]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: nand: style fixups in pr_* messages
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 24 * if we have HW ECC support.
1da177e4
LT
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
ace4dfee 96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 97 int new_state);
1da177e4 98
8593fbc6
TG
99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 struct mtd_oob_ops *ops);
101
d470a97c 102/*
8e87d782 103 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
104 * compiled away when LED support is disabled.
105 */
106DEFINE_LED_TRIGGER(nand_led_trigger);
107
6fe5a6ac
VS
108static int check_offs_len(struct mtd_info *mtd,
109 loff_t ofs, uint64_t len)
110{
111 struct nand_chip *chip = mtd->priv;
112 int ret = 0;
113
114 /* Start address must align on block boundary */
115 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
117 ret = -EINVAL;
118 }
119
120 /* Length must align on block boundary */
121 if (len & ((1 << chip->phys_erase_shift) - 1)) {
122 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
123 __func__);
124 ret = -EINVAL;
125 }
126
127 /* Do not allow past end of device */
128 if (ofs + len > mtd->size) {
129 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
130 __func__);
131 ret = -EINVAL;
132 }
133
134 return ret;
135}
136
1da177e4
LT
137/**
138 * nand_release_device - [GENERIC] release chip
8b6e50c9 139 * @mtd: MTD device structure
61b03bd7 140 *
8b6e50c9 141 * Deselect, release chip lock and wake up anyone waiting on the device.
1da177e4 142 */
e0c7d767 143static void nand_release_device(struct mtd_info *mtd)
1da177e4 144{
ace4dfee 145 struct nand_chip *chip = mtd->priv;
1da177e4
LT
146
147 /* De-select the NAND device */
ace4dfee 148 chip->select_chip(mtd, -1);
0dfc6246 149
a36ed299 150 /* Release the controller and the chip */
ace4dfee
TG
151 spin_lock(&chip->controller->lock);
152 chip->controller->active = NULL;
153 chip->state = FL_READY;
154 wake_up(&chip->controller->wq);
155 spin_unlock(&chip->controller->lock);
1da177e4
LT
156}
157
158/**
159 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 160 * @mtd: MTD device structure
1da177e4 161 *
7854d3f7 162 * Default read function for 8bit buswidth
1da177e4 163 */
58dd8f2b 164static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 165{
ace4dfee
TG
166 struct nand_chip *chip = mtd->priv;
167 return readb(chip->IO_ADDR_R);
1da177e4
LT
168}
169
1da177e4
LT
170/**
171 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
7854d3f7 172 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 173 * @mtd: MTD device structure
1da177e4 174 *
7854d3f7
BN
175 * Default read function for 16bit buswidth with endianness conversion.
176 *
1da177e4 177 */
58dd8f2b 178static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 179{
ace4dfee
TG
180 struct nand_chip *chip = mtd->priv;
181 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
182}
183
1da177e4
LT
184/**
185 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 186 * @mtd: MTD device structure
1da177e4 187 *
7854d3f7 188 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
189 */
190static u16 nand_read_word(struct mtd_info *mtd)
191{
ace4dfee
TG
192 struct nand_chip *chip = mtd->priv;
193 return readw(chip->IO_ADDR_R);
1da177e4
LT
194}
195
1da177e4
LT
196/**
197 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
198 * @mtd: MTD device structure
199 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
200 *
201 * Default select function for 1 chip devices.
202 */
ace4dfee 203static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 204{
ace4dfee
TG
205 struct nand_chip *chip = mtd->priv;
206
207 switch (chipnr) {
1da177e4 208 case -1:
ace4dfee 209 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
210 break;
211 case 0:
1da177e4
LT
212 break;
213
214 default:
215 BUG();
216 }
217}
218
219/**
220 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
221 * @mtd: MTD device structure
222 * @buf: data buffer
223 * @len: number of bytes to write
1da177e4 224 *
7854d3f7 225 * Default write function for 8bit buswidth.
1da177e4 226 */
58dd8f2b 227static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
228{
229 int i;
ace4dfee 230 struct nand_chip *chip = mtd->priv;
1da177e4 231
e0c7d767 232 for (i = 0; i < len; i++)
ace4dfee 233 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
234}
235
236/**
61b03bd7 237 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
238 * @mtd: MTD device structure
239 * @buf: buffer to store date
240 * @len: number of bytes to read
1da177e4 241 *
7854d3f7 242 * Default read function for 8bit buswidth.
1da177e4 243 */
58dd8f2b 244static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
245{
246 int i;
ace4dfee 247 struct nand_chip *chip = mtd->priv;
1da177e4 248
e0c7d767 249 for (i = 0; i < len; i++)
ace4dfee 250 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
251}
252
253/**
61b03bd7 254 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
8b6e50c9
BN
255 * @mtd: MTD device structure
256 * @buf: buffer containing the data to compare
257 * @len: number of bytes to compare
1da177e4 258 *
7854d3f7 259 * Default verify function for 8bit buswidth.
