]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
sh: mach-rsk: remove unnecessary MTD partition probe specification
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
1da177e4
LT
39#include <linux/types.h>
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/nand.h>
42#include <linux/mtd/nand_ecc.h>
193bd400 43#include <linux/mtd/nand_bch.h>
1da177e4
LT
44#include <linux/interrupt.h>
45#include <linux/bitops.h>
8fe833c1 46#include <linux/leds.h>
7351d3a5 47#include <linux/io.h>
1da177e4 48#include <linux/mtd/partitions.h>
5844feea 49#include <linux/of_mtd.h>
1da177e4
LT
50
51/* Define default oob placement schemes for large and small page devices */
5bd34c09 52static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
5bd34c09
TG
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
f8ac0414 59 .length = 2} }
1da177e4
LT
60};
61
5bd34c09 62static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
65 .oobfree = {
66 {.offset = 8,
f8ac0414 67 . length = 8} }
1da177e4
LT
68};
69
5bd34c09 70static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
71 .eccbytes = 24,
72 .eccpos = {
e0c7d767
DW
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
76 .oobfree = {
77 {.offset = 2,
f8ac0414 78 .length = 38} }
1da177e4
LT
79};
80
81ec5364
TG
81static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
f8ac0414 92 .length = 78} }
81ec5364
TG
93};
94
6a8214aa 95static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 96
8593fbc6
TG
97static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
d470a97c 100/*
8e87d782 101 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
102 * compiled away when LED support is disabled.
103 */
104DEFINE_LED_TRIGGER(nand_led_trigger);
105
6fe5a6ac
VS
106static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108{
109 struct nand_chip *chip = mtd->priv;
110 int ret = 0;
111
112 /* Start address must align on block boundary */
daae74ca 113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 114 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
daae74ca 119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 120 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
121 ret = -EINVAL;
122 }
123
6fe5a6ac
VS
124 return ret;
125}
126
1da177e4
LT
127/**
128 * nand_release_device - [GENERIC] release chip
8b6e50c9 129 * @mtd: MTD device structure
61b03bd7 130 *
b0bb6903 131 * Release chip lock and wake up anyone waiting on the device.
1da177e4 132 */
e0c7d767 133static void nand_release_device(struct mtd_info *mtd)
1da177e4 134{
ace4dfee 135 struct nand_chip *chip = mtd->priv;
1da177e4 136
a36ed299 137 /* Release the controller and the chip */
ace4dfee
TG
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
1da177e4
LT
143}
144
145/**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 147 * @mtd: MTD device structure
1da177e4 148 *
7854d3f7 149 * Default read function for 8bit buswidth
1da177e4 150 */
58dd8f2b 151static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 152{
ace4dfee
TG
153 struct nand_chip *chip = mtd->priv;
154 return readb(chip->IO_ADDR_R);
1da177e4
LT
155}
156
1da177e4 157/**
7854d3f7 158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 159 * @mtd: MTD device structure
1da177e4 160 *
7854d3f7
BN
161 * Default read function for 16bit buswidth with endianness conversion.
162 *
1da177e4 163 */
58dd8f2b 164static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 165{
ace4dfee
TG
166 struct nand_chip *chip = mtd->priv;
167 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
168}
169
1da177e4
LT
170/**
171 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 172 * @mtd: MTD device structure
1da177e4 173 *
7854d3f7 174 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
175 */
176static u16 nand_read_word(struct mtd_info *mtd)
177{
ace4dfee
TG
178 struct nand_chip *chip = mtd->priv;
179 return readw(chip->IO_ADDR_R);
1da177e4
LT
180}
181
1da177e4
LT
182/**
183 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
184 * @mtd: MTD device structure
185 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
186 *
187 * Default select function for 1 chip devices.
188 */
ace4dfee 189static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 190{
ace4dfee
TG
191 struct nand_chip *chip = mtd->priv;
192
193 switch (chipnr) {
1da177e4 194 case -1:
ace4dfee 195 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
196 break;
197 case 0:
1da177e4
LT
198 break;
199
200 default:
201 BUG();
202 }
203}
204
05f78359
UKK
205/**
206 * nand_write_byte - [DEFAULT] write single byte to chip
207 * @mtd: MTD device structure
208 * @byte: value to write
209 *
210 * Default function to write a byte to I/O[7:0]
211 */
212static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213{
214 struct nand_chip *chip = mtd->priv;
215
216 chip->write_buf(mtd, &byte, 1);
217}
218
219/**
220 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221 * @mtd: MTD device structure
222 * @byte: value to write
223 *
224 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225 */
226static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227{
228 struct nand_chip *chip = mtd->priv;
229 uint16_t word = byte;
230
231 /*
232 * It's not entirely clear what should happen to I/O[15:8] when writing
233 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234 *
235 * When the host supports a 16-bit bus width, only data is
236 * transferred at the 16-bit width. All address and command line
237 * transfers shall use only the lower 8-bits of the data bus. During
238 * command transfers, the host may place any value on the upper
239 * 8-bits of the data bus. During address transfers, the host shall
240 * set the upper 8-bits of the data bus to 00h.
241 *
242 * One user of the write_byte callback is nand_onfi_set_features. The
243 * four parameters are specified to be written to I/O[7:0], but this is
244 * neither an address nor a command transfer. Let's assume a 0 on the
245 * upper I/O lines is OK.
246 */
247 chip->write_buf(mtd, (uint8_t *)&word, 2);
248}
249
1da177e4
LT
250/**
251 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
252 * @mtd: MTD device structure
253 * @buf: data buffer
254 * @len: number of bytes to write
1da177e4 255 *
7854d3f7 256 * Default write function for 8bit buswidth.
1da177e4 257 */
58dd8f2b 258static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 259{
ace4dfee 260 struct nand_chip *chip = mtd->priv;
1da177e4 261
76413839 262 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
263}
264
265/**
61b03bd7 266 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
1da177e4 270 *
7854d3f7 271 * Default read function for 8bit buswidth.
1da177e4 272 */
58dd8f2b 273static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 274{
ace4dfee 275 struct nand_chip *chip = mtd->priv;
1da177e4 276
76413839 277 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
278}
279
1da177e4
LT
280/**
281 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
1da177e4 285 *
7854d3f7 286 * Default write function for 16bit buswidth.
1da177e4 287 */
58dd8f2b 288static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 289{
ace4dfee 290 struct nand_chip *chip = mtd->priv;
1da177e4 291 u16 *p = (u16 *) buf;
61b03bd7 292
76413839 293 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
294}
295
296/**
61b03bd7 297 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
298 * @mtd: MTD device structure
299 * @buf: buffer to store date
300 * @len: number of bytes to read
1da177e4 301 *
7854d3f7 302 * Default read function for 16bit buswidth.
1da177e4 303 */
58dd8f2b 304static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 305{
ace4dfee 306 struct nand_chip *chip = mtd->priv;
1da177e4 307 u16 *p = (u16 *) buf;
1da177e4 308
76413839 309 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
310}
311
1da177e4
LT
312/**
313 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
314 * @mtd: MTD device structure
315 * @ofs: offset from device start
316 * @getchip: 0, if the chip is already selected
1da177e4 317 *
61b03bd7 318 * Check, if the block is bad.
1da177e4
LT
319 */
320static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
321{
cdbec050 322 int page, chipnr, res = 0, i = 0;
ace4dfee 323 struct nand_chip *chip = mtd->priv;
1da177e4
LT
324 u16 bad;
325
5fb1549d 326 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
327 ofs += mtd->erasesize - mtd->writesize;
328
1a12f46a
TK
329 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
330
1da177e4 331 if (getchip) {
ace4dfee 332 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 333
6a8214aa 334 nand_get_device(mtd, FL_READING);
1da177e4
LT
335
336 /* Select the NAND device */
ace4dfee 337 chip->select_chip(mtd, chipnr);
1a12f46a 338 }
1da177e4 339
cdbec050
BN
340 do {
341 if (chip->options & NAND_BUSWIDTH_16) {
342 chip->cmdfunc(mtd, NAND_CMD_READOOB,
343 chip->badblockpos & 0xFE, page);
344 bad = cpu_to_le16(chip->read_word(mtd));
345 if (chip->badblockpos & 0x1)
346 bad >>= 8;
347 else
348 bad &= 0xFF;
349 } else {
350 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
351 page);
352 bad = chip->read_byte(mtd);
353 }
354
355 if (likely(chip->badblockbits == 8))
356 res = bad != 0xFF;
e0b58d0a 357 else
cdbec050
BN
358 res = hweight8(bad) < chip->badblockbits;
359 ofs += mtd->writesize;
360 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
361 i++;
362 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 363
b0bb6903
HS
364 if (getchip) {
365 chip->select_chip(mtd, -1);
1da177e4 366 nand_release_device(mtd);
b0bb6903 367 }
61b03bd7 368
1da177e4
LT
369 return res;
370}
371
372/**
5a0edb25 373 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
374 * @mtd: MTD device structure
375 * @ofs: offset from device start
1da177e4 376 *
8b6e50c9 377 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
378 * specific driver. It provides the details for writing a bad block marker to a
379 * block.
380 */
381static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
382{
383 struct nand_chip *chip = mtd->priv;
384 struct mtd_oob_ops ops;
385 uint8_t buf[2] = { 0, 0 };
386 int ret = 0, res, i = 0;
387
0ec56dc4 388 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
389 ops.oobbuf = buf;
390 ops.ooboffs = chip->badblockpos;
391 if (chip->options & NAND_BUSWIDTH_16) {
392 ops.ooboffs &= ~0x01;
393 ops.len = ops.ooblen = 2;
394 } else {
395 ops.len = ops.ooblen = 1;
396 }
397 ops.mode = MTD_OPS_PLACE_OOB;
398
399 /* Write to first/last page(s) if necessary */
400 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
401 ofs += mtd->erasesize - mtd->writesize;
402 do {
403 res = nand_do_write_oob(mtd, ofs, &ops);
404 if (!ret)
405 ret = res;
406
407 i++;
408 ofs += mtd->writesize;
409 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
410
411 return ret;
412}
413
414/**
415 * nand_block_markbad_lowlevel - mark a block bad
416 * @mtd: MTD device structure
417 * @ofs: offset from device start
418 *
419 * This function performs the generic NAND bad block marking steps (i.e., bad
420 * block table(s) and/or marker(s)). We only allow the hardware driver to
421 * specify how to write bad block markers to OOB (chip->block_markbad).
422 *
b32843b7 423 * We try operations in the following order:
e2414f4c 424 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
425 * (2) write bad block marker to OOB area of affected block (unless flag
426 * NAND_BBT_NO_OOB_BBM is present)
427 * (3) update the BBT
428 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 429 * procedures, and dump the error in the end.
1da177e4 430*/
5a0edb25 431static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 432{
ace4dfee 433 struct nand_chip *chip = mtd->priv;
b32843b7 434 int res, ret = 0;
61b03bd7 435
b32843b7 436 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
437 struct erase_info einfo;
438
439 /* Attempt erase before marking OOB */
440 memset(&einfo, 0, sizeof(einfo));
441 einfo.mtd = mtd;
442 einfo.addr = ofs;
daae74ca 443 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 444 nand_erase_nand(mtd, &einfo, 0);
1da177e4 445
b32843b7 446 /* Write bad block marker to OOB */
6a8214aa 447 nand_get_device(mtd, FL_WRITING);
5a0edb25 448 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 449 nand_release_device(mtd);
f1a28c02 450 }
e2414f4c 451
b32843b7
BN
452 /* Mark block bad in BBT */
453 if (chip->bbt) {
454 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
455 if (!ret)
456 ret = res;
457 }
458
f1a28c02
TG
459 if (!ret)
460 mtd->ecc_stats.badblocks++;
c0b8ba7b 461
f1a28c02 462 return ret;
1da177e4
LT
463}
464
61b03bd7 465/**
1da177e4 466 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 467 * @mtd: MTD device structure
1da177e4 468 *
8b6e50c9
BN
469 * Check, if the device is write protected. The function expects, that the
470 * device is already selected.
1da177e4 471 */
e0c7d767 472static int nand_check_wp(struct mtd_info *mtd)
1da177e4 473{
ace4dfee 474 struct nand_chip *chip = mtd->priv;
93edbad6 475
8b6e50c9 476 /* Broken xD cards report WP despite being writable */
93edbad6
ML
477 if (chip->options & NAND_BROKEN_XD)
478 return 0;
479
1da177e4 480 /* Check the WP bit */
ace4dfee
TG
481 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
482 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
483}
484
8471bb73 485/**
c30e1f79 486 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
487 * @mtd: MTD device structure
488 * @ofs: offset from device start
489 *
c30e1f79 490 * Check if the block is marked as reserved.
8471bb73
EG
491 */
492static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
493{
494 struct nand_chip *chip = mtd->priv;
495
496 if (!chip->bbt)
497 return 0;
498 /* Return info from the table */
499 return nand_isreserved_bbt(mtd, ofs);
500}
501
1da177e4
LT
502/**
503 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
504 * @mtd: MTD device structure
505 * @ofs: offset from device start
506 * @getchip: 0, if the chip is already selected
507 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
508 *
509 * Check, if the block is bad. Either by reading the bad block table or
510 * calling of the scan function.
511 */
2c0a2bed
TG
512static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
513 int allowbbt)
1da177e4 514{
ace4dfee 515 struct nand_chip *chip = mtd->priv;
61b03bd7 516
ace4dfee
TG
517 if (!chip->bbt)
518 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 519
1da177e4 520 /* Return info from the table */
e0c7d767 521 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
522}
523
2af7c653
SK
524/**
525 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
526 * @mtd: MTD device structure
527 * @timeo: Timeout
2af7c653
SK
528 *
529 * Helper function for nand_wait_ready used when needing to wait in interrupt
530 * context.
531 */
532static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
533{
534 struct nand_chip *chip = mtd->priv;
535 int i;
536
537 /* Wait for the device to get ready */
538 for (i = 0; i < timeo; i++) {
539 if (chip->dev_ready(mtd))
540 break;
541 touch_softlockup_watchdog();
542 mdelay(1);
543 }
544}
545
7854d3f7 546/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 547void nand_wait_ready(struct mtd_info *mtd)
3b88775c 548{
ace4dfee 549 struct nand_chip *chip = mtd->priv;
ca6a2489 550 unsigned long timeo = jiffies + msecs_to_jiffies(20);
3b88775c 551
2af7c653
SK
552 /* 400ms timeout */
553 if (in_interrupt() || oops_in_progress)
554 return panic_nand_wait_ready(mtd, 400);
555
8fe833c1 556 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 557 /* Wait until command is processed or timeout occurs */
3b88775c 558 do {
ace4dfee 559 if (chip->dev_ready(mtd))
8fe833c1 560 break;
8446f1d3 561 touch_softlockup_watchdog();
61b03bd7 562 } while (time_before(jiffies, timeo));
8fe833c1 563 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 564}
4b648b02 565EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 566
60c70d66
RQ
567/**
568 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
569 * @mtd: MTD device structure
570 * @timeo: Timeout in ms
571 *
572 * Wait for status ready (i.e. command done) or timeout.
573 */
574static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
575{
576 register struct nand_chip *chip = mtd->priv;
577
578 timeo = jiffies + msecs_to_jiffies(timeo);
579 do {
580 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
581 break;
582 touch_softlockup_watchdog();
583 } while (time_before(jiffies, timeo));
584};
585
1da177e4
LT
586/**
587 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
588 * @mtd: MTD device structure
589 * @command: the command to be sent
590 * @column: the column address for this command, -1 if none
591 * @page_addr: the page address for this command, -1 if none
1da177e4 592 *
8b6e50c9 593 * Send command to NAND device. This function is used for small page devices
51148f1f 594 * (512 Bytes per page).
1da177e4 595 */
7abd3ef9
TG
596static void nand_command(struct mtd_info *mtd, unsigned int command,
597 int column, int page_addr)
1da177e4 598{
ace4dfee 599 register struct nand_chip *chip = mtd->priv;
7abd3ef9 600 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 601
8b6e50c9 602 /* Write out the command to the device */
1da177e4
LT
603 if (command == NAND_CMD_SEQIN) {
604 int readcmd;
605
28318776 606 if (column >= mtd->writesize) {
1da177e4 607 /* OOB area */
28318776 608 column -= mtd->writesize;
1da177e4
LT
609 readcmd = NAND_CMD_READOOB;
610 } else if (column < 256) {
611 /* First 256 bytes --> READ0 */
612 readcmd = NAND_CMD_READ0;
613 } else {
614 column -= 256;
615 readcmd = NAND_CMD_READ1;
616 }
ace4dfee 617 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 618 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 619 }
ace4dfee 620 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 621
8b6e50c9 622 /* Address cycle, when necessary */
7abd3ef9
TG
623 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
624 /* Serially input address */
625 if (column != -1) {
626 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
627 if (chip->options & NAND_BUSWIDTH_16 &&
628 !nand_opcode_8bits(command))
7abd3ef9 629 column >>= 1;
ace4dfee 630 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
631 ctrl &= ~NAND_CTRL_CHANGE;
632 }
633 if (page_addr != -1) {
ace4dfee 634 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 635 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 636 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 637 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
638 if (chip->chipsize > (32 << 20))
639 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 640 }
ace4dfee 641 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
642
643 /*
8b6e50c9
BN
644 * Program and erase have their own busy handlers status and sequential
645 * in needs no delay
e0c7d767 646 */
1da177e4 647 switch (command) {
61b03bd7 648
1da177e4
LT
649 case NAND_CMD_PAGEPROG:
650 case NAND_CMD_ERASE1:
651 case NAND_CMD_ERASE2:
652 case NAND_CMD_SEQIN:
653 case NAND_CMD_STATUS:
654 return;
655
656 case NAND_CMD_RESET:
ace4dfee 657 if (chip->dev_ready)
1da177e4 658 break;
ace4dfee
TG
659 udelay(chip->chip_delay);
660 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 661 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
662 chip->cmd_ctrl(mtd,
663 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
664 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
665 nand_wait_status_ready(mtd, 250);
1da177e4
LT
666 return;
667
e0c7d767 668 /* This applies to read commands */
1da177e4 669 default:
61b03bd7 670 /*
1da177e4
LT
671 * If we don't have access to the busy pin, we apply the given
672 * command delay
e0c7d767 673 */
ace4dfee
TG
674 if (!chip->dev_ready) {
675 udelay(chip->chip_delay);
1da177e4 676 return;
61b03bd7 677 }
1da177e4 678 }
8b6e50c9
BN
679 /*
680 * Apply this short delay always to ensure that we do wait tWB in
681 * any case on any machine.
