byte HW ECC not possible on "
3170 "%d byte page size, fallback to SW ECC\n",
ace4dfee
TG
3171 chip->ecc.size, mtd->writesize);
3172 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3173
6dfc6d25 3174 case NAND_ECC_SOFT:
ace4dfee
TG
3175 chip->ecc.calculate = nand_calculate_ecc;
3176 chip->ecc.correct = nand_correct_data;
f5bbdacc 3177 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3178 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3179 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3180 chip->ecc.read_page_raw = nand_read_page_raw;
3181 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3182 chip->ecc.read_oob = nand_read_oob_std;
3183 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3184 if (!chip->ecc.size)
3185 chip->ecc.size = 256;
ace4dfee 3186 chip->ecc.bytes = 3;
1da177e4 3187 break;
61b03bd7
TG
3188
3189 case NAND_ECC_NONE:
7aa65bfd
TG
3190 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3191 "This is not recommended !!\n");
8593fbc6
TG
3192 chip->ecc.read_page = nand_read_page_raw;
3193 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3194 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3195 chip->ecc.read_page_raw = nand_read_page_raw;
3196 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3197 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3198 chip->ecc.size = mtd->writesize;
3199 chip->ecc.bytes = 0;
1da177e4 3200 break;
956e944c 3201
1da177e4 3202 default:
7aa65bfd 3203 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
ace4dfee 3204 chip->ecc.mode);
61b03bd7 3205 BUG();
1da177e4 3206 }
61b03bd7 3207
5bd34c09
TG
3208 /*
3209 * The number of bytes available for a client to place data into
3210 * the out of band area
3211 */
3212 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3213 for (i = 0; chip->ecc.layout->oobfree[i].length
3214 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3215 chip->ecc.layout->oobavail +=
3216 chip->ecc.layout->oobfree[i].length;
1f92267c 3217 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3218
7aa65bfd
TG
3219 /*
3220 * Set the number of read / write steps for one page depending on ECC
3221 * mode
3222 */
ace4dfee
TG
3223 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3224 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
6dfc6d25
TG
3225 printk(KERN_WARNING "Invalid ecc parameters\n");
3226 BUG();
1da177e4 3227 }
f5bbdacc 3228 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3229
29072b96
TG
3230 /*
3231 * Allow subpage writes up to ecc.steps. Not possible for MLC
3232 * FLASH.
3233 */
3234 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3235 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3236 switch(chip->ecc.steps) {
3237 case 2:
3238 mtd->subpage_sft = 1;
3239 break;
3240 case 4:
3241 case 8:
81ec5364 3242 case 16:
29072b96
TG
3243 mtd->subpage_sft = 2;
3244 break;
3245 }
3246 }
3247 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3248
04bbd0ea 3249 /* Initialize state */
ace4dfee 3250 chip->state = FL_READY;
1da177e4
LT
3251
3252 /* De-select the device */
ace4dfee 3253 chip->select_chip(mtd, -1);
1da177e4
LT
3254
3255 /* Invalidate the pagebuffer reference */
ace4dfee 3256 chip->pagebuf = -1;
1da177e4
LT
3257
3258 /* Fill in remaining MTD driver data */
3259 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3260 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3261 MTD_CAP_NANDFLASH;
1da177e4
LT
3262 mtd->erase = nand_erase;
3263 mtd->point = NULL;
3264 mtd->unpoint = NULL;
3265 mtd->read = nand_read;
3266 mtd->write = nand_write;
2af7c653 3267 mtd->panic_write = panic_nand_write;
1da177e4
LT
3268 mtd->read_oob = nand_read_oob;
3269 mtd->write_oob = nand_write_oob;
1da177e4
LT
3270 mtd->sync = nand_sync;
3271 mtd->lock = NULL;
3272 mtd->unlock = NULL;
962034f4
VW
3273 mtd->suspend = nand_suspend;
3274 mtd->resume = nand_resume;
1da177e4
LT
3275 mtd->block_isbad = nand_block_isbad;
3276 mtd->block_markbad = nand_block_markbad;
3277
5bd34c09
TG
3278 /* propagate ecc.layout to mtd_info */
3279 mtd->ecclayout = chip->ecc.layout;
1da177e4 3280
0040bf38 3281 /* Check, if we should skip the bad block table scan */
ace4dfee 3282 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3283 return 0;
1da177e4
LT
3284
3285 /* Build bad block table */
ace4dfee 3286 return chip->scan_bbt(mtd);
1da177e4
LT
3287}
3288
a6e6abd5 3289/* is_module_text_address() isn't exported, and it's mostly a pointless
3b85c321
DW
3290 test if this is a module _anyway_ -- they'd have to try _really_ hard
3291 to call us from in-kernel code if the core NAND support is modular. */
3292#ifdef MODULE
3293#define caller_is_module() (1)
3294#else
3295#define caller_is_module() \
a6e6abd5 3296 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3297#endif
3298
3299/**
3300 * nand_scan - [NAND Interface] Scan for the NAND device
3301 * @mtd: MTD device structure
3302 * @maxchips: Number of chips to scan for
3303 *
3304 * This fills out all the uninitialized function pointers
3305 * with the defaults.
