]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: nand: parse out the JEDEC compliant NAND
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
61b03bd7 7 *
1da177e4 8 * Additional technical information is available on
8b2b403c 9 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 10 *
1da177e4 11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 13 *
ace4dfee 14 * Credits:
61b03bd7
TG
15 * David Woodhouse for adding multichip support
16 *
1da177e4
LT
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
ace4dfee 20 * TODO:
1da177e4
LT
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 23 * if we have HW ECC support.
c0b8ba7b 24 * BBT table is not serialized, has to be fixed
1da177e4 25 *
1da177e4
LT
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
20171642
EG
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
552d9205 34#include <linux/module.h>
1da177e4
LT
35#include <linux/delay.h>
36#include <linux/errno.h>
7aa65bfd 37#include <linux/err.h>
1da177e4
LT
38#include <linux/sched.h>
39#include <linux/slab.h>
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
193bd400 44#include <linux/mtd/nand_bch.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
8fe833c1 47#include <linux/leds.h>
7351d3a5 48#include <linux/io.h>
1da177e4 49#include <linux/mtd/partitions.h>
1da177e4
LT
50
51/* Define default oob placement schemes for large and small page devices */
5bd34c09 52static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
5bd34c09
TG
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
f8ac0414 59 .length = 2} }
1da177e4
LT
60};
61
5bd34c09 62static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
65 .oobfree = {
66 {.offset = 8,
f8ac0414 67 . length = 8} }
1da177e4
LT
68};
69
5bd34c09 70static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
71 .eccbytes = 24,
72 .eccpos = {
e0c7d767
DW
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
76 .oobfree = {
77 {.offset = 2,
f8ac0414 78 .length = 38} }
1da177e4
LT
79};
80
81ec5364
TG
81static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
f8ac0414 92 .length = 78} }
81ec5364
TG
93};
94
6a8214aa 95static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 96
8593fbc6
TG
97static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
d470a97c 100/*
8e87d782 101 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
102 * compiled away when LED support is disabled.
103 */
104DEFINE_LED_TRIGGER(nand_led_trigger);
105
6fe5a6ac
VS
106static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108{
109 struct nand_chip *chip = mtd->priv;
110 int ret = 0;
111
112 /* Start address must align on block boundary */
daae74ca 113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 114 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
daae74ca 119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 120 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
121 ret = -EINVAL;
122 }
123
6fe5a6ac
VS
124 return ret;
125}
126
1da177e4
LT
127/**
128 * nand_release_device - [GENERIC] release chip
8b6e50c9 129 * @mtd: MTD device structure
61b03bd7 130 *
b0bb6903 131 * Release chip lock and wake up anyone waiting on the device.
1da177e4 132 */
e0c7d767 133static void nand_release_device(struct mtd_info *mtd)
1da177e4 134{
ace4dfee 135 struct nand_chip *chip = mtd->priv;
1da177e4 136
a36ed299 137 /* Release the controller and the chip */
ace4dfee
TG
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
1da177e4
LT
143}
144
145/**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 147 * @mtd: MTD device structure
1da177e4 148 *
7854d3f7 149 * Default read function for 8bit buswidth
1da177e4 150 */
58dd8f2b 151static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 152{
ace4dfee
TG
153 struct nand_chip *chip = mtd->priv;
154 return readb(chip->IO_ADDR_R);
1da177e4
LT
155}
156
1da177e4 157/**
064a7694 158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
7854d3f7 159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 160 * @mtd: MTD device structure
1da177e4 161 *
7854d3f7
BN
162 * Default read function for 16bit buswidth with endianness conversion.
163 *
1da177e4 164 */
58dd8f2b 165static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 166{
ace4dfee
TG
167 struct nand_chip *chip = mtd->priv;
168 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
169}
170
1da177e4
LT
171/**
172 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 173 * @mtd: MTD device structure
1da177e4 174 *
7854d3f7 175 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
176 */
177static u16 nand_read_word(struct mtd_info *mtd)
178{
ace4dfee
TG
179 struct nand_chip *chip = mtd->priv;
180 return readw(chip->IO_ADDR_R);
1da177e4
LT
181}
182
1da177e4
LT
183/**
184 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
185 * @mtd: MTD device structure
186 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
187 *
188 * Default select function for 1 chip devices.
189 */
ace4dfee 190static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 191{
ace4dfee
TG
192 struct nand_chip *chip = mtd->priv;
193
194 switch (chipnr) {
1da177e4 195 case -1:
ace4dfee 196 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
197 break;
198 case 0:
1da177e4
LT
199 break;
200
201 default:
202 BUG();
203 }
204}
205
05f78359
UKK
206/**
207 * nand_write_byte - [DEFAULT] write single byte to chip
208 * @mtd: MTD device structure
209 * @byte: value to write
210 *
211 * Default function to write a byte to I/O[7:0]
212 */
213static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
214{
215 struct nand_chip *chip = mtd->priv;
216
217 chip->write_buf(mtd, &byte, 1);
218}
219
220/**
221 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222 * @mtd: MTD device structure
223 * @byte: value to write
224 *
225 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226 */
227static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
228{
229 struct nand_chip *chip = mtd->priv;
230 uint16_t word = byte;
231
232 /*
233 * It's not entirely clear what should happen to I/O[15:8] when writing
234 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235 *
236 * When the host supports a 16-bit bus width, only data is
237 * transferred at the 16-bit width. All address and command line
238 * transfers shall use only the lower 8-bits of the data bus. During
239 * command transfers, the host may place any value on the upper
240 * 8-bits of the data bus. During address transfers, the host shall
241 * set the upper 8-bits of the data bus to 00h.
242 *
243 * One user of the write_byte callback is nand_onfi_set_features. The
244 * four parameters are specified to be written to I/O[7:0], but this is
245 * neither an address nor a command transfer. Let's assume a 0 on the
246 * upper I/O lines is OK.
247 */
248 chip->write_buf(mtd, (uint8_t *)&word, 2);
249}
250
1da177e4
LT
251/**
252 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
253 * @mtd: MTD device structure
254 * @buf: data buffer
255 * @len: number of bytes to write
1da177e4 256 *
7854d3f7 257 * Default write function for 8bit buswidth.
1da177e4 258 */
58dd8f2b 259static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 260{
ace4dfee 261 struct nand_chip *chip = mtd->priv;
1da177e4 262
76413839 263 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
264}
265
266/**
61b03bd7 267 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
1da177e4 271 *
7854d3f7 272 * Default read function for 8bit buswidth.
1da177e4 273 */
58dd8f2b 274static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 275{
ace4dfee 276 struct nand_chip *chip = mtd->priv;
1da177e4 277
76413839 278 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
279}
280
1da177e4
LT
281/**
282 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
1da177e4 286 *
7854d3f7 287 * Default write function for 16bit buswidth.
1da177e4 288 */
58dd8f2b 289static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 290{
ace4dfee 291 struct nand_chip *chip = mtd->priv;
1da177e4 292 u16 *p = (u16 *) buf;
61b03bd7 293
76413839 294 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
295}
296
297/**
61b03bd7 298 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
299 * @mtd: MTD device structure
300 * @buf: buffer to store date
301 * @len: number of bytes to read
1da177e4 302 *
7854d3f7 303 * Default read function for 16bit buswidth.
1da177e4 304 */
58dd8f2b 305static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 306{
ace4dfee 307 struct nand_chip *chip = mtd->priv;
1da177e4 308 u16 *p = (u16 *) buf;
1da177e4 309
76413839 310 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
311}
312
1da177e4
LT
313/**
314 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
315 * @mtd: MTD device structure
316 * @ofs: offset from device start
317 * @getchip: 0, if the chip is already selected
1da177e4 318 *
61b03bd7 319 * Check, if the block is bad.
1da177e4
LT
320 */
321static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
322{
cdbec050 323 int page, chipnr, res = 0, i = 0;
ace4dfee 324 struct nand_chip *chip = mtd->priv;
1da177e4
LT
325 u16 bad;
326
5fb1549d 327 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
328 ofs += mtd->erasesize - mtd->writesize;
329
1a12f46a
TK
330 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
331
1da177e4 332 if (getchip) {
ace4dfee 333 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 334
6a8214aa 335 nand_get_device(mtd, FL_READING);
1da177e4
LT
336
337 /* Select the NAND device */
ace4dfee 338 chip->select_chip(mtd, chipnr);
1a12f46a 339 }
1da177e4 340
cdbec050
BN
341 do {
342 if (chip->options & NAND_BUSWIDTH_16) {
343 chip->cmdfunc(mtd, NAND_CMD_READOOB,
344 chip->badblockpos & 0xFE, page);
345 bad = cpu_to_le16(chip->read_word(mtd));
346 if (chip->badblockpos & 0x1)
347 bad >>= 8;
348 else
349 bad &= 0xFF;
350 } else {
351 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
352 page);
353 bad = chip->read_byte(mtd);
354 }
355
356 if (likely(chip->badblockbits == 8))
357 res = bad != 0xFF;
e0b58d0a 358 else
cdbec050
BN
359 res = hweight8(bad) < chip->badblockbits;
360 ofs += mtd->writesize;
361 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
362 i++;
363 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 364
b0bb6903
HS
365 if (getchip) {
366 chip->select_chip(mtd, -1);
1da177e4 367 nand_release_device(mtd);
b0bb6903 368 }
61b03bd7 369
1da177e4
LT
370 return res;
371}
372
373/**
5a0edb25 374 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
375 * @mtd: MTD device structure
376 * @ofs: offset from device start
1da177e4 377 *
8b6e50c9 378 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
379 * specific driver. It provides the details for writing a bad block marker to a
380 * block.
381 */
382static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
383{
384 struct nand_chip *chip = mtd->priv;
385 struct mtd_oob_ops ops;
386 uint8_t buf[2] = { 0, 0 };
387 int ret = 0, res, i = 0;
388
389 ops.datbuf = NULL;
390 ops.oobbuf = buf;
391 ops.ooboffs = chip->badblockpos;
392 if (chip->options & NAND_BUSWIDTH_16) {
393 ops.ooboffs &= ~0x01;
394 ops.len = ops.ooblen = 2;
395 } else {
396 ops.len = ops.ooblen = 1;
397 }
398 ops.mode = MTD_OPS_PLACE_OOB;
399
400 /* Write to first/last page(s) if necessary */
401 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
402 ofs += mtd->erasesize - mtd->writesize;
403 do {
404 res = nand_do_write_oob(mtd, ofs, &ops);
405 if (!ret)
406 ret = res;
407
408 i++;
409 ofs += mtd->writesize;
410 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
411
412 return ret;
413}
414
415/**
416 * nand_block_markbad_lowlevel - mark a block bad
417 * @mtd: MTD device structure
418 * @ofs: offset from device start
419 *
420 * This function performs the generic NAND bad block marking steps (i.e., bad
421 * block table(s) and/or marker(s)). We only allow the hardware driver to
422 * specify how to write bad block markers to OOB (chip->block_markbad).
423 *
b32843b7 424 * We try operations in the following order:
e2414f4c 425 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
426 * (2) write bad block marker to OOB area of affected block (unless flag
427 * NAND_BBT_NO_OOB_BBM is present)
428 * (3) update the BBT
429 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 430 * procedures, and dump the error in the end.
1da177e4 431*/
5a0edb25 432static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 433{
ace4dfee 434 struct nand_chip *chip = mtd->priv;
b32843b7 435 int res, ret = 0;
61b03bd7 436
b32843b7 437 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
438 struct erase_info einfo;
439
440 /* Attempt erase before marking OOB */
441 memset(&einfo, 0, sizeof(einfo));
442 einfo.mtd = mtd;
443 einfo.addr = ofs;
daae74ca 444 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 445 nand_erase_nand(mtd, &einfo, 0);
1da177e4 446
b32843b7 447 /* Write bad block marker to OOB */
6a8214aa 448 nand_get_device(mtd, FL_WRITING);
5a0edb25 449 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 450 nand_release_device(mtd);
f1a28c02 451 }
e2414f4c 452
b32843b7
BN
453 /* Mark block bad in BBT */
454 if (chip->bbt) {
455 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
456 if (!ret)
457 ret = res;
458 }
459
f1a28c02
TG
460 if (!ret)
461 mtd->ecc_stats.badblocks++;
c0b8ba7b 462
f1a28c02 463 return ret;
1da177e4
LT
464}
465
61b03bd7 466/**
1da177e4 467 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 468 * @mtd: MTD device structure
1da177e4 469 *
8b6e50c9
BN
470 * Check, if the device is write protected. The function expects, that the
471 * device is already selected.
1da177e4 472 */
e0c7d767 473static int nand_check_wp(struct mtd_info *mtd)
1da177e4 474{
ace4dfee 475 struct nand_chip *chip = mtd->priv;
93edbad6 476
8b6e50c9 477 /* Broken xD cards report WP despite being writable */
93edbad6
ML
478 if (chip->options & NAND_BROKEN_XD)
479 return 0;
480
1da177e4 481 /* Check the WP bit */
ace4dfee
TG
482 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
483 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
484}
485
486/**
487 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
488 * @mtd: MTD device structure
489 * @ofs: offset from device start
490 * @getchip: 0, if the chip is already selected
491 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
492 *
493 * Check, if the block is bad. Either by reading the bad block table or
494 * calling of the scan function.
495 */
2c0a2bed
TG
496static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
497 int allowbbt)
1da177e4 498{
ace4dfee 499 struct nand_chip *chip = mtd->priv;
61b03bd7 500
ace4dfee
TG
501 if (!chip->bbt)
502 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 503
1da177e4 504 /* Return info from the table */
e0c7d767 505 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
506}
507
2af7c653
SK
508/**
509 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
510 * @mtd: MTD device structure
511 * @timeo: Timeout
2af7c653
SK
512 *
513 * Helper function for nand_wait_ready used when needing to wait in interrupt
514 * context.
515 */
516static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
517{
518 struct nand_chip *chip = mtd->priv;
519 int i;
520
521 /* Wait for the device to get ready */
522 for (i = 0; i < timeo; i++) {
523 if (chip->dev_ready(mtd))
524 break;
525 touch_softlockup_watchdog();
526 mdelay(1);
527 }
528}
529
7854d3f7 530/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 531void nand_wait_ready(struct mtd_info *mtd)
3b88775c 532{
ace4dfee 533 struct nand_chip *chip = mtd->priv;
ca6a2489 534 unsigned long timeo = jiffies + msecs_to_jiffies(20);
3b88775c 535
2af7c653
SK
536 /* 400ms timeout */
537 if (in_interrupt() || oops_in_progress)
538 return panic_nand_wait_ready(mtd, 400);
539
8fe833c1 540 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 541 /* Wait until command is processed or timeout occurs */
3b88775c 542 do {
ace4dfee 543 if (chip->dev_ready(mtd))
8fe833c1 544 break;
8446f1d3 545 touch_softlockup_watchdog();
61b03bd7 546 } while (time_before(jiffies, timeo));
8fe833c1 547 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 548}
4b648b02 549EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 550
1da177e4
LT
551/**
552 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
553 * @mtd: MTD device structure
554 * @command: the command to be sent
555 * @column: the column address for this command, -1 if none
556 * @page_addr: the page address for this command, -1 if none
1da177e4 557 *
8b6e50c9 558 * Send command to NAND device. This function is used for small page devices
51148f1f 559 * (512 Bytes per page).