1da177e4 260 */
58dd8f2b 261static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
262{
263 int i;
ace4dfee 264 struct nand_chip *chip = mtd->priv;
1da177e4 265
e0c7d767 266 for (i = 0; i < len; i++)
ace4dfee 267 if (buf[i] != readb(chip->IO_ADDR_R))
1da177e4 268 return -EFAULT;
1da177e4
LT
269 return 0;
270}
271
272/**
273 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
274 * @mtd: MTD device structure
275 * @buf: data buffer
276 * @len: number of bytes to write
1da177e4 277 *
7854d3f7 278 * Default write function for 16bit buswidth.
1da177e4 279 */
58dd8f2b 280static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
281{
282 int i;
ace4dfee 283 struct nand_chip *chip = mtd->priv;
1da177e4
LT
284 u16 *p = (u16 *) buf;
285 len >>= 1;
61b03bd7 286
e0c7d767 287 for (i = 0; i < len; i++)
ace4dfee 288 writew(p[i], chip->IO_ADDR_W);
61b03bd7 289
1da177e4
LT
290}
291
292/**
61b03bd7 293 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
294 * @mtd: MTD device structure
295 * @buf: buffer to store date
296 * @len: number of bytes to read
1da177e4 297 *
7854d3f7 298 * Default read function for 16bit buswidth.
1da177e4 299 */
58dd8f2b 300static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
301{
302 int i;
ace4dfee 303 struct nand_chip *chip = mtd->priv;
1da177e4
LT
304 u16 *p = (u16 *) buf;
305 len >>= 1;
306
e0c7d767 307 for (i = 0; i < len; i++)
ace4dfee 308 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
309}
310
311/**
61b03bd7 312 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
8b6e50c9
BN
313 * @mtd: MTD device structure
314 * @buf: buffer containing the data to compare
315 * @len: number of bytes to compare
1da177e4 316 *
7854d3f7 317 * Default verify function for 16bit buswidth.
1da177e4 318 */
58dd8f2b 319static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
320{
321 int i;
ace4dfee 322 struct nand_chip *chip = mtd->priv;
1da177e4
LT
323 u16 *p = (u16 *) buf;
324 len >>= 1;
325
e0c7d767 326 for (i = 0; i < len; i++)
ace4dfee 327 if (p[i] != readw(chip->IO_ADDR_R))
1da177e4
LT
328 return -EFAULT;
329
330 return 0;
331}
332
333/**
334 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
335 * @mtd: MTD device structure
336 * @ofs: offset from device start
337 * @getchip: 0, if the chip is already selected
1da177e4 338 *
61b03bd7 339 * Check, if the block is bad.
1da177e4
LT
340 */
341static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
342{
343 int page, chipnr, res = 0;
ace4dfee 344 struct nand_chip *chip = mtd->priv;
1da177e4
LT
345 u16 bad;
346
5fb1549d 347 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
348 ofs += mtd->erasesize - mtd->writesize;
349
1a12f46a
TK
350 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351
1da177e4 352 if (getchip) {
ace4dfee 353 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 354
ace4dfee 355 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
356
357 /* Select the NAND device */
ace4dfee 358 chip->select_chip(mtd, chipnr);
1a12f46a 359 }
1da177e4 360
ace4dfee
TG
361 if (chip->options & NAND_BUSWIDTH_16) {
362 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
1a12f46a 363 page);
ace4dfee
TG
364 bad = cpu_to_le16(chip->read_word(mtd));
365 if (chip->badblockpos & 0x1)
49196f33 366 bad >>= 8;
e0b58d0a
ML
367 else
368 bad &= 0xFF;
1da177e4 369 } else {
1a12f46a 370 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
e0b58d0a 371 bad = chip->read_byte(mtd);
1da177e4 372 }
61b03bd7 373
e0b58d0a
ML
374 if (likely(chip->badblockbits == 8))
375 res = bad != 0xFF;
376 else
377 res = hweight8(bad) < chip->badblockbits;
378
ace4dfee 379 if (getchip)
1da177e4 380 nand_release_device(mtd);
61b03bd7 381
1da177e4
LT
382 return res;
383}
384
385/**
386 * nand_default_block_markbad - [DEFAULT] mark a block bad
8b6e50c9
BN
387 * @mtd: MTD device structure
388 * @ofs: offset from device start
1da177e4 389 *
8b6e50c9
BN
390 * This is the default implementation, which can be overridden by a hardware
391 * specific driver.
1da177e4
LT
392*/
393static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394{
ace4dfee 395 struct nand_chip *chip = mtd->priv;
58dd8f2b 396 uint8_t buf[2] = { 0, 0 };
02ed70bb 397 int block, ret, i = 0;
61b03bd7 398
5fb1549d 399 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
400 ofs += mtd->erasesize - mtd->writesize;
401
1da177e4 402 /* Get block number */
4226b510 403 block = (int)(ofs >> chip->bbt_erase_shift);
ace4dfee
TG
404 if (chip->bbt)
405 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4 406
8b6e50c9 407 /* Do we have a flash based bad block table? */
bb9ebd4e 408 if (chip->bbt_options & NAND_BBT_USE_FLASH)
f1a28c02
TG
409 ret = nand_update_bbt(mtd, ofs);
410 else {
c0b8ba7b 411 nand_get_device(chip, mtd, FL_WRITING);
f1a28c02 412
a0dc5529
BN
413 /*
414 * Write to first two pages if necessary. If we write to more
415 * than one location, the first error encountered quits the
416 * procedure. We write two bytes per location, so we dont have
417 * to mess with 16 bit access.