682 */
e0c7d767 683 ndelay(100);
3b88775c
TG
684
685 nand_wait_ready(mtd);
1da177e4
LT
686}
687
688/**
689 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
690 * @mtd: MTD device structure
691 * @command: the command to be sent
692 * @column: the column address for this command, -1 if none
693 * @page_addr: the page address for this command, -1 if none
1da177e4 694 *
7abd3ef9 695 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
696 * devices. We don't have the separate regions as we have in the small page
697 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 698 */
7abd3ef9
TG
699static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
700 int column, int page_addr)
1da177e4 701{
ace4dfee 702 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
703
704 /* Emulate NAND_CMD_READOOB */
705 if (command == NAND_CMD_READOOB) {
28318776 706 column += mtd->writesize;
1da177e4
LT
707 command = NAND_CMD_READ0;
708 }
61b03bd7 709
7abd3ef9 710 /* Command latch cycle */
fb066ada 711 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
712
713 if (column != -1 || page_addr != -1) {
7abd3ef9 714 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
715
716 /* Serially input address */
717 if (column != -1) {
718 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
719 if (chip->options & NAND_BUSWIDTH_16 &&
720 !nand_opcode_8bits(command))
1da177e4 721 column >>= 1;
ace4dfee 722 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 723 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 724 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 725 }
1da177e4 726 if (page_addr != -1) {
ace4dfee
TG
727 chip->cmd_ctrl(mtd, page_addr, ctrl);
728 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 729 NAND_NCE | NAND_ALE);
1da177e4 730 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
731 if (chip->chipsize > (128 << 20))
732 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 733 NAND_NCE | NAND_ALE);
1da177e4 734 }
1da177e4 735 }
ace4dfee 736 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
737
738 /*
8b6e50c9 739 * Program and erase have their own busy handlers status, sequential
7a442f17 740 * in and status need no delay.
30f464b7 741 */
1da177e4 742 switch (command) {
61b03bd7 743
1da177e4
LT
744 case NAND_CMD_CACHEDPROG:
745 case NAND_CMD_PAGEPROG:
746 case NAND_CMD_ERASE1:
747 case NAND_CMD_ERASE2:
748 case NAND_CMD_SEQIN:
7bc3312b 749 case NAND_CMD_RNDIN:
1da177e4 750 case NAND_CMD_STATUS:
30f464b7 751 return;
1da177e4
LT
752
753 case NAND_CMD_RESET:
ace4dfee 754 if (chip->dev_ready)
1da177e4 755 break;
ace4dfee 756 udelay(chip->chip_delay);
12efdde3
TG
757 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
758 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
759 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
760 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
761 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
762 nand_wait_status_ready(mtd, 250);
1da177e4
LT
763 return;
764
7bc3312b
TG
765 case NAND_CMD_RNDOUT:
766 /* No ready / busy check necessary */
767 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
768 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
769 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
770 NAND_NCE | NAND_CTRL_CHANGE);
771 return;
772
1da177e4 773 case NAND_CMD_READ0:
12efdde3
TG
774 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
775 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
776 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
777 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 778
e0c7d767 779 /* This applies to read commands */
1da177e4 780 default:
61b03bd7 781 /*
1da177e4 782 * If we don't have access to the busy pin, we apply the given
8b6e50c9 783 * command delay.
e0c7d767 784 */
ace4dfee
TG
785 if (!chip->dev_ready) {
786 udelay(chip->chip_delay);
1da177e4 787 return;
61b03bd7 788 }
1da177e4 789 }
3b88775c 790
8b6e50c9
BN
791 /*
792 * Apply this short delay always to ensure that we do wait tWB in
793 * any case on any machine.
794 */
e0c7d767 795 ndelay(100);
3b88775c
TG
796
797 nand_wait_ready(mtd);
1da177e4
LT
798}
799
2af7c653
SK
800/**
801 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
802 * @chip: the nand chip descriptor
803 * @mtd: MTD device structure
804 * @new_state: the state which is requested
2af7c653
SK
805 *
806 * Used when in panic, no locks are taken.
807 */
808static void panic_nand_get_device(struct nand_chip *chip,
809 struct mtd_info *mtd, int new_state)
810{
7854d3f7 811 /* Hardware controller shared among independent devices */
2af7c653
SK
812 chip->controller->active = chip;
813 chip->state = new_state;
814}
815
1da177e4
LT
816/**
817 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
818 * @mtd: MTD device structure
819 * @new_state: the state which is requested
1da177e4
LT
820 *
821 * Get the device and lock it for exclusive access
822 */
2c0a2bed 823static int
6a8214aa 824nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 825{
6a8214aa 826 struct nand_chip *chip = mtd->priv;
ace4dfee
TG
827 spinlock_t *lock = &chip->controller->lock;
828 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 829 DECLARE_WAITQUEUE(wait, current);
7351d3a5 830retry:
0dfc6246
TG
831 spin_lock(lock);
832
b8b3ee9a 833 /* Hardware controller shared among independent devices */
ace4dfee
TG
834 if (!chip->controller->active)
835 chip->controller->active = chip;
a36ed299 836
ace4dfee
TG
837 if (chip->controller->active == chip && chip->state == FL_READY) {
838 chip->state = new_state;
0dfc6246 839 spin_unlock(lock);
962034f4
VW
840 return 0;
841 }
842 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
843 if (chip->controller->active->state == FL_PM_SUSPENDED) {
844 chip->state = FL_PM_SUSPENDED;
845 spin_unlock(lock);
846 return 0;
6b0d9a84 847 }
0dfc6246
TG
848 }
849 set_current_state(TASK_UNINTERRUPTIBLE);
850 add_wait_queue(wq, &wait);
851 spin_unlock(lock);
852 schedule();
853 remove_wait_queue(wq, &wait);
1da177e4
LT
854 goto retry;
855}
856
2af7c653 857/**
8b6e50c9
BN
858 * panic_nand_wait - [GENERIC] wait until the command is done
859 * @mtd: MTD device structure
860 * @chip: NAND chip structure
861 * @timeo: timeout
2af7c653
SK
862 *
863 * Wait for command done. This is a helper function for nand_wait used when
864 * we are in interrupt context. May happen when in panic and trying to write
b595076a 865 * an oops through mtdoops.
2af7c653
SK
866 */
867static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
868 unsigned long timeo)
869{
870 int i;
871 for (i = 0; i < timeo; i++) {
872 if (chip->dev_ready) {
873 if (chip->dev_ready(mtd))
874 break;
875 } else {
876 if (chip->read_byte(mtd) & NAND_STATUS_READY)
877 break;
878 }
879 mdelay(1);
f8ac0414 880 }
2af7c653
SK
881}
882
1da177e4 883/**
8b6e50c9
BN
884 * nand_wait - [DEFAULT] wait until the command is done
885 * @mtd: MTD device structure
886 * @chip: NAND chip structure
1da177e4 887 *
8b6e50c9
BN
888 * Wait for command done. This applies to erase and program only. Erase can
889 * take up to 400ms and program up to 20ms according to general NAND and
890 * SmartMedia specs.
844d3b42 891 */
7bc3312b 892static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
893{
894
7bc3312b 895 int status, state = chip->state;
6d2559f8 896 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
1da177e4 897
8fe833c1
RP
898 led_trigger_event(nand_led_trigger, LED_FULL);
899
8b6e50c9
BN
900 /*
901 * Apply this short delay always to ensure that we do wait tWB in any
902 * case on any machine.
903 */
e0c7d767 904 ndelay(100);
1da177e4 905
14c65786 906 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 907
2af7c653
SK
908 if (in_interrupt() || oops_in_progress)
909 panic_nand_wait(mtd, chip, timeo);
910 else {
6d2559f8 911 timeo = jiffies + msecs_to_jiffies(timeo);
2af7c653
SK
912 while (time_before(jiffies, timeo)) {
913 if (chip->dev_ready) {
914 if (chip->dev_ready(mtd))
915 break;
916 } else {
917 if (chip->read_byte(mtd) & NAND_STATUS_READY)
918 break;
919 }
920 cond_resched();
1da177e4 921 }
1da177e4 922 }
8fe833c1
RP
923 led_trigger_event(nand_led_trigger, LED_OFF);
924
ace4dfee 925 status = (int)chip->read_byte(mtd);
f251b8df
MC
926 /* This can happen if in case of timeout or buggy dev_ready */
927 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
928 return status;
929}
930
7d70f334 931/**
b6d676db 932 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
933 * @mtd: mtd info
934 * @ofs: offset to start unlock from
935 * @len: length to unlock
8b6e50c9
BN
936 * @invert: when = 0, unlock the range of blocks within the lower and
937 * upper boundary address
938 * when = 1, unlock the range of blocks outside the boundaries
939 * of the lower and upper boundary address
7d70f334 940 *
8b6e50c9 941 * Returs unlock status.
7d70f334
VS
942 */
943static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
944 uint64_t len, int invert)
945{
946 int ret = 0;
947 int status, page;
948 struct nand_chip *chip = mtd->priv;
949
950 /* Submit address of first page to unlock */
951 page = ofs >> chip->page_shift;
952 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
953
954 /* Submit address of last page to unlock */
955 page = (ofs + len) >> chip->page_shift;
956 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
957 (page | invert) & chip->pagemask);
958
959 /* Call wait ready function */
960 status = chip->waitfunc(mtd, chip);
7d70f334 961 /* See if device thinks it succeeded */
74830966 962 if (status & NAND_STATUS_FAIL) {
289c0522 963 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
964 __func__, status);
965 ret = -EIO;
966 }
967
968 return ret;
969}
970
971/**
b6d676db 972 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
973 * @mtd: mtd info
974 * @ofs: offset to start unlock from
975 * @len: length to unlock
7d70f334 976 *
8b6e50c9 977 * Returns unlock status.
7d70f334
VS
978 */
979int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
980{
981 int ret = 0;
982 int chipnr;
983 struct nand_chip *chip = mtd->priv;
984
289c0522 985 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
986 __func__, (unsigned long long)ofs, len);
987
988 if (check_offs_len(mtd, ofs, len))
b1a2348a 989 return -EINVAL;
7d70f334
VS
990
991 /* Align to last block address if size addresses end of the device */
992 if (ofs + len == mtd->size)
993 len -= mtd->erasesize;
994
6a8214aa 995 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
996
997 /* Shift to get chip number */
998 chipnr = ofs >> chip->chip_shift;
999
1000 chip->select_chip(mtd, chipnr);
1001
57d3a9a8
WD
1002 /*
1003 * Reset the chip.
1004 * If we want to check the WP through READ STATUS and check the bit 7
1005 * we must reset the chip
1006 * some operation can also clear the bit 7 of status register
1007 * eg. erase/program a locked block
1008 */
1009 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1010
7d70f334
VS
1011 /* Check, if it is write protected */
1012 if (nand_check_wp(mtd)) {
289c0522 1013 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1014 __func__);
1015 ret = -EIO;
1016 goto out;
1017 }
1018
1019 ret = __nand_unlock(mtd, ofs, len, 0);
1020
1021out:
b0bb6903 1022 chip->select_chip(mtd, -1);
7d70f334
VS
1023 nand_release_device(mtd);
1024
1025 return ret;
1026}
7351d3a5 1027EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1028
1029/**
b6d676db 1030 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1031 * @mtd: mtd info
1032 * @ofs: offset to start unlock from
1033 * @len: length to unlock
7d70f334 1034 *
8b6e50c9
BN
1035 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1036 * have this feature, but it allows only to lock all blocks, not for specified
1037 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1038 * now.
7d70f334 1039 *
8b6e50c9 1040 * Returns lock status.
7d70f334
VS
1041 */
1042int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1043{
1044 int ret = 0;
1045 int chipnr, status, page;
1046 struct nand_chip *chip = mtd->priv;
1047
289c0522 1048 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1049 __func__, (unsigned long long)ofs, len);
1050
1051 if (check_offs_len(mtd, ofs, len))
b1a2348a 1052 return -EINVAL;
7d70f334 1053
6a8214aa 1054 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1055
1056 /* Shift to get chip number */
1057 chipnr = ofs >> chip->chip_shift;
1058
1059 chip->select_chip(mtd, chipnr);
1060
57d3a9a8
WD
1061 /*
1062 * Reset the chip.
1063 * If we want to check the WP through READ STATUS and check the bit 7
1064 * we must reset the chip
1065 * some operation can also clear the bit 7 of status register
1066 * eg. erase/program a locked block
1067 */
1068 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1069
7d70f334
VS
1070 /* Check, if it is write protected */
1071 if (nand_check_wp(mtd)) {
289c0522 1072 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1073 __func__);
1074 status = MTD_ERASE_FAILED;
1075 ret = -EIO;
1076 goto out;
1077 }
1078
1079 /* Submit address of first page to lock */
1080 page = ofs >> chip->page_shift;
1081 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1082
1083 /* Call wait ready function */
1084 status = chip->waitfunc(mtd, chip);
7d70f334 1085 /* See if device thinks it succeeded */
74830966 1086 if (status & NAND_STATUS_FAIL) {
289c0522 1087 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1088 __func__, status);
1089 ret = -EIO;
1090 goto out;
1091 }
1092
1093 ret = __nand_unlock(mtd, ofs, len, 0x1);
1094
1095out:
b0bb6903 1096 chip->select_chip(mtd, -1);
7d70f334
VS
1097 nand_release_device(mtd);
1098
1099 return ret;
1100}
7351d3a5 1101EXPORT_SYMBOL(nand_lock);
7d70f334 1102
730a43fb
BB
1103/**
1104 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1105 * @buf: buffer to test
1106 * @len: buffer length
1107 * @bitflips_threshold: maximum number of bitflips
1108 *
1109 * Check if a buffer contains only 0xff, which means the underlying region
1110 * has been erased and is ready to be programmed.
1111 * The bitflips_threshold specify the maximum number of bitflips before
1112 * considering the region is not erased.
1113 * Note: The logic of this function has been extracted from the memweight
1114 * implementation, except that nand_check_erased_buf function exit before
1115 * testing the whole buffer if the number of bitflips exceed the
1116 * bitflips_threshold value.
1117 *
1118 * Returns a positive number of bitflips less than or equal to
1119 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1120 * threshold.
1121 */
1122static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1123{
1124 const unsigned char *bitmap = buf;
1125 int bitflips = 0;
1126 int weight;
1127
1128 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1129 len--, bitmap++) {
1130 weight = hweight8(*bitmap);
1131 bitflips += BITS_PER_BYTE - weight;
1132 if (unlikely(bitflips > bitflips_threshold))
1133 return -EBADMSG;
1134 }
1135
1136 for (; len >= sizeof(long);
1137 len -= sizeof(long), bitmap += sizeof(long)) {
1138 weight = hweight_long(*((unsigned long *)bitmap));
1139 bitflips += BITS_PER_LONG - weight;
1140 if (unlikely(bitflips > bitflips_threshold))
1141 return -EBADMSG;
1142 }
1143
1144 for (; len > 0; len--, bitmap++) {
1145 weight = hweight8(*bitmap);
1146 bitflips += BITS_PER_BYTE - weight;
1147 if (unlikely(bitflips > bitflips_threshold))
1148 return -EBADMSG;
1149 }
1150
1151 return bitflips;
1152}
1153
1154/**
1155 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1156 * 0xff data
1157 * @data: data buffer to test
1158 * @datalen: data length
1159 * @ecc: ECC buffer
1160 * @ecclen: ECC length
1161 * @extraoob: extra OOB buffer
1162 * @extraooblen: extra OOB length
1163 * @bitflips_threshold: maximum number of bitflips
1164 *
1165 * Check if a data buffer and its associated ECC and OOB data contains only
1166 * 0xff pattern, which means the underlying region has been erased and is
1167 * ready to be programmed.
1168 * The bitflips_threshold specify the maximum number of bitflips before
1169 * considering the region as not erased.
1170 *
1171 * Note:
1172 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1173 * different from the NAND page size. When fixing bitflips, ECC engines will
1174 * report the number of errors per chunk, and the NAND core infrastructure
1175 * expect you to return the maximum number of bitflips for the whole page.
1176 * This is why you should always use this function on a single chunk and
1177 * not on the whole page. After checking each chunk you should update your
1178 * max_bitflips value accordingly.
1179 * 2/ When checking for bitflips in erased pages you should not only check
1180 * the payload data but also their associated ECC data, because a user might
1181 * have programmed almost all bits to 1 but a few. In this case, we
1182 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1183 * this case.
1184 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1185 * data are protected by the ECC engine.
1186 * It could also be used if you support subpages and want to attach some
1187 * extra OOB data to an ECC chunk.
1188 *
1189 * Returns a positive number of bitflips less than or equal to
1190 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1191 * threshold. In case of success, the passed buffers are filled with 0xff.