1da177e4 560 */
7abd3ef9
TG
561static void nand_command(struct mtd_info *mtd, unsigned int command,
562 int column, int page_addr)
1da177e4 563{
ace4dfee 564 register struct nand_chip *chip = mtd->priv;
7abd3ef9 565 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 566
8b6e50c9 567 /* Write out the command to the device */
1da177e4
LT
568 if (command == NAND_CMD_SEQIN) {
569 int readcmd;
570
28318776 571 if (column >= mtd->writesize) {
1da177e4 572 /* OOB area */
28318776 573 column -= mtd->writesize;
1da177e4
LT
574 readcmd = NAND_CMD_READOOB;
575 } else if (column < 256) {
576 /* First 256 bytes --> READ0 */
577 readcmd = NAND_CMD_READ0;
578 } else {
579 column -= 256;
580 readcmd = NAND_CMD_READ1;
581 }
ace4dfee 582 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 583 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 584 }
ace4dfee 585 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 586
8b6e50c9 587 /* Address cycle, when necessary */
7abd3ef9
TG
588 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
589 /* Serially input address */
590 if (column != -1) {
591 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
592 if (chip->options & NAND_BUSWIDTH_16 &&
593 !nand_opcode_8bits(command))
7abd3ef9 594 column >>= 1;
ace4dfee 595 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
596 ctrl &= ~NAND_CTRL_CHANGE;
597 }
598 if (page_addr != -1) {
ace4dfee 599 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 600 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 601 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 602 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
603 if (chip->chipsize > (32 << 20))
604 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 605 }
ace4dfee 606 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
607
608 /*
8b6e50c9
BN
609 * Program and erase have their own busy handlers status and sequential
610 * in needs no delay
e0c7d767 611 */
1da177e4 612 switch (command) {
61b03bd7 613
1da177e4
LT
614 case NAND_CMD_PAGEPROG:
615 case NAND_CMD_ERASE1:
616 case NAND_CMD_ERASE2:
617 case NAND_CMD_SEQIN:
618 case NAND_CMD_STATUS:
619 return;
620
621 case NAND_CMD_RESET:
ace4dfee 622 if (chip->dev_ready)
1da177e4 623 break;
ace4dfee
TG
624 udelay(chip->chip_delay);
625 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 626 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
627 chip->cmd_ctrl(mtd,
628 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
629 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
630 ;
1da177e4
LT
631 return;
632
e0c7d767 633 /* This applies to read commands */
1da177e4 634 default:
61b03bd7 635 /*
1da177e4
LT
636 * If we don't have access to the busy pin, we apply the given
637 * command delay
e0c7d767 638 */
ace4dfee
TG
639 if (!chip->dev_ready) {
640 udelay(chip->chip_delay);
1da177e4 641 return;
61b03bd7 642 }
1da177e4 643 }
8b6e50c9
BN
644 /*
645 * Apply this short delay always to ensure that we do wait tWB in
646 * any case on any machine.
647 */
e0c7d767 648 ndelay(100);
3b88775c
TG
649
650 nand_wait_ready(mtd);
1da177e4
LT
651}
652
653/**
654 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
655 * @mtd: MTD device structure
656 * @command: the command to be sent
657 * @column: the column address for this command, -1 if none
658 * @page_addr: the page address for this command, -1 if none
1da177e4 659 *
7abd3ef9 660 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
661 * devices. We don't have the separate regions as we have in the small page
662 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 663 */
7abd3ef9
TG
664static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
665 int column, int page_addr)
1da177e4 666{
ace4dfee 667 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
668
669 /* Emulate NAND_CMD_READOOB */
670 if (command == NAND_CMD_READOOB) {
28318776 671 column += mtd->writesize;
1da177e4
LT
672 command = NAND_CMD_READ0;
673 }
61b03bd7 674
7abd3ef9 675 /* Command latch cycle */
fb066ada 676 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
677
678 if (column != -1 || page_addr != -1) {
7abd3ef9 679 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
680
681 /* Serially input address */
682 if (column != -1) {
683 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
684 if (chip->options & NAND_BUSWIDTH_16 &&
685 !nand_opcode_8bits(command))
1da177e4 686 column >>= 1;
ace4dfee 687 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 688 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 689 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 690 }
1da177e4 691 if (page_addr != -1) {
ace4dfee
TG
692 chip->cmd_ctrl(mtd, page_addr, ctrl);
693 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 694 NAND_NCE | NAND_ALE);
1da177e4 695 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
696 if (chip->chipsize > (128 << 20))
697 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 698 NAND_NCE | NAND_ALE);
1da177e4 699 }
1da177e4 700 }
ace4dfee 701 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
702
703 /*
8b6e50c9
BN
704 * Program and erase have their own busy handlers status, sequential
705 * in, and deplete1 need no delay.
30f464b7 706 */
1da177e4 707 switch (command) {
61b03bd7 708
1da177e4
LT
709 case NAND_CMD_CACHEDPROG:
710 case NAND_CMD_PAGEPROG:
711 case NAND_CMD_ERASE1:
712 case NAND_CMD_ERASE2:
713 case NAND_CMD_SEQIN:
7bc3312b 714 case NAND_CMD_RNDIN:
1da177e4 715 case NAND_CMD_STATUS:
30f464b7 716 return;
1da177e4
LT
717
718 case NAND_CMD_RESET:
ace4dfee 719 if (chip->dev_ready)
1da177e4 720 break;
ace4dfee 721 udelay(chip->chip_delay);
12efdde3
TG
722 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
723 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
725 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
726 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
727 ;
1da177e4
LT
728 return;
729
7bc3312b
TG
730 case NAND_CMD_RNDOUT:
731 /* No ready / busy check necessary */
732 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
733 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
734 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
735 NAND_NCE | NAND_CTRL_CHANGE);
736 return;
737
1da177e4 738 case NAND_CMD_READ0:
12efdde3
TG
739 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
740 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
741 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
742 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 743
e0c7d767 744 /* This applies to read commands */
1da177e4 745 default:
61b03bd7 746 /*
1da177e4 747 * If we don't have access to the busy pin, we apply the given
8b6e50c9 748 * command delay.
e0c7d767 749 */
ace4dfee
TG
750 if (!chip->dev_ready) {
751 udelay(chip->chip_delay);
1da177e4 752 return;
61b03bd7 753 }
1da177e4 754 }
3b88775c 755
8b6e50c9
BN
756 /*
757 * Apply this short delay always to ensure that we do wait tWB in
758 * any case on any machine.
759 */
e0c7d767 760 ndelay(100);
3b88775c
TG
761
762 nand_wait_ready(mtd);
1da177e4
LT
763}
764
2af7c653
SK
765/**
766 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
767 * @chip: the nand chip descriptor
768 * @mtd: MTD device structure
769 * @new_state: the state which is requested
2af7c653
SK
770 *
771 * Used when in panic, no locks are taken.
772 */
773static void panic_nand_get_device(struct nand_chip *chip,
774 struct mtd_info *mtd, int new_state)
775{
7854d3f7 776 /* Hardware controller shared among independent devices */
2af7c653
SK
777 chip->controller->active = chip;
778 chip->state = new_state;
779}
780
1da177e4
LT
781/**
782 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
783 * @mtd: MTD device structure
784 * @new_state: the state which is requested
1da177e4
LT
785 *
786 * Get the device and lock it for exclusive access
787 */
2c0a2bed 788static int
6a8214aa 789nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 790{
6a8214aa 791 struct nand_chip *chip = mtd->priv;
ace4dfee
TG
792 spinlock_t *lock = &chip->controller->lock;
793 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 794 DECLARE_WAITQUEUE(wait, current);
7351d3a5 795retry:
0dfc6246
TG
796 spin_lock(lock);
797
b8b3ee9a 798 /* Hardware controller shared among independent devices */
ace4dfee
TG
799 if (!chip->controller->active)
800 chip->controller->active = chip;
a36ed299 801
ace4dfee
TG
802 if (chip->controller->active == chip && chip->state == FL_READY) {
803 chip->state = new_state;
0dfc6246 804 spin_unlock(lock);
962034f4
VW
805 return 0;
806 }
807 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
808 if (chip->controller->active->state == FL_PM_SUSPENDED) {
809 chip->state = FL_PM_SUSPENDED;
810 spin_unlock(lock);
811 return 0;
6b0d9a84 812 }
0dfc6246
TG
813 }
814 set_current_state(TASK_UNINTERRUPTIBLE);
815 add_wait_queue(wq, &wait);
816 spin_unlock(lock);
817 schedule();
818 remove_wait_queue(wq, &wait);
1da177e4
LT
819 goto retry;
820}
821
2af7c653 822/**
8b6e50c9
BN
823 * panic_nand_wait - [GENERIC] wait until the command is done
824 * @mtd: MTD device structure
825 * @chip: NAND chip structure
826 * @timeo: timeout
2af7c653
SK
827 *
828 * Wait for command done. This is a helper function for nand_wait used when
829 * we are in interrupt context. May happen when in panic and trying to write
b595076a 830 * an oops through mtdoops.
2af7c653
SK
831 */
832static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
833 unsigned long timeo)
834{
835 int i;
836 for (i = 0; i < timeo; i++) {
837 if (chip->dev_ready) {
838 if (chip->dev_ready(mtd))
839 break;
840 } else {
841 if (chip->read_byte(mtd) & NAND_STATUS_READY)
842 break;
843 }
844 mdelay(1);
f8ac0414 845 }
2af7c653
SK
846}
847
1da177e4 848/**
8b6e50c9
BN
849 * nand_wait - [DEFAULT] wait until the command is done
850 * @mtd: MTD device structure
851 * @chip: NAND chip structure
1da177e4 852 *
8b6e50c9
BN
853 * Wait for command done. This applies to erase and program only. Erase can
854 * take up to 400ms and program up to 20ms according to general NAND and
855 * SmartMedia specs.
844d3b42 856 */
7bc3312b 857static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
858{
859
7bc3312b 860 int status, state = chip->state;
6d2559f8 861 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
1da177e4 862
8fe833c1
RP
863 led_trigger_event(nand_led_trigger, LED_FULL);
864
8b6e50c9
BN
865 /*
866 * Apply this short delay always to ensure that we do wait tWB in any
867 * case on any machine.
868 */
e0c7d767 869 ndelay(100);
1da177e4 870
14c65786 871 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 872
2af7c653
SK
873 if (in_interrupt() || oops_in_progress)
874 panic_nand_wait(mtd, chip, timeo);
875 else {
6d2559f8 876 timeo = jiffies + msecs_to_jiffies(timeo);
2af7c653
SK
877 while (time_before(jiffies, timeo)) {
878 if (chip->dev_ready) {
879 if (chip->dev_ready(mtd))
880 break;
881 } else {
882 if (chip->read_byte(mtd) & NAND_STATUS_READY)
883 break;
884 }
885 cond_resched();
1da177e4 886 }
1da177e4 887 }
8fe833c1
RP
888 led_trigger_event(nand_led_trigger, LED_OFF);
889
ace4dfee 890 status = (int)chip->read_byte(mtd);
f251b8df
MC
891 /* This can happen if in case of timeout or buggy dev_ready */
892 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
893 return status;
894}
895
7d70f334 896/**
b6d676db 897 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
898 * @mtd: mtd info
899 * @ofs: offset to start unlock from
900 * @len: length to unlock
8b6e50c9
BN
901 * @invert: when = 0, unlock the range of blocks within the lower and
902 * upper boundary address
903 * when = 1, unlock the range of blocks outside the boundaries
904 * of the lower and upper boundary address
7d70f334 905 *
8b6e50c9 906 * Returs unlock status.
7d70f334
VS
907 */
908static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
909 uint64_t len, int invert)
910{
911 int ret = 0;
912 int status, page;
913 struct nand_chip *chip = mtd->priv;
914
915 /* Submit address of first page to unlock */
916 page = ofs >> chip->page_shift;
917 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
918
919 /* Submit address of last page to unlock */
920 page = (ofs + len) >> chip->page_shift;
921 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
922 (page | invert) & chip->pagemask);
923
924 /* Call wait ready function */
925 status = chip->waitfunc(mtd, chip);
7d70f334 926 /* See if device thinks it succeeded */
74830966 927 if (status & NAND_STATUS_FAIL) {
289c0522 928 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
929 __func__, status);
930 ret = -EIO;
931 }
932
933 return ret;
934}
935
936/**
b6d676db 937 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
938 * @mtd: mtd info
939 * @ofs: offset to start unlock from
940 * @len: length to unlock
7d70f334 941 *
8b6e50c9 942 * Returns unlock status.
7d70f334
VS
943 */
944int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
945{
946 int ret = 0;
947 int chipnr;
948 struct nand_chip *chip = mtd->priv;
949
289c0522 950 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
951 __func__, (unsigned long long)ofs, len);
952
953 if (check_offs_len(mtd, ofs, len))
954 ret = -EINVAL;
955
956 /* Align to last block address if size addresses end of the device */
957 if (ofs + len == mtd->size)
958 len -= mtd->erasesize;
959
6a8214aa 960 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
961
962 /* Shift to get chip number */
963 chipnr = ofs >> chip->chip_shift;
964
965 chip->select_chip(mtd, chipnr);
966
967 /* Check, if it is write protected */
968 if (nand_check_wp(mtd)) {
289c0522 969 pr_debug("%s: device is write protected!\n",
7d70f334
VS
970 __func__);
971 ret = -EIO;
972 goto out;
973 }
974
975 ret = __nand_unlock(mtd, ofs, len, 0);
976
977out:
b0bb6903 978 chip->select_chip(mtd, -1);
7d70f334
VS
979 nand_release_device(mtd);
980
981 return ret;
982}
7351d3a5 983EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
984
985/**
b6d676db 986 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
987 * @mtd: mtd info
988 * @ofs: offset to start unlock from
989 * @len: length to unlock
7d70f334 990 *
8b6e50c9
BN
991 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
992 * have this feature, but it allows only to lock all blocks, not for specified
993 * range for block. Implementing 'lock' feature by making use of 'unlock', for
994 * now.
7d70f334 995 *
8b6e50c9 996 * Returns lock status.
7d70f334
VS
997 */
998int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
999{
1000 int ret = 0;
1001 int chipnr, status, page;
1002 struct nand_chip *chip = mtd->priv;
1003
289c0522 1004 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1005 __func__, (unsigned long long)ofs, len);
1006
1007 if (check_offs_len(mtd, ofs, len))
1008 ret = -EINVAL;
1009
6a8214aa 1010 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1011
1012 /* Shift to get chip number */
1013 chipnr = ofs >> chip->chip_shift;
1014
1015 chip->select_chip(mtd, chipnr);
1016
1017 /* Check, if it is write protected */
1018 if (nand_check_wp(mtd)) {
289c0522 1019 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1020 __func__);
1021 status = MTD_ERASE_FAILED;
1022 ret = -EIO;
1023 goto out;
1024 }
1025
1026 /* Submit address of first page to lock */
1027 page = ofs >> chip->page_shift;
1028 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1029
1030 /* Call wait ready function */
1031 status = chip->waitfunc(mtd, chip);
7d70f334 1032 /* See if device thinks it succeeded */
74830966 1033 if (status & NAND_STATUS_FAIL) {
289c0522 1034 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1035 __func__, status);
1036 ret = -EIO;
1037 goto out;
1038 }
1039
1040 ret = __nand_unlock(mtd, ofs, len, 0x1);
1041
1042out:
b0bb6903 1043 chip->select_chip(mtd, -1);
7d70f334
VS
1044 nand_release_device(mtd);
1045
1046 return ret;
1047}
7351d3a5 1048EXPORT_SYMBOL(nand_lock);
7d70f334 1049
8593fbc6 1050/**
7854d3f7 1051 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1052 * @mtd: mtd info structure
1053 * @chip: nand chip info structure
1054 * @buf: buffer to store read data
1fbb938d 1055 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1056 * @page: page number to read
52ff49df 1057 *
7854d3f7 1058 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1059 */
1060static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1061 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1062{
1063 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1064 if (oob_required)
1065 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1066 return 0;
1067}
1068
52ff49df 1069/**
7854d3f7 1070 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1071 * @mtd: mtd info structure
1072 * @chip: nand chip info structure
1073 * @buf: buffer to store read data
1fbb938d 1074 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1075 * @page: page number to read
52ff49df
DB
1076 *
1077 * We need a special oob layout and handling even when OOB isn't used.