02ed70bb
BN
418 */
419 do {
420 chip->ops.len = chip->ops.ooblen = 2;
421 chip->ops.datbuf = NULL;
422 chip->ops.oobbuf = buf;
423 chip->ops.ooboffs = chip->badblockpos & ~0x01;
424
425 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
426
02ed70bb
BN
427 i++;
428 ofs += mtd->writesize;
5fb1549d 429 } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) &&
02ed70bb
BN
430 i < 2);
431
c0b8ba7b 432 nand_release_device(mtd);
f1a28c02
TG
433 }
434 if (!ret)
435 mtd->ecc_stats.badblocks++;
c0b8ba7b 436
f1a28c02 437 return ret;
1da177e4
LT
438}
439
61b03bd7 440/**
1da177e4 441 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 442 * @mtd: MTD device structure
1da177e4 443 *
8b6e50c9
BN
444 * Check, if the device is write protected. The function expects, that the
445 * device is already selected.
1da177e4 446 */
e0c7d767 447static int nand_check_wp(struct mtd_info *mtd)
1da177e4 448{
ace4dfee 449 struct nand_chip *chip = mtd->priv;
93edbad6 450
8b6e50c9 451 /* Broken xD cards report WP despite being writable */
93edbad6
ML
452 if (chip->options & NAND_BROKEN_XD)
453 return 0;
454
1da177e4 455 /* Check the WP bit */
ace4dfee
TG
456 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
457 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
458}
459
460/**
461 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
462 * @mtd: MTD device structure
463 * @ofs: offset from device start
464 * @getchip: 0, if the chip is already selected
465 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
466 *
467 * Check, if the block is bad. Either by reading the bad block table or
468 * calling of the scan function.
469 */
2c0a2bed
TG
470static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
471 int allowbbt)
1da177e4 472{
ace4dfee 473 struct nand_chip *chip = mtd->priv;
61b03bd7 474
ace4dfee
TG
475 if (!chip->bbt)
476 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 477
1da177e4 478 /* Return info from the table */
e0c7d767 479 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
480}
481
2af7c653
SK
482/**
483 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
484 * @mtd: MTD device structure
485 * @timeo: Timeout
2af7c653
SK
486 *
487 * Helper function for nand_wait_ready used when needing to wait in interrupt
488 * context.
489 */
490static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
491{
492 struct nand_chip *chip = mtd->priv;
493 int i;
494
495 /* Wait for the device to get ready */
496 for (i = 0; i < timeo; i++) {
497 if (chip->dev_ready(mtd))
498 break;
499 touch_softlockup_watchdog();
500 mdelay(1);
501 }
502}
503
7854d3f7 504/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 505void nand_wait_ready(struct mtd_info *mtd)
3b88775c 506{
ace4dfee 507 struct nand_chip *chip = mtd->priv;
e0c7d767 508 unsigned long timeo = jiffies + 2;
3b88775c 509
2af7c653
SK
510 /* 400ms timeout */
511 if (in_interrupt() || oops_in_progress)
512 return panic_nand_wait_ready(mtd, 400);
513
8fe833c1 514 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 515 /* Wait until command is processed or timeout occurs */
3b88775c 516 do {
ace4dfee 517 if (chip->dev_ready(mtd))
8fe833c1 518 break;
8446f1d3 519 touch_softlockup_watchdog();
61b03bd7 520 } while (time_before(jiffies, timeo));
8fe833c1 521 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 522}
4b648b02 523EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 524
1da177e4
LT
525/**
526 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
527 * @mtd: MTD device structure
528 * @command: the command to be sent
529 * @column: the column address for this command, -1 if none
530 * @page_addr: the page address for this command, -1 if none
1da177e4 531 *
8b6e50c9
BN
532 * Send command to NAND device. This function is used for small page devices
533 * (256/512 Bytes per page).