1192 */
1193int nand_check_erased_ecc_chunk(void *data, int datalen,
1194 void *ecc, int ecclen,
1195 void *extraoob, int extraooblen,
1196 int bitflips_threshold)
1197{
1198 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1199
1200 data_bitflips = nand_check_erased_buf(data, datalen,
1201 bitflips_threshold);
1202 if (data_bitflips < 0)
1203 return data_bitflips;
1204
1205 bitflips_threshold -= data_bitflips;
1206
1207 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1208 if (ecc_bitflips < 0)
1209 return ecc_bitflips;
1210
1211 bitflips_threshold -= ecc_bitflips;
1212
1213 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1214 bitflips_threshold);
1215 if (extraoob_bitflips < 0)
1216 return extraoob_bitflips;
1217
1218 if (data_bitflips)
1219 memset(data, 0xff, datalen);
1220
1221 if (ecc_bitflips)
1222 memset(ecc, 0xff, ecclen);
1223
1224 if (extraoob_bitflips)
1225 memset(extraoob, 0xff, extraooblen);
1226
1227 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1228}
1229EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1230
8593fbc6 1231/**
7854d3f7 1232 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1233 * @mtd: mtd info structure
1234 * @chip: nand chip info structure
1235 * @buf: buffer to store read data
1fbb938d 1236 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1237 * @page: page number to read
52ff49df 1238 *
7854d3f7 1239 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1240 */
1241static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1242 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1243{
1244 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1245 if (oob_required)
1246 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1247 return 0;
1248}
1249
52ff49df 1250/**
7854d3f7 1251 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1252 * @mtd: mtd info structure
1253 * @chip: nand chip info structure
1254 * @buf: buffer to store read data
1fbb938d 1255 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1256 * @page: page number to read
52ff49df
DB
1257 *
1258 * We need a special oob layout and handling even when OOB isn't used.
1259 */
7351d3a5 1260static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1261 struct nand_chip *chip, uint8_t *buf,
1262 int oob_required, int page)
52ff49df
DB
1263{
1264 int eccsize = chip->ecc.size;
1265 int eccbytes = chip->ecc.bytes;
1266 uint8_t *oob = chip->oob_poi;
1267 int steps, size;
1268
1269 for (steps = chip->ecc.steps; steps > 0; steps--) {
1270 chip->read_buf(mtd, buf, eccsize);
1271 buf += eccsize;
1272
1273 if (chip->ecc.prepad) {
1274 chip->read_buf(mtd, oob, chip->ecc.prepad);
1275 oob += chip->ecc.prepad;
1276 }
1277
1278 chip->read_buf(mtd, oob, eccbytes);
1279 oob += eccbytes;
1280
1281 if (chip->ecc.postpad) {
1282 chip->read_buf(mtd, oob, chip->ecc.postpad);
1283 oob += chip->ecc.postpad;
1284 }
1285 }
1286
1287 size = mtd->oobsize - (oob - chip->oob_poi);
1288 if (size)
1289 chip->read_buf(mtd, oob, size);
1290
1291 return 0;
1292}
1293
1da177e4 1294/**
7854d3f7 1295 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1296 * @mtd: mtd info structure
1297 * @chip: nand chip info structure
1298 * @buf: buffer to store read data
1fbb938d 1299 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1300 * @page: page number to read
068e3c0a 1301 */
f5bbdacc 1302static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1303 uint8_t *buf, int oob_required, int page)
1da177e4 1304{
f5bbdacc
TG
1305 int i, eccsize = chip->ecc.size;
1306 int eccbytes = chip->ecc.bytes;
1307 int eccsteps = chip->ecc.steps;
1308 uint8_t *p = buf;
4bf63fcb
DW
1309 uint8_t *ecc_calc = chip->buffers->ecccalc;
1310 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1311 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1312 unsigned int max_bitflips = 0;
f5bbdacc 1313
1fbb938d 1314 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1315
1316 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1317 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1318
1319 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1320 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1321
1322 eccsteps = chip->ecc.steps;
1323 p = buf;
1324
1325 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1326 int stat;
1327
1328 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1329 if (stat < 0) {
f5bbdacc 1330 mtd->ecc_stats.failed++;
3f91e94f 1331 } else {
f5bbdacc 1332 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1333 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1334 }
f5bbdacc 1335 }
3f91e94f 1336 return max_bitflips;
22c60f5f 1337}
1da177e4 1338
3d459559 1339/**
837a6ba4 1340 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1341 * @mtd: mtd info structure
1342 * @chip: nand chip info structure
1343 * @data_offs: offset of requested data within the page
1344 * @readlen: data length
1345 * @bufpoi: buffer to store read data
e004debd 1346 * @page: page number to read
3d459559 1347 */
7351d3a5 1348static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1349 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1350 int page)
3d459559
AK
1351{
1352 int start_step, end_step, num_steps;
1353 uint32_t *eccpos = chip->ecc.layout->eccpos;
1354 uint8_t *p;
1355 int data_col_addr, i, gaps = 0;
1356 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1357 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
4a4163ca 1358 int index;
3f91e94f 1359 unsigned int max_bitflips = 0;
3d459559 1360
7854d3f7 1361 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1362 start_step = data_offs / chip->ecc.size;
1363 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1364 num_steps = end_step - start_step + 1;
4a4163ca 1365 index = start_step * chip->ecc.bytes;
3d459559 1366
8b6e50c9 1367 /* Data size aligned to ECC ecc.size */
3d459559
AK
1368 datafrag_len = num_steps * chip->ecc.size;
1369 eccfrag_len = num_steps * chip->ecc.bytes;
1370
1371 data_col_addr = start_step * chip->ecc.size;
1372 /* If we read not a page aligned data */
1373 if (data_col_addr != 0)
1374 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1375
1376 p = bufpoi + data_col_addr;
1377 chip->read_buf(mtd, p, datafrag_len);
1378
8b6e50c9 1379 /* Calculate ECC */
3d459559
AK
1380 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1381 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1382
8b6e50c9
BN
1383 /*
1384 * The performance is faster if we position offsets according to
7854d3f7 1385 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1386 */
3d459559 1387 for (i = 0; i < eccfrag_len - 1; i++) {
47570bb1 1388 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
3d459559
AK
1389 gaps = 1;
1390 break;
1391 }
1392 }
1393 if (gaps) {
1394 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1395 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1396 } else {
8b6e50c9 1397 /*
7854d3f7 1398 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1399 * about buswidth alignment in read_buf.
1400 */
7351d3a5 1401 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1402 aligned_len = eccfrag_len;
7351d3a5 1403 if (eccpos[index] & (busw - 1))
3d459559 1404 aligned_len++;
7351d3a5 1405 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1406 aligned_len++;
1407
7351d3a5
FF
1408 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1409 mtd->writesize + aligned_pos, -1);
3d459559
AK
1410 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1411 }
1412
1413 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1414 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1415
1416 p = bufpoi + data_col_addr;
1417 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1418 int stat;
1419
7351d3a5
FF
1420 stat = chip->ecc.correct(mtd, p,
1421 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1422 if (stat < 0) {
3d459559 1423 mtd->ecc_stats.failed++;
3f91e94f 1424 } else {
3d459559 1425 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1426 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1427 }
3d459559 1428 }
3f91e94f 1429 return max_bitflips;
3d459559
AK
1430}
1431
068e3c0a 1432/**
7854d3f7 1433 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1434 * @mtd: mtd info structure
1435 * @chip: nand chip info structure
1436 * @buf: buffer to store read data
1fbb938d 1437 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1438 * @page: page number to read
068e3c0a 1439 *
7854d3f7 1440 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1441 */
f5bbdacc 1442static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1443 uint8_t *buf, int oob_required, int page)
1da177e4 1444{
f5bbdacc
TG
1445 int i, eccsize = chip->ecc.size;
1446 int eccbytes = chip->ecc.bytes;
1447 int eccsteps = chip->ecc.steps;
1448 uint8_t *p = buf;
4bf63fcb
DW
1449 uint8_t *ecc_calc = chip->buffers->ecccalc;
1450 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1451 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1452 unsigned int max_bitflips = 0;
f5bbdacc
TG
1453
1454 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1456 chip->read_buf(mtd, p, eccsize);
1457 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1458 }
f75e5097 1459 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1460
f5bbdacc 1461 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1462 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1463
f5bbdacc
TG
1464 eccsteps = chip->ecc.steps;
1465 p = buf;
61b03bd7 1466
f5bbdacc
TG
1467 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1468 int stat;
1da177e4 1469
f5bbdacc 1470 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1471 if (stat < 0) {
f5bbdacc 1472 mtd->ecc_stats.failed++;
3f91e94f 1473 } else {
f5bbdacc 1474 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1475 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1476 }
f5bbdacc 1477 }
3f91e94f 1478 return max_bitflips;
f5bbdacc 1479}
1da177e4 1480
6e0cb135 1481/**
7854d3f7 1482 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1483 * @mtd: mtd info structure
1484 * @chip: nand chip info structure
1485 * @buf: buffer to store read data
1fbb938d 1486 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1487 * @page: page number to read
6e0cb135 1488 *
8b6e50c9
BN
1489 * Hardware ECC for large page chips, require OOB to be read first. For this
1490 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1491 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1492 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1493 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1494 */
1495static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1496 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1497{
1498 int i, eccsize = chip->ecc.size;
1499 int eccbytes = chip->ecc.bytes;
1500 int eccsteps = chip->ecc.steps;
1501 uint8_t *p = buf;
1502 uint8_t *ecc_code = chip->buffers->ecccode;
1503 uint32_t *eccpos = chip->ecc.layout->eccpos;
1504 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1505 unsigned int max_bitflips = 0;
6e0cb135
SN
1506
1507 /* Read the OOB area first */
1508 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1509 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1510 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1511
1512 for (i = 0; i < chip->ecc.total; i++)
1513 ecc_code[i] = chip->oob_poi[eccpos[i]];
1514
1515 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1516 int stat;
1517
1518 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1519 chip->read_buf(mtd, p, eccsize);
1520 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1521
1522 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1523 if (stat < 0) {
6e0cb135 1524 mtd->ecc_stats.failed++;
3f91e94f 1525 } else {
6e0cb135 1526 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1527 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1528 }
6e0cb135 1529 }
3f91e94f 1530 return max_bitflips;
6e0cb135
SN
1531}
1532
f5bbdacc 1533/**
7854d3f7 1534 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1535 * @mtd: mtd info structure
1536 * @chip: nand chip info structure
1537 * @buf: buffer to store read data
1fbb938d 1538 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1539 * @page: page number to read
f5bbdacc 1540 *
8b6e50c9
BN
1541 * The hw generator calculates the error syndrome automatically. Therefore we
1542 * need a special oob layout and handling.
f5bbdacc
TG
1543 */
1544static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1545 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1546{
1547 int i, eccsize = chip->ecc.size;
1548 int eccbytes = chip->ecc.bytes;
1549 int eccsteps = chip->ecc.steps;
1550 uint8_t *p = buf;
f75e5097 1551 uint8_t *oob = chip->oob_poi;
3f91e94f 1552 unsigned int max_bitflips = 0;
1da177e4 1553
f5bbdacc
TG
1554 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1555 int stat;
61b03bd7 1556
f5bbdacc
TG
1557 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1558 chip->read_buf(mtd, p, eccsize);
1da177e4 1559
f5bbdacc
TG
1560 if (chip->ecc.prepad) {
1561 chip->read_buf(mtd, oob, chip->ecc.prepad);
1562 oob += chip->ecc.prepad;
1563 }
1da177e4 1564
f5bbdacc
TG
1565 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1566 chip->read_buf(mtd, oob, eccbytes);
1567 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1568
3f91e94f 1569 if (stat < 0) {
f5bbdacc 1570 mtd->ecc_stats.failed++;
3f91e94f 1571 } else {
f5bbdacc 1572 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1573 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1574 }
61b03bd7 1575
f5bbdacc 1576 oob += eccbytes;
1da177e4 1577
f5bbdacc
TG
1578 if (chip->ecc.postpad) {
1579 chip->read_buf(mtd, oob, chip->ecc.postpad);
1580 oob += chip->ecc.postpad;
61b03bd7 1581 }
f5bbdacc 1582 }
1da177e4 1583
f5bbdacc 1584 /* Calculate remaining oob bytes */
7e4178f9 1585 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1586 if (i)
1587 chip->read_buf(mtd, oob, i);
61b03bd7 1588
3f91e94f 1589 return max_bitflips;
f5bbdacc 1590}
1da177e4 1591
f5bbdacc 1592/**
7854d3f7 1593 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1594 * @chip: nand chip structure
1595 * @oob: oob destination address
1596 * @ops: oob ops structure
1597 * @len: size of oob to transfer
8593fbc6
TG
1598 */
1599static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1600 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1601{
f8ac0414 1602 switch (ops->mode) {
8593fbc6 1603
0612b9dd
BN
1604 case MTD_OPS_PLACE_OOB:
1605 case MTD_OPS_RAW:
8593fbc6
TG
1606 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1607 return oob + len;
1608
0612b9dd 1609 case MTD_OPS_AUTO_OOB: {
8593fbc6 1610 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1611 uint32_t boffs = 0, roffs = ops->ooboffs;
1612 size_t bytes = 0;
8593fbc6 1613
f8ac0414 1614 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1615 /* Read request not from offset 0? */
7bc3312b
TG
1616 if (unlikely(roffs)) {
1617 if (roffs >= free->length) {
1618 roffs -= free->length;
1619 continue;
1620 }
1621 boffs = free->offset + roffs;
1622 bytes = min_t(size_t, len,
1623 (free->length - roffs));
1624 roffs = 0;
1625 } else {
1626 bytes = min_t(size_t, len, free->length);
1627 boffs = free->offset;
1628 }
1629 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1630 oob += bytes;
1631 }
1632 return oob;
1633 }
1634 default:
1635 BUG();
1636 }
1637 return NULL;
1638}
1639
ba84fb59
BN
1640/**
1641 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1642 * @mtd: MTD device structure
1643 * @retry_mode: the retry mode to use
1644 *
1645 * Some vendors supply a special command to shift the Vt threshold, to be used
1646 * when there are too many bitflips in a page (i.e., ECC error). After setting
1647 * a new threshold, the host should retry reading the page.
1648 */
1649static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1650{
1651 struct nand_chip *chip = mtd->priv;
1652
1653 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1654
1655 if (retry_mode >= chip->read_retries)
1656 return -EINVAL;
1657
1658 if (!chip->setup_read_retry)
1659 return -EOPNOTSUPP;
1660
1661 return chip->setup_read_retry(mtd, retry_mode);
1662}
1663
8593fbc6 1664/**
7854d3f7 1665 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1666 * @mtd: MTD device structure
1667 * @from: offset to read from
1668 * @ops: oob ops structure
f5bbdacc
TG
1669 *
1670 * Internal function. Called with chip held.
1671 */
8593fbc6
TG
1672static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1673 struct mtd_oob_ops *ops)
f5bbdacc 1674{
e47f3db4 1675 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc 1676 struct nand_chip *chip = mtd->priv;
f5bbdacc 1677 int ret = 0;
8593fbc6 1678 uint32_t readlen = ops->len;
7014568b 1679 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1680 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1681 mtd->oobavail : mtd->oobsize;
1682
8593fbc6 1683 uint8_t *bufpoi, *oob, *buf;
66507c7b 1684 int use_bufpoi;
edbc4540 1685 unsigned int max_bitflips = 0;
ba84fb59 1686 int retry_mode = 0;
b72f3dfb 1687 bool ecc_fail = false;
1da177e4 1688
f5bbdacc
TG
1689 chipnr = (int)(from >> chip->chip_shift);
1690 chip->select_chip(mtd, chipnr);
61b03bd7 1691
f5bbdacc
TG
1692 realpage = (int)(from >> chip->page_shift);
1693 page = realpage & chip->pagemask;
1da177e4 1694
f5bbdacc 1695 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1696
8593fbc6
TG
1697 buf = ops->datbuf;
1698 oob = ops->oobbuf;
e47f3db4 1699 oob_required = oob ? 1 : 0;
8593fbc6 1700
f8ac0414 1701 while (1) {
b72f3dfb
BN
1702 unsigned int ecc_failures = mtd->ecc_stats.failed;
1703
f5bbdacc
TG
1704 bytes = min(mtd->writesize - col, readlen);
1705 aligned = (bytes == mtd->writesize);
61b03bd7 1706
66507c7b
KD
1707 if (!aligned)
1708 use_bufpoi = 1;
1709 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1710 use_bufpoi = !virt_addr_valid(buf);
1711 else
1712 use_bufpoi = 0;
1713
8b6e50c9 1714 /* Is the current page in the buffer? */
8593fbc6 1715 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
1716 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1717
1718 if (use_bufpoi && aligned)
1719 pr_debug("%s: using read bounce buffer for buf@%p\n",
1720 __func__, buf);
61b03bd7 1721
ba84fb59 1722read_retry:
c00a0991 1723 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1724
edbc4540
MD
1725 /*
1726 * Now read the page into the buffer. Absent an error,
1727 * the read methods return max bitflips per ecc step.