1078 */
7351d3a5 1079static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1080 struct nand_chip *chip, uint8_t *buf,
1081 int oob_required, int page)
52ff49df
DB
1082{
1083 int eccsize = chip->ecc.size;
1084 int eccbytes = chip->ecc.bytes;
1085 uint8_t *oob = chip->oob_poi;
1086 int steps, size;
1087
1088 for (steps = chip->ecc.steps; steps > 0; steps--) {
1089 chip->read_buf(mtd, buf, eccsize);
1090 buf += eccsize;
1091
1092 if (chip->ecc.prepad) {
1093 chip->read_buf(mtd, oob, chip->ecc.prepad);
1094 oob += chip->ecc.prepad;
1095 }
1096
1097 chip->read_buf(mtd, oob, eccbytes);
1098 oob += eccbytes;
1099
1100 if (chip->ecc.postpad) {
1101 chip->read_buf(mtd, oob, chip->ecc.postpad);
1102 oob += chip->ecc.postpad;
1103 }
1104 }
1105
1106 size = mtd->oobsize - (oob - chip->oob_poi);
1107 if (size)
1108 chip->read_buf(mtd, oob, size);
1109
1110 return 0;
1111}
1112
1da177e4 1113/**
7854d3f7 1114 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1115 * @mtd: mtd info structure
1116 * @chip: nand chip info structure
1117 * @buf: buffer to store read data
1fbb938d 1118 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1119 * @page: page number to read
068e3c0a 1120 */
f5bbdacc 1121static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1122 uint8_t *buf, int oob_required, int page)
1da177e4 1123{
f5bbdacc
TG
1124 int i, eccsize = chip->ecc.size;
1125 int eccbytes = chip->ecc.bytes;
1126 int eccsteps = chip->ecc.steps;
1127 uint8_t *p = buf;
4bf63fcb
DW
1128 uint8_t *ecc_calc = chip->buffers->ecccalc;
1129 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1130 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1131 unsigned int max_bitflips = 0;
f5bbdacc 1132
1fbb938d 1133 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1134
1135 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1136 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1137
1138 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1139 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1140
1141 eccsteps = chip->ecc.steps;
1142 p = buf;
1143
1144 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1145 int stat;
1146
1147 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1148 if (stat < 0) {
f5bbdacc 1149 mtd->ecc_stats.failed++;
3f91e94f 1150 } else {
f5bbdacc 1151 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1152 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1153 }
f5bbdacc 1154 }
3f91e94f 1155 return max_bitflips;
22c60f5f 1156}
1da177e4 1157
3d459559 1158/**
837a6ba4 1159 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1160 * @mtd: mtd info structure
1161 * @chip: nand chip info structure
1162 * @data_offs: offset of requested data within the page
1163 * @readlen: data length
1164 * @bufpoi: buffer to store read data
3d459559 1165 */
7351d3a5
FF
1166static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1167 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1168{
1169 int start_step, end_step, num_steps;
1170 uint32_t *eccpos = chip->ecc.layout->eccpos;
1171 uint8_t *p;
1172 int data_col_addr, i, gaps = 0;
1173 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1174 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1175 int index = 0;
3f91e94f 1176 unsigned int max_bitflips = 0;
3d459559 1177
7854d3f7 1178 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1179 start_step = data_offs / chip->ecc.size;
1180 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1181 num_steps = end_step - start_step + 1;
1182
8b6e50c9 1183 /* Data size aligned to ECC ecc.size */
3d459559
AK
1184 datafrag_len = num_steps * chip->ecc.size;
1185 eccfrag_len = num_steps * chip->ecc.bytes;
1186
1187 data_col_addr = start_step * chip->ecc.size;
1188 /* If we read not a page aligned data */
1189 if (data_col_addr != 0)
1190 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1191
1192 p = bufpoi + data_col_addr;
1193 chip->read_buf(mtd, p, datafrag_len);
1194
8b6e50c9 1195 /* Calculate ECC */
3d459559
AK
1196 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1197 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1198
8b6e50c9
BN
1199 /*
1200 * The performance is faster if we position offsets according to
7854d3f7 1201 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1202 */
3d459559
AK
1203 for (i = 0; i < eccfrag_len - 1; i++) {
1204 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1205 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1206 gaps = 1;
1207 break;
1208 }
1209 }
1210 if (gaps) {
1211 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1212 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1213 } else {
8b6e50c9 1214 /*
7854d3f7 1215 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1216 * about buswidth alignment in read_buf.
1217 */
7351d3a5
FF
1218 index = start_step * chip->ecc.bytes;
1219
1220 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1221 aligned_len = eccfrag_len;
7351d3a5 1222 if (eccpos[index] & (busw - 1))
3d459559 1223 aligned_len++;
7351d3a5 1224 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1225 aligned_len++;
1226
7351d3a5
FF
1227 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1228 mtd->writesize + aligned_pos, -1);
3d459559
AK
1229 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1230 }
1231
1232 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1233 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1234
1235 p = bufpoi + data_col_addr;
1236 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1237 int stat;
1238
7351d3a5
FF
1239 stat = chip->ecc.correct(mtd, p,
1240 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1241 if (stat < 0) {
3d459559 1242 mtd->ecc_stats.failed++;
3f91e94f 1243 } else {
3d459559 1244 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1245 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1246 }
3d459559 1247 }
3f91e94f 1248 return max_bitflips;
3d459559
AK
1249}
1250
068e3c0a 1251/**
7854d3f7 1252 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1253 * @mtd: mtd info structure
1254 * @chip: nand chip info structure
1255 * @buf: buffer to store read data
1fbb938d 1256 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1257 * @page: page number to read
068e3c0a 1258 *
7854d3f7 1259 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1260 */
f5bbdacc 1261static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1262 uint8_t *buf, int oob_required, int page)
1da177e4 1263{
f5bbdacc
TG
1264 int i, eccsize = chip->ecc.size;
1265 int eccbytes = chip->ecc.bytes;
1266 int eccsteps = chip->ecc.steps;
1267 uint8_t *p = buf;
4bf63fcb
DW
1268 uint8_t *ecc_calc = chip->buffers->ecccalc;
1269 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1270 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1271 unsigned int max_bitflips = 0;
f5bbdacc
TG
1272
1273 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1274 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1275 chip->read_buf(mtd, p, eccsize);
1276 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1277 }
f75e5097 1278 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1279
f5bbdacc 1280 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1281 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1282
f5bbdacc
TG
1283 eccsteps = chip->ecc.steps;
1284 p = buf;
61b03bd7 1285
f5bbdacc
TG
1286 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1287 int stat;
1da177e4 1288
f5bbdacc 1289 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1290 if (stat < 0) {
f5bbdacc 1291 mtd->ecc_stats.failed++;
3f91e94f 1292 } else {
f5bbdacc 1293 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1294 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1295 }
f5bbdacc 1296 }
3f91e94f 1297 return max_bitflips;
f5bbdacc 1298}
1da177e4 1299
6e0cb135 1300/**
7854d3f7 1301 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1302 * @mtd: mtd info structure
1303 * @chip: nand chip info structure
1304 * @buf: buffer to store read data
1fbb938d 1305 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1306 * @page: page number to read
6e0cb135 1307 *
8b6e50c9
BN
1308 * Hardware ECC for large page chips, require OOB to be read first. For this
1309 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1310 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1311 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1312 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1313 */
1314static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1315 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1316{
1317 int i, eccsize = chip->ecc.size;
1318 int eccbytes = chip->ecc.bytes;
1319 int eccsteps = chip->ecc.steps;
1320 uint8_t *p = buf;
1321 uint8_t *ecc_code = chip->buffers->ecccode;
1322 uint32_t *eccpos = chip->ecc.layout->eccpos;
1323 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1324 unsigned int max_bitflips = 0;
6e0cb135
SN
1325
1326 /* Read the OOB area first */
1327 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1328 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1329 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1330
1331 for (i = 0; i < chip->ecc.total; i++)
1332 ecc_code[i] = chip->oob_poi[eccpos[i]];
1333
1334 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1335 int stat;
1336
1337 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1338 chip->read_buf(mtd, p, eccsize);
1339 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1340
1341 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1342 if (stat < 0) {
6e0cb135 1343 mtd->ecc_stats.failed++;
3f91e94f 1344 } else {
6e0cb135 1345 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1346 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1347 }
6e0cb135 1348 }
3f91e94f 1349 return max_bitflips;
6e0cb135
SN
1350}
1351
f5bbdacc 1352/**
7854d3f7 1353 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1354 * @mtd: mtd info structure
1355 * @chip: nand chip info structure
1356 * @buf: buffer to store read data
1fbb938d 1357 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1358 * @page: page number to read
f5bbdacc 1359 *
8b6e50c9
BN
1360 * The hw generator calculates the error syndrome automatically. Therefore we
1361 * need a special oob layout and handling.
f5bbdacc
TG
1362 */
1363static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1364 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1365{
1366 int i, eccsize = chip->ecc.size;
1367 int eccbytes = chip->ecc.bytes;
1368 int eccsteps = chip->ecc.steps;
1369 uint8_t *p = buf;
f75e5097 1370 uint8_t *oob = chip->oob_poi;
3f91e94f 1371 unsigned int max_bitflips = 0;
1da177e4 1372
f5bbdacc
TG
1373 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1374 int stat;
61b03bd7 1375
f5bbdacc
TG
1376 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1377 chip->read_buf(mtd, p, eccsize);
1da177e4 1378
f5bbdacc
TG
1379 if (chip->ecc.prepad) {
1380 chip->read_buf(mtd, oob, chip->ecc.prepad);
1381 oob += chip->ecc.prepad;
1382 }
1da177e4 1383
f5bbdacc
TG
1384 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1385 chip->read_buf(mtd, oob, eccbytes);
1386 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1387
3f91e94f 1388 if (stat < 0) {
f5bbdacc 1389 mtd->ecc_stats.failed++;
3f91e94f 1390 } else {
f5bbdacc 1391 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1392 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1393 }
61b03bd7 1394
f5bbdacc 1395 oob += eccbytes;
1da177e4 1396
f5bbdacc
TG
1397 if (chip->ecc.postpad) {
1398 chip->read_buf(mtd, oob, chip->ecc.postpad);
1399 oob += chip->ecc.postpad;
61b03bd7 1400 }
f5bbdacc 1401 }
1da177e4 1402
f5bbdacc 1403 /* Calculate remaining oob bytes */
7e4178f9 1404 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1405 if (i)
1406 chip->read_buf(mtd, oob, i);
61b03bd7 1407
3f91e94f 1408 return max_bitflips;
f5bbdacc 1409}
1da177e4 1410
f5bbdacc 1411/**
7854d3f7 1412 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1413 * @chip: nand chip structure
1414 * @oob: oob destination address
1415 * @ops: oob ops structure
1416 * @len: size of oob to transfer
8593fbc6
TG
1417 */
1418static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1419 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1420{
f8ac0414 1421 switch (ops->mode) {
8593fbc6 1422
0612b9dd
BN
1423 case MTD_OPS_PLACE_OOB:
1424 case MTD_OPS_RAW:
8593fbc6
TG
1425 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1426 return oob + len;
1427
0612b9dd 1428 case MTD_OPS_AUTO_OOB: {
8593fbc6 1429 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1430 uint32_t boffs = 0, roffs = ops->ooboffs;
1431 size_t bytes = 0;
8593fbc6 1432
f8ac0414 1433 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1434 /* Read request not from offset 0? */
7bc3312b
TG
1435 if (unlikely(roffs)) {
1436 if (roffs >= free->length) {
1437 roffs -= free->length;
1438 continue;
1439 }
1440 boffs = free->offset + roffs;
1441 bytes = min_t(size_t, len,
1442 (free->length - roffs));
1443 roffs = 0;
1444 } else {
1445 bytes = min_t(size_t, len, free->length);
1446 boffs = free->offset;
1447 }
1448 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1449 oob += bytes;
1450 }
1451 return oob;
1452 }
1453 default:
1454 BUG();
1455 }
1456 return NULL;
1457}
1458
ba84fb59
BN
1459/**
1460 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1461 * @mtd: MTD device structure
1462 * @retry_mode: the retry mode to use
1463 *
1464 * Some vendors supply a special command to shift the Vt threshold, to be used
1465 * when there are too many bitflips in a page (i.e., ECC error). After setting
1466 * a new threshold, the host should retry reading the page.
1467 */
1468static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1469{
1470 struct nand_chip *chip = mtd->priv;
1471
1472 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1473
1474 if (retry_mode >= chip->read_retries)
1475 return -EINVAL;
1476
1477 if (!chip->setup_read_retry)
1478 return -EOPNOTSUPP;
1479
1480 return chip->setup_read_retry(mtd, retry_mode);
1481}
1482
8593fbc6 1483/**
7854d3f7 1484 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1485 * @mtd: MTD device structure
1486 * @from: offset to read from
1487 * @ops: oob ops structure
f5bbdacc
TG
1488 *
1489 * Internal function. Called with chip held.
1490 */
8593fbc6
TG
1491static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1492 struct mtd_oob_ops *ops)
f5bbdacc 1493{
e47f3db4 1494 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc 1495 struct nand_chip *chip = mtd->priv;
f5bbdacc 1496 int ret = 0;
8593fbc6 1497 uint32_t readlen = ops->len;
7014568b 1498 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1499 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1500 mtd->oobavail : mtd->oobsize;
1501
8593fbc6 1502 uint8_t *bufpoi, *oob, *buf;
edbc4540 1503 unsigned int max_bitflips = 0;
ba84fb59 1504 int retry_mode = 0;
b72f3dfb 1505 bool ecc_fail = false;
1da177e4 1506
f5bbdacc
TG
1507 chipnr = (int)(from >> chip->chip_shift);
1508 chip->select_chip(mtd, chipnr);
61b03bd7 1509
f5bbdacc
TG
1510 realpage = (int)(from >> chip->page_shift);
1511 page = realpage & chip->pagemask;
1da177e4 1512
f5bbdacc 1513 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1514
8593fbc6
TG
1515 buf = ops->datbuf;
1516 oob = ops->oobbuf;
e47f3db4 1517 oob_required = oob ? 1 : 0;
8593fbc6 1518
f8ac0414 1519 while (1) {
b72f3dfb
BN
1520 unsigned int ecc_failures = mtd->ecc_stats.failed;
1521
f5bbdacc
TG
1522 bytes = min(mtd->writesize - col, readlen);
1523 aligned = (bytes == mtd->writesize);
61b03bd7 1524
8b6e50c9 1525 /* Is the current page in the buffer? */
8593fbc6 1526 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1527 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1528
ba84fb59 1529read_retry:
c00a0991 1530 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1531
edbc4540
MD
1532 /*
1533 * Now read the page into the buffer. Absent an error,
1534 * the read methods return max bitflips per ecc step.