1da177e4 534 */
7abd3ef9
TG
535static void nand_command(struct mtd_info *mtd, unsigned int command,
536 int column, int page_addr)
1da177e4 537{
ace4dfee 538 register struct nand_chip *chip = mtd->priv;
7abd3ef9 539 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 540
8b6e50c9 541 /* Write out the command to the device */
1da177e4
LT
542 if (command == NAND_CMD_SEQIN) {
543 int readcmd;
544
28318776 545 if (column >= mtd->writesize) {
1da177e4 546 /* OOB area */
28318776 547 column -= mtd->writesize;
1da177e4
LT
548 readcmd = NAND_CMD_READOOB;
549 } else if (column < 256) {
550 /* First 256 bytes --> READ0 */
551 readcmd = NAND_CMD_READ0;
552 } else {
553 column -= 256;
554 readcmd = NAND_CMD_READ1;
555 }
ace4dfee 556 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 557 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 558 }
ace4dfee 559 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 560
8b6e50c9 561 /* Address cycle, when necessary */
7abd3ef9
TG
562 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
563 /* Serially input address */
564 if (column != -1) {
565 /* Adjust columns for 16 bit buswidth */
ace4dfee 566 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 567 column >>= 1;
ace4dfee 568 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
569 ctrl &= ~NAND_CTRL_CHANGE;
570 }
571 if (page_addr != -1) {
ace4dfee 572 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 573 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 574 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 575 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
576 if (chip->chipsize > (32 << 20))
577 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 578 }
ace4dfee 579 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
580
581 /*
8b6e50c9
BN
582 * Program and erase have their own busy handlers status and sequential
583 * in needs no delay
e0c7d767 584 */
1da177e4 585 switch (command) {
61b03bd7 586
1da177e4
LT
587 case NAND_CMD_PAGEPROG:
588 case NAND_CMD_ERASE1:
589 case NAND_CMD_ERASE2:
590 case NAND_CMD_SEQIN:
591 case NAND_CMD_STATUS:
592 return;
593
594 case NAND_CMD_RESET:
ace4dfee 595 if (chip->dev_ready)
1da177e4 596 break;
ace4dfee
TG
597 udelay(chip->chip_delay);
598 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 599 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
600 chip->cmd_ctrl(mtd,
601 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
602 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
603 ;
1da177e4
LT
604 return;
605
e0c7d767 606 /* This applies to read commands */
1da177e4 607 default:
61b03bd7 608 /*
1da177e4
LT
609 * If we don't have access to the busy pin, we apply the given
610 * command delay
e0c7d767 611 */
ace4dfee
TG
612 if (!chip->dev_ready) {
613 udelay(chip->chip_delay);
1da177e4 614 return;
61b03bd7 615 }
1da177e4 616 }
8b6e50c9
BN
617 /*
618 * Apply this short delay always to ensure that we do wait tWB in
619 * any case on any machine.
620 */
e0c7d767 621 ndelay(100);
3b88775c
TG
622
623 nand_wait_ready(mtd);
1da177e4
LT
624}
625
626/**
627 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
628 * @mtd: MTD device structure
629 * @command: the command to be sent
630 * @column: the column address for this command, -1 if none
631 * @page_addr: the page address for this command, -1 if none
1da177e4 632 *
7abd3ef9 633 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
634 * devices. We don't have the separate regions as we have in the small page
635 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 636 */
7abd3ef9
TG
637static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
638 int column, int page_addr)
1da177e4 639{
ace4dfee 640 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
641
642 /* Emulate NAND_CMD_READOOB */
643 if (command == NAND_CMD_READOOB) {
28318776 644 column += mtd->writesize;
1da177e4
LT
645 command = NAND_CMD_READ0;
646 }
61b03bd7 647
7abd3ef9 648 /* Command latch cycle */
ace4dfee 649 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 650 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
651
652 if (column != -1 || page_addr != -1) {
7abd3ef9 653 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
654
655 /* Serially input address */
656 if (column != -1) {
657 /* Adjust columns for 16 bit buswidth */
ace4dfee 658 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 659 column >>= 1;
ace4dfee 660 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 661 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 662 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 663 }
1da177e4 664 if (page_addr != -1) {
ace4dfee
TG
665 chip->cmd_ctrl(mtd, page_addr, ctrl);
666 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 667 NAND_NCE | NAND_ALE);
1da177e4 668 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
669 if (chip->chipsize > (128 << 20))
670 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 671 NAND_NCE | NAND_ALE);
1da177e4 672 }
1da177e4 673 }
ace4dfee 674 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
675
676 /*
8b6e50c9
BN
677 * Program and erase have their own busy handlers status, sequential
678 * in, and deplete1 need no delay.
30f464b7 679 */
1da177e4 680 switch (command) {
61b03bd7 681
1da177e4
LT
682 case NAND_CMD_CACHEDPROG:
683 case NAND_CMD_PAGEPROG:
684 case NAND_CMD_ERASE1:
685 case NAND_CMD_ERASE2:
686 case NAND_CMD_SEQIN:
7bc3312b 687 case NAND_CMD_RNDIN:
1da177e4 688 case NAND_CMD_STATUS:
30f464b7 689 case NAND_CMD_DEPLETE1:
1da177e4
LT
690 return;
691
30f464b7
DM
692 case NAND_CMD_STATUS_ERROR:
693 case NAND_CMD_STATUS_ERROR0:
694 case NAND_CMD_STATUS_ERROR1:
695 case NAND_CMD_STATUS_ERROR2:
696 case NAND_CMD_STATUS_ERROR3:
8b6e50c9 697 /* Read error status commands require only a short delay */
ace4dfee 698 udelay(chip->chip_delay);
30f464b7 699 return;
1da177e4
LT
700
701 case NAND_CMD_RESET:
ace4dfee 702 if (chip->dev_ready)
1da177e4 703 break;
ace4dfee 704 udelay(chip->chip_delay);
12efdde3
TG
705 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
706 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
707 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
708 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
709 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
710 ;
1da177e4
LT
711 return;
712
7bc3312b
TG
713 case NAND_CMD_RNDOUT:
714 /* No ready / busy check necessary */
715 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
716 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
717 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
718 NAND_NCE | NAND_CTRL_CHANGE);
719 return;
720
1da177e4 721 case NAND_CMD_READ0:
12efdde3
TG
722 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
723 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
725 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 726
e0c7d767 727 /* This applies to read commands */
1da177e4 728 default:
61b03bd7 729 /*
1da177e4 730 * If we don't have access to the busy pin, we apply the given
8b6e50c9 731 * command delay.