1728 */
0612b9dd 1729 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1730 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1731 oob_required,
1732 page);
a5ff4f10
JW
1733 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1734 !oob)
7351d3a5 1735 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1736 col, bytes, bufpoi,
1737 page);
956e944c 1738 else
46a8cf2d 1739 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1740 oob_required, page);
6d77b9d0 1741 if (ret < 0) {
66507c7b 1742 if (use_bufpoi)
6d77b9d0
BN
1743 /* Invalidate page cache */
1744 chip->pagebuf = -1;
1da177e4 1745 break;
6d77b9d0 1746 }
f5bbdacc 1747
edbc4540
MD
1748 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1749
f5bbdacc 1750 /* Transfer not aligned data */
66507c7b 1751 if (use_bufpoi) {
a5ff4f10 1752 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1753 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1754 (ops->mode != MTD_OPS_RAW)) {
3d459559 1755 chip->pagebuf = realpage;
edbc4540
MD
1756 chip->pagebuf_bitflips = ret;
1757 } else {
6d77b9d0
BN
1758 /* Invalidate page cache */
1759 chip->pagebuf = -1;
edbc4540 1760 }
4bf63fcb 1761 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1762 }
1763
8593fbc6 1764 if (unlikely(oob)) {
b64d39d8
ML
1765 int toread = min(oobreadlen, max_oobsize);
1766
1767 if (toread) {
1768 oob = nand_transfer_oob(chip,
1769 oob, ops, toread);
1770 oobreadlen -= toread;
1771 }
8593fbc6 1772 }
5bc7c33c
BN
1773
1774 if (chip->options & NAND_NEED_READRDY) {
1775 /* Apply delay or wait for ready/busy pin */
1776 if (!chip->dev_ready)
1777 udelay(chip->chip_delay);
1778 else
1779 nand_wait_ready(mtd);
1780 }
b72f3dfb 1781
ba84fb59 1782 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1783 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1784 retry_mode++;
1785 ret = nand_setup_read_retry(mtd,
1786 retry_mode);
1787 if (ret < 0)
1788 break;
1789
1790 /* Reset failures; retry */
1791 mtd->ecc_stats.failed = ecc_failures;
1792 goto read_retry;
1793 } else {
1794 /* No more retry modes; real failure */
1795 ecc_fail = true;
1796 }
1797 }
1798
1799 buf += bytes;
8593fbc6 1800 } else {
4bf63fcb 1801 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1802 buf += bytes;
edbc4540
MD
1803 max_bitflips = max_t(unsigned int, max_bitflips,
1804 chip->pagebuf_bitflips);
8593fbc6 1805 }
1da177e4 1806
f5bbdacc 1807 readlen -= bytes;
61b03bd7 1808
ba84fb59
BN
1809 /* Reset to retry mode 0 */
1810 if (retry_mode) {
1811 ret = nand_setup_read_retry(mtd, 0);
1812 if (ret < 0)
1813 break;
1814 retry_mode = 0;
1815 }
1816
f5bbdacc 1817 if (!readlen)
61b03bd7 1818 break;
1da177e4 1819
8b6e50c9 1820 /* For subsequent reads align to page boundary */
1da177e4
LT
1821 col = 0;
1822 /* Increment page address */
1823 realpage++;
1824
ace4dfee 1825 page = realpage & chip->pagemask;
1da177e4
LT
1826 /* Check, if we cross a chip boundary */
1827 if (!page) {
1828 chipnr++;
ace4dfee
TG
1829 chip->select_chip(mtd, -1);
1830 chip->select_chip(mtd, chipnr);
1da177e4 1831 }
1da177e4 1832 }
b0bb6903 1833 chip->select_chip(mtd, -1);
1da177e4 1834
8593fbc6 1835 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1836 if (oob)
1837 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1838
3f91e94f 1839 if (ret < 0)
f5bbdacc
TG
1840 return ret;
1841
b72f3dfb 1842 if (ecc_fail)
9a1fcdfd
TG
1843 return -EBADMSG;
1844
edbc4540 1845 return max_bitflips;
f5bbdacc
TG
1846}
1847
1848/**
25985edc 1849 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1850 * @mtd: MTD device structure
1851 * @from: offset to read from
1852 * @len: number of bytes to read
1853 * @retlen: pointer to variable to store the number of read bytes
1854 * @buf: the databuffer to put data
f5bbdacc 1855 *
8b6e50c9 1856 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1857 */
1858static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1859 size_t *retlen, uint8_t *buf)
1860{
4a89ff88 1861 struct mtd_oob_ops ops;
f5bbdacc
TG
1862 int ret;
1863
6a8214aa 1864 nand_get_device(mtd, FL_READING);
0ec56dc4 1865 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
1866 ops.len = len;
1867 ops.datbuf = buf;
11041ae6 1868 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1869 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1870 *retlen = ops.retlen;
f5bbdacc 1871 nand_release_device(mtd);
f5bbdacc 1872 return ret;
1da177e4
LT
1873}
1874
7bc3312b 1875/**
7854d3f7 1876 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1877 * @mtd: mtd info structure
1878 * @chip: nand chip info structure
1879 * @page: page number to read
7bc3312b
TG
1880 */
1881static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1882 int page)
7bc3312b 1883{
5c2ffb11 1884 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1885 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1886 return 0;
7bc3312b
TG
1887}
1888
1889/**
7854d3f7 1890 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1891 * with syndromes
8b6e50c9
BN
1892 * @mtd: mtd info structure
1893 * @chip: nand chip info structure
1894 * @page: page number to read
7bc3312b
TG
1895 */
1896static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1897 int page)
7bc3312b 1898{
7bc3312b
TG
1899 int length = mtd->oobsize;
1900 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1901 int eccsize = chip->ecc.size;
2ea69d21 1902 uint8_t *bufpoi = chip->oob_poi;
7bc3312b
TG
1903 int i, toread, sndrnd = 0, pos;
1904
1905 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1906 for (i = 0; i < chip->ecc.steps; i++) {
1907 if (sndrnd) {
1908 pos = eccsize + i * (eccsize + chunk);
1909 if (mtd->writesize > 512)
1910 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1911 else
1912 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1913 } else
1914 sndrnd = 1;
1915 toread = min_t(int, length, chunk);
1916 chip->read_buf(mtd, bufpoi, toread);
1917 bufpoi += toread;
1918 length -= toread;
1919 }
1920 if (length > 0)
1921 chip->read_buf(mtd, bufpoi, length);
1922
5c2ffb11 1923 return 0;
7bc3312b
TG
1924}
1925
1926/**
7854d3f7 1927 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1928 * @mtd: mtd info structure
1929 * @chip: nand chip info structure
1930 * @page: page number to write
7bc3312b
TG
1931 */
1932static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1933 int page)
1934{
1935 int status = 0;
1936 const uint8_t *buf = chip->oob_poi;
1937 int length = mtd->oobsize;
1938
1939 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1940 chip->write_buf(mtd, buf, length);
1941 /* Send command to program the OOB data */
1942 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1943
1944 status = chip->waitfunc(mtd, chip);
1945
0d420f9d 1946 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1947}
1948
1949/**
7854d3f7 1950 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1951 * with syndrome - only for large page flash
1952 * @mtd: mtd info structure
1953 * @chip: nand chip info structure
1954 * @page: page number to write
7bc3312b
TG
1955 */
1956static int nand_write_oob_syndrome(struct mtd_info *mtd,
1957 struct nand_chip *chip, int page)
1958{
1959 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1960 int eccsize = chip->ecc.size, length = mtd->oobsize;
1961 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1962 const uint8_t *bufpoi = chip->oob_poi;
1963
1964 /*
1965 * data-ecc-data-ecc ... ecc-oob
1966 * or
1967 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1968 */
1969 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1970 pos = steps * (eccsize + chunk);
1971 steps = 0;
1972 } else
8b0036ee 1973 pos = eccsize;
7bc3312b
TG
1974
1975 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1976 for (i = 0; i < steps; i++) {
1977 if (sndcmd) {
1978 if (mtd->writesize <= 512) {
1979 uint32_t fill = 0xFFFFFFFF;
1980
1981 len = eccsize;
1982 while (len > 0) {
1983 int num = min_t(int, len, 4);
1984 chip->write_buf(mtd, (uint8_t *)&fill,
1985 num);
1986 len -= num;
1987 }
1988 } else {
1989 pos = eccsize + i * (eccsize + chunk);
1990 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1991 }
1992 } else
1993 sndcmd = 1;
1994 len = min_t(int, length, chunk);
1995 chip->write_buf(mtd, bufpoi, len);
1996 bufpoi += len;
1997 length -= len;
1998 }
1999 if (length > 0)
2000 chip->write_buf(mtd, bufpoi, length);
2001
2002 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2003 status = chip->waitfunc(mtd, chip);
2004
2005 return status & NAND_STATUS_FAIL ? -EIO : 0;
2006}
2007
1da177e4 2008/**
7854d3f7 2009 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
2010 * @mtd: MTD device structure
2011 * @from: offset to read from
2012 * @ops: oob operations description structure
1da177e4 2013 *
8b6e50c9 2014 * NAND read out-of-band data from the spare area.
1da177e4 2015 */
8593fbc6
TG
2016static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2017 struct mtd_oob_ops *ops)
1da177e4 2018{
c00a0991 2019 int page, realpage, chipnr;
ace4dfee 2020 struct nand_chip *chip = mtd->priv;
041e4575 2021 struct mtd_ecc_stats stats;
7014568b
VW
2022 int readlen = ops->ooblen;
2023 int len;
7bc3312b 2024 uint8_t *buf = ops->oobbuf;
1951f2f7 2025 int ret = 0;
61b03bd7 2026
289c0522 2027 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 2028 __func__, (unsigned long long)from, readlen);
1da177e4 2029
041e4575
BN
2030 stats = mtd->ecc_stats;
2031
0612b9dd 2032 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 2033 len = chip->ecc.layout->oobavail;
03736155
AH
2034 else
2035 len = mtd->oobsize;
2036
2037 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2038 pr_debug("%s: attempt to start read outside oob\n",
2039 __func__);
03736155
AH
2040 return -EINVAL;
2041 }
2042
2043 /* Do not allow reads past end of device */
2044 if (unlikely(from >= mtd->size ||
2045 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2046 (from >> chip->page_shift)) * len)) {
289c0522
BN
2047 pr_debug("%s: attempt to read beyond end of device\n",
2048 __func__);
03736155
AH
2049 return -EINVAL;
2050 }
7014568b 2051
7314e9e7 2052 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 2053 chip->select_chip(mtd, chipnr);
1da177e4 2054
7314e9e7
TG
2055 /* Shift to get page */
2056 realpage = (int)(from >> chip->page_shift);
2057 page = realpage & chip->pagemask;
1da177e4 2058
f8ac0414 2059 while (1) {
0612b9dd 2060 if (ops->mode == MTD_OPS_RAW)
1951f2f7 2061 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 2062 else
1951f2f7
SL
2063 ret = chip->ecc.read_oob(mtd, chip, page);
2064
2065 if (ret < 0)
2066 break;
7014568b
VW
2067
2068 len = min(len, readlen);
2069 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 2070
5bc7c33c
BN
2071 if (chip->options & NAND_NEED_READRDY) {
2072 /* Apply delay or wait for ready/busy pin */
2073 if (!chip->dev_ready)
2074 udelay(chip->chip_delay);
2075 else
2076 nand_wait_ready(mtd);
2077 }
2078
7014568b 2079 readlen -= len;
0d420f9d
SZ
2080 if (!readlen)
2081 break;
2082
7314e9e7
TG
2083 /* Increment page address */
2084 realpage++;
2085
2086 page = realpage & chip->pagemask;
2087 /* Check, if we cross a chip boundary */
2088 if (!page) {
2089 chipnr++;
2090 chip->select_chip(mtd, -1);
2091 chip->select_chip(mtd, chipnr);
1da177e4
LT
2092 }
2093 }
b0bb6903 2094 chip->select_chip(mtd, -1);
1da177e4 2095
1951f2f7
SL
2096 ops->oobretlen = ops->ooblen - readlen;
2097
2098 if (ret < 0)
2099 return ret;
041e4575
BN
2100
2101 if (mtd->ecc_stats.failed - stats.failed)
2102 return -EBADMSG;
2103
2104 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
2105}
2106
2107/**
8593fbc6 2108 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
2109 * @mtd: MTD device structure
2110 * @from: offset to read from
2111 * @ops: oob operation description structure
1da177e4 2112 *
8b6e50c9 2113 * NAND read data and/or out-of-band data.
1da177e4 2114 */
8593fbc6
TG
2115static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2116 struct mtd_oob_ops *ops)
1da177e4 2117{
8593fbc6
TG
2118 int ret = -ENOTSUPP;
2119
2120 ops->retlen = 0;
1da177e4
LT
2121
2122 /* Do not allow reads past end of device */
7014568b 2123 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
2124 pr_debug("%s: attempt to read beyond end of device\n",
2125 __func__);
1da177e4
LT
2126 return -EINVAL;
2127 }
2128
6a8214aa 2129 nand_get_device(mtd, FL_READING);
1da177e4 2130
f8ac0414 2131 switch (ops->mode) {
0612b9dd
BN
2132 case MTD_OPS_PLACE_OOB:
2133 case MTD_OPS_AUTO_OOB:
2134 case MTD_OPS_RAW:
8593fbc6 2135 break;
1da177e4 2136
8593fbc6
TG
2137 default:
2138 goto out;
2139 }
1da177e4 2140
8593fbc6
TG
2141 if (!ops->datbuf)
2142 ret = nand_do_read_oob(mtd, from, ops);
2143 else
2144 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2145
7351d3a5 2146out:
8593fbc6
TG
2147 nand_release_device(mtd);
2148 return ret;
2149}
61b03bd7 2150
1da177e4 2151
8593fbc6 2152/**
7854d3f7 2153 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2154 * @mtd: mtd info structure
2155 * @chip: nand chip info structure
2156 * @buf: data buffer
1fbb938d 2157 * @oob_required: must write chip->oob_poi to OOB
52ff49df 2158 *
7854d3f7 2159 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2160 */
fdbad98d 2161static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2162 const uint8_t *buf, int oob_required)
8593fbc6
TG
2163{
2164 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2165 if (oob_required)
2166 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2167
2168 return 0;
1da177e4
LT
2169}
2170
52ff49df 2171/**
7854d3f7 2172 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2173 * @mtd: mtd info structure
2174 * @chip: nand chip info structure
2175 * @buf: data buffer
1fbb938d 2176 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
2177 *
2178 * We need a special oob layout and handling even when ECC isn't checked.
2179 */
fdbad98d 2180static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2181 struct nand_chip *chip,
1fbb938d 2182 const uint8_t *buf, int oob_required)
52ff49df
DB
2183{
2184 int eccsize = chip->ecc.size;
2185 int eccbytes = chip->ecc.bytes;
2186 uint8_t *oob = chip->oob_poi;
2187 int steps, size;
2188
2189 for (steps = chip->ecc.steps; steps > 0; steps--) {
2190 chip->write_buf(mtd, buf, eccsize);
2191 buf += eccsize;
2192
2193 if (chip->ecc.prepad) {
2194 chip->write_buf(mtd, oob, chip->ecc.prepad);
2195 oob += chip->ecc.prepad;
2196 }
2197
60c3bc1f 2198 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2199 oob += eccbytes;
2200
2201 if (chip->ecc.postpad) {
2202 chip->write_buf(mtd, oob, chip->ecc.postpad);
2203 oob += chip->ecc.postpad;
2204 }
2205 }
2206
2207 size = mtd->oobsize - (oob - chip->oob_poi);
2208 if (size)
2209 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2210
2211 return 0;
52ff49df 2212}
9223a456 2213/**
7854d3f7 2214 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2215 * @mtd: mtd info structure
2216 * @chip: nand chip info structure
2217 * @buf: data buffer
1fbb938d 2218 * @oob_required: must write chip->oob_poi to OOB
9223a456 2219 */
fdbad98d 2220static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2221 const uint8_t *buf, int oob_required)
9223a456 2222{
f75e5097
TG
2223 int i, eccsize = chip->ecc.size;
2224 int eccbytes = chip->ecc.bytes;
2225 int eccsteps = chip->ecc.steps;
4bf63fcb 2226 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2227 const uint8_t *p = buf;
8b099a39 2228 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2229
7854d3f7 2230 /* Software ECC calculation */
8593fbc6
TG
2231 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2232 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2233
8593fbc6
TG
2234 for (i = 0; i < chip->ecc.total; i++)
2235 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2236
fdbad98d 2237 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 2238}
9223a456 2239
f75e5097 2240/**
7854d3f7 2241 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2242 * @mtd: mtd info structure
2243 * @chip: nand chip info structure
2244 * @buf: data buffer
1fbb938d 2245 * @oob_required: must write chip->oob_poi to OOB
f75e5097 2246 */
fdbad98d 2247static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2248 const uint8_t *buf, int oob_required)
f75e5097
TG
2249{
2250 int i, eccsize = chip->ecc.size;
2251 int eccbytes = chip->ecc.bytes;
2252 int eccsteps = chip->ecc.steps;
4bf63fcb 2253 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2254 const uint8_t *p = buf;
8b099a39 2255 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2256
f75e5097
TG
2257 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2258 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2259 chip->write_buf(mtd, p, eccsize);
f75e5097 2260 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2261 }
2262
f75e5097
TG
2263 for (i = 0; i < chip->ecc.total; i++)
2264 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2265
2266 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2267
2268 return 0;
9223a456
TG
2269}
2270
837a6ba4
GP
2271
2272/**
73c8aaf4 2273 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
2274 * @mtd: mtd info structure
2275 * @chip: nand chip info structure
d6a95080 2276 * @offset: column address of subpage within the page
837a6ba4 2277 * @data_len: data length
d6a95080 2278 * @buf: data buffer
837a6ba4
GP
2279 * @oob_required: must write chip->oob_poi to OOB
2280 */
2281static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2282 struct nand_chip *chip, uint32_t offset,
d6a95080 2283 uint32_t data_len, const uint8_t *buf,
837a6ba4
GP
2284 int oob_required)
2285{
2286 uint8_t *oob_buf = chip->oob_poi;
2287 uint8_t *ecc_calc = chip->buffers->ecccalc;
2288 int ecc_size = chip->ecc.size;
2289 int ecc_bytes = chip->ecc.bytes;
2290 int ecc_steps = chip->ecc.steps;
2291 uint32_t *eccpos = chip->ecc.layout->eccpos;
2292 uint32_t start_step = offset / ecc_size;
2293 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2294 int oob_bytes = mtd->oobsize / ecc_steps;
2295 int step, i;
2296
2297 for (step = 0; step < ecc_steps; step++) {
2298 /* configure controller for WRITE access */
2299 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2300
2301 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2302 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2303
2304 /* mask ECC of un-touched subpages by padding 0xFF */
2305 if ((step < start_step) || (step > end_step))
2306 memset(ecc_calc, 0xff, ecc_bytes);
2307 else
d6a95080 2308 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2309
2310 /* mask OOB of un-touched subpages by padding 0xFF */
2311 /* if oob_required, preserve OOB metadata of written subpage */
2312 if (!oob_required || (step < start_step) || (step > end_step))
2313 memset(oob_buf, 0xff, oob_bytes);
2314
d6a95080 2315 buf += ecc_size;
837a6ba4
GP
2316 ecc_calc += ecc_bytes;
2317 oob_buf += oob_bytes;
2318 }
2319
2320 /* copy calculated ECC for whole page to chip->buffer->oob */
2321 /* this include masked-value(0xFF) for unwritten subpages */
2322 ecc_calc = chip->buffers->ecccalc;
2323 for (i = 0; i < chip->ecc.total; i++)
2324 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2325
2326 /* write OOB buffer to NAND device */
2327 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2328
2329 return 0;
2330}
2331
2332
61b03bd7 2333/**
7854d3f7 2334 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2335 * @mtd: mtd info structure
2336 * @chip: nand chip info structure
2337 * @buf: data buffer
1fbb938d 2338 * @oob_required: must write chip->oob_poi to OOB
1da177e4 2339 *
8b6e50c9
BN
2340 * The hw generator calculates the error syndrome automatically. Therefore we
2341 * need a special oob layout and handling.