1535 */
0612b9dd 1536 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1537 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1538 oob_required,
1539 page);
a5ff4f10
JW
1540 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1541 !oob)
7351d3a5
FF
1542 ret = chip->ecc.read_subpage(mtd, chip,
1543 col, bytes, bufpoi);
956e944c 1544 else
46a8cf2d 1545 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1546 oob_required, page);
6d77b9d0
BN
1547 if (ret < 0) {
1548 if (!aligned)
1549 /* Invalidate page cache */
1550 chip->pagebuf = -1;
1da177e4 1551 break;
6d77b9d0 1552 }
f5bbdacc 1553
edbc4540
MD
1554 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1555
f5bbdacc
TG
1556 /* Transfer not aligned data */
1557 if (!aligned) {
a5ff4f10 1558 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1559 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1560 (ops->mode != MTD_OPS_RAW)) {
3d459559 1561 chip->pagebuf = realpage;
edbc4540
MD
1562 chip->pagebuf_bitflips = ret;
1563 } else {
6d77b9d0
BN
1564 /* Invalidate page cache */
1565 chip->pagebuf = -1;
edbc4540 1566 }
4bf63fcb 1567 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1568 }
1569
8593fbc6 1570 if (unlikely(oob)) {
b64d39d8
ML
1571 int toread = min(oobreadlen, max_oobsize);
1572
1573 if (toread) {
1574 oob = nand_transfer_oob(chip,
1575 oob, ops, toread);
1576 oobreadlen -= toread;
1577 }
8593fbc6 1578 }
5bc7c33c
BN
1579
1580 if (chip->options & NAND_NEED_READRDY) {
1581 /* Apply delay or wait for ready/busy pin */
1582 if (!chip->dev_ready)
1583 udelay(chip->chip_delay);
1584 else
1585 nand_wait_ready(mtd);
1586 }
b72f3dfb 1587
ba84fb59 1588 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1589 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1590 retry_mode++;
1591 ret = nand_setup_read_retry(mtd,
1592 retry_mode);
1593 if (ret < 0)
1594 break;
1595
1596 /* Reset failures; retry */
1597 mtd->ecc_stats.failed = ecc_failures;
1598 goto read_retry;
1599 } else {
1600 /* No more retry modes; real failure */
1601 ecc_fail = true;
1602 }
1603 }
1604
1605 buf += bytes;
8593fbc6 1606 } else {
4bf63fcb 1607 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1608 buf += bytes;
edbc4540
MD
1609 max_bitflips = max_t(unsigned int, max_bitflips,
1610 chip->pagebuf_bitflips);
8593fbc6 1611 }
1da177e4 1612
f5bbdacc 1613 readlen -= bytes;
61b03bd7 1614
ba84fb59
BN
1615 /* Reset to retry mode 0 */
1616 if (retry_mode) {
1617 ret = nand_setup_read_retry(mtd, 0);
1618 if (ret < 0)
1619 break;
1620 retry_mode = 0;
1621 }
1622
f5bbdacc 1623 if (!readlen)
61b03bd7 1624 break;
1da177e4 1625
8b6e50c9 1626 /* For subsequent reads align to page boundary */
1da177e4
LT
1627 col = 0;
1628 /* Increment page address */
1629 realpage++;
1630
ace4dfee 1631 page = realpage & chip->pagemask;
1da177e4
LT
1632 /* Check, if we cross a chip boundary */
1633 if (!page) {
1634 chipnr++;
ace4dfee
TG
1635 chip->select_chip(mtd, -1);
1636 chip->select_chip(mtd, chipnr);
1da177e4 1637 }
1da177e4 1638 }
b0bb6903 1639 chip->select_chip(mtd, -1);
1da177e4 1640
8593fbc6 1641 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1642 if (oob)
1643 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1644
3f91e94f 1645 if (ret < 0)
f5bbdacc
TG
1646 return ret;
1647
b72f3dfb 1648 if (ecc_fail)
9a1fcdfd
TG
1649 return -EBADMSG;
1650
edbc4540 1651 return max_bitflips;
f5bbdacc
TG
1652}
1653
1654/**
25985edc 1655 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1656 * @mtd: MTD device structure
1657 * @from: offset to read from
1658 * @len: number of bytes to read
1659 * @retlen: pointer to variable to store the number of read bytes
1660 * @buf: the databuffer to put data
f5bbdacc 1661 *
8b6e50c9 1662 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1663 */
1664static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1665 size_t *retlen, uint8_t *buf)
1666{
4a89ff88 1667 struct mtd_oob_ops ops;
f5bbdacc
TG
1668 int ret;
1669
6a8214aa 1670 nand_get_device(mtd, FL_READING);
4a89ff88
BN
1671 ops.len = len;
1672 ops.datbuf = buf;
1673 ops.oobbuf = NULL;
11041ae6 1674 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1675 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1676 *retlen = ops.retlen;
f5bbdacc 1677 nand_release_device(mtd);
f5bbdacc 1678 return ret;
1da177e4
LT
1679}
1680
7bc3312b 1681/**
7854d3f7 1682 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1683 * @mtd: mtd info structure
1684 * @chip: nand chip info structure
1685 * @page: page number to read
7bc3312b
TG
1686 */
1687static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1688 int page)
7bc3312b 1689{
5c2ffb11 1690 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1691 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1692 return 0;
7bc3312b
TG
1693}
1694
1695/**
7854d3f7 1696 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1697 * with syndromes
8b6e50c9
BN
1698 * @mtd: mtd info structure
1699 * @chip: nand chip info structure
1700 * @page: page number to read
7bc3312b
TG
1701 */
1702static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1703 int page)
7bc3312b
TG
1704{
1705 uint8_t *buf = chip->oob_poi;
1706 int length = mtd->oobsize;
1707 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1708 int eccsize = chip->ecc.size;
1709 uint8_t *bufpoi = buf;
1710 int i, toread, sndrnd = 0, pos;
1711
1712 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1713 for (i = 0; i < chip->ecc.steps; i++) {
1714 if (sndrnd) {
1715 pos = eccsize + i * (eccsize + chunk);
1716 if (mtd->writesize > 512)
1717 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1718 else
1719 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1720 } else
1721 sndrnd = 1;
1722 toread = min_t(int, length, chunk);
1723 chip->read_buf(mtd, bufpoi, toread);
1724 bufpoi += toread;
1725 length -= toread;
1726 }
1727 if (length > 0)
1728 chip->read_buf(mtd, bufpoi, length);
1729
5c2ffb11 1730 return 0;
7bc3312b
TG
1731}
1732
1733/**
7854d3f7 1734 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1735 * @mtd: mtd info structure
1736 * @chip: nand chip info structure
1737 * @page: page number to write
7bc3312b
TG
1738 */
1739static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1740 int page)
1741{
1742 int status = 0;
1743 const uint8_t *buf = chip->oob_poi;
1744 int length = mtd->oobsize;
1745
1746 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1747 chip->write_buf(mtd, buf, length);
1748 /* Send command to program the OOB data */
1749 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1750
1751 status = chip->waitfunc(mtd, chip);
1752
0d420f9d 1753 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1754}
1755
1756/**
7854d3f7 1757 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1758 * with syndrome - only for large page flash
1759 * @mtd: mtd info structure
1760 * @chip: nand chip info structure
1761 * @page: page number to write
7bc3312b
TG
1762 */
1763static int nand_write_oob_syndrome(struct mtd_info *mtd,
1764 struct nand_chip *chip, int page)
1765{
1766 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1767 int eccsize = chip->ecc.size, length = mtd->oobsize;
1768 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1769 const uint8_t *bufpoi = chip->oob_poi;
1770
1771 /*
1772 * data-ecc-data-ecc ... ecc-oob
1773 * or
1774 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1775 */
1776 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1777 pos = steps * (eccsize + chunk);
1778 steps = 0;
1779 } else
8b0036ee 1780 pos = eccsize;
7bc3312b
TG
1781
1782 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1783 for (i = 0; i < steps; i++) {
1784 if (sndcmd) {
1785 if (mtd->writesize <= 512) {
1786 uint32_t fill = 0xFFFFFFFF;
1787
1788 len = eccsize;
1789 while (len > 0) {
1790 int num = min_t(int, len, 4);
1791 chip->write_buf(mtd, (uint8_t *)&fill,
1792 num);
1793 len -= num;
1794 }
1795 } else {
1796 pos = eccsize + i * (eccsize + chunk);
1797 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1798 }
1799 } else
1800 sndcmd = 1;
1801 len = min_t(int, length, chunk);
1802 chip->write_buf(mtd, bufpoi, len);
1803 bufpoi += len;
1804 length -= len;
1805 }
1806 if (length > 0)
1807 chip->write_buf(mtd, bufpoi, length);
1808
1809 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1810 status = chip->waitfunc(mtd, chip);
1811
1812 return status & NAND_STATUS_FAIL ? -EIO : 0;
1813}
1814
1da177e4 1815/**
7854d3f7 1816 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1817 * @mtd: MTD device structure
1818 * @from: offset to read from
1819 * @ops: oob operations description structure
1da177e4 1820 *
8b6e50c9 1821 * NAND read out-of-band data from the spare area.
1da177e4 1822 */
8593fbc6
TG
1823static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1824 struct mtd_oob_ops *ops)
1da177e4 1825{
c00a0991 1826 int page, realpage, chipnr;
ace4dfee 1827 struct nand_chip *chip = mtd->priv;
041e4575 1828 struct mtd_ecc_stats stats;
7014568b
VW
1829 int readlen = ops->ooblen;
1830 int len;
7bc3312b 1831 uint8_t *buf = ops->oobbuf;
1951f2f7 1832 int ret = 0;
61b03bd7 1833
289c0522 1834 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1835 __func__, (unsigned long long)from, readlen);
1da177e4 1836
041e4575
BN
1837 stats = mtd->ecc_stats;
1838
0612b9dd 1839 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1840 len = chip->ecc.layout->oobavail;
03736155
AH
1841 else
1842 len = mtd->oobsize;
1843
1844 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1845 pr_debug("%s: attempt to start read outside oob\n",
1846 __func__);
03736155
AH
1847 return -EINVAL;
1848 }
1849
1850 /* Do not allow reads past end of device */
1851 if (unlikely(from >= mtd->size ||
1852 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1853 (from >> chip->page_shift)) * len)) {
289c0522
BN
1854 pr_debug("%s: attempt to read beyond end of device\n",
1855 __func__);
03736155
AH
1856 return -EINVAL;
1857 }
7014568b 1858
7314e9e7 1859 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1860 chip->select_chip(mtd, chipnr);
1da177e4 1861
7314e9e7
TG
1862 /* Shift to get page */
1863 realpage = (int)(from >> chip->page_shift);
1864 page = realpage & chip->pagemask;
1da177e4 1865
f8ac0414 1866 while (1) {
0612b9dd 1867 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1868 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1869 else
1951f2f7
SL
1870 ret = chip->ecc.read_oob(mtd, chip, page);
1871
1872 if (ret < 0)
1873 break;
7014568b
VW
1874
1875 len = min(len, readlen);
1876 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1877
5bc7c33c
BN
1878 if (chip->options & NAND_NEED_READRDY) {
1879 /* Apply delay or wait for ready/busy pin */
1880 if (!chip->dev_ready)
1881 udelay(chip->chip_delay);
1882 else
1883 nand_wait_ready(mtd);
1884 }
1885
7014568b 1886 readlen -= len;
0d420f9d
SZ
1887 if (!readlen)
1888 break;
1889
7314e9e7
TG
1890 /* Increment page address */
1891 realpage++;
1892
1893 page = realpage & chip->pagemask;
1894 /* Check, if we cross a chip boundary */
1895 if (!page) {
1896 chipnr++;
1897 chip->select_chip(mtd, -1);
1898 chip->select_chip(mtd, chipnr);
1da177e4
LT
1899 }
1900 }
b0bb6903 1901 chip->select_chip(mtd, -1);
1da177e4 1902
1951f2f7
SL
1903 ops->oobretlen = ops->ooblen - readlen;
1904
1905 if (ret < 0)
1906 return ret;
041e4575
BN
1907
1908 if (mtd->ecc_stats.failed - stats.failed)
1909 return -EBADMSG;
1910
1911 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1912}
1913
1914/**
8593fbc6 1915 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1916 * @mtd: MTD device structure
1917 * @from: offset to read from
1918 * @ops: oob operation description structure
1da177e4 1919 *
8b6e50c9 1920 * NAND read data and/or out-of-band data.
1da177e4 1921 */
8593fbc6
TG
1922static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1923 struct mtd_oob_ops *ops)
1da177e4 1924{
8593fbc6
TG
1925 int ret = -ENOTSUPP;
1926
1927 ops->retlen = 0;
1da177e4
LT
1928
1929 /* Do not allow reads past end of device */
7014568b 1930 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1931 pr_debug("%s: attempt to read beyond end of device\n",
1932 __func__);
1da177e4
LT
1933 return -EINVAL;
1934 }
1935
6a8214aa 1936 nand_get_device(mtd, FL_READING);
1da177e4 1937
f8ac0414 1938 switch (ops->mode) {
0612b9dd
BN
1939 case MTD_OPS_PLACE_OOB:
1940 case MTD_OPS_AUTO_OOB:
1941 case MTD_OPS_RAW:
8593fbc6 1942 break;
1da177e4 1943
8593fbc6
TG
1944 default:
1945 goto out;
1946 }
1da177e4 1947
8593fbc6
TG
1948 if (!ops->datbuf)
1949 ret = nand_do_read_oob(mtd, from, ops);
1950 else
1951 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1952
7351d3a5 1953out:
8593fbc6
TG
1954 nand_release_device(mtd);
1955 return ret;
1956}
61b03bd7 1957
1da177e4 1958
8593fbc6 1959/**
7854d3f7 1960 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1961 * @mtd: mtd info structure
1962 * @chip: nand chip info structure
1963 * @buf: data buffer
1fbb938d 1964 * @oob_required: must write chip->oob_poi to OOB
52ff49df 1965 *
7854d3f7 1966 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1967 */
fdbad98d 1968static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1969 const uint8_t *buf, int oob_required)
8593fbc6
TG
1970{
1971 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1972 if (oob_required)
1973 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1974
1975 return 0;
1da177e4
LT
1976}
1977
52ff49df 1978/**
7854d3f7 1979 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1980 * @mtd: mtd info structure
1981 * @chip: nand chip info structure
1982 * @buf: data buffer
1fbb938d 1983 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
1984 *
1985 * We need a special oob layout and handling even when ECC isn't checked.
1986 */
fdbad98d 1987static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 1988 struct nand_chip *chip,
1fbb938d 1989 const uint8_t *buf, int oob_required)
52ff49df
DB
1990{
1991 int eccsize = chip->ecc.size;
1992 int eccbytes = chip->ecc.bytes;
1993 uint8_t *oob = chip->oob_poi;
1994 int steps, size;
1995
1996 for (steps = chip->ecc.steps; steps > 0; steps--) {
1997 chip->write_buf(mtd, buf, eccsize);
1998 buf += eccsize;
1999
2000 if (chip->ecc.prepad) {
2001 chip->write_buf(mtd, oob, chip->ecc.prepad);
2002 oob += chip->ecc.prepad;
2003 }
2004
60c3bc1f 2005 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2006 oob += eccbytes;
2007
2008 if (chip->ecc.postpad) {
2009 chip->write_buf(mtd, oob, chip->ecc.postpad);
2010 oob += chip->ecc.postpad;
2011 }
2012 }
2013
2014 size = mtd->oobsize - (oob - chip->oob_poi);
2015 if (size)
2016 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2017
2018 return 0;
52ff49df 2019}
9223a456 2020/**
7854d3f7 2021 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2022 * @mtd: mtd info structure
2023 * @chip: nand chip info structure
2024 * @buf: data buffer
1fbb938d 2025 * @oob_required: must write chip->oob_poi to OOB
9223a456 2026 */
fdbad98d 2027static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2028 const uint8_t *buf, int oob_required)
9223a456 2029{
f75e5097
TG
2030 int i, eccsize = chip->ecc.size;
2031 int eccbytes = chip->ecc.bytes;
2032 int eccsteps = chip->ecc.steps;
4bf63fcb 2033 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2034 const uint8_t *p = buf;
8b099a39 2035 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2036
7854d3f7 2037 /* Software ECC calculation */
8593fbc6
TG
2038 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2039 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2040
8593fbc6
TG
2041 for (i = 0; i < chip->ecc.total; i++)
2042 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2043
fdbad98d 2044 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 2045}
9223a456 2046
f75e5097 2047/**
7854d3f7 2048 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2049 * @mtd: mtd info structure
2050 * @chip: nand chip info structure
2051 * @buf: data buffer
1fbb938d 2052 * @oob_required: must write chip->oob_poi to OOB
f75e5097 2053 */
fdbad98d 2054static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2055 const uint8_t *buf, int oob_required)
f75e5097
TG
2056{
2057 int i, eccsize = chip->ecc.size;
2058 int eccbytes = chip->ecc.bytes;
2059 int eccsteps = chip->ecc.steps;
4bf63fcb 2060 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2061 const uint8_t *p = buf;
8b099a39 2062 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2063
f75e5097
TG
2064 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2065 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2066 chip->write_buf(mtd, p, eccsize);
f75e5097 2067 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2068 }
2069
f75e5097
TG
2070 for (i = 0; i < chip->ecc.total; i++)
2071 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2072
2073 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2074
2075 return 0;
9223a456
TG
2076}
2077
837a6ba4
GP
2078
2079/**
2080 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2081 * @mtd: mtd info structure
2082 * @chip: nand chip info structure
d6a95080 2083 * @offset: column address of subpage within the page
837a6ba4 2084 * @data_len: data length
d6a95080 2085 * @buf: data buffer
837a6ba4
GP
2086 * @oob_required: must write chip->oob_poi to OOB
2087 */
2088static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2089 struct nand_chip *chip, uint32_t offset,
d6a95080 2090 uint32_t data_len, const uint8_t *buf,
837a6ba4
GP
2091 int oob_required)
2092{
2093 uint8_t *oob_buf = chip->oob_poi;
2094 uint8_t *ecc_calc = chip->buffers->ecccalc;
2095 int ecc_size = chip->ecc.size;
2096 int ecc_bytes = chip->ecc.bytes;
2097 int ecc_steps = chip->ecc.steps;
2098 uint32_t *eccpos = chip->ecc.layout->eccpos;
2099 uint32_t start_step = offset / ecc_size;
2100 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2101 int oob_bytes = mtd->oobsize / ecc_steps;
2102 int step, i;
2103
2104 for (step = 0; step < ecc_steps; step++) {
2105 /* configure controller for WRITE access */
2106 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2107
2108 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2109 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2110
2111 /* mask ECC of un-touched subpages by padding 0xFF */
2112 if ((step < start_step) || (step > end_step))
2113 memset(ecc_calc, 0xff, ecc_bytes);
2114 else
d6a95080 2115 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2116
2117 /* mask OOB of un-touched subpages by padding 0xFF */
2118 /* if oob_required, preserve OOB metadata of written subpage */
2119 if (!oob_required || (step < start_step) || (step > end_step))
2120 memset(oob_buf, 0xff, oob_bytes);
2121
d6a95080 2122 buf += ecc_size;
837a6ba4
GP
2123 ecc_calc += ecc_bytes;
2124 oob_buf += oob_bytes;
2125 }
2126
2127 /* copy calculated ECC for whole page to chip->buffer->oob */
2128 /* this include masked-value(0xFF) for unwritten subpages */
2129 ecc_calc = chip->buffers->ecccalc;
2130 for (i = 0; i < chip->ecc.total; i++)
2131 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2132
2133 /* write OOB buffer to NAND device */
2134 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2135
2136 return 0;
2137}
2138
2139
61b03bd7 2140/**
7854d3f7 2141 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2142 * @mtd: mtd info structure
2143 * @chip: nand chip info structure
2144 * @buf: data buffer
1fbb938d 2145 * @oob_required: must write chip->oob_poi to OOB
1da177e4 2146 *
8b6e50c9
BN
2147 * The hw generator calculates the error syndrome automatically. Therefore we
2148 * need a special oob layout and handling.