e0c7d767 732 */
ace4dfee
TG
733 if (!chip->dev_ready) {
734 udelay(chip->chip_delay);
1da177e4 735 return;
61b03bd7 736 }
1da177e4 737 }
3b88775c 738
8b6e50c9
BN
739 /*
740 * Apply this short delay always to ensure that we do wait tWB in
741 * any case on any machine.
742 */
e0c7d767 743 ndelay(100);
3b88775c
TG
744
745 nand_wait_ready(mtd);
1da177e4
LT
746}
747
2af7c653
SK
748/**
749 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
750 * @chip: the nand chip descriptor
751 * @mtd: MTD device structure
752 * @new_state: the state which is requested
2af7c653
SK
753 *
754 * Used when in panic, no locks are taken.
755 */
756static void panic_nand_get_device(struct nand_chip *chip,
757 struct mtd_info *mtd, int new_state)
758{
7854d3f7 759 /* Hardware controller shared among independent devices */
2af7c653
SK
760 chip->controller->active = chip;
761 chip->state = new_state;
762}
763
1da177e4
LT
764/**
765 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
766 * @chip: the nand chip descriptor
767 * @mtd: MTD device structure
768 * @new_state: the state which is requested
1da177e4
LT
769 *
770 * Get the device and lock it for exclusive access
771 */
2c0a2bed 772static int
ace4dfee 773nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 774{
ace4dfee
TG
775 spinlock_t *lock = &chip->controller->lock;
776 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 777 DECLARE_WAITQUEUE(wait, current);
7351d3a5 778retry:
0dfc6246
TG
779 spin_lock(lock);
780
b8b3ee9a 781 /* Hardware controller shared among independent devices */
ace4dfee
TG
782 if (!chip->controller->active)
783 chip->controller->active = chip;
a36ed299 784
ace4dfee
TG
785 if (chip->controller->active == chip && chip->state == FL_READY) {
786 chip->state = new_state;
0dfc6246 787 spin_unlock(lock);
962034f4
VW
788 return 0;
789 }
790 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
791 if (chip->controller->active->state == FL_PM_SUSPENDED) {
792 chip->state = FL_PM_SUSPENDED;
793 spin_unlock(lock);
794 return 0;
6b0d9a84 795 }
0dfc6246
TG
796 }
797 set_current_state(TASK_UNINTERRUPTIBLE);
798 add_wait_queue(wq, &wait);
799 spin_unlock(lock);
800 schedule();
801 remove_wait_queue(wq, &wait);
1da177e4
LT
802 goto retry;
803}
804
2af7c653 805/**
8b6e50c9
BN
806 * panic_nand_wait - [GENERIC] wait until the command is done
807 * @mtd: MTD device structure
808 * @chip: NAND chip structure
809 * @timeo: timeout
2af7c653
SK
810 *
811 * Wait for command done. This is a helper function for nand_wait used when
812 * we are in interrupt context. May happen when in panic and trying to write
b595076a 813 * an oops through mtdoops.
2af7c653
SK
814 */
815static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
816 unsigned long timeo)
817{
818 int i;
819 for (i = 0; i < timeo; i++) {
820 if (chip->dev_ready) {
821 if (chip->dev_ready(mtd))
822 break;
823 } else {
824 if (chip->read_byte(mtd) & NAND_STATUS_READY)
825 break;
826 }
827 mdelay(1);
f8ac0414 828 }
2af7c653
SK
829}
830
1da177e4 831/**
8b6e50c9
BN
832 * nand_wait - [DEFAULT] wait until the command is done
833 * @mtd: MTD device structure
834 * @chip: NAND chip structure
1da177e4 835 *
8b6e50c9
BN
836 * Wait for command done. This applies to erase and program only. Erase can
837 * take up to 400ms and program up to 20ms according to general NAND and
838 * SmartMedia specs.
844d3b42 839 */
7bc3312b 840static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
841{
842
e0c7d767 843 unsigned long timeo = jiffies;
7bc3312b 844 int status, state = chip->state;
61b03bd7 845
1da177e4 846 if (state == FL_ERASING)
e0c7d767 847 timeo += (HZ * 400) / 1000;
1da177e4 848 else
e0c7d767 849 timeo += (HZ * 20) / 1000;
1da177e4 850
8fe833c1
RP
851 led_trigger_event(nand_led_trigger, LED_FULL);
852
8b6e50c9
BN
853 /*
854 * Apply this short delay always to ensure that we do wait tWB in any
855 * case on any machine.