f75e5097 2342 */
fdbad98d 2343static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
2344 struct nand_chip *chip,
2345 const uint8_t *buf, int oob_required)
1da177e4 2346{
f75e5097
TG
2347 int i, eccsize = chip->ecc.size;
2348 int eccbytes = chip->ecc.bytes;
2349 int eccsteps = chip->ecc.steps;
2350 const uint8_t *p = buf;
2351 uint8_t *oob = chip->oob_poi;
1da177e4 2352
f75e5097 2353 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2354
f75e5097
TG
2355 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2356 chip->write_buf(mtd, p, eccsize);
61b03bd7 2357
f75e5097
TG
2358 if (chip->ecc.prepad) {
2359 chip->write_buf(mtd, oob, chip->ecc.prepad);
2360 oob += chip->ecc.prepad;
2361 }
2362
2363 chip->ecc.calculate(mtd, p, oob);
2364 chip->write_buf(mtd, oob, eccbytes);
2365 oob += eccbytes;
2366
2367 if (chip->ecc.postpad) {
2368 chip->write_buf(mtd, oob, chip->ecc.postpad);
2369 oob += chip->ecc.postpad;
1da177e4 2370 }
1da177e4 2371 }
f75e5097
TG
2372
2373 /* Calculate remaining oob bytes */
7e4178f9 2374 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2375 if (i)
2376 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2377
2378 return 0;
f75e5097
TG
2379}
2380
2381/**
956e944c 2382 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2383 * @mtd: MTD device structure
2384 * @chip: NAND chip descriptor
837a6ba4
GP
2385 * @offset: address offset within the page
2386 * @data_len: length of actual data to be written
8b6e50c9 2387 * @buf: the data to write
1fbb938d 2388 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2389 * @page: page number to write
2390 * @cached: cached programming
2391 * @raw: use _raw version of write_page
f75e5097
TG
2392 */
2393static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2394 uint32_t offset, int data_len, const uint8_t *buf,
2395 int oob_required, int page, int cached, int raw)
f75e5097 2396{
837a6ba4
GP
2397 int status, subpage;
2398
2399 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2400 chip->ecc.write_subpage)
2401 subpage = offset || (data_len < mtd->writesize);
2402 else
2403 subpage = 0;
f75e5097
TG
2404
2405 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2406
956e944c 2407 if (unlikely(raw))
837a6ba4
GP
2408 status = chip->ecc.write_page_raw(mtd, chip, buf,
2409 oob_required);
2410 else if (subpage)
2411 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2412 buf, oob_required);
956e944c 2413 else
fdbad98d
JW
2414 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2415
2416 if (status < 0)
2417 return status;
f75e5097
TG
2418
2419 /*
7854d3f7 2420 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2421 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2422 */
2423 cached = 0;
2424
3239a6cd 2425 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2426
2427 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2428 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2429 /*
2430 * See if operation failed and additional status checks are
8b6e50c9 2431 * available.
f75e5097
TG
2432 */
2433 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2434 status = chip->errstat(mtd, chip, FL_WRITING, status,
2435 page);
2436
2437 if (status & NAND_STATUS_FAIL)
2438 return -EIO;
2439 } else {
2440 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2441 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2442 }
2443
f75e5097 2444 return 0;
1da177e4
LT
2445}
2446
8593fbc6 2447/**
7854d3f7 2448 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2449 * @mtd: MTD device structure
8b6e50c9
BN
2450 * @oob: oob data buffer
2451 * @len: oob data write length
2452 * @ops: oob ops structure
8593fbc6 2453 */
f722013e
TAA
2454static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2455 struct mtd_oob_ops *ops)
8593fbc6 2456{
f722013e
TAA
2457 struct nand_chip *chip = mtd->priv;
2458
2459 /*
2460 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2461 * data from a previous OOB read.
2462 */
2463 memset(chip->oob_poi, 0xff, mtd->oobsize);
2464
f8ac0414 2465 switch (ops->mode) {
8593fbc6 2466
0612b9dd
BN
2467 case MTD_OPS_PLACE_OOB:
2468 case MTD_OPS_RAW:
8593fbc6
TG
2469 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2470 return oob + len;
2471
0612b9dd 2472 case MTD_OPS_AUTO_OOB: {
8593fbc6 2473 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2474 uint32_t boffs = 0, woffs = ops->ooboffs;
2475 size_t bytes = 0;
8593fbc6 2476
f8ac0414 2477 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2478 /* Write request not from offset 0? */
7bc3312b
TG
2479 if (unlikely(woffs)) {
2480 if (woffs >= free->length) {
2481 woffs -= free->length;
2482 continue;
2483 }
2484 boffs = free->offset + woffs;
2485 bytes = min_t(size_t, len,
2486 (free->length - woffs));
2487 woffs = 0;
2488 } else {
2489 bytes = min_t(size_t, len, free->length);
2490 boffs = free->offset;
2491 }
8b0036ee 2492 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2493 oob += bytes;
2494 }
2495 return oob;
2496 }
2497 default:
2498 BUG();
2499 }
2500 return NULL;
2501}
2502
f8ac0414 2503#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2504
2505/**
7854d3f7 2506 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2507 * @mtd: MTD device structure
2508 * @to: offset to write to
2509 * @ops: oob operations description structure
1da177e4 2510 *
8b6e50c9 2511 * NAND write with ECC.
1da177e4 2512 */
8593fbc6
TG
2513static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2514 struct mtd_oob_ops *ops)
1da177e4 2515{
29072b96 2516 int chipnr, realpage, page, blockmask, column;
ace4dfee 2517 struct nand_chip *chip = mtd->priv;
8593fbc6 2518 uint32_t writelen = ops->len;
782ce79a
ML
2519
2520 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2521 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2522 mtd->oobavail : mtd->oobsize;
2523
8593fbc6
TG
2524 uint8_t *oob = ops->oobbuf;
2525 uint8_t *buf = ops->datbuf;
837a6ba4 2526 int ret;
e47f3db4 2527 int oob_required = oob ? 1 : 0;
1da177e4 2528
8593fbc6 2529 ops->retlen = 0;
29072b96
TG
2530 if (!writelen)
2531 return 0;
1da177e4 2532
8b6e50c9 2533 /* Reject writes, which are not page aligned */
8593fbc6 2534 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2535 pr_notice("%s: attempt to write non page aligned data\n",
2536 __func__);
1da177e4
LT
2537 return -EINVAL;
2538 }
2539
29072b96 2540 column = to & (mtd->writesize - 1);
1da177e4 2541
6a930961
TG
2542 chipnr = (int)(to >> chip->chip_shift);
2543 chip->select_chip(mtd, chipnr);
2544
1da177e4 2545 /* Check, if it is write protected */
b0bb6903
HS
2546 if (nand_check_wp(mtd)) {
2547 ret = -EIO;
2548 goto err_out;
2549 }
1da177e4 2550
f75e5097
TG
2551 realpage = (int)(to >> chip->page_shift);
2552 page = realpage & chip->pagemask;
2553 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2554
2555 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2556 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2557 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2558 chip->pagebuf = -1;
61b03bd7 2559
782ce79a 2560 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2561 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2562 ret = -EINVAL;
2563 goto err_out;
2564 }
782ce79a 2565
f8ac0414 2566 while (1) {
29072b96 2567 int bytes = mtd->writesize;
f75e5097 2568 int cached = writelen > bytes && page != blockmask;
29072b96 2569 uint8_t *wbuf = buf;
66507c7b
KD
2570 int use_bufpoi;
2571 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2572
2573 if (part_pagewr)
2574 use_bufpoi = 1;
2575 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2576 use_bufpoi = !virt_addr_valid(buf);
2577 else
2578 use_bufpoi = 0;
29072b96 2579
66507c7b
KD
2580 /* Partial page write?, or need to use bounce buffer */
2581 if (use_bufpoi) {
2582 pr_debug("%s: using write bounce buffer for buf@%p\n",
2583 __func__, buf);
29072b96 2584 cached = 0;
66507c7b
KD
2585 if (part_pagewr)
2586 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2587 chip->pagebuf = -1;
2588 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2589 memcpy(&chip->buffers->databuf[column], buf, bytes);
2590 wbuf = chip->buffers->databuf;
2591 }
1da177e4 2592
782ce79a
ML
2593 if (unlikely(oob)) {
2594 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2595 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2596 oobwritelen -= len;
f722013e
TAA
2597 } else {
2598 /* We still need to erase leftover OOB data */
2599 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2600 }
837a6ba4
GP
2601 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2602 oob_required, page, cached,
2603 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2604 if (ret)
2605 break;
2606
2607 writelen -= bytes;
2608 if (!writelen)
2609 break;
2610
29072b96 2611 column = 0;
f75e5097
TG
2612 buf += bytes;
2613 realpage++;
2614
2615 page = realpage & chip->pagemask;
2616 /* Check, if we cross a chip boundary */
2617 if (!page) {
2618 chipnr++;
2619 chip->select_chip(mtd, -1);
2620 chip->select_chip(mtd, chipnr);
1da177e4
LT
2621 }
2622 }
8593fbc6 2623
8593fbc6 2624 ops->retlen = ops->len - writelen;
7014568b
VW
2625 if (unlikely(oob))
2626 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2627
2628err_out:
2629 chip->select_chip(mtd, -1);
1da177e4
LT
2630 return ret;
2631}
2632
2af7c653
SK
2633/**
2634 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2635 * @mtd: MTD device structure
2636 * @to: offset to write to
2637 * @len: number of bytes to write
2638 * @retlen: pointer to variable to store the number of written bytes
2639 * @buf: the data to write
2af7c653
SK
2640 *
2641 * NAND write with ECC. Used when performing writes in interrupt context, this
2642 * may for example be called by mtdoops when writing an oops while in panic.
2643 */
2644static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2645 size_t *retlen, const uint8_t *buf)
2646{
2647 struct nand_chip *chip = mtd->priv;
4a89ff88 2648 struct mtd_oob_ops ops;
2af7c653
SK
2649 int ret;
2650
8b6e50c9 2651 /* Wait for the device to get ready */
2af7c653
SK
2652 panic_nand_wait(mtd, chip, 400);
2653
8b6e50c9 2654 /* Grab the device */
2af7c653
SK
2655 panic_nand_get_device(chip, mtd, FL_WRITING);
2656
0ec56dc4 2657 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2658 ops.len = len;
2659 ops.datbuf = (uint8_t *)buf;
11041ae6 2660 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2661
4a89ff88 2662 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2663
4a89ff88 2664 *retlen = ops.retlen;
2af7c653
SK
2665 return ret;
2666}
2667
f75e5097 2668/**
8593fbc6 2669 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2670 * @mtd: MTD device structure
2671 * @to: offset to write to
2672 * @len: number of bytes to write
2673 * @retlen: pointer to variable to store the number of written bytes
2674 * @buf: the data to write
f75e5097 2675 *
8b6e50c9 2676 * NAND write with ECC.
f75e5097 2677 */
8593fbc6
TG
2678static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2679 size_t *retlen, const uint8_t *buf)
f75e5097 2680{
4a89ff88 2681 struct mtd_oob_ops ops;
f75e5097
TG
2682 int ret;
2683
6a8214aa 2684 nand_get_device(mtd, FL_WRITING);
0ec56dc4 2685 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2686 ops.len = len;
2687 ops.datbuf = (uint8_t *)buf;
11041ae6 2688 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2689 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2690 *retlen = ops.retlen;
f75e5097 2691 nand_release_device(mtd);
8593fbc6 2692 return ret;
f75e5097 2693}
7314e9e7 2694
1da177e4 2695/**
8593fbc6 2696 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2697 * @mtd: MTD device structure
2698 * @to: offset to write to
2699 * @ops: oob operation description structure
1da177e4 2700 *
8b6e50c9 2701 * NAND write out-of-band.
1da177e4 2702 */
8593fbc6
TG
2703static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2704 struct mtd_oob_ops *ops)
1da177e4 2705{
03736155 2706 int chipnr, page, status, len;
ace4dfee 2707 struct nand_chip *chip = mtd->priv;
1da177e4 2708
289c0522 2709 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2710 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2711
0612b9dd 2712 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2713 len = chip->ecc.layout->oobavail;
2714 else
2715 len = mtd->oobsize;
2716
1da177e4 2717 /* Do not allow write past end of page */
03736155 2718 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2719 pr_debug("%s: attempt to write past end of page\n",
2720 __func__);
1da177e4
LT
2721 return -EINVAL;
2722 }
2723
03736155 2724 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2725 pr_debug("%s: attempt to start write outside oob\n",
2726 __func__);
03736155
AH
2727 return -EINVAL;
2728 }
2729
775adc3d 2730 /* Do not allow write past end of device */
03736155
AH
2731 if (unlikely(to >= mtd->size ||
2732 ops->ooboffs + ops->ooblen >
2733 ((mtd->size >> chip->page_shift) -
2734 (to >> chip->page_shift)) * len)) {
289c0522
BN
2735 pr_debug("%s: attempt to write beyond end of device\n",
2736 __func__);
03736155
AH
2737 return -EINVAL;
2738 }
2739
7314e9e7 2740 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2741 chip->select_chip(mtd, chipnr);
1da177e4 2742
7314e9e7
TG
2743 /* Shift to get page */
2744 page = (int)(to >> chip->page_shift);
2745
2746 /*
2747 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2748 * of my DiskOnChip 2000 test units) will clear the whole data page too
2749 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2750 * it in the doc2000 driver in August 1999. dwmw2.
2751 */
ace4dfee 2752 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2753
2754 /* Check, if it is write protected */
b0bb6903
HS
2755 if (nand_check_wp(mtd)) {
2756 chip->select_chip(mtd, -1);
8593fbc6 2757 return -EROFS;
b0bb6903 2758 }
61b03bd7 2759
1da177e4 2760 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2761 if (page == chip->pagebuf)
2762 chip->pagebuf = -1;
1da177e4 2763
f722013e 2764 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2765
0612b9dd 2766 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2767 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2768 else
2769 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2770
b0bb6903
HS
2771 chip->select_chip(mtd, -1);
2772
7bc3312b
TG
2773 if (status)
2774 return status;
1da177e4 2775
7014568b 2776 ops->oobretlen = ops->ooblen;
1da177e4 2777
7bc3312b 2778 return 0;
8593fbc6
TG
2779}
2780
2781/**
2782 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2783 * @mtd: MTD device structure
2784 * @to: offset to write to
2785 * @ops: oob operation description structure
8593fbc6
TG
2786 */
2787static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2788 struct mtd_oob_ops *ops)
2789{
8593fbc6
TG
2790 int ret = -ENOTSUPP;
2791
2792 ops->retlen = 0;
2793
2794 /* Do not allow writes past end of device */
7014568b 2795 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2796 pr_debug("%s: attempt to write beyond end of device\n",
2797 __func__);
8593fbc6
TG
2798 return -EINVAL;
2799 }
2800
6a8214aa 2801 nand_get_device(mtd, FL_WRITING);
8593fbc6 2802
f8ac0414 2803 switch (ops->mode) {
0612b9dd
BN
2804 case MTD_OPS_PLACE_OOB:
2805 case MTD_OPS_AUTO_OOB:
2806 case MTD_OPS_RAW:
8593fbc6
TG
2807 break;
2808
2809 default:
2810 goto out;
2811 }
2812
2813 if (!ops->datbuf)
2814 ret = nand_do_write_oob(mtd, to, ops);
2815 else
2816 ret = nand_do_write_ops(mtd, to, ops);
2817
7351d3a5 2818out:
1da177e4 2819 nand_release_device(mtd);
1da177e4
LT
2820 return ret;
2821}
2822
1da177e4 2823/**
49c50b97 2824 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2825 * @mtd: MTD device structure
2826 * @page: the page address of the block which will be erased
1da177e4 2827 *
49c50b97 2828 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 2829 */
49c50b97 2830static int single_erase(struct mtd_info *mtd, int page)
1da177e4 2831{
ace4dfee 2832 struct nand_chip *chip = mtd->priv;
1da177e4 2833 /* Send commands to erase a block */
ace4dfee
TG
2834 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2835 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
2836
2837 return chip->waitfunc(mtd, chip);
1da177e4
LT
2838}
2839
1da177e4
LT
2840/**
2841 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2842 * @mtd: MTD device structure
2843 * @instr: erase instruction
1da177e4 2844 *
8b6e50c9 2845 * Erase one ore more blocks.