f75e5097 2149 */
fdbad98d 2150static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
2151 struct nand_chip *chip,
2152 const uint8_t *buf, int oob_required)
1da177e4 2153{
f75e5097
TG
2154 int i, eccsize = chip->ecc.size;
2155 int eccbytes = chip->ecc.bytes;
2156 int eccsteps = chip->ecc.steps;
2157 const uint8_t *p = buf;
2158 uint8_t *oob = chip->oob_poi;
1da177e4 2159
f75e5097 2160 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2161
f75e5097
TG
2162 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2163 chip->write_buf(mtd, p, eccsize);
61b03bd7 2164
f75e5097
TG
2165 if (chip->ecc.prepad) {
2166 chip->write_buf(mtd, oob, chip->ecc.prepad);
2167 oob += chip->ecc.prepad;
2168 }
2169
2170 chip->ecc.calculate(mtd, p, oob);
2171 chip->write_buf(mtd, oob, eccbytes);
2172 oob += eccbytes;
2173
2174 if (chip->ecc.postpad) {
2175 chip->write_buf(mtd, oob, chip->ecc.postpad);
2176 oob += chip->ecc.postpad;
1da177e4 2177 }
1da177e4 2178 }
f75e5097
TG
2179
2180 /* Calculate remaining oob bytes */
7e4178f9 2181 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2182 if (i)
2183 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2184
2185 return 0;
f75e5097
TG
2186}
2187
2188/**
956e944c 2189 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2190 * @mtd: MTD device structure
2191 * @chip: NAND chip descriptor
837a6ba4
GP
2192 * @offset: address offset within the page
2193 * @data_len: length of actual data to be written
8b6e50c9 2194 * @buf: the data to write
1fbb938d 2195 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2196 * @page: page number to write
2197 * @cached: cached programming
2198 * @raw: use _raw version of write_page
f75e5097
TG
2199 */
2200static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2201 uint32_t offset, int data_len, const uint8_t *buf,
2202 int oob_required, int page, int cached, int raw)
f75e5097 2203{
837a6ba4
GP
2204 int status, subpage;
2205
2206 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2207 chip->ecc.write_subpage)
2208 subpage = offset || (data_len < mtd->writesize);
2209 else
2210 subpage = 0;
f75e5097
TG
2211
2212 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2213
956e944c 2214 if (unlikely(raw))
837a6ba4
GP
2215 status = chip->ecc.write_page_raw(mtd, chip, buf,
2216 oob_required);
2217 else if (subpage)
2218 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2219 buf, oob_required);
956e944c 2220 else
fdbad98d
JW
2221 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2222
2223 if (status < 0)
2224 return status;
f75e5097
TG
2225
2226 /*
7854d3f7 2227 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2228 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2229 */
2230 cached = 0;
2231
3239a6cd 2232 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2233
2234 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2235 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2236 /*
2237 * See if operation failed and additional status checks are
8b6e50c9 2238 * available.
f75e5097
TG
2239 */
2240 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2241 status = chip->errstat(mtd, chip, FL_WRITING, status,
2242 page);
2243
2244 if (status & NAND_STATUS_FAIL)
2245 return -EIO;
2246 } else {
2247 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2248 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2249 }
2250
f75e5097 2251 return 0;
1da177e4
LT
2252}
2253
8593fbc6 2254/**
7854d3f7 2255 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2256 * @mtd: MTD device structure
8b6e50c9
BN
2257 * @oob: oob data buffer
2258 * @len: oob data write length
2259 * @ops: oob ops structure
8593fbc6 2260 */
f722013e
TAA
2261static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2262 struct mtd_oob_ops *ops)
8593fbc6 2263{
f722013e
TAA
2264 struct nand_chip *chip = mtd->priv;
2265
2266 /*
2267 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2268 * data from a previous OOB read.
2269 */
2270 memset(chip->oob_poi, 0xff, mtd->oobsize);
2271
f8ac0414 2272 switch (ops->mode) {
8593fbc6 2273
0612b9dd
BN
2274 case MTD_OPS_PLACE_OOB:
2275 case MTD_OPS_RAW:
8593fbc6
TG
2276 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2277 return oob + len;
2278
0612b9dd 2279 case MTD_OPS_AUTO_OOB: {
8593fbc6 2280 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2281 uint32_t boffs = 0, woffs = ops->ooboffs;
2282 size_t bytes = 0;
8593fbc6 2283
f8ac0414 2284 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2285 /* Write request not from offset 0? */
7bc3312b
TG
2286 if (unlikely(woffs)) {
2287 if (woffs >= free->length) {
2288 woffs -= free->length;
2289 continue;
2290 }
2291 boffs = free->offset + woffs;
2292 bytes = min_t(size_t, len,
2293 (free->length - woffs));
2294 woffs = 0;
2295 } else {
2296 bytes = min_t(size_t, len, free->length);
2297 boffs = free->offset;
2298 }
8b0036ee 2299 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2300 oob += bytes;
2301 }
2302 return oob;
2303 }
2304 default:
2305 BUG();
2306 }
2307 return NULL;
2308}
2309
f8ac0414 2310#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2311
2312/**
7854d3f7 2313 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2314 * @mtd: MTD device structure
2315 * @to: offset to write to
2316 * @ops: oob operations description structure
1da177e4 2317 *
8b6e50c9 2318 * NAND write with ECC.
1da177e4 2319 */
8593fbc6
TG
2320static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2321 struct mtd_oob_ops *ops)
1da177e4 2322{
29072b96 2323 int chipnr, realpage, page, blockmask, column;
ace4dfee 2324 struct nand_chip *chip = mtd->priv;
8593fbc6 2325 uint32_t writelen = ops->len;
782ce79a
ML
2326
2327 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2328 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2329 mtd->oobavail : mtd->oobsize;
2330
8593fbc6
TG
2331 uint8_t *oob = ops->oobbuf;
2332 uint8_t *buf = ops->datbuf;
837a6ba4 2333 int ret;
e47f3db4 2334 int oob_required = oob ? 1 : 0;
1da177e4 2335
8593fbc6 2336 ops->retlen = 0;
29072b96
TG
2337 if (!writelen)
2338 return 0;
1da177e4 2339
8b6e50c9 2340 /* Reject writes, which are not page aligned */
8593fbc6 2341 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2342 pr_notice("%s: attempt to write non page aligned data\n",
2343 __func__);
1da177e4
LT
2344 return -EINVAL;
2345 }
2346
29072b96 2347 column = to & (mtd->writesize - 1);
1da177e4 2348
6a930961
TG
2349 chipnr = (int)(to >> chip->chip_shift);
2350 chip->select_chip(mtd, chipnr);
2351
1da177e4 2352 /* Check, if it is write protected */
b0bb6903
HS
2353 if (nand_check_wp(mtd)) {
2354 ret = -EIO;
2355 goto err_out;
2356 }
1da177e4 2357
f75e5097
TG
2358 realpage = (int)(to >> chip->page_shift);
2359 page = realpage & chip->pagemask;
2360 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2361
2362 /* Invalidate the page cache, when we write to the cached page */
2363 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2364 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2365 chip->pagebuf = -1;
61b03bd7 2366
782ce79a 2367 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2368 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2369 ret = -EINVAL;
2370 goto err_out;
2371 }
782ce79a 2372
f8ac0414 2373 while (1) {
29072b96 2374 int bytes = mtd->writesize;
f75e5097 2375 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2376 uint8_t *wbuf = buf;
2377
8b6e50c9 2378 /* Partial page write? */
29072b96
TG
2379 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2380 cached = 0;
2381 bytes = min_t(int, bytes - column, (int) writelen);
2382 chip->pagebuf = -1;
2383 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2384 memcpy(&chip->buffers->databuf[column], buf, bytes);
2385 wbuf = chip->buffers->databuf;
2386 }
1da177e4 2387
782ce79a
ML
2388 if (unlikely(oob)) {
2389 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2390 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2391 oobwritelen -= len;
f722013e
TAA
2392 } else {
2393 /* We still need to erase leftover OOB data */
2394 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2395 }
837a6ba4
GP
2396 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2397 oob_required, page, cached,
2398 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2399 if (ret)
2400 break;
2401
2402 writelen -= bytes;
2403 if (!writelen)
2404 break;
2405
29072b96 2406 column = 0;
f75e5097
TG
2407 buf += bytes;
2408 realpage++;
2409
2410 page = realpage & chip->pagemask;
2411 /* Check, if we cross a chip boundary */
2412 if (!page) {
2413 chipnr++;
2414 chip->select_chip(mtd, -1);
2415 chip->select_chip(mtd, chipnr);
1da177e4
LT
2416 }
2417 }
8593fbc6 2418
8593fbc6 2419 ops->retlen = ops->len - writelen;
7014568b
VW
2420 if (unlikely(oob))
2421 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2422
2423err_out:
2424 chip->select_chip(mtd, -1);
1da177e4
LT
2425 return ret;
2426}
2427
2af7c653
SK
2428/**
2429 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2430 * @mtd: MTD device structure
2431 * @to: offset to write to
2432 * @len: number of bytes to write
2433 * @retlen: pointer to variable to store the number of written bytes
2434 * @buf: the data to write
2af7c653
SK
2435 *
2436 * NAND write with ECC. Used when performing writes in interrupt context, this
2437 * may for example be called by mtdoops when writing an oops while in panic.
2438 */
2439static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2440 size_t *retlen, const uint8_t *buf)
2441{
2442 struct nand_chip *chip = mtd->priv;
4a89ff88 2443 struct mtd_oob_ops ops;
2af7c653
SK
2444 int ret;
2445
8b6e50c9 2446 /* Wait for the device to get ready */
2af7c653
SK
2447 panic_nand_wait(mtd, chip, 400);
2448
8b6e50c9 2449 /* Grab the device */
2af7c653
SK
2450 panic_nand_get_device(chip, mtd, FL_WRITING);
2451
4a89ff88
BN
2452 ops.len = len;
2453 ops.datbuf = (uint8_t *)buf;
2454 ops.oobbuf = NULL;
11041ae6 2455 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2456
4a89ff88 2457 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2458
4a89ff88 2459 *retlen = ops.retlen;
2af7c653
SK
2460 return ret;
2461}
2462
f75e5097 2463/**
8593fbc6 2464 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2465 * @mtd: MTD device structure
2466 * @to: offset to write to
2467 * @len: number of bytes to write
2468 * @retlen: pointer to variable to store the number of written bytes
2469 * @buf: the data to write
f75e5097 2470 *
8b6e50c9 2471 * NAND write with ECC.
f75e5097 2472 */
8593fbc6
TG
2473static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2474 size_t *retlen, const uint8_t *buf)
f75e5097 2475{
4a89ff88 2476 struct mtd_oob_ops ops;
f75e5097
TG
2477 int ret;
2478
6a8214aa 2479 nand_get_device(mtd, FL_WRITING);
4a89ff88
BN
2480 ops.len = len;
2481 ops.datbuf = (uint8_t *)buf;
2482 ops.oobbuf = NULL;
11041ae6 2483 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2484 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2485 *retlen = ops.retlen;
f75e5097 2486 nand_release_device(mtd);
8593fbc6 2487 return ret;
f75e5097 2488}
7314e9e7 2489
1da177e4 2490/**
8593fbc6 2491 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2492 * @mtd: MTD device structure
2493 * @to: offset to write to
2494 * @ops: oob operation description structure
1da177e4 2495 *
8b6e50c9 2496 * NAND write out-of-band.
1da177e4 2497 */
8593fbc6
TG
2498static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2499 struct mtd_oob_ops *ops)
1da177e4 2500{
03736155 2501 int chipnr, page, status, len;
ace4dfee 2502 struct nand_chip *chip = mtd->priv;
1da177e4 2503
289c0522 2504 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2505 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2506
0612b9dd 2507 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2508 len = chip->ecc.layout->oobavail;
2509 else
2510 len = mtd->oobsize;
2511
1da177e4 2512 /* Do not allow write past end of page */
03736155 2513 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2514 pr_debug("%s: attempt to write past end of page\n",
2515 __func__);
1da177e4
LT
2516 return -EINVAL;
2517 }
2518
03736155 2519 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2520 pr_debug("%s: attempt to start write outside oob\n",
2521 __func__);
03736155
AH
2522 return -EINVAL;
2523 }
2524
775adc3d 2525 /* Do not allow write past end of device */
03736155
AH
2526 if (unlikely(to >= mtd->size ||
2527 ops->ooboffs + ops->ooblen >
2528 ((mtd->size >> chip->page_shift) -
2529 (to >> chip->page_shift)) * len)) {
289c0522
BN
2530 pr_debug("%s: attempt to write beyond end of device\n",
2531 __func__);
03736155
AH
2532 return -EINVAL;
2533 }
2534
7314e9e7 2535 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2536 chip->select_chip(mtd, chipnr);
1da177e4 2537
7314e9e7
TG
2538 /* Shift to get page */
2539 page = (int)(to >> chip->page_shift);
2540
2541 /*
2542 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2543 * of my DiskOnChip 2000 test units) will clear the whole data page too
2544 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2545 * it in the doc2000 driver in August 1999. dwmw2.
2546 */
ace4dfee 2547 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2548
2549 /* Check, if it is write protected */
b0bb6903
HS
2550 if (nand_check_wp(mtd)) {
2551 chip->select_chip(mtd, -1);
8593fbc6 2552 return -EROFS;
b0bb6903 2553 }
61b03bd7 2554
1da177e4 2555 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2556 if (page == chip->pagebuf)
2557 chip->pagebuf = -1;
1da177e4 2558
f722013e 2559 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2560
0612b9dd 2561 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2562 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2563 else
2564 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2565
b0bb6903
HS
2566 chip->select_chip(mtd, -1);
2567
7bc3312b
TG
2568 if (status)
2569 return status;
1da177e4 2570
7014568b 2571 ops->oobretlen = ops->ooblen;
1da177e4 2572
7bc3312b 2573 return 0;
8593fbc6
TG
2574}
2575
2576/**
2577 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2578 * @mtd: MTD device structure
2579 * @to: offset to write to
2580 * @ops: oob operation description structure
8593fbc6
TG
2581 */
2582static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2583 struct mtd_oob_ops *ops)
2584{
8593fbc6
TG
2585 int ret = -ENOTSUPP;
2586
2587 ops->retlen = 0;
2588
2589 /* Do not allow writes past end of device */
7014568b 2590 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2591 pr_debug("%s: attempt to write beyond end of device\n",
2592 __func__);
8593fbc6
TG
2593 return -EINVAL;
2594 }
2595
6a8214aa 2596 nand_get_device(mtd, FL_WRITING);
8593fbc6 2597
f8ac0414 2598 switch (ops->mode) {
0612b9dd
BN
2599 case MTD_OPS_PLACE_OOB:
2600 case MTD_OPS_AUTO_OOB:
2601 case MTD_OPS_RAW:
8593fbc6
TG
2602 break;
2603
2604 default:
2605 goto out;
2606 }
2607
2608 if (!ops->datbuf)
2609 ret = nand_do_write_oob(mtd, to, ops);
2610 else
2611 ret = nand_do_write_ops(mtd, to, ops);
2612
7351d3a5 2613out:
1da177e4 2614 nand_release_device(mtd);
1da177e4
LT
2615 return ret;
2616}
2617
1da177e4 2618/**
7854d3f7 2619 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2620 * @mtd: MTD device structure
2621 * @page: the page address of the block which will be erased
1da177e4 2622 *
8b6e50c9 2623 * Standard erase command for NAND chips.
1da177e4 2624 */
e0c7d767 2625static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2626{
ace4dfee 2627 struct nand_chip *chip = mtd->priv;
1da177e4 2628 /* Send commands to erase a block */
ace4dfee
TG
2629 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2630 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2631}
2632
1da177e4
LT
2633/**
2634 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2635 * @mtd: MTD device structure
2636 * @instr: erase instruction
1da177e4 2637 *
8b6e50c9 2638 * Erase one ore more blocks.