856 */
e0c7d767 857 ndelay(100);
1da177e4 858
ace4dfee
TG
859 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
860 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 861 else
ace4dfee 862 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 863
2af7c653
SK
864 if (in_interrupt() || oops_in_progress)
865 panic_nand_wait(mtd, chip, timeo);
866 else {
867 while (time_before(jiffies, timeo)) {
868 if (chip->dev_ready) {
869 if (chip->dev_ready(mtd))
870 break;
871 } else {
872 if (chip->read_byte(mtd) & NAND_STATUS_READY)
873 break;
874 }
875 cond_resched();
1da177e4 876 }
1da177e4 877 }
8fe833c1
RP
878 led_trigger_event(nand_led_trigger, LED_OFF);
879
ace4dfee 880 status = (int)chip->read_byte(mtd);
1da177e4
LT
881 return status;
882}
883
7d70f334 884/**
b6d676db 885 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
886 * @mtd: mtd info
887 * @ofs: offset to start unlock from
888 * @len: length to unlock
8b6e50c9
BN
889 * @invert: when = 0, unlock the range of blocks within the lower and
890 * upper boundary address
891 * when = 1, unlock the range of blocks outside the boundaries
892 * of the lower and upper boundary address
7d70f334 893 *
8b6e50c9 894 * Returs unlock status.
7d70f334
VS
895 */
896static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
897 uint64_t len, int invert)
898{
899 int ret = 0;
900 int status, page;
901 struct nand_chip *chip = mtd->priv;
902
903 /* Submit address of first page to unlock */
904 page = ofs >> chip->page_shift;
905 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
906
907 /* Submit address of last page to unlock */
908 page = (ofs + len) >> chip->page_shift;
909 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
910 (page | invert) & chip->pagemask);
911
912 /* Call wait ready function */
913 status = chip->waitfunc(mtd, chip);
7d70f334
VS
914 /* See if device thinks it succeeded */
915 if (status & 0x01) {
916 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
917 __func__, status);
918 ret = -EIO;
919 }
920
921 return ret;
922}
923
924/**
b6d676db 925 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
926 * @mtd: mtd info
927 * @ofs: offset to start unlock from
928 * @len: length to unlock
7d70f334 929 *
8b6e50c9 930 * Returns unlock status.
7d70f334
VS
931 */
932int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
933{
934 int ret = 0;
935 int chipnr;
936 struct nand_chip *chip = mtd->priv;
937
938 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
939 __func__, (unsigned long long)ofs, len);
940
941 if (check_offs_len(mtd, ofs, len))
942 ret = -EINVAL;
943
944 /* Align to last block address if size addresses end of the device */
945 if (ofs + len == mtd->size)
946 len -= mtd->erasesize;
947
948 nand_get_device(chip, mtd, FL_UNLOCKING);
949
950 /* Shift to get chip number */
951 chipnr = ofs >> chip->chip_shift;
952
953 chip->select_chip(mtd, chipnr);
954
955 /* Check, if it is write protected */
956 if (nand_check_wp(mtd)) {
957 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
958 __func__);
959 ret = -EIO;
960 goto out;
961 }
962
963 ret = __nand_unlock(mtd, ofs, len, 0);
964
965out:
7d70f334
VS
966 nand_release_device(mtd);
967
968 return ret;
969}
7351d3a5 970EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
971
972/**
b6d676db 973 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
974 * @mtd: mtd info
975 * @ofs: offset to start unlock from
976 * @len: length to unlock
7d70f334 977 *
8b6e50c9
BN
978 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
979 * have this feature, but it allows only to lock all blocks, not for specified
980 * range for block. Implementing 'lock' feature by making use of 'unlock', for
981 * now.
7d70f334 982 *
8b6e50c9 983 * Returns lock status.
7d70f334
VS
984 */
985int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
986{
987 int ret = 0;
988 int chipnr, status, page;
989 struct nand_chip *chip = mtd->priv;
990
991 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
992 __func__, (unsigned long long)ofs, len);
993
994 if (check_offs_len(mtd, ofs, len))
995 ret = -EINVAL;
996
997 nand_get_device(chip, mtd, FL_LOCKING);
998
999 /* Shift to get chip number */
1000 chipnr = ofs >> chip->chip_shift;
1001
1002 chip->select_chip(mtd, chipnr);
1003
1004 /* Check, if it is write protected */
1005 if (nand_check_wp(mtd)) {
1006 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1007 __func__);
1008 status = MTD_ERASE_FAILED;
1009 ret = -EIO;
1010 goto out;
1011 }
1012
1013 /* Submit address of first page to lock */
1014 page = ofs >> chip->page_shift;
1015 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1016
1017 /* Call wait ready function */
1018 status = chip->waitfunc(mtd, chip);
7d70f334
VS
1019 /* See if device thinks it succeeded */
1020 if (status & 0x01) {
1021 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1022 __func__, status);
1023 ret = -EIO;
1024 goto out;
1025 }
1026
1027 ret = __nand_unlock(mtd, ofs, len, 0x1);
1028
1029out:
7d70f334
VS
1030 nand_release_device(mtd);
1031
1032 return ret;
1033}
7351d3a5 1034EXPORT_SYMBOL(nand_lock);
7d70f334 1035
8593fbc6 1036/**
7854d3f7 1037 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1038 * @mtd: mtd info structure
1039 * @chip: nand chip info structure
1040 * @buf: buffer to store read data
1041 * @page: page number to read
52ff49df 1042 *
7854d3f7 1043 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1044 */
1045static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1046 uint8_t *buf, int page)
8593fbc6
TG
1047{
1048 chip->read_buf(mtd, buf, mtd->writesize);
1049 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1050 return 0;
1051}
1052
52ff49df 1053/**
7854d3f7 1054 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
1058 * @page: page number to read
52ff49df
DB
1059 *
1060 * We need a special oob layout and handling even when OOB isn't used.