1da177e4 2846 */
e0c7d767 2847static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2848{
e0c7d767 2849 return nand_erase_nand(mtd, instr, 0);
1da177e4 2850}
61b03bd7 2851
1da177e4 2852/**
7854d3f7 2853 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2854 * @mtd: MTD device structure
2855 * @instr: erase instruction
2856 * @allowbbt: allow erasing the bbt area
1da177e4 2857 *
8b6e50c9 2858 * Erase one ore more blocks.
1da177e4 2859 */
ace4dfee
TG
2860int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2861 int allowbbt)
1da177e4 2862{
69423d99 2863 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2864 struct nand_chip *chip = mtd->priv;
69423d99 2865 loff_t len;
1da177e4 2866
289c0522
BN
2867 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2868 __func__, (unsigned long long)instr->addr,
2869 (unsigned long long)instr->len);
1da177e4 2870
6fe5a6ac 2871 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2872 return -EINVAL;
1da177e4 2873
1da177e4 2874 /* Grab the lock and see if the device is available */
6a8214aa 2875 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2876
2877 /* Shift to get first page */
ace4dfee
TG
2878 page = (int)(instr->addr >> chip->page_shift);
2879 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2880
2881 /* Calculate pages in each block */
ace4dfee 2882 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2883
2884 /* Select the NAND device */
ace4dfee 2885 chip->select_chip(mtd, chipnr);
1da177e4 2886
1da177e4
LT
2887 /* Check, if it is write protected */
2888 if (nand_check_wp(mtd)) {
289c0522
BN
2889 pr_debug("%s: device is write protected!\n",
2890 __func__);
1da177e4
LT
2891 instr->state = MTD_ERASE_FAILED;
2892 goto erase_exit;
2893 }
2894
2895 /* Loop through the pages */
2896 len = instr->len;
2897
2898 instr->state = MTD_ERASING;
2899
2900 while (len) {
12183a20 2901 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2902 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2903 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2904 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2905 __func__, page);
1da177e4
LT
2906 instr->state = MTD_ERASE_FAILED;
2907 goto erase_exit;
2908 }
61b03bd7 2909
ace4dfee
TG
2910 /*
2911 * Invalidate the page cache, if we erase the block which
8b6e50c9 2912 * contains the current cached page.
ace4dfee
TG
2913 */
2914 if (page <= chip->pagebuf && chip->pagebuf <
2915 (page + pages_per_block))
2916 chip->pagebuf = -1;
1da177e4 2917
49c50b97 2918 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 2919
ace4dfee
TG
2920 /*
2921 * See if operation failed and additional status checks are
2922 * available
2923 */
2924 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2925 status = chip->errstat(mtd, chip, FL_ERASING,
2926 status, page);
068e3c0a 2927
1da177e4 2928 /* See if block erase succeeded */
a4ab4c5d 2929 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2930 pr_debug("%s: failed erase, page 0x%08x\n",
2931 __func__, page);
1da177e4 2932 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2933 instr->fail_addr =
2934 ((loff_t)page << chip->page_shift);
1da177e4
LT
2935 goto erase_exit;
2936 }
30f464b7 2937
1da177e4 2938 /* Increment page address and decrement length */
daae74ca 2939 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2940 page += pages_per_block;
2941
2942 /* Check, if we cross a chip boundary */
ace4dfee 2943 if (len && !(page & chip->pagemask)) {
1da177e4 2944 chipnr++;
ace4dfee
TG
2945 chip->select_chip(mtd, -1);
2946 chip->select_chip(mtd, chipnr);
1da177e4
LT
2947 }
2948 }
2949 instr->state = MTD_ERASE_DONE;
2950
7351d3a5 2951erase_exit:
1da177e4
LT
2952
2953 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2954
2955 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2956 chip->select_chip(mtd, -1);
1da177e4
LT
2957 nand_release_device(mtd);
2958
49defc01
DW
2959 /* Do call back function */
2960 if (!ret)
2961 mtd_erase_callback(instr);
2962
1da177e4
LT
2963 /* Return more or less happy */
2964 return ret;
2965}
2966
2967/**
2968 * nand_sync - [MTD Interface] sync
8b6e50c9 2969 * @mtd: MTD device structure
1da177e4 2970 *
8b6e50c9 2971 * Sync is actually a wait for chip ready function.
1da177e4 2972 */
e0c7d767 2973static void nand_sync(struct mtd_info *mtd)
1da177e4 2974{
289c0522 2975 pr_debug("%s: called\n", __func__);
1da177e4
LT
2976
2977 /* Grab the lock and see if the device is available */
6a8214aa 2978 nand_get_device(mtd, FL_SYNCING);
1da177e4 2979 /* Release it and go back */
e0c7d767 2980 nand_release_device(mtd);
1da177e4
LT
2981}
2982
1da177e4 2983/**
ace4dfee 2984 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2985 * @mtd: MTD device structure
2986 * @offs: offset relative to mtd start
1da177e4 2987 */
ace4dfee 2988static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2989{
ace4dfee 2990 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2991}
2992
2993/**
ace4dfee 2994 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2995 * @mtd: MTD device structure
2996 * @ofs: offset relative to mtd start
1da177e4 2997 */
e0c7d767 2998static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2999{
1da177e4
LT
3000 int ret;
3001
f8ac0414
FF
3002 ret = nand_block_isbad(mtd, ofs);
3003 if (ret) {
8b6e50c9 3004 /* If it was bad already, return success and do nothing */
1da177e4
LT
3005 if (ret > 0)
3006 return 0;
e0c7d767
DW
3007 return ret;
3008 }
1da177e4 3009
5a0edb25 3010 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
3011}
3012
7db03ecc
HS
3013/**
3014 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3015 * @mtd: MTD device structure
3016 * @chip: nand chip info structure
3017 * @addr: feature address.
3018 * @subfeature_param: the subfeature parameters, a four bytes array.
3019 */
3020static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3021 int addr, uint8_t *subfeature_param)
3022{
3023 int status;
05f78359 3024 int i;
7db03ecc 3025
d914c932
DM
3026 if (!chip->onfi_version ||
3027 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3028 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3029 return -EINVAL;
3030
3031 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
3032 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3033 chip->write_byte(mtd, subfeature_param[i]);
3034
7db03ecc
HS
3035 status = chip->waitfunc(mtd, chip);
3036 if (status & NAND_STATUS_FAIL)
3037 return -EIO;
3038 return 0;
3039}
3040
3041/**
3042 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3043 * @mtd: MTD device structure
3044 * @chip: nand chip info structure
3045 * @addr: feature address.
3046 * @subfeature_param: the subfeature parameters, a four bytes array.
3047 */
3048static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3049 int addr, uint8_t *subfeature_param)
3050{
05f78359
UKK
3051 int i;
3052
d914c932
DM
3053 if (!chip->onfi_version ||
3054 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3055 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3056 return -EINVAL;
3057
7db03ecc 3058 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
3059 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3060 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
3061 return 0;
3062}
3063
962034f4
VW
3064/**
3065 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 3066 * @mtd: MTD device structure
962034f4
VW
3067 */
3068static int nand_suspend(struct mtd_info *mtd)
3069{
6a8214aa 3070 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
3071}
3072
3073/**
3074 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 3075 * @mtd: MTD device structure
962034f4
VW
3076 */
3077static void nand_resume(struct mtd_info *mtd)
3078{
ace4dfee 3079 struct nand_chip *chip = mtd->priv;
962034f4 3080
ace4dfee 3081 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
3082 nand_release_device(mtd);
3083 else
d0370219
BN
3084 pr_err("%s called for a chip which is not in suspended state\n",
3085 __func__);
962034f4
VW
3086}
3087
72ea4036
SB
3088/**
3089 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3090 * prevent further operations
3091 * @mtd: MTD device structure
3092 */
3093static void nand_shutdown(struct mtd_info *mtd)
3094{
3095 nand_get_device(mtd, FL_SHUTDOWN);
3096}
3097
8b6e50c9 3098/* Set default functions */
ace4dfee 3099static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 3100{
1da177e4 3101 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
3102 if (!chip->chip_delay)
3103 chip->chip_delay = 20;
1da177e4
LT
3104
3105 /* check, if a user supplied command function given */
ace4dfee
TG
3106 if (chip->cmdfunc == NULL)
3107 chip->cmdfunc = nand_command;
1da177e4
LT
3108
3109 /* check, if a user supplied wait function given */
ace4dfee
TG
3110 if (chip->waitfunc == NULL)
3111 chip->waitfunc = nand_wait;
3112
3113 if (!chip->select_chip)
3114 chip->select_chip = nand_select_chip;
68e80780 3115
4204cccd
HS
3116 /* set for ONFI nand */
3117 if (!chip->onfi_set_features)
3118 chip->onfi_set_features = nand_onfi_set_features;
3119 if (!chip->onfi_get_features)
3120 chip->onfi_get_features = nand_onfi_get_features;
3121
68e80780
BN
3122 /* If called twice, pointers that depend on busw may need to be reset */
3123 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
3124 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3125 if (!chip->read_word)
3126 chip->read_word = nand_read_word;
3127 if (!chip->block_bad)
3128 chip->block_bad = nand_block_bad;
3129 if (!chip->block_markbad)
3130 chip->block_markbad = nand_default_block_markbad;
68e80780 3131 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 3132 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
3133 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3134 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 3135 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 3136 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
3137 if (!chip->scan_bbt)
3138 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
3139
3140 if (!chip->controller) {
3141 chip->controller = &chip->hwcontrol;
3142 spin_lock_init(&chip->controller->lock);
3143 init_waitqueue_head(&chip->controller->wq);
3144 }
3145
7aa65bfd
TG
3146}
3147
8b6e50c9 3148/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3149static void sanitize_string(uint8_t *s, size_t len)
3150{
3151 ssize_t i;
3152
8b6e50c9 3153 /* Null terminate */
d1e1f4e4
FF
3154 s[len - 1] = 0;
3155
8b6e50c9 3156 /* Remove non printable chars */
d1e1f4e4
FF
3157 for (i = 0; i < len - 1; i++) {
3158 if (s[i] < ' ' || s[i] > 127)
3159 s[i] = '?';
3160 }
3161
8b6e50c9 3162 /* Remove trailing spaces */
d1e1f4e4
FF
3163 strim(s);
3164}
3165
3166static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3167{
3168 int i;
3169 while (len--) {
3170 crc ^= *p++ << 8;
3171 for (i = 0; i < 8; i++)
3172 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3173 }
3174
3175 return crc;
3176}
3177
6dcbe0cd
HS
3178/* Parse the Extended Parameter Page. */
3179static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3180 struct nand_chip *chip, struct nand_onfi_params *p)
3181{
3182 struct onfi_ext_param_page *ep;
3183 struct onfi_ext_section *s;
3184 struct onfi_ext_ecc_info *ecc;
3185 uint8_t *cursor;
3186 int ret = -EINVAL;
3187 int len;
3188 int i;
3189
3190 len = le16_to_cpu(p->ext_param_page_length) * 16;
3191 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3192 if (!ep)
3193 return -ENOMEM;
6dcbe0cd
HS
3194
3195 /* Send our own NAND_CMD_PARAM. */
3196 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3197
3198 /* Use the Change Read Column command to skip the ONFI param pages. */
3199 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3200 sizeof(*p) * p->num_of_param_pages , -1);
3201
3202 /* Read out the Extended Parameter Page. */
3203 chip->read_buf(mtd, (uint8_t *)ep, len);
3204 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3205 != le16_to_cpu(ep->crc))) {
3206 pr_debug("fail in the CRC.\n");
3207 goto ext_out;
3208 }
3209
3210 /*
3211 * Check the signature.
3212 * Do not strictly follow the ONFI spec, maybe changed in future.
3213 */
3214 if (strncmp(ep->sig, "EPPS", 4)) {
3215 pr_debug("The signature is invalid.\n");
3216 goto ext_out;
3217 }
3218
3219 /* find the ECC section. */
3220 cursor = (uint8_t *)(ep + 1);
3221 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3222 s = ep->sections + i;
3223 if (s->type == ONFI_SECTION_TYPE_2)
3224 break;
3225 cursor += s->length * 16;
3226 }
3227 if (i == ONFI_EXT_SECTION_MAX) {
3228 pr_debug("We can not find the ECC section.\n");
3229 goto ext_out;
3230 }
3231
3232 /* get the info we want. */
3233 ecc = (struct onfi_ext_ecc_info *)cursor;
3234
4ae7d228
BN
3235 if (!ecc->codeword_size) {
3236 pr_debug("Invalid codeword size\n");
3237 goto ext_out;
6dcbe0cd
HS
3238 }
3239
4ae7d228
BN
3240 chip->ecc_strength_ds = ecc->ecc_bits;
3241 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3242 ret = 0;
6dcbe0cd
HS
3243
3244ext_out:
3245 kfree(ep);
3246 return ret;
3247}
3248
8429bb39
BN
3249static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3250{
3251 struct nand_chip *chip = mtd->priv;
3252 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3253
3254 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3255 feature);
3256}
3257
3258/*
3259 * Configure chip properties from Micron vendor-specific ONFI table
3260 */
3261static void nand_onfi_detect_micron(struct nand_chip *chip,
3262 struct nand_onfi_params *p)
3263{
3264 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3265
3266 if (le16_to_cpu(p->vendor_revision) < 1)
3267 return;
3268
3269 chip->read_retries = micron->read_retry_options;
3270 chip->setup_read_retry = nand_setup_read_retry_micron;
3271}
3272
6fb277ba 3273/*
8b6e50c9 3274 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3275 */
3276static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3277 int *busw)
6fb277ba
FF
3278{
3279 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3280 int i, j;
6fb277ba
FF
3281 int val;
3282
7854d3f7 3283 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3284 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3285 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3286 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3287 return 0;
3288
6fb277ba
FF
3289 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3290 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3291 for (j = 0; j < sizeof(*p); j++)
3292 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3293 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3294 le16_to_cpu(p->crc)) {
6fb277ba
FF
3295 break;
3296 }
3297 }
3298
c7f23a70
BN
3299 if (i == 3) {
3300 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3301 return 0;
c7f23a70 3302 }
6fb277ba 3303
8b6e50c9 3304 /* Check version */
6fb277ba 3305 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3306 if (val & (1 << 5))
3307 chip->onfi_version = 23;
3308 else if (val & (1 << 4))
6fb277ba
FF
3309 chip->onfi_version = 22;
3310 else if (val & (1 << 3))
3311 chip->onfi_version = 21;
3312 else if (val & (1 << 2))
3313 chip->onfi_version = 20;
b7b1a29d 3314 else if (val & (1 << 1))
6fb277ba 3315 chip->onfi_version = 10;
b7b1a29d
BN
3316
3317 if (!chip->onfi_version) {
20171642 3318 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3319 return 0;
3320 }
6fb277ba
FF
3321
3322 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3323 sanitize_string(p->model, sizeof(p->model));
3324 if (!mtd->name)
3325 mtd->name = p->model;
4355b70c 3326
6fb277ba 3327 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3328
3329 /*
3330 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3331 * (don't ask me who thought of this...). MTD assumes that these
3332 * dimensions will be power-of-2, so just truncate the remaining area.
3333 */
3334 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3335 mtd->erasesize *= mtd->writesize;
3336
6fb277ba 3337 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3338
3339 /* See erasesize comment */
3340 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3341 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3342 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3343
3344 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3345 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3346 else
3347 *busw = 0;
6fb277ba 3348
10c86bab
HS
3349 if (p->ecc_bits != 0xff) {
3350 chip->ecc_strength_ds = p->ecc_bits;
3351 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3352 } else if (chip->onfi_version >= 21 &&
3353 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3354
3355 /*
3356 * The nand_flash_detect_ext_param_page() uses the
3357 * Change Read Column command which maybe not supported
3358 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3359 * now. We do not replace user supplied command function.