1da177e4 2639 */
e0c7d767 2640static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2641{
e0c7d767 2642 return nand_erase_nand(mtd, instr, 0);
1da177e4 2643}
61b03bd7 2644
1da177e4 2645/**
7854d3f7 2646 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2647 * @mtd: MTD device structure
2648 * @instr: erase instruction
2649 * @allowbbt: allow erasing the bbt area
1da177e4 2650 *
8b6e50c9 2651 * Erase one ore more blocks.
1da177e4 2652 */
ace4dfee
TG
2653int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2654 int allowbbt)
1da177e4 2655{
69423d99 2656 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2657 struct nand_chip *chip = mtd->priv;
69423d99 2658 loff_t len;
1da177e4 2659
289c0522
BN
2660 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2661 __func__, (unsigned long long)instr->addr,
2662 (unsigned long long)instr->len);
1da177e4 2663
6fe5a6ac 2664 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2665 return -EINVAL;
1da177e4 2666
1da177e4 2667 /* Grab the lock and see if the device is available */
6a8214aa 2668 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2669
2670 /* Shift to get first page */
ace4dfee
TG
2671 page = (int)(instr->addr >> chip->page_shift);
2672 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2673
2674 /* Calculate pages in each block */
ace4dfee 2675 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2676
2677 /* Select the NAND device */
ace4dfee 2678 chip->select_chip(mtd, chipnr);
1da177e4 2679
1da177e4
LT
2680 /* Check, if it is write protected */
2681 if (nand_check_wp(mtd)) {
289c0522
BN
2682 pr_debug("%s: device is write protected!\n",
2683 __func__);
1da177e4
LT
2684 instr->state = MTD_ERASE_FAILED;
2685 goto erase_exit;
2686 }
2687
2688 /* Loop through the pages */
2689 len = instr->len;
2690
2691 instr->state = MTD_ERASING;
2692
2693 while (len) {
12183a20 2694 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2695 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2696 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2697 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2698 __func__, page);
1da177e4
LT
2699 instr->state = MTD_ERASE_FAILED;
2700 goto erase_exit;
2701 }
61b03bd7 2702
ace4dfee
TG
2703 /*
2704 * Invalidate the page cache, if we erase the block which
8b6e50c9 2705 * contains the current cached page.
ace4dfee
TG
2706 */
2707 if (page <= chip->pagebuf && chip->pagebuf <
2708 (page + pages_per_block))
2709 chip->pagebuf = -1;
1da177e4 2710
ace4dfee 2711 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2712
7bc3312b 2713 status = chip->waitfunc(mtd, chip);
1da177e4 2714
ace4dfee
TG
2715 /*
2716 * See if operation failed and additional status checks are
2717 * available
2718 */
2719 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2720 status = chip->errstat(mtd, chip, FL_ERASING,
2721 status, page);
068e3c0a 2722
1da177e4 2723 /* See if block erase succeeded */
a4ab4c5d 2724 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2725 pr_debug("%s: failed erase, page 0x%08x\n",
2726 __func__, page);
1da177e4 2727 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2728 instr->fail_addr =
2729 ((loff_t)page << chip->page_shift);
1da177e4
LT
2730 goto erase_exit;
2731 }
30f464b7 2732
1da177e4 2733 /* Increment page address and decrement length */
daae74ca 2734 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2735 page += pages_per_block;
2736
2737 /* Check, if we cross a chip boundary */
ace4dfee 2738 if (len && !(page & chip->pagemask)) {
1da177e4 2739 chipnr++;
ace4dfee
TG
2740 chip->select_chip(mtd, -1);
2741 chip->select_chip(mtd, chipnr);
1da177e4
LT
2742 }
2743 }
2744 instr->state = MTD_ERASE_DONE;
2745
7351d3a5 2746erase_exit:
1da177e4
LT
2747
2748 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2749
2750 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2751 chip->select_chip(mtd, -1);
1da177e4
LT
2752 nand_release_device(mtd);
2753
49defc01
DW
2754 /* Do call back function */
2755 if (!ret)
2756 mtd_erase_callback(instr);
2757
1da177e4
LT
2758 /* Return more or less happy */
2759 return ret;
2760}
2761
2762/**
2763 * nand_sync - [MTD Interface] sync
8b6e50c9 2764 * @mtd: MTD device structure
1da177e4 2765 *
8b6e50c9 2766 * Sync is actually a wait for chip ready function.
1da177e4 2767 */
e0c7d767 2768static void nand_sync(struct mtd_info *mtd)
1da177e4 2769{
289c0522 2770 pr_debug("%s: called\n", __func__);
1da177e4
LT
2771
2772 /* Grab the lock and see if the device is available */
6a8214aa 2773 nand_get_device(mtd, FL_SYNCING);
1da177e4 2774 /* Release it and go back */
e0c7d767 2775 nand_release_device(mtd);
1da177e4
LT
2776}
2777
1da177e4 2778/**
ace4dfee 2779 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2780 * @mtd: MTD device structure
2781 * @offs: offset relative to mtd start
1da177e4 2782 */
ace4dfee 2783static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2784{
ace4dfee 2785 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2786}
2787
2788/**
ace4dfee 2789 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2790 * @mtd: MTD device structure
2791 * @ofs: offset relative to mtd start
1da177e4 2792 */
e0c7d767 2793static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2794{
1da177e4
LT
2795 int ret;
2796
f8ac0414
FF
2797 ret = nand_block_isbad(mtd, ofs);
2798 if (ret) {
8b6e50c9 2799 /* If it was bad already, return success and do nothing */
1da177e4
LT
2800 if (ret > 0)
2801 return 0;
e0c7d767
DW
2802 return ret;
2803 }
1da177e4 2804
5a0edb25 2805 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
2806}
2807
7db03ecc
HS
2808/**
2809 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2810 * @mtd: MTD device structure
2811 * @chip: nand chip info structure
2812 * @addr: feature address.
2813 * @subfeature_param: the subfeature parameters, a four bytes array.
2814 */
2815static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2816 int addr, uint8_t *subfeature_param)
2817{
2818 int status;
05f78359 2819 int i;
7db03ecc 2820
d914c932
DM
2821 if (!chip->onfi_version ||
2822 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2823 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2824 return -EINVAL;
2825
2826 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
2827 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2828 chip->write_byte(mtd, subfeature_param[i]);
2829
7db03ecc
HS
2830 status = chip->waitfunc(mtd, chip);
2831 if (status & NAND_STATUS_FAIL)
2832 return -EIO;
2833 return 0;
2834}
2835
2836/**
2837 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2838 * @mtd: MTD device structure
2839 * @chip: nand chip info structure
2840 * @addr: feature address.
2841 * @subfeature_param: the subfeature parameters, a four bytes array.
2842 */
2843static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2844 int addr, uint8_t *subfeature_param)
2845{
05f78359
UKK
2846 int i;
2847
d914c932
DM
2848 if (!chip->onfi_version ||
2849 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2850 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2851 return -EINVAL;
2852
2853 /* clear the sub feature parameters */
2854 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2855
2856 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
2857 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2858 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
2859 return 0;
2860}
2861
962034f4
VW
2862/**
2863 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2864 * @mtd: MTD device structure
962034f4
VW
2865 */
2866static int nand_suspend(struct mtd_info *mtd)
2867{
6a8214aa 2868 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
2869}
2870
2871/**
2872 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2873 * @mtd: MTD device structure
962034f4
VW
2874 */
2875static void nand_resume(struct mtd_info *mtd)
2876{
ace4dfee 2877 struct nand_chip *chip = mtd->priv;
962034f4 2878
ace4dfee 2879 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2880 nand_release_device(mtd);
2881 else
d0370219
BN
2882 pr_err("%s called for a chip which is not in suspended state\n",
2883 __func__);
962034f4
VW
2884}
2885
8b6e50c9 2886/* Set default functions */
ace4dfee 2887static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2888{
1da177e4 2889 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2890 if (!chip->chip_delay)
2891 chip->chip_delay = 20;
1da177e4
LT
2892
2893 /* check, if a user supplied command function given */
ace4dfee
TG
2894 if (chip->cmdfunc == NULL)
2895 chip->cmdfunc = nand_command;
1da177e4
LT
2896
2897 /* check, if a user supplied wait function given */
ace4dfee
TG
2898 if (chip->waitfunc == NULL)
2899 chip->waitfunc = nand_wait;
2900
2901 if (!chip->select_chip)
2902 chip->select_chip = nand_select_chip;
68e80780 2903
4204cccd
HS
2904 /* set for ONFI nand */
2905 if (!chip->onfi_set_features)
2906 chip->onfi_set_features = nand_onfi_set_features;
2907 if (!chip->onfi_get_features)
2908 chip->onfi_get_features = nand_onfi_get_features;
2909
68e80780
BN
2910 /* If called twice, pointers that depend on busw may need to be reset */
2911 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
2912 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2913 if (!chip->read_word)
2914 chip->read_word = nand_read_word;
2915 if (!chip->block_bad)
2916 chip->block_bad = nand_block_bad;
2917 if (!chip->block_markbad)
2918 chip->block_markbad = nand_default_block_markbad;
68e80780 2919 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 2920 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
2921 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2922 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 2923 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 2924 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2925 if (!chip->scan_bbt)
2926 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2927
2928 if (!chip->controller) {
2929 chip->controller = &chip->hwcontrol;
2930 spin_lock_init(&chip->controller->lock);
2931 init_waitqueue_head(&chip->controller->wq);
2932 }
2933
7aa65bfd
TG
2934}
2935
8b6e50c9 2936/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2937static void sanitize_string(uint8_t *s, size_t len)
2938{
2939 ssize_t i;
2940
8b6e50c9 2941 /* Null terminate */
d1e1f4e4
FF
2942 s[len - 1] = 0;
2943
8b6e50c9 2944 /* Remove non printable chars */
d1e1f4e4
FF
2945 for (i = 0; i < len - 1; i++) {
2946 if (s[i] < ' ' || s[i] > 127)
2947 s[i] = '?';
2948 }
2949
8b6e50c9 2950 /* Remove trailing spaces */
d1e1f4e4
FF
2951 strim(s);
2952}
2953
2954static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2955{
2956 int i;
2957 while (len--) {
2958 crc ^= *p++ << 8;
2959 for (i = 0; i < 8; i++)
2960 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2961 }
2962
2963 return crc;
2964}
2965
6dcbe0cd
HS
2966/* Parse the Extended Parameter Page. */
2967static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2968 struct nand_chip *chip, struct nand_onfi_params *p)
2969{
2970 struct onfi_ext_param_page *ep;
2971 struct onfi_ext_section *s;
2972 struct onfi_ext_ecc_info *ecc;
2973 uint8_t *cursor;
2974 int ret = -EINVAL;
2975 int len;
2976 int i;
2977
2978 len = le16_to_cpu(p->ext_param_page_length) * 16;
2979 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
2980 if (!ep)
2981 return -ENOMEM;
6dcbe0cd
HS
2982
2983 /* Send our own NAND_CMD_PARAM. */
2984 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2985
2986 /* Use the Change Read Column command to skip the ONFI param pages. */
2987 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2988 sizeof(*p) * p->num_of_param_pages , -1);
2989
2990 /* Read out the Extended Parameter Page. */
2991 chip->read_buf(mtd, (uint8_t *)ep, len);
2992 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2993 != le16_to_cpu(ep->crc))) {
2994 pr_debug("fail in the CRC.\n");
2995 goto ext_out;
2996 }
2997
2998 /*
2999 * Check the signature.
3000 * Do not strictly follow the ONFI spec, maybe changed in future.
3001 */
3002 if (strncmp(ep->sig, "EPPS", 4)) {
3003 pr_debug("The signature is invalid.\n");
3004 goto ext_out;
3005 }
3006
3007 /* find the ECC section. */
3008 cursor = (uint8_t *)(ep + 1);
3009 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3010 s = ep->sections + i;
3011 if (s->type == ONFI_SECTION_TYPE_2)
3012 break;
3013 cursor += s->length * 16;
3014 }
3015 if (i == ONFI_EXT_SECTION_MAX) {
3016 pr_debug("We can not find the ECC section.\n");
3017 goto ext_out;
3018 }
3019
3020 /* get the info we want. */
3021 ecc = (struct onfi_ext_ecc_info *)cursor;
3022
4ae7d228
BN
3023 if (!ecc->codeword_size) {
3024 pr_debug("Invalid codeword size\n");
3025 goto ext_out;
6dcbe0cd
HS
3026 }
3027
4ae7d228
BN
3028 chip->ecc_strength_ds = ecc->ecc_bits;
3029 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3030 ret = 0;
6dcbe0cd
HS
3031
3032ext_out:
3033 kfree(ep);
3034 return ret;
3035}
3036
8429bb39
BN
3037static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3038{
3039 struct nand_chip *chip = mtd->priv;
3040 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3041
3042 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3043 feature);
3044}
3045
3046/*
3047 * Configure chip properties from Micron vendor-specific ONFI table
3048 */
3049static void nand_onfi_detect_micron(struct nand_chip *chip,
3050 struct nand_onfi_params *p)
3051{
3052 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3053
3054 if (le16_to_cpu(p->vendor_revision) < 1)
3055 return;
3056
3057 chip->read_retries = micron->read_retry_options;
3058 chip->setup_read_retry = nand_setup_read_retry_micron;
3059}
3060
6fb277ba 3061/*
8b6e50c9 3062 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3063 */
3064static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3065 int *busw)
6fb277ba
FF
3066{
3067 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3068 int i, j;
6fb277ba
FF
3069 int val;
3070
7854d3f7 3071 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3072 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3073 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3074 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3075 return 0;
3076
6fb277ba
FF
3077 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3078 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3079 for (j = 0; j < sizeof(*p); j++)
3080 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3081 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3082 le16_to_cpu(p->crc)) {
6fb277ba
FF
3083 break;
3084 }
3085 }
3086
c7f23a70
BN
3087 if (i == 3) {
3088 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3089 return 0;
c7f23a70 3090 }
6fb277ba 3091
8b6e50c9 3092 /* Check version */
6fb277ba 3093 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3094 if (val & (1 << 5))
3095 chip->onfi_version = 23;
3096 else if (val & (1 << 4))
6fb277ba
FF
3097 chip->onfi_version = 22;
3098 else if (val & (1 << 3))
3099 chip->onfi_version = 21;
3100 else if (val & (1 << 2))
3101 chip->onfi_version = 20;
b7b1a29d 3102 else if (val & (1 << 1))
6fb277ba 3103 chip->onfi_version = 10;
b7b1a29d
BN
3104
3105 if (!chip->onfi_version) {
20171642 3106 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3107 return 0;
3108 }
6fb277ba
FF
3109
3110 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3111 sanitize_string(p->model, sizeof(p->model));
3112 if (!mtd->name)
3113 mtd->name = p->model;
4355b70c 3114
6fb277ba 3115 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3116
3117 /*
3118 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3119 * (don't ask me who thought of this...). MTD assumes that these
3120 * dimensions will be power-of-2, so just truncate the remaining area.
3121 */
3122 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3123 mtd->erasesize *= mtd->writesize;
3124
6fb277ba 3125 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3126
3127 /* See erasesize comment */
3128 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3129 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3130 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3131
3132 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3133 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3134 else
3135 *busw = 0;
6fb277ba 3136
10c86bab
HS
3137 if (p->ecc_bits != 0xff) {
3138 chip->ecc_strength_ds = p->ecc_bits;
3139 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3140 } else if (chip->onfi_version >= 21 &&
3141 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3142
3143 /*
3144 * The nand_flash_detect_ext_param_page() uses the
3145 * Change Read Column command which maybe not supported
3146 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3147 * now. We do not replace user supplied command function.