1061 */
7351d3a5
FF
1062static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1063 struct nand_chip *chip,
1064 uint8_t *buf, int page)
52ff49df
DB
1065{
1066 int eccsize = chip->ecc.size;
1067 int eccbytes = chip->ecc.bytes;
1068 uint8_t *oob = chip->oob_poi;
1069 int steps, size;
1070
1071 for (steps = chip->ecc.steps; steps > 0; steps--) {
1072 chip->read_buf(mtd, buf, eccsize);
1073 buf += eccsize;
1074
1075 if (chip->ecc.prepad) {
1076 chip->read_buf(mtd, oob, chip->ecc.prepad);
1077 oob += chip->ecc.prepad;
1078 }
1079
1080 chip->read_buf(mtd, oob, eccbytes);
1081 oob += eccbytes;
1082
1083 if (chip->ecc.postpad) {
1084 chip->read_buf(mtd, oob, chip->ecc.postpad);
1085 oob += chip->ecc.postpad;
1086 }
1087 }
1088
1089 size = mtd->oobsize - (oob - chip->oob_poi);
1090 if (size)
1091 chip->read_buf(mtd, oob, size);
1092
1093 return 0;
1094}
1095
1da177e4 1096/**
7854d3f7 1097 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1098 * @mtd: mtd info structure
1099 * @chip: nand chip info structure
1100 * @buf: buffer to store read data
1101 * @page: page number to read
068e3c0a 1102 */
f5bbdacc 1103static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1104 uint8_t *buf, int page)
1da177e4 1105{
f5bbdacc
TG
1106 int i, eccsize = chip->ecc.size;
1107 int eccbytes = chip->ecc.bytes;
1108 int eccsteps = chip->ecc.steps;
1109 uint8_t *p = buf;
4bf63fcb
DW
1110 uint8_t *ecc_calc = chip->buffers->ecccalc;
1111 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1112 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc 1113
46a8cf2d 1114 chip->ecc.read_page_raw(mtd, chip, buf, page);
f5bbdacc
TG
1115
1116 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1117 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1118
1119 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1120 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1121
1122 eccsteps = chip->ecc.steps;
1123 p = buf;
1124
1125 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1126 int stat;
1127
1128 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1129 if (stat < 0)
f5bbdacc
TG
1130 mtd->ecc_stats.failed++;
1131 else
1132 mtd->ecc_stats.corrected += stat;
1133 }
1134 return 0;
22c60f5f 1135}
1da177e4 1136
3d459559 1137/**
7854d3f7 1138 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
8b6e50c9
BN
1139 * @mtd: mtd info structure
1140 * @chip: nand chip info structure
1141 * @data_offs: offset of requested data within the page
1142 * @readlen: data length
1143 * @bufpoi: buffer to store read data
3d459559 1144 */
7351d3a5
FF
1145static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1146 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1147{
1148 int start_step, end_step, num_steps;
1149 uint32_t *eccpos = chip->ecc.layout->eccpos;
1150 uint8_t *p;
1151 int data_col_addr, i, gaps = 0;
1152 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1153 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1154 int index = 0;
3d459559 1155
7854d3f7 1156 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1157 start_step = data_offs / chip->ecc.size;
1158 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1159 num_steps = end_step - start_step + 1;
1160
8b6e50c9 1161 /* Data size aligned to ECC ecc.size */
3d459559
AK
1162 datafrag_len = num_steps * chip->ecc.size;
1163 eccfrag_len = num_steps * chip->ecc.bytes;
1164
1165 data_col_addr = start_step * chip->ecc.size;
1166 /* If we read not a page aligned data */
1167 if (data_col_addr != 0)
1168 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1169
1170 p = bufpoi + data_col_addr;
1171 chip->read_buf(mtd, p, datafrag_len);
1172
8b6e50c9 1173 /* Calculate ECC */
3d459559
AK
1174 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1175 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1176
8b6e50c9
BN
1177 /*
1178 * The performance is faster if we position offsets according to
7854d3f7 1179 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1180 */
3d459559
AK
1181 for (i = 0; i < eccfrag_len - 1; i++) {
1182 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1183 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1184 gaps = 1;
1185 break;
1186 }
1187 }
1188 if (gaps) {
1189 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1190 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1191 } else {
8b6e50c9 1192 /*
7854d3f7 1193 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1194 * about buswidth alignment in read_buf.