3360 */
3361 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3362 chip->cmdfunc = nand_command_lp;
3363
3364 /* The Extended Parameter Page is supported since ONFI 2.1. */
3365 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3366 pr_warn("Failed to detect ONFI extended param page\n");
3367 } else {
3368 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3369 }
3370
8429bb39
BN
3371 if (p->jedec_id == NAND_MFR_MICRON)
3372 nand_onfi_detect_micron(chip, p);
3373
6fb277ba
FF
3374 return 1;
3375}
3376
91361818
HS
3377/*
3378 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3379 */
3380static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3381 int *busw)
3382{
3383 struct nand_jedec_params *p = &chip->jedec_params;
3384 struct jedec_ecc_info *ecc;
3385 int val;
3386 int i, j;
3387
3388 /* Try JEDEC for unknown chip or LP */
3389 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3390 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3391 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3392 chip->read_byte(mtd) != 'C')
3393 return 0;
3394
3395 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3396 for (i = 0; i < 3; i++) {
3397 for (j = 0; j < sizeof(*p); j++)
3398 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3399
3400 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3401 le16_to_cpu(p->crc))
3402 break;
3403 }
3404
3405 if (i == 3) {
3406 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3407 return 0;
3408 }
3409
3410 /* Check version */
3411 val = le16_to_cpu(p->revision);
3412 if (val & (1 << 2))
3413 chip->jedec_version = 10;
3414 else if (val & (1 << 1))
3415 chip->jedec_version = 1; /* vendor specific version */
3416
3417 if (!chip->jedec_version) {
3418 pr_info("unsupported JEDEC version: %d\n", val);
3419 return 0;
3420 }
3421
3422 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3423 sanitize_string(p->model, sizeof(p->model));
3424 if (!mtd->name)
3425 mtd->name = p->model;
3426
3427 mtd->writesize = le32_to_cpu(p->byte_per_page);
3428
3429 /* Please reference to the comment for nand_flash_detect_onfi. */
3430 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3431 mtd->erasesize *= mtd->writesize;
3432
3433 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3434
3435 /* Please reference to the comment for nand_flash_detect_onfi. */
3436 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3437 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3438 chip->bits_per_cell = p->bits_per_cell;
3439
3440 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3441 *busw = NAND_BUSWIDTH_16;
3442 else
3443 *busw = 0;
3444
3445 /* ECC info */
3446 ecc = &p->ecc_info[0];
3447
3448 if (ecc->codeword_size >= 9) {
3449 chip->ecc_strength_ds = ecc->ecc_bits;
3450 chip->ecc_step_ds = 1 << ecc->codeword_size;
3451 } else {
3452 pr_warn("Invalid codeword size\n");
3453 }
3454
3455 return 1;
3456}
3457
e3b88bd6
BN
3458/*
3459 * nand_id_has_period - Check if an ID string has a given wraparound period
3460 * @id_data: the ID string
3461 * @arrlen: the length of the @id_data array
3462 * @period: the period of repitition
3463 *
3464 * Check if an ID string is repeated within a given sequence of bytes at
3465 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3466 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3467 * if the repetition has a period of @period; otherwise, returns zero.
3468 */
3469static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3470{
3471 int i, j;
3472 for (i = 0; i < period; i++)
3473 for (j = i + period; j < arrlen; j += period)
3474 if (id_data[i] != id_data[j])
3475 return 0;
3476 return 1;
3477}
3478
3479/*
3480 * nand_id_len - Get the length of an ID string returned by CMD_READID
3481 * @id_data: the ID string
3482 * @arrlen: the length of the @id_data array
3483
3484 * Returns the length of the ID string, according to known wraparound/trailing
3485 * zero patterns. If no pattern exists, returns the length of the array.
3486 */
3487static int nand_id_len(u8 *id_data, int arrlen)
3488{
3489 int last_nonzero, period;
3490
3491 /* Find last non-zero byte */
3492 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3493 if (id_data[last_nonzero])
3494 break;
3495
3496 /* All zeros */
3497 if (last_nonzero < 0)
3498 return 0;
3499
3500 /* Calculate wraparound period */
3501 for (period = 1; period < arrlen; period++)
3502 if (nand_id_has_period(id_data, arrlen, period))
3503 break;
3504
3505 /* There's a repeated pattern */
3506 if (period < arrlen)
3507 return period;
3508
3509 /* There are trailing zeros */
3510 if (last_nonzero < arrlen - 1)
3511 return last_nonzero + 1;
3512
3513 /* No pattern detected */
3514 return arrlen;
3515}
3516
7db906b7
HS
3517/* Extract the bits of per cell from the 3rd byte of the extended ID */
3518static int nand_get_bits_per_cell(u8 cellinfo)
3519{
3520 int bits;
3521
3522 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3523 bits >>= NAND_CI_CELLTYPE_SHIFT;
3524 return bits + 1;
3525}
3526
fc09bbc0
BN
3527/*
3528 * Many new NAND share similar device ID codes, which represent the size of the
3529 * chip. The rest of the parameters must be decoded according to generic or
3530 * manufacturer-specific "extended ID" decoding patterns.
3531 */
3532static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3533 u8 id_data[8], int *busw)
3534{
e3b88bd6 3535 int extid, id_len;
fc09bbc0 3536 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3537 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3538 /* The 4th id byte is the important one */
3539 extid = id_data[3];
3540
e3b88bd6
BN
3541 id_len = nand_id_len(id_data, 8);
3542
fc09bbc0
BN
3543 /*
3544 * Field definitions are in the following datasheets:
3545 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3546 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3547 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3548 *
af451af4
BN
3549 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3550 * ID to decide what to do.
fc09bbc0 3551 */
af451af4 3552 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3553 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3554 /* Calc pagesize */
3555 mtd->writesize = 2048 << (extid & 0x03);
3556 extid >>= 2;
3557 /* Calc oobsize */
e2d3a35e 3558 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3559 case 1:
3560 mtd->oobsize = 128;
3561 break;
3562 case 2:
3563 mtd->oobsize = 218;
3564 break;
3565 case 3:
3566 mtd->oobsize = 400;
3567 break;
e2d3a35e 3568 case 4:
fc09bbc0
BN
3569 mtd->oobsize = 436;
3570 break;
e2d3a35e
BN
3571 case 5:
3572 mtd->oobsize = 512;
3573 break;
3574 case 6:
e2d3a35e
BN
3575 mtd->oobsize = 640;
3576 break;
94d04e82
HS
3577 case 7:
3578 default: /* Other cases are "reserved" (unknown) */
3579 mtd->oobsize = 1024;
3580 break;
fc09bbc0
BN
3581 }
3582 extid >>= 2;
3583 /* Calc blocksize */
3584 mtd->erasesize = (128 * 1024) <<
3585 (((extid >> 1) & 0x04) | (extid & 0x03));
3586 *busw = 0;
73ca392f 3587 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3588 !nand_is_slc(chip)) {
73ca392f
BN
3589 unsigned int tmp;
3590
3591 /* Calc pagesize */
3592 mtd->writesize = 2048 << (extid & 0x03);
3593 extid >>= 2;
3594 /* Calc oobsize */
3595 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3596 case 0:
3597 mtd->oobsize = 128;
3598 break;
3599 case 1:
3600 mtd->oobsize = 224;
3601 break;
3602 case 2:
3603 mtd->oobsize = 448;
3604 break;
3605 case 3:
3606 mtd->oobsize = 64;
3607 break;
3608 case 4:
3609 mtd->oobsize = 32;
3610 break;
3611 case 5:
3612 mtd->oobsize = 16;
3613 break;
3614 default:
3615 mtd->oobsize = 640;
3616 break;
3617 }
3618 extid >>= 2;
3619 /* Calc blocksize */
3620 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3621 if (tmp < 0x03)
3622 mtd->erasesize = (128 * 1024) << tmp;
3623 else if (tmp == 0x03)
3624 mtd->erasesize = 768 * 1024;
3625 else
3626 mtd->erasesize = (64 * 1024) << tmp;
3627 *busw = 0;
fc09bbc0
BN
3628 } else {
3629 /* Calc pagesize */
3630 mtd->writesize = 1024 << (extid & 0x03);
3631 extid >>= 2;
3632 /* Calc oobsize */
3633 mtd->oobsize = (8 << (extid & 0x01)) *
3634 (mtd->writesize >> 9);
3635 extid >>= 2;
3636 /* Calc blocksize. Blocksize is multiples of 64KiB */
3637 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3638 extid >>= 2;
3639 /* Get buswidth information */
3640 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3641
3642 /*
3643 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3644 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3645 * follows:
3646 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3647 * 110b -> 24nm
3648 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3649 */
3650 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3651 nand_is_slc(chip) &&
60c67382
BN
3652 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3653 !(id_data[4] & 0x80) /* !BENAND */) {
3654 mtd->oobsize = 32 * mtd->writesize >> 9;
3655 }
3656
fc09bbc0
BN
3657 }
3658}
3659
f23a481c
BN
3660/*
3661 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3662 * decodes a matching ID table entry and assigns the MTD size parameters for
3663 * the chip.
3664 */
3665static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3666 struct nand_flash_dev *type, u8 id_data[8],
3667 int *busw)
3668{
3669 int maf_id = id_data[0];
3670
3671 mtd->erasesize = type->erasesize;
3672 mtd->writesize = type->pagesize;
3673 mtd->oobsize = mtd->writesize / 32;
3674 *busw = type->options & NAND_BUSWIDTH_16;
3675
1c195e90
HS
3676 /* All legacy ID NAND are small-page, SLC */
3677 chip->bits_per_cell = 1;
3678
f23a481c
BN
3679 /*
3680 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3681 * some Spansion chips have erasesize that conflicts with size
3682 * listed in nand_ids table.
3683 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3684 */
3685 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3686 && id_data[6] == 0x00 && id_data[7] == 0x00
3687 && mtd->writesize == 512) {
3688 mtd->erasesize = 128 * 1024;
3689 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3690 }
3691}
3692
7e74c2d7
BN
3693/*
3694 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3695 * heuristic patterns using various detected parameters (e.g., manufacturer,
3696 * page size, cell-type information).
3697 */
3698static void nand_decode_bbm_options(struct mtd_info *mtd,
3699 struct nand_chip *chip, u8 id_data[8])
3700{
3701 int maf_id = id_data[0];
3702
3703 /* Set the bad block position */
3704 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3705 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3706 else
3707 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3708
3709 /*
3710 * Bad block marker is stored in the last page of each block on Samsung
3711 * and Hynix MLC devices; stored in first two pages of each block on
3712 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3713 * AMD/Spansion, and Macronix. All others scan only the first page.
3714 */
1d0ed69d 3715 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3716 (maf_id == NAND_MFR_SAMSUNG ||
3717 maf_id == NAND_MFR_HYNIX))
3718 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3719 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3720 (maf_id == NAND_MFR_SAMSUNG ||
3721 maf_id == NAND_MFR_HYNIX ||
3722 maf_id == NAND_MFR_TOSHIBA ||
3723 maf_id == NAND_MFR_AMD ||
3724 maf_id == NAND_MFR_MACRONIX)) ||
3725 (mtd->writesize == 2048 &&
3726 maf_id == NAND_MFR_MICRON))
3727 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3728}
3729
ec6e87e3
HS
3730static inline bool is_full_id_nand(struct nand_flash_dev *type)
3731{
3732 return type->id_len;
3733}
3734
3735static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3736 struct nand_flash_dev *type, u8 *id_data, int *busw)
3737{
3738 if (!strncmp(type->id, id_data, type->id_len)) {
3739 mtd->writesize = type->pagesize;
3740 mtd->erasesize = type->erasesize;
3741 mtd->oobsize = type->oobsize;
3742
7db906b7 3743 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3744 chip->chipsize = (uint64_t)type->chipsize << 20;
3745 chip->options |= type->options;
57219342
HS
3746 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3747 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3748 chip->onfi_timing_mode_default =
3749 type->onfi_timing_mode_default;
ec6e87e3
HS
3750
3751 *busw = type->options & NAND_BUSWIDTH_16;
3752
092b6a1d
CZ
3753 if (!mtd->name)
3754 mtd->name = type->name;
3755
ec6e87e3
HS
3756 return true;
3757 }
3758 return false;
3759}
3760
7aa65bfd 3761/*
8b6e50c9 3762 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3763 */
3764static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3765 struct nand_chip *chip,
7351d3a5 3766 int *maf_id, int *dev_id,
5e81e88a 3767 struct nand_flash_dev *type)
7aa65bfd 3768{
bb77082f 3769 int busw;
d1e1f4e4 3770 int i, maf_idx;
426c457a 3771 u8 id_data[8];
1da177e4
LT
3772
3773 /* Select the device */
ace4dfee 3774 chip->select_chip(mtd, 0);
1da177e4 3775
ef89a880
KB
3776 /*
3777 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3778 * after power-up.
ef89a880
KB
3779 */
3780 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3781
1da177e4 3782 /* Send the command for reading device ID */
ace4dfee 3783 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3784
3785 /* Read manufacturer and device IDs */
ace4dfee 3786 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3787 *dev_id = chip->read_byte(mtd);
1da177e4 3788
8b6e50c9
BN
3789 /*
3790 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3791 * interface concerns can cause random data which looks like a
3792 * possibly credible NAND flash to appear. If the two results do
3793 * not match, ignore the device completely.
3794 */
3795
3796 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3797
4aef9b78
BN
3798 /* Read entire ID string */
3799 for (i = 0; i < 8; i++)
426c457a 3800 id_data[i] = chip->read_byte(mtd);
ed8165c7 3801
d1e1f4e4 3802 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3803 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3804 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3805 return ERR_PTR(-ENODEV);
3806 }
3807
7aa65bfd 3808 if (!type)
5e81e88a
DW
3809 type = nand_flash_ids;
3810
ec6e87e3
HS
3811 for (; type->name != NULL; type++) {
3812 if (is_full_id_nand(type)) {
3813 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3814 goto ident_done;
3815 } else if (*dev_id == type->dev_id) {
db5b09f6 3816 break;
ec6e87e3
HS
3817 }
3818 }
5e81e88a 3819
d1e1f4e4
FF
3820 chip->onfi_version = 0;
3821 if (!type->name || !type->pagesize) {
35fc5195 3822 /* Check if the chip is ONFI compliant */
47450b35 3823 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3824 goto ident_done;
91361818
HS
3825
3826 /* Check if the chip is JEDEC compliant */
3827 if (nand_flash_detect_jedec(mtd, chip, &busw))
3828 goto ident_done;
d1e1f4e4
FF
3829 }
3830
5e81e88a 3831 if (!type->name)
7aa65bfd
TG
3832 return ERR_PTR(-ENODEV);
3833
ba0251fe
TG
3834 if (!mtd->name)
3835 mtd->name = type->name;
3836
69423d99 3837 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3838
12a40a57 3839 if (!type->pagesize && chip->init_size) {
8b6e50c9 3840 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3841 busw = chip->init_size(mtd, chip, id_data);
3842 } else if (!type->pagesize) {
fc09bbc0
BN
3843 /* Decode parameters from extended ID */
3844 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3845 } else {
f23a481c 3846 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3847 }
bf7a01bf
BN
3848 /* Get chip options */
3849 chip->options |= type->options;
d1e1f4e4 3850
8b6e50c9
BN
3851 /*
3852 * Check if chip is not a Samsung device. Do not clear the
3853 * options for chips which do not have an extended id.
d1e1f4e4
FF
3854 */
3855 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3856 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3857ident_done:
3858
7aa65bfd 3859 /* Try to identify manufacturer */
9a909867 3860 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3861 if (nand_manuf_ids[maf_idx].id == *maf_id)
3862 break;
3863 }
0ea4a755 3864
64b37b2a
MC
3865 if (chip->options & NAND_BUSWIDTH_AUTO) {
3866 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3867 chip->options |= busw;
3868 nand_set_defaults(chip, busw);
3869 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3870 /*
3871 * Check, if buswidth is correct. Hardware drivers should set
3872 * chip correct!
3873 */
20171642
EG
3874 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3875 *maf_id, *dev_id);
3876 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3877 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3878 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3879 busw ? 16 : 8);
7aa65bfd
TG
3880 return ERR_PTR(-EINVAL);
3881 }
61b03bd7 3882
7e74c2d7
BN
3883 nand_decode_bbm_options(mtd, chip, id_data);
3884
7aa65bfd 3885 /* Calculate the address shift from the page size */
ace4dfee 3886 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3887 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3888 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3889
ace4dfee 3890 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3891 ffs(mtd->erasesize) - 1;
69423d99
AH
3892 if (chip->chipsize & 0xffffffff)
3893 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3894 else {
3895 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3896 chip->chip_shift += 32 - 1;
3897 }
1da177e4 3898
26d9be11 3899 chip->badblockbits = 8;
49c50b97 3900 chip->erase = single_erase;
7aa65bfd 3901
8b6e50c9 3902 /* Do not replace user supplied command function! */
ace4dfee
TG
3903 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3904 chip->cmdfunc = nand_command_lp;
7aa65bfd 3905
20171642
EG
3906 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3907 *maf_id, *dev_id);
ffdac6cd
HS
3908
3909 if (chip->onfi_version)
3910 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3911 chip->onfi_params.model);
3912 else if (chip->jedec_version)
3913 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3914 chip->jedec_params.model);
3915 else
3916 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3917 type->name);
3918
3755a991 3919 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 3920 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 3921 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3922 return type;
3923}
3924
5844feea
BN
3925static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip,
3926 struct device_node *dn)
3927{
3928 int ecc_mode, ecc_strength, ecc_step;
3929
3930 if (of_get_nand_bus_width(dn) == 16)
3931 chip->options |= NAND_BUSWIDTH_16;
3932
3933 if (of_get_nand_on_flash_bbt(dn))
3934 chip->bbt_options |= NAND_BBT_USE_FLASH;
3935
3936 ecc_mode = of_get_nand_ecc_mode(dn);
3937 ecc_strength = of_get_nand_ecc_strength(dn);
3938 ecc_step = of_get_nand_ecc_step_size(dn);
3939
3940 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3941 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3942 pr_err("must set both strength and step size in DT\n");
3943 return -EINVAL;
3944 }
3945
3946 if (ecc_mode >= 0)
3947 chip->ecc.mode = ecc_mode;
3948
3949 if (ecc_strength >= 0)
3950 chip->ecc.strength = ecc_strength;
3951
3952 if (ecc_step > 0)
3953 chip->ecc.size = ecc_step;
3954
3955 return 0;
3956}
3957
7aa65bfd 3958/**
3b85c321 3959 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3960 * @mtd: MTD device structure
3961 * @maxchips: number of chips to scan for
3962 * @table: alternative NAND ID table
7aa65bfd 3963 *
8b6e50c9
BN
3964 * This is the first phase of the normal nand_scan() function. It reads the
3965 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3966 *
3b85c321 3967 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3968 */
5e81e88a
DW
3969int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3970 struct nand_flash_dev *table)
7aa65bfd 3971{
bb77082f 3972 int i, nand_maf_id, nand_dev_id;
ace4dfee 3973 struct nand_chip *chip = mtd->priv;
7aa65bfd 3974 struct nand_flash_dev *type;
5844feea
BN
3975 int ret;
3976
61528d88
MV
3977 if (chip->flash_node) {
3978 ret = nand_dt_init(mtd, chip, chip->flash_node);
5844feea
BN
3979 if (ret)
3980 return ret;
3981 }
7aa65bfd 3982
7aa65bfd 3983 /* Set the default functions */
bb77082f 3984 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
3985
3986 /* Read the flash type */
bb77082f
CZ
3987 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3988 &nand_dev_id, table);
7aa65bfd
TG
3989
3990 if (IS_ERR(type)) {
b1c6e6db 3991 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3992 pr_warn("No NAND device found\n");
ace4dfee 3993 chip->select_chip(mtd, -1);
7aa65bfd 3994 return PTR_ERR(type);
1da177e4
LT
3995 }
3996
07300164
HS
3997 chip->select_chip(mtd, -1);
3998
7aa65bfd 3999 /* Check for a chip array */
e0c7d767 4000 for (i = 1; i < maxchips; i++) {
ace4dfee 4001 chip->select_chip(mtd, i);
ef89a880
KB
4002 /* See comment in nand_get_flash_type for reset */
4003 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 4004 /* Send the command for reading device ID */
ace4dfee 4005 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 4006 /* Read manufacturer and device IDs */
ace4dfee 4007 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
4008 nand_dev_id != chip->read_byte(mtd)) {
4009 chip->select_chip(mtd, -1);
1da177e4 4010 break;
07300164
HS
4011 }
4012 chip->select_chip(mtd, -1);
1da177e4
LT
4013 }
4014 if (i > 1)
20171642 4015 pr_info("%d chips detected\n", i);
61b03bd7 4016
1da177e4 4017 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
4018 chip->numchips = i;
4019 mtd->size = i * chip->chipsize;
7aa65bfd 4020
3b85c321
DW
4021 return 0;
4022}
7351d3a5 4023EXPORT_SYMBOL(nand_scan_ident);
3b85c321 4024
67a9ad9b
EG
4025/*
4026 * Check if the chip configuration meet the datasheet requirements.