3148 */
3149 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3150 chip->cmdfunc = nand_command_lp;
3151
3152 /* The Extended Parameter Page is supported since ONFI 2.1. */
3153 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3154 pr_warn("Failed to detect ONFI extended param page\n");
3155 } else {
3156 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3157 }
3158
8429bb39
BN
3159 if (p->jedec_id == NAND_MFR_MICRON)
3160 nand_onfi_detect_micron(chip, p);
3161
6fb277ba
FF
3162 return 1;
3163}
3164
91361818
HS
3165/*
3166 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3167 */
3168static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3169 int *busw)
3170{
3171 struct nand_jedec_params *p = &chip->jedec_params;
3172 struct jedec_ecc_info *ecc;
3173 int val;
3174 int i, j;
3175
3176 /* Try JEDEC for unknown chip or LP */
3177 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3178 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3179 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3180 chip->read_byte(mtd) != 'C')
3181 return 0;
3182
3183 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3184 for (i = 0; i < 3; i++) {
3185 for (j = 0; j < sizeof(*p); j++)
3186 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3187
3188 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3189 le16_to_cpu(p->crc))
3190 break;
3191 }
3192
3193 if (i == 3) {
3194 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3195 return 0;
3196 }
3197
3198 /* Check version */
3199 val = le16_to_cpu(p->revision);
3200 if (val & (1 << 2))
3201 chip->jedec_version = 10;
3202 else if (val & (1 << 1))
3203 chip->jedec_version = 1; /* vendor specific version */
3204
3205 if (!chip->jedec_version) {
3206 pr_info("unsupported JEDEC version: %d\n", val);
3207 return 0;
3208 }
3209
3210 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3211 sanitize_string(p->model, sizeof(p->model));
3212 if (!mtd->name)
3213 mtd->name = p->model;
3214
3215 mtd->writesize = le32_to_cpu(p->byte_per_page);
3216
3217 /* Please reference to the comment for nand_flash_detect_onfi. */
3218 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3219 mtd->erasesize *= mtd->writesize;
3220
3221 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3222
3223 /* Please reference to the comment for nand_flash_detect_onfi. */
3224 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3225 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3226 chip->bits_per_cell = p->bits_per_cell;
3227
3228 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3229 *busw = NAND_BUSWIDTH_16;
3230 else
3231 *busw = 0;
3232
3233 /* ECC info */
3234 ecc = &p->ecc_info[0];
3235
3236 if (ecc->codeword_size >= 9) {
3237 chip->ecc_strength_ds = ecc->ecc_bits;
3238 chip->ecc_step_ds = 1 << ecc->codeword_size;
3239 } else {
3240 pr_warn("Invalid codeword size\n");
3241 }
3242
3243 return 1;
3244}
3245
e3b88bd6
BN
3246/*
3247 * nand_id_has_period - Check if an ID string has a given wraparound period
3248 * @id_data: the ID string
3249 * @arrlen: the length of the @id_data array
3250 * @period: the period of repitition
3251 *
3252 * Check if an ID string is repeated within a given sequence of bytes at
3253 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3254 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3255 * if the repetition has a period of @period; otherwise, returns zero.
3256 */
3257static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3258{
3259 int i, j;
3260 for (i = 0; i < period; i++)
3261 for (j = i + period; j < arrlen; j += period)
3262 if (id_data[i] != id_data[j])
3263 return 0;
3264 return 1;
3265}
3266
3267/*
3268 * nand_id_len - Get the length of an ID string returned by CMD_READID
3269 * @id_data: the ID string
3270 * @arrlen: the length of the @id_data array
3271
3272 * Returns the length of the ID string, according to known wraparound/trailing
3273 * zero patterns. If no pattern exists, returns the length of the array.
3274 */
3275static int nand_id_len(u8 *id_data, int arrlen)
3276{
3277 int last_nonzero, period;
3278
3279 /* Find last non-zero byte */
3280 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3281 if (id_data[last_nonzero])
3282 break;
3283
3284 /* All zeros */
3285 if (last_nonzero < 0)
3286 return 0;
3287
3288 /* Calculate wraparound period */
3289 for (period = 1; period < arrlen; period++)
3290 if (nand_id_has_period(id_data, arrlen, period))
3291 break;
3292
3293 /* There's a repeated pattern */
3294 if (period < arrlen)
3295 return period;
3296
3297 /* There are trailing zeros */
3298 if (last_nonzero < arrlen - 1)
3299 return last_nonzero + 1;
3300
3301 /* No pattern detected */
3302 return arrlen;
3303}
3304
7db906b7
HS
3305/* Extract the bits of per cell from the 3rd byte of the extended ID */
3306static int nand_get_bits_per_cell(u8 cellinfo)
3307{
3308 int bits;
3309
3310 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3311 bits >>= NAND_CI_CELLTYPE_SHIFT;
3312 return bits + 1;
3313}
3314
fc09bbc0
BN
3315/*
3316 * Many new NAND share similar device ID codes, which represent the size of the
3317 * chip. The rest of the parameters must be decoded according to generic or
3318 * manufacturer-specific "extended ID" decoding patterns.
3319 */
3320static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3321 u8 id_data[8], int *busw)
3322{
e3b88bd6 3323 int extid, id_len;
fc09bbc0 3324 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3325 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3326 /* The 4th id byte is the important one */
3327 extid = id_data[3];
3328
e3b88bd6
BN
3329 id_len = nand_id_len(id_data, 8);
3330
fc09bbc0
BN
3331 /*
3332 * Field definitions are in the following datasheets:
3333 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3334 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3335 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3336 *
af451af4
BN
3337 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3338 * ID to decide what to do.
fc09bbc0 3339 */
af451af4 3340 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3341 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3342 /* Calc pagesize */
3343 mtd->writesize = 2048 << (extid & 0x03);
3344 extid >>= 2;
3345 /* Calc oobsize */
e2d3a35e 3346 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3347 case 1:
3348 mtd->oobsize = 128;
3349 break;
3350 case 2:
3351 mtd->oobsize = 218;
3352 break;
3353 case 3:
3354 mtd->oobsize = 400;
3355 break;
e2d3a35e 3356 case 4:
fc09bbc0
BN
3357 mtd->oobsize = 436;
3358 break;
e2d3a35e
BN
3359 case 5:
3360 mtd->oobsize = 512;
3361 break;
3362 case 6:
e2d3a35e
BN
3363 mtd->oobsize = 640;
3364 break;
94d04e82
HS
3365 case 7:
3366 default: /* Other cases are "reserved" (unknown) */
3367 mtd->oobsize = 1024;
3368 break;
fc09bbc0
BN
3369 }
3370 extid >>= 2;
3371 /* Calc blocksize */
3372 mtd->erasesize = (128 * 1024) <<
3373 (((extid >> 1) & 0x04) | (extid & 0x03));
3374 *busw = 0;
73ca392f 3375 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3376 !nand_is_slc(chip)) {
73ca392f
BN
3377 unsigned int tmp;
3378
3379 /* Calc pagesize */
3380 mtd->writesize = 2048 << (extid & 0x03);
3381 extid >>= 2;
3382 /* Calc oobsize */
3383 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3384 case 0:
3385 mtd->oobsize = 128;
3386 break;
3387 case 1:
3388 mtd->oobsize = 224;
3389 break;
3390 case 2:
3391 mtd->oobsize = 448;
3392 break;
3393 case 3:
3394 mtd->oobsize = 64;
3395 break;
3396 case 4:
3397 mtd->oobsize = 32;
3398 break;
3399 case 5:
3400 mtd->oobsize = 16;
3401 break;
3402 default:
3403 mtd->oobsize = 640;
3404 break;
3405 }
3406 extid >>= 2;
3407 /* Calc blocksize */
3408 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3409 if (tmp < 0x03)
3410 mtd->erasesize = (128 * 1024) << tmp;
3411 else if (tmp == 0x03)
3412 mtd->erasesize = 768 * 1024;
3413 else
3414 mtd->erasesize = (64 * 1024) << tmp;
3415 *busw = 0;
fc09bbc0
BN
3416 } else {
3417 /* Calc pagesize */
3418 mtd->writesize = 1024 << (extid & 0x03);
3419 extid >>= 2;
3420 /* Calc oobsize */
3421 mtd->oobsize = (8 << (extid & 0x01)) *
3422 (mtd->writesize >> 9);
3423 extid >>= 2;
3424 /* Calc blocksize. Blocksize is multiples of 64KiB */
3425 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3426 extid >>= 2;
3427 /* Get buswidth information */
3428 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3429
3430 /*
3431 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3432 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3433 * follows:
3434 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3435 * 110b -> 24nm
3436 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3437 */
3438 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3439 nand_is_slc(chip) &&
60c67382
BN
3440 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3441 !(id_data[4] & 0x80) /* !BENAND */) {
3442 mtd->oobsize = 32 * mtd->writesize >> 9;
3443 }
3444
fc09bbc0
BN
3445 }
3446}
3447
f23a481c
BN
3448/*
3449 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3450 * decodes a matching ID table entry and assigns the MTD size parameters for
3451 * the chip.
3452 */
3453static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3454 struct nand_flash_dev *type, u8 id_data[8],
3455 int *busw)
3456{
3457 int maf_id = id_data[0];
3458
3459 mtd->erasesize = type->erasesize;
3460 mtd->writesize = type->pagesize;
3461 mtd->oobsize = mtd->writesize / 32;
3462 *busw = type->options & NAND_BUSWIDTH_16;
3463
1c195e90
HS
3464 /* All legacy ID NAND are small-page, SLC */
3465 chip->bits_per_cell = 1;
3466
f23a481c
BN
3467 /*
3468 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3469 * some Spansion chips have erasesize that conflicts with size
3470 * listed in nand_ids table.
3471 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3472 */
3473 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3474 && id_data[6] == 0x00 && id_data[7] == 0x00
3475 && mtd->writesize == 512) {
3476 mtd->erasesize = 128 * 1024;
3477 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3478 }
3479}
3480
7e74c2d7
BN
3481/*
3482 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3483 * heuristic patterns using various detected parameters (e.g., manufacturer,
3484 * page size, cell-type information).
3485 */
3486static void nand_decode_bbm_options(struct mtd_info *mtd,
3487 struct nand_chip *chip, u8 id_data[8])
3488{
3489 int maf_id = id_data[0];
3490
3491 /* Set the bad block position */
3492 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3493 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3494 else
3495 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3496
3497 /*
3498 * Bad block marker is stored in the last page of each block on Samsung
3499 * and Hynix MLC devices; stored in first two pages of each block on
3500 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3501 * AMD/Spansion, and Macronix. All others scan only the first page.
3502 */
1d0ed69d 3503 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3504 (maf_id == NAND_MFR_SAMSUNG ||
3505 maf_id == NAND_MFR_HYNIX))
3506 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3507 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3508 (maf_id == NAND_MFR_SAMSUNG ||
3509 maf_id == NAND_MFR_HYNIX ||
3510 maf_id == NAND_MFR_TOSHIBA ||
3511 maf_id == NAND_MFR_AMD ||
3512 maf_id == NAND_MFR_MACRONIX)) ||
3513 (mtd->writesize == 2048 &&
3514 maf_id == NAND_MFR_MICRON))
3515 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3516}
3517
ec6e87e3
HS
3518static inline bool is_full_id_nand(struct nand_flash_dev *type)
3519{
3520 return type->id_len;
3521}
3522
3523static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3524 struct nand_flash_dev *type, u8 *id_data, int *busw)
3525{
3526 if (!strncmp(type->id, id_data, type->id_len)) {
3527 mtd->writesize = type->pagesize;
3528 mtd->erasesize = type->erasesize;
3529 mtd->oobsize = type->oobsize;
3530
7db906b7 3531 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3532 chip->chipsize = (uint64_t)type->chipsize << 20;
3533 chip->options |= type->options;
57219342
HS
3534 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3535 chip->ecc_step_ds = NAND_ECC_STEP(type);
ec6e87e3
HS
3536
3537 *busw = type->options & NAND_BUSWIDTH_16;
3538
092b6a1d
CZ
3539 if (!mtd->name)
3540 mtd->name = type->name;
3541
ec6e87e3
HS
3542 return true;
3543 }
3544 return false;
3545}
3546
7aa65bfd 3547/*
8b6e50c9 3548 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3549 */
3550static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3551 struct nand_chip *chip,
7351d3a5
FF
3552 int busw,
3553 int *maf_id, int *dev_id,
5e81e88a 3554 struct nand_flash_dev *type)
7aa65bfd 3555{
d1e1f4e4 3556 int i, maf_idx;
426c457a 3557 u8 id_data[8];
1da177e4
LT
3558
3559 /* Select the device */
ace4dfee 3560 chip->select_chip(mtd, 0);
1da177e4 3561
ef89a880
KB
3562 /*
3563 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3564 * after power-up.
ef89a880
KB
3565 */
3566 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3567
1da177e4 3568 /* Send the command for reading device ID */
ace4dfee 3569 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3570
3571 /* Read manufacturer and device IDs */
ace4dfee 3572 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3573 *dev_id = chip->read_byte(mtd);
1da177e4 3574
8b6e50c9
BN
3575 /*
3576 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3577 * interface concerns can cause random data which looks like a
3578 * possibly credible NAND flash to appear. If the two results do
3579 * not match, ignore the device completely.
3580 */
3581
3582 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3583
4aef9b78
BN
3584 /* Read entire ID string */
3585 for (i = 0; i < 8; i++)
426c457a 3586 id_data[i] = chip->read_byte(mtd);
ed8165c7 3587
d1e1f4e4 3588 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3589 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3590 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3591 return ERR_PTR(-ENODEV);
3592 }
3593
7aa65bfd 3594 if (!type)
5e81e88a
DW
3595 type = nand_flash_ids;
3596
ec6e87e3
HS
3597 for (; type->name != NULL; type++) {
3598 if (is_full_id_nand(type)) {
3599 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3600 goto ident_done;
3601 } else if (*dev_id == type->dev_id) {
3602 break;
3603 }
3604 }
5e81e88a 3605
d1e1f4e4
FF
3606 chip->onfi_version = 0;
3607 if (!type->name || !type->pagesize) {
6fb277ba 3608 /* Check is chip is ONFI compliant */
47450b35 3609 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3610 goto ident_done;
91361818
HS
3611
3612 /* Check if the chip is JEDEC compliant */
3613 if (nand_flash_detect_jedec(mtd, chip, &busw))
3614 goto ident_done;
d1e1f4e4
FF
3615 }
3616
5e81e88a 3617 if (!type->name)
7aa65bfd
TG
3618 return ERR_PTR(-ENODEV);
3619
ba0251fe
TG
3620 if (!mtd->name)
3621 mtd->name = type->name;
3622
69423d99 3623 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3624
12a40a57 3625 if (!type->pagesize && chip->init_size) {
8b6e50c9 3626 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3627 busw = chip->init_size(mtd, chip, id_data);
3628 } else if (!type->pagesize) {
fc09bbc0
BN
3629 /* Decode parameters from extended ID */
3630 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3631 } else {
f23a481c 3632 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3633 }
bf7a01bf
BN
3634 /* Get chip options */
3635 chip->options |= type->options;
d1e1f4e4 3636
8b6e50c9
BN
3637 /*
3638 * Check if chip is not a Samsung device. Do not clear the
3639 * options for chips which do not have an extended id.
d1e1f4e4
FF
3640 */
3641 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3642 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3643ident_done:
3644
7aa65bfd 3645 /* Try to identify manufacturer */
9a909867 3646 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3647 if (nand_manuf_ids[maf_idx].id == *maf_id)
3648 break;
3649 }
0ea4a755 3650
64b37b2a
MC
3651 if (chip->options & NAND_BUSWIDTH_AUTO) {
3652 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3653 chip->options |= busw;
3654 nand_set_defaults(chip, busw);
3655 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3656 /*
3657 * Check, if buswidth is correct. Hardware drivers should set
3658 * chip correct!