3306 * The flash ID is read and the mtd/chip structures are
3307 * filled with the appropriate values.
3308 * The mtd->owner field must be set to the module of the caller
3309 *
3310 */
3311int nand_scan(struct mtd_info *mtd, int maxchips)
3312{
3313 int ret;
3314
3315 /* Many callers got this wrong, so check for it for a while... */
3316 if (!mtd->owner && caller_is_module()) {
20d8e248 3317 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3318 __func__);
3b85c321
DW
3319 BUG();
3320 }
3321
5e81e88a 3322 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3323 if (!ret)
3324 ret = nand_scan_tail(mtd);
3325 return ret;
3326}
3327
1da177e4 3328/**
61b03bd7 3329 * nand_release - [NAND Interface] Free resources held by the NAND device
1da177e4
LT
3330 * @mtd: MTD device structure
3331*/
e0c7d767 3332void nand_release(struct mtd_info *mtd)
1da177e4 3333{
ace4dfee 3334 struct nand_chip *chip = mtd->priv;
1da177e4
LT
3335
3336#ifdef CONFIG_MTD_PARTITIONS
3337 /* Deregister partitions */
e0c7d767 3338 del_mtd_partitions(mtd);
1da177e4
LT
3339#endif
3340 /* Deregister the device */
e0c7d767 3341 del_mtd_device(mtd);
1da177e4 3342
fa671646 3343 /* Free bad block table memory */
ace4dfee 3344 kfree(chip->bbt);
4bf63fcb
DW
3345 if (!(chip->options & NAND_OWN_BUFFERS))
3346 kfree(chip->buffers);
58373ff0
BN
3347
3348 /* Free bad block descriptor memory */
3349 if (chip->badblock_pattern && chip->badblock_pattern->options
3350 & NAND_BBT_DYNAMICSTRUCT)
3351 kfree(chip->badblock_pattern);
1da177e4
LT
3352}
3353
7d70f334
VS
3354EXPORT_SYMBOL_GPL(nand_lock);
3355EXPORT_SYMBOL_GPL(nand_unlock);
e0c7d767 3356EXPORT_SYMBOL_GPL(nand_scan);
3b85c321
DW
3357EXPORT_SYMBOL_GPL(nand_scan_ident);
3358EXPORT_SYMBOL_GPL(nand_scan_tail);
e0c7d767 3359EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3360
3361static int __init nand_base_init(void)
3362{
3363 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3364 return 0;
3365}
3366
3367static void __exit nand_base_exit(void)
3368{
3369 led_trigger_unregister_simple(nand_led_trigger);
3370}
3371
3372module_init(nand_base_init);
3373module_exit(nand_base_exit);
3374
e0c7d767
DW
3375MODULE_LICENSE("GPL");
3376MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3377MODULE_DESCRIPTION("Generic NAND flash driver code");