4027
4028 * If our configuration corrects A bits per B bytes and the minimum
4029 * required correction level is X bits per Y bytes, then we must ensure
4030 * both of the following are true:
4031 *
4032 * (1) A / B >= X / Y
4033 * (2) A >= X
4034 *
4035 * Requirement (1) ensures we can correct for the required bitflip density.
4036 * Requirement (2) ensures we can correct even when all bitflips are clumped
4037 * in the same sector.
4038 */
4039static bool nand_ecc_strength_good(struct mtd_info *mtd)
4040{
4041 struct nand_chip *chip = mtd->priv;
4042 struct nand_ecc_ctrl *ecc = &chip->ecc;
4043 int corr, ds_corr;
4044
4045 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4046 /* Not enough information */
4047 return true;
4048
4049 /*
4050 * We get the number of corrected bits per page to compare
4051 * the correction density.
4052 */
4053 corr = (mtd->writesize * ecc->strength) / ecc->size;
4054 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4055
4056 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4057}
3b85c321
DW
4058
4059/**
4060 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 4061 * @mtd: MTD device structure
3b85c321 4062 *
8b6e50c9
BN
4063 * This is the second phase of the normal nand_scan() function. It fills out
4064 * all the uninitialized function pointers with the defaults and scans for a
4065 * bad block table if appropriate.
3b85c321
DW
4066 */
4067int nand_scan_tail(struct mtd_info *mtd)
4068{
4069 int i;
4070 struct nand_chip *chip = mtd->priv;
97de79e0 4071 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 4072 struct nand_buffers *nbuf;
3b85c321 4073
e2414f4c
BN
4074 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4075 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4076 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4077
f02ea4e6
HS
4078 if (!(chip->options & NAND_OWN_BUFFERS)) {
4079 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4080 + mtd->oobsize * 3, GFP_KERNEL);
4081 if (!nbuf)
4082 return -ENOMEM;
4083 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4084 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4085 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4086
4087 chip->buffers = nbuf;
4088 } else {
4089 if (!chip->buffers)
4090 return -ENOMEM;
4091 }
4bf63fcb 4092
7dcdcbef 4093 /* Set the internal oob buffer location, just after the page data */
784f4d5e 4094 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 4095
7aa65bfd 4096 /*
8b6e50c9 4097 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 4098 */
97de79e0 4099 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 4100 switch (mtd->oobsize) {
1da177e4 4101 case 8:
97de79e0 4102 ecc->layout = &nand_oob_8;
1da177e4
LT
4103 break;
4104 case 16:
97de79e0 4105 ecc->layout = &nand_oob_16;
1da177e4
LT
4106 break;
4107 case 64:
97de79e0 4108 ecc->layout = &nand_oob_64;
1da177e4 4109 break;
81ec5364 4110 case 128:
97de79e0 4111 ecc->layout = &nand_oob_128;
81ec5364 4112 break;
1da177e4 4113 default:
d0370219
BN
4114 pr_warn("No oob scheme defined for oobsize %d\n",
4115 mtd->oobsize);
1da177e4
LT
4116 BUG();
4117 }
4118 }
61b03bd7 4119
956e944c
DW
4120 if (!chip->write_page)
4121 chip->write_page = nand_write_page;
4122
61b03bd7 4123 /*
8b6e50c9 4124 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 4125 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 4126 */
956e944c 4127
97de79e0 4128 switch (ecc->mode) {
6e0cb135
SN
4129 case NAND_ECC_HW_OOB_FIRST:
4130 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 4131 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
2ac63d90 4132 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6e0cb135
SN
4133 BUG();
4134 }
97de79e0
HS
4135 if (!ecc->read_page)
4136 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 4137
6dfc6d25 4138 case NAND_ECC_HW:
8b6e50c9 4139 /* Use standard hwecc read page function? */
97de79e0
HS
4140 if (!ecc->read_page)
4141 ecc->read_page = nand_read_page_hwecc;
4142 if (!ecc->write_page)
4143 ecc->write_page = nand_write_page_hwecc;
4144 if (!ecc->read_page_raw)
4145 ecc->read_page_raw = nand_read_page_raw;
4146 if (!ecc->write_page_raw)
4147 ecc->write_page_raw = nand_write_page_raw;
4148 if (!ecc->read_oob)
4149 ecc->read_oob = nand_read_oob_std;
4150 if (!ecc->write_oob)
4151 ecc->write_oob = nand_write_oob_std;
4152 if (!ecc->read_subpage)
4153 ecc->read_subpage = nand_read_subpage;
4154 if (!ecc->write_subpage)
4155 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 4156
6dfc6d25 4157 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
4158 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4159 (!ecc->read_page ||
4160 ecc->read_page == nand_read_page_hwecc ||
4161 !ecc->write_page ||
4162 ecc->write_page == nand_write_page_hwecc)) {
2ac63d90 4163 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6dfc6d25
TG
4164 BUG();
4165 }
8b6e50c9 4166 /* Use standard syndrome read/write page function? */
97de79e0
HS
4167 if (!ecc->read_page)
4168 ecc->read_page = nand_read_page_syndrome;
4169 if (!ecc->write_page)
4170 ecc->write_page = nand_write_page_syndrome;
4171 if (!ecc->read_page_raw)
4172 ecc->read_page_raw = nand_read_page_raw_syndrome;
4173 if (!ecc->write_page_raw)
4174 ecc->write_page_raw = nand_write_page_raw_syndrome;
4175 if (!ecc->read_oob)
4176 ecc->read_oob = nand_read_oob_syndrome;
4177 if (!ecc->write_oob)
4178 ecc->write_oob = nand_write_oob_syndrome;
4179
4180 if (mtd->writesize >= ecc->size) {
4181 if (!ecc->strength) {
e2788c98
MD
4182 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4183 BUG();
4184 }
6dfc6d25 4185 break;
e2788c98 4186 }
2ac63d90
RM
4187 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4188 ecc->size, mtd->writesize);
97de79e0 4189 ecc->mode = NAND_ECC_SOFT;
61b03bd7 4190
6dfc6d25 4191 case NAND_ECC_SOFT:
97de79e0
HS
4192 ecc->calculate = nand_calculate_ecc;
4193 ecc->correct = nand_correct_data;
4194 ecc->read_page = nand_read_page_swecc;
4195 ecc->read_subpage = nand_read_subpage;
4196 ecc->write_page = nand_write_page_swecc;
4197 ecc->read_page_raw = nand_read_page_raw;
4198 ecc->write_page_raw = nand_write_page_raw;
4199 ecc->read_oob = nand_read_oob_std;
4200 ecc->write_oob = nand_write_oob_std;
4201 if (!ecc->size)
4202 ecc->size = 256;
4203 ecc->bytes = 3;
4204 ecc->strength = 1;
1da177e4 4205 break;
61b03bd7 4206
193bd400
ID
4207 case NAND_ECC_SOFT_BCH:
4208 if (!mtd_nand_has_bch()) {
148256fa 4209 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
193bd400
ID
4210 BUG();
4211 }
97de79e0
HS
4212 ecc->calculate = nand_bch_calculate_ecc;
4213 ecc->correct = nand_bch_correct_data;
4214 ecc->read_page = nand_read_page_swecc;
4215 ecc->read_subpage = nand_read_subpage;
4216 ecc->write_page = nand_write_page_swecc;
4217 ecc->read_page_raw = nand_read_page_raw;
4218 ecc->write_page_raw = nand_write_page_raw;
4219 ecc->read_oob = nand_read_oob_std;
4220 ecc->write_oob = nand_write_oob_std;
193bd400 4221 /*
e0377cde
AS
4222 * Board driver should supply ecc.size and ecc.strength values
4223 * to select how many bits are correctable. Otherwise, default
4224 * to 4 bits for large page devices.
193bd400 4225 */
97de79e0
HS
4226 if (!ecc->size && (mtd->oobsize >= 64)) {
4227 ecc->size = 512;
e0377cde 4228 ecc->strength = 4;
193bd400 4229 }
e0377cde
AS
4230
4231 /* See nand_bch_init() for details. */
4232 ecc->bytes = DIV_ROUND_UP(
4233 ecc->strength * fls(8 * ecc->size), 8);
97de79e0
HS
4234 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4235 &ecc->layout);
4236 if (!ecc->priv) {
9a4d4d69 4237 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
4238 BUG();
4239 }
4240 break;
4241
61b03bd7 4242 case NAND_ECC_NONE:
2ac63d90 4243 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4244 ecc->read_page = nand_read_page_raw;
4245 ecc->write_page = nand_write_page_raw;
4246 ecc->read_oob = nand_read_oob_std;
4247 ecc->read_page_raw = nand_read_page_raw;
4248 ecc->write_page_raw = nand_write_page_raw;
4249 ecc->write_oob = nand_write_oob_std;
4250 ecc->size = mtd->writesize;
4251 ecc->bytes = 0;
4252 ecc->strength = 0;
1da177e4 4253 break;
956e944c 4254
1da177e4 4255 default:
97de79e0 4256 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 4257 BUG();
1da177e4 4258 }
61b03bd7 4259
9ce244b3 4260 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4261 if (!ecc->read_oob_raw)
4262 ecc->read_oob_raw = ecc->read_oob;
4263 if (!ecc->write_oob_raw)
4264 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4265
5bd34c09
TG
4266 /*
4267 * The number of bytes available for a client to place data into
8b6e50c9 4268 * the out of band area.
5bd34c09 4269 */
97de79e0
HS
4270 ecc->layout->oobavail = 0;
4271 for (i = 0; ecc->layout->oobfree[i].length
4272 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4273 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4274 mtd->oobavail = ecc->layout->oobavail;
5bd34c09 4275
54c39e9b
TP
4276 /* ECC sanity check: warn if it's too weak */
4277 if (!nand_ecc_strength_good(mtd))
4278 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4279 mtd->name);
67a9ad9b 4280
7aa65bfd
TG
4281 /*
4282 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4283 * mode.
7aa65bfd 4284 */
97de79e0
HS
4285 ecc->steps = mtd->writesize / ecc->size;
4286 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 4287 pr_warn("Invalid ECC parameters\n");
6dfc6d25 4288 BUG();
1da177e4 4289 }
97de79e0 4290 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4291
8b6e50c9 4292 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4293 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4294 switch (ecc->steps) {
29072b96
TG
4295 case 2:
4296 mtd->subpage_sft = 1;
4297 break;
4298 case 4:
4299 case 8:
81ec5364 4300 case 16:
29072b96
TG
4301 mtd->subpage_sft = 2;
4302 break;
4303 }
4304 }
4305 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4306
04bbd0ea 4307 /* Initialize state */
ace4dfee 4308 chip->state = FL_READY;
1da177e4 4309
1da177e4 4310 /* Invalidate the pagebuffer reference */
ace4dfee 4311 chip->pagebuf = -1;
1da177e4 4312
a5ff4f10 4313 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4314 switch (ecc->mode) {
4315 case NAND_ECC_SOFT:
4316 case NAND_ECC_SOFT_BCH:
4317 if (chip->page_shift > 9)
4318 chip->options |= NAND_SUBPAGE_READ;
4319 break;
4320
4321 default:
4322 break;
4323 }
a5ff4f10 4324
1da177e4 4325 /* Fill in remaining MTD driver data */
963d1c28 4326 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4327 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4328 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4329 mtd->_erase = nand_erase;
4330 mtd->_point = NULL;
4331 mtd->_unpoint = NULL;
4332 mtd->_read = nand_read;
4333 mtd->_write = nand_write;
4334 mtd->_panic_write = panic_nand_write;
4335 mtd->_read_oob = nand_read_oob;
4336 mtd->_write_oob = nand_write_oob;
4337 mtd->_sync = nand_sync;
4338 mtd->_lock = NULL;
4339 mtd->_unlock = NULL;
4340 mtd->_suspend = nand_suspend;
4341 mtd->_resume = nand_resume;
72ea4036 4342 mtd->_reboot = nand_shutdown;
8471bb73 4343 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4344 mtd->_block_isbad = nand_block_isbad;
4345 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4346 mtd->writebufsize = mtd->writesize;
1da177e4 4347
6a918bad 4348 /* propagate ecc info to mtd_info */
97de79e0
HS
4349 mtd->ecclayout = ecc->layout;
4350 mtd->ecc_strength = ecc->strength;
4351 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4352 /*
4353 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4354 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4355 * properly set.
4356 */
4357 if (!mtd->bitflip_threshold)
240181fd 4358 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 4359
0040bf38 4360 /* Check, if we should skip the bad block table scan */
ace4dfee 4361 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4362 return 0;
1da177e4
LT
4363
4364 /* Build bad block table */
ace4dfee 4365 return chip->scan_bbt(mtd);
1da177e4 4366}
7351d3a5 4367EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4368
8b6e50c9
BN
4369/*
4370 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4371 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4372 * to call us from in-kernel code if the core NAND support is modular.
4373 */
3b85c321
DW
4374#ifdef MODULE
4375#define caller_is_module() (1)
4376#else
4377#define caller_is_module() \
a6e6abd5 4378 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4379#endif
4380
4381/**
4382 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4383 * @mtd: MTD device structure
4384 * @maxchips: number of chips to scan for
3b85c321 4385 *
8b6e50c9
BN
4386 * This fills out all the uninitialized function pointers with the defaults.
4387 * The flash ID is read and the mtd/chip structures are filled with the
4388 * appropriate values. The mtd->owner field must be set to the module of the
4389 * caller.
3b85c321
DW
4390 */
4391int nand_scan(struct mtd_info *mtd, int maxchips)
4392{
4393 int ret;
4394
4395 /* Many callers got this wrong, so check for it for a while... */
4396 if (!mtd->owner && caller_is_module()) {
d0370219 4397 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4398 BUG();
4399 }
4400
5e81e88a 4401 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4402 if (!ret)
4403 ret = nand_scan_tail(mtd);
4404 return ret;
4405}
7351d3a5 4406EXPORT_SYMBOL(nand_scan);
3b85c321 4407
1da177e4 4408/**
61b03bd7 4409 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4410 * @mtd: MTD device structure
4411 */
e0c7d767 4412void nand_release(struct mtd_info *mtd)
1da177e4 4413{
ace4dfee 4414 struct nand_chip *chip = mtd->priv;
1da177e4 4415
193bd400
ID
4416 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4417 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4418
5ffcaf3d 4419 mtd_device_unregister(mtd);
1da177e4 4420
fa671646 4421 /* Free bad block table memory */
ace4dfee 4422 kfree(chip->bbt);
4bf63fcb
DW
4423 if (!(chip->options & NAND_OWN_BUFFERS))
4424 kfree(chip->buffers);
58373ff0
BN
4425
4426 /* Free bad block descriptor memory */
4427 if (chip->badblock_pattern && chip->badblock_pattern->options
4428 & NAND_BBT_DYNAMICSTRUCT)
4429 kfree(chip->badblock_pattern);
1da177e4 4430}
e0c7d767 4431EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
4432
4433static int __init nand_base_init(void)
4434{
4435 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4436 return 0;
4437}
4438
4439static void __exit nand_base_exit(void)
4440{
4441 led_trigger_unregister_simple(nand_led_trigger);
4442}
4443
4444module_init(nand_base_init);
4445module_exit(nand_base_exit);
4446
e0c7d767 4447MODULE_LICENSE("GPL");
7351d3a5
FF
4448MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4449MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4450MODULE_DESCRIPTION("Generic NAND flash driver code");