3659 */
20171642
EG
3660 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3661 *maf_id, *dev_id);
3662 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3663 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3664 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3665 busw ? 16 : 8);
7aa65bfd
TG
3666 return ERR_PTR(-EINVAL);
3667 }
61b03bd7 3668
7e74c2d7
BN
3669 nand_decode_bbm_options(mtd, chip, id_data);
3670
7aa65bfd 3671 /* Calculate the address shift from the page size */
ace4dfee 3672 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3673 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3674 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3675
ace4dfee 3676 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3677 ffs(mtd->erasesize) - 1;
69423d99
AH
3678 if (chip->chipsize & 0xffffffff)
3679 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3680 else {
3681 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3682 chip->chip_shift += 32 - 1;
3683 }
1da177e4 3684
26d9be11 3685 chip->badblockbits = 8;
14c65786 3686 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3687
8b6e50c9 3688 /* Do not replace user supplied command function! */
ace4dfee
TG
3689 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3690 chip->cmdfunc = nand_command_lp;
7aa65bfd 3691
20171642
EG
3692 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3693 *maf_id, *dev_id);
3694 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3723e93c 3695 chip->onfi_version ? chip->onfi_params.model : type->name);
20171642 3696 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3723e93c
HS
3697 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3698 mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3699 return type;
3700}
3701
7aa65bfd 3702/**
3b85c321 3703 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3704 * @mtd: MTD device structure
3705 * @maxchips: number of chips to scan for
3706 * @table: alternative NAND ID table
7aa65bfd 3707 *
8b6e50c9
BN
3708 * This is the first phase of the normal nand_scan() function. It reads the
3709 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3710 *
3b85c321 3711 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3712 */
5e81e88a
DW
3713int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3714 struct nand_flash_dev *table)
7aa65bfd 3715{
d1e1f4e4 3716 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3717 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3718 struct nand_flash_dev *type;
3719
7aa65bfd 3720 /* Get buswidth to select the correct functions */
ace4dfee 3721 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3722 /* Set the default functions */
ace4dfee 3723 nand_set_defaults(chip, busw);
7aa65bfd
TG
3724
3725 /* Read the flash type */
7351d3a5
FF
3726 type = nand_get_flash_type(mtd, chip, busw,
3727 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3728
3729 if (IS_ERR(type)) {
b1c6e6db 3730 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3731 pr_warn("No NAND device found\n");
ace4dfee 3732 chip->select_chip(mtd, -1);
7aa65bfd 3733 return PTR_ERR(type);
1da177e4
LT
3734 }
3735
07300164
HS
3736 chip->select_chip(mtd, -1);
3737
7aa65bfd 3738 /* Check for a chip array */
e0c7d767 3739 for (i = 1; i < maxchips; i++) {
ace4dfee 3740 chip->select_chip(mtd, i);
ef89a880
KB
3741 /* See comment in nand_get_flash_type for reset */
3742 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3743 /* Send the command for reading device ID */
ace4dfee 3744 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3745 /* Read manufacturer and device IDs */
ace4dfee 3746 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
3747 nand_dev_id != chip->read_byte(mtd)) {
3748 chip->select_chip(mtd, -1);
1da177e4 3749 break;
07300164
HS
3750 }
3751 chip->select_chip(mtd, -1);
1da177e4
LT
3752 }
3753 if (i > 1)
20171642 3754 pr_info("%d chips detected\n", i);
61b03bd7 3755
1da177e4 3756 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3757 chip->numchips = i;
3758 mtd->size = i * chip->chipsize;
7aa65bfd 3759
3b85c321
DW
3760 return 0;
3761}
7351d3a5 3762EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3763
3764
3765/**
3766 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3767 * @mtd: MTD device structure
3b85c321 3768 *
8b6e50c9
BN
3769 * This is the second phase of the normal nand_scan() function. It fills out
3770 * all the uninitialized function pointers with the defaults and scans for a
3771 * bad block table if appropriate.
3b85c321
DW
3772 */
3773int nand_scan_tail(struct mtd_info *mtd)
3774{
3775 int i;
3776 struct nand_chip *chip = mtd->priv;
97de79e0 3777 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 3778 struct nand_buffers *nbuf;
3b85c321 3779
e2414f4c
BN
3780 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3781 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3782 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3783
f02ea4e6
HS
3784 if (!(chip->options & NAND_OWN_BUFFERS)) {
3785 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3786 + mtd->oobsize * 3, GFP_KERNEL);
3787 if (!nbuf)
3788 return -ENOMEM;
3789 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3790 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3791 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3792
3793 chip->buffers = nbuf;
3794 } else {
3795 if (!chip->buffers)
3796 return -ENOMEM;
3797 }
4bf63fcb 3798
7dcdcbef 3799 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3800 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3801
7aa65bfd 3802 /*
8b6e50c9 3803 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3804 */
97de79e0 3805 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3806 switch (mtd->oobsize) {
1da177e4 3807 case 8:
97de79e0 3808 ecc->layout = &nand_oob_8;
1da177e4
LT
3809 break;
3810 case 16:
97de79e0 3811 ecc->layout = &nand_oob_16;
1da177e4
LT
3812 break;
3813 case 64:
97de79e0 3814 ecc->layout = &nand_oob_64;
1da177e4 3815 break;
81ec5364 3816 case 128:
97de79e0 3817 ecc->layout = &nand_oob_128;
81ec5364 3818 break;
1da177e4 3819 default:
d0370219
BN
3820 pr_warn("No oob scheme defined for oobsize %d\n",
3821 mtd->oobsize);
1da177e4
LT
3822 BUG();
3823 }
3824 }
61b03bd7 3825
956e944c
DW
3826 if (!chip->write_page)
3827 chip->write_page = nand_write_page;
3828
61b03bd7 3829 /*
8b6e50c9 3830 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3831 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3832 */
956e944c 3833
97de79e0 3834 switch (ecc->mode) {
6e0cb135
SN
3835 case NAND_ECC_HW_OOB_FIRST:
3836 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 3837 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
9a4d4d69 3838 pr_warn("No ECC functions supplied; "
d0370219 3839 "hardware ECC not possible\n");
6e0cb135
SN
3840 BUG();
3841 }
97de79e0
HS
3842 if (!ecc->read_page)
3843 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 3844
6dfc6d25 3845 case NAND_ECC_HW:
8b6e50c9 3846 /* Use standard hwecc read page function? */
97de79e0
HS
3847 if (!ecc->read_page)
3848 ecc->read_page = nand_read_page_hwecc;
3849 if (!ecc->write_page)
3850 ecc->write_page = nand_write_page_hwecc;
3851 if (!ecc->read_page_raw)
3852 ecc->read_page_raw = nand_read_page_raw;
3853 if (!ecc->write_page_raw)
3854 ecc->write_page_raw = nand_write_page_raw;
3855 if (!ecc->read_oob)
3856 ecc->read_oob = nand_read_oob_std;
3857 if (!ecc->write_oob)
3858 ecc->write_oob = nand_write_oob_std;
3859 if (!ecc->read_subpage)
3860 ecc->read_subpage = nand_read_subpage;
3861 if (!ecc->write_subpage)
3862 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 3863
6dfc6d25 3864 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
3865 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3866 (!ecc->read_page ||
3867 ecc->read_page == nand_read_page_hwecc ||
3868 !ecc->write_page ||
3869 ecc->write_page == nand_write_page_hwecc)) {
9a4d4d69 3870 pr_warn("No ECC functions supplied; "
d0370219 3871 "hardware ECC not possible\n");
6dfc6d25
TG
3872 BUG();
3873 }
8b6e50c9 3874 /* Use standard syndrome read/write page function? */
97de79e0
HS
3875 if (!ecc->read_page)
3876 ecc->read_page = nand_read_page_syndrome;
3877 if (!ecc->write_page)
3878 ecc->write_page = nand_write_page_syndrome;
3879 if (!ecc->read_page_raw)
3880 ecc->read_page_raw = nand_read_page_raw_syndrome;
3881 if (!ecc->write_page_raw)
3882 ecc->write_page_raw = nand_write_page_raw_syndrome;
3883 if (!ecc->read_oob)
3884 ecc->read_oob = nand_read_oob_syndrome;
3885 if (!ecc->write_oob)
3886 ecc->write_oob = nand_write_oob_syndrome;
3887
3888 if (mtd->writesize >= ecc->size) {
3889 if (!ecc->strength) {
e2788c98
MD
3890 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3891 BUG();
3892 }
6dfc6d25 3893 break;
e2788c98 3894 }
9a4d4d69 3895 pr_warn("%d byte HW ECC not possible on "
d0370219 3896 "%d byte page size, fallback to SW ECC\n",
97de79e0
HS
3897 ecc->size, mtd->writesize);
3898 ecc->mode = NAND_ECC_SOFT;
61b03bd7 3899
6dfc6d25 3900 case NAND_ECC_SOFT:
97de79e0
HS
3901 ecc->calculate = nand_calculate_ecc;
3902 ecc->correct = nand_correct_data;
3903 ecc->read_page = nand_read_page_swecc;
3904 ecc->read_subpage = nand_read_subpage;
3905 ecc->write_page = nand_write_page_swecc;
3906 ecc->read_page_raw = nand_read_page_raw;
3907 ecc->write_page_raw = nand_write_page_raw;
3908 ecc->read_oob = nand_read_oob_std;
3909 ecc->write_oob = nand_write_oob_std;
3910 if (!ecc->size)
3911 ecc->size = 256;
3912 ecc->bytes = 3;
3913 ecc->strength = 1;
1da177e4 3914 break;
61b03bd7 3915
193bd400
ID
3916 case NAND_ECC_SOFT_BCH:
3917 if (!mtd_nand_has_bch()) {
9a4d4d69 3918 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
193bd400
ID
3919 BUG();
3920 }
97de79e0
HS
3921 ecc->calculate = nand_bch_calculate_ecc;
3922 ecc->correct = nand_bch_correct_data;
3923 ecc->read_page = nand_read_page_swecc;
3924 ecc->read_subpage = nand_read_subpage;
3925 ecc->write_page = nand_write_page_swecc;
3926 ecc->read_page_raw = nand_read_page_raw;
3927 ecc->write_page_raw = nand_write_page_raw;
3928 ecc->read_oob = nand_read_oob_std;
3929 ecc->write_oob = nand_write_oob_std;
193bd400
ID
3930 /*
3931 * Board driver should supply ecc.size and ecc.bytes values to
3932 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3933 * for details. Otherwise, default to 4 bits for large page
3934 * devices.
193bd400 3935 */
97de79e0
HS
3936 if (!ecc->size && (mtd->oobsize >= 64)) {
3937 ecc->size = 512;
3938 ecc->bytes = 7;
193bd400 3939 }
97de79e0
HS
3940 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
3941 &ecc->layout);
3942 if (!ecc->priv) {
9a4d4d69 3943 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3944 BUG();
3945 }
97de79e0 3946 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
193bd400
ID
3947 break;
3948
61b03bd7 3949 case NAND_ECC_NONE:
9a4d4d69 3950 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3951 "This is not recommended!\n");
97de79e0
HS
3952 ecc->read_page = nand_read_page_raw;
3953 ecc->write_page = nand_write_page_raw;
3954 ecc->read_oob = nand_read_oob_std;
3955 ecc->read_page_raw = nand_read_page_raw;
3956 ecc->write_page_raw = nand_write_page_raw;
3957 ecc->write_oob = nand_write_oob_std;
3958 ecc->size = mtd->writesize;
3959 ecc->bytes = 0;
3960 ecc->strength = 0;
1da177e4 3961 break;
956e944c 3962
1da177e4 3963 default:
97de79e0 3964 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 3965 BUG();
1da177e4 3966 }
61b03bd7 3967
9ce244b3 3968 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
3969 if (!ecc->read_oob_raw)
3970 ecc->read_oob_raw = ecc->read_oob;
3971 if (!ecc->write_oob_raw)
3972 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 3973
5bd34c09
TG
3974 /*
3975 * The number of bytes available for a client to place data into
8b6e50c9 3976 * the out of band area.
5bd34c09 3977 */
97de79e0
HS
3978 ecc->layout->oobavail = 0;
3979 for (i = 0; ecc->layout->oobfree[i].length
3980 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
3981 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
3982 mtd->oobavail = ecc->layout->oobavail;
5bd34c09 3983
7aa65bfd
TG
3984 /*
3985 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3986 * mode.
7aa65bfd 3987 */
97de79e0
HS
3988 ecc->steps = mtd->writesize / ecc->size;
3989 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 3990 pr_warn("Invalid ECC parameters\n");
6dfc6d25 3991 BUG();
1da177e4 3992 }
97de79e0 3993 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 3994
8b6e50c9 3995 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 3996 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 3997 switch (ecc->steps) {
29072b96
TG
3998 case 2:
3999 mtd->subpage_sft = 1;
4000 break;
4001 case 4:
4002 case 8:
81ec5364 4003 case 16:
29072b96
TG
4004 mtd->subpage_sft = 2;
4005 break;
4006 }
4007 }
4008 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4009
04bbd0ea 4010 /* Initialize state */
ace4dfee 4011 chip->state = FL_READY;
1da177e4 4012
1da177e4 4013 /* Invalidate the pagebuffer reference */
ace4dfee 4014 chip->pagebuf = -1;
1da177e4 4015
a5ff4f10 4016 /* Large page NAND with SOFT_ECC should support subpage reads */
97de79e0 4017 if ((ecc->mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
a5ff4f10
JW
4018 chip->options |= NAND_SUBPAGE_READ;
4019
1da177e4 4020 /* Fill in remaining MTD driver data */
963d1c28 4021 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4022 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4023 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4024 mtd->_erase = nand_erase;
4025 mtd->_point = NULL;
4026 mtd->_unpoint = NULL;
4027 mtd->_read = nand_read;
4028 mtd->_write = nand_write;
4029 mtd->_panic_write = panic_nand_write;
4030 mtd->_read_oob = nand_read_oob;
4031 mtd->_write_oob = nand_write_oob;
4032 mtd->_sync = nand_sync;
4033 mtd->_lock = NULL;
4034 mtd->_unlock = NULL;
4035 mtd->_suspend = nand_suspend;
4036 mtd->_resume = nand_resume;
4037 mtd->_block_isbad = nand_block_isbad;
4038 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4039 mtd->writebufsize = mtd->writesize;
1da177e4 4040
6a918bad 4041 /* propagate ecc info to mtd_info */
97de79e0
HS
4042 mtd->ecclayout = ecc->layout;
4043 mtd->ecc_strength = ecc->strength;
4044 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4045 /*
4046 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4047 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4048 * properly set.
4049 */
4050 if (!mtd->bitflip_threshold)
4051 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 4052
0040bf38 4053 /* Check, if we should skip the bad block table scan */
ace4dfee 4054 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4055 return 0;
1da177e4
LT
4056
4057 /* Build bad block table */
ace4dfee 4058 return chip->scan_bbt(mtd);
1da177e4 4059}
7351d3a5 4060EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4061
8b6e50c9
BN
4062/*
4063 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4064 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4065 * to call us from in-kernel code if the core NAND support is modular.
4066 */
3b85c321
DW
4067#ifdef MODULE
4068#define caller_is_module() (1)
4069#else
4070#define caller_is_module() \
a6e6abd5 4071 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4072#endif
4073
4074/**
4075 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4076 * @mtd: MTD device structure
4077 * @maxchips: number of chips to scan for
3b85c321 4078 *
8b6e50c9
BN
4079 * This fills out all the uninitialized function pointers with the defaults.
4080 * The flash ID is read and the mtd/chip structures are filled with the
4081 * appropriate values. The mtd->owner field must be set to the module of the
4082 * caller.
3b85c321
DW
4083 */
4084int nand_scan(struct mtd_info *mtd, int maxchips)
4085{
4086 int ret;
4087
4088 /* Many callers got this wrong, so check for it for a while... */
4089 if (!mtd->owner && caller_is_module()) {
d0370219 4090 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4091 BUG();
4092 }
4093
5e81e88a 4094 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4095 if (!ret)
4096 ret = nand_scan_tail(mtd);
4097 return ret;
4098}
7351d3a5 4099EXPORT_SYMBOL(nand_scan);
3b85c321 4100
1da177e4 4101/**
61b03bd7 4102 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4103 * @mtd: MTD device structure
4104 */
e0c7d767 4105void nand_release(struct mtd_info *mtd)
1da177e4 4106{
ace4dfee 4107 struct nand_chip *chip = mtd->priv;
1da177e4 4108
193bd400
ID
4109 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4110 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4111
5ffcaf3d 4112 mtd_device_unregister(mtd);
1da177e4 4113
fa671646 4114 /* Free bad block table memory */
ace4dfee 4115 kfree(chip->bbt);
4bf63fcb
DW
4116 if (!(chip->options & NAND_OWN_BUFFERS))
4117 kfree(chip->buffers);
58373ff0
BN
4118
4119 /* Free bad block descriptor memory */
4120 if (chip->badblock_pattern && chip->badblock_pattern->options
4121 & NAND_BBT_DYNAMICSTRUCT)
4122 kfree(chip->badblock_pattern);
1da177e4 4123}
e0c7d767 4124EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
4125
4126static int __init nand_base_init(void)
4127{
4128 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4129 return 0;
4130}
4131
4132static void __exit nand_base_exit(void)
4133{
4134 led_trigger_unregister_simple(nand_led_trigger);
4135}
4136
4137module_init(nand_base_init);
4138module_exit(nand_base_exit);
4139
e0c7d767 4140MODULE_LICENSE("GPL");
7351d3a5
FF
4141MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4142MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4143MODULE_DESCRIPTION("Generic NAND flash driver code");