1195 */
7351d3a5
FF
1196 index = start_step * chip->ecc.bytes;
1197
1198 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1199 aligned_len = eccfrag_len;
7351d3a5 1200 if (eccpos[index] & (busw - 1))
3d459559 1201 aligned_len++;
7351d3a5 1202 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1203 aligned_len++;
1204
7351d3a5
FF
1205 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1206 mtd->writesize + aligned_pos, -1);
3d459559
AK
1207 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1208 }
1209
1210 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1211 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1212
1213 p = bufpoi + data_col_addr;
1214 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1215 int stat;
1216
7351d3a5
FF
1217 stat = chip->ecc.correct(mtd, p,
1218 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
12c8eb98 1219 if (stat < 0)
3d459559
AK
1220 mtd->ecc_stats.failed++;
1221 else
1222 mtd->ecc_stats.corrected += stat;
1223 }
1224 return 0;
1225}
1226
068e3c0a 1227/**
7854d3f7 1228 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1229 * @mtd: mtd info structure
1230 * @chip: nand chip info structure
1231 * @buf: buffer to store read data
1232 * @page: page number to read
068e3c0a 1233 *
7854d3f7 1234 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1235 */
f5bbdacc 1236static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1237 uint8_t *buf, int page)
1da177e4 1238{
f5bbdacc
TG
1239 int i, eccsize = chip->ecc.size;
1240 int eccbytes = chip->ecc.bytes;
1241 int eccsteps = chip->ecc.steps;
1242 uint8_t *p = buf;
4bf63fcb
DW
1243 uint8_t *ecc_calc = chip->buffers->ecccalc;
1244 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1245 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc
TG
1246
1247 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1248 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1249 chip->read_buf(mtd, p, eccsize);
1250 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1251 }
f75e5097 1252 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1253
f5bbdacc 1254 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1255 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1256
f5bbdacc
TG
1257 eccsteps = chip->ecc.steps;
1258 p = buf;
61b03bd7 1259
f5bbdacc
TG
1260 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1261 int stat;
1da177e4 1262
f5bbdacc 1263 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1264 if (stat < 0)
f5bbdacc
TG
1265 mtd->ecc_stats.failed++;
1266 else
1267 mtd->ecc_stats.corrected += stat;
1268 }
1269 return 0;
1270}
1da177e4 1271
6e0cb135 1272/**
7854d3f7 1273 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1274 * @mtd: mtd info structure
1275 * @chip: nand chip info structure
1276 * @buf: buffer to store read data
1277 * @page: page number to read
6e0cb135 1278 *
8b6e50c9
BN
1279 * Hardware ECC for large page chips, require OOB to be read first. For this
1280 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1284 */
1285static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1286 struct nand_chip *chip, uint8_t *buf, int page)
1287{
1288 int i, eccsize = chip->ecc.size;
1289 int eccbytes = chip->ecc.bytes;
1290 int eccsteps = chip->ecc.steps;
1291 uint8_t *p = buf;
1292 uint8_t *ecc_code = chip->buffers->ecccode;
1293 uint32_t *eccpos = chip->ecc.layout->eccpos;
1294 uint8_t *ecc_calc = chip->buffers->ecccalc;
1295
1296 /* Read the OOB area first */
1297 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1298 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1299 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1300
1301 for (i = 0; i < chip->ecc.total; i++)
1302 ecc_code[i] = chip->oob_poi[eccpos[i]];
1303
1304 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305 int stat;
1306
1307 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1308 chip->read_buf(mtd, p, eccsize);
1309 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1310
1311 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1312 if (stat < 0)
1313 mtd->ecc_stats.failed++;
1314 else
1315 mtd->ecc_stats.corrected += stat;
1316 }
1317 return 0;
1318}
1319
f5bbdacc 1320/**
7854d3f7 1321 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1322 * @mtd: mtd info structure
1323 * @chip: nand chip info structure
1324 * @buf: buffer to store read data
1325 * @page: page number to read
f5bbdacc 1326 *
8b6e50c9
BN
1327 * The hw generator calculates the error syndrome automatically. Therefore we
1328 * need a special oob layout and handling.
f5bbdacc
TG
1329 */
1330static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1331 uint8_t *buf, int page)
f5bbdacc
TG
1332{
1333 int i, eccsize = chip->ecc.size;
1334 int eccbytes = chip->ecc.bytes;
1335 int eccsteps = chip->ecc.steps;
1336 uint8_t *p = buf;
f75e5097 1337 uint8_t *oob = chip->oob_poi;
1da177e4 1338
f5bbdacc
TG
1339 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1340 int stat;
61b03bd7 1341
f5bbdacc
TG
1342 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1343 chip->read_buf(mtd, p, eccsize);
1da177e4 1344
f5bbdacc
TG
1345 if (chip->ecc.prepad) {
1346 chip->read_buf(mtd, oob, chip->ecc.prepad);
1347 oob += chip->ecc.prepad;
1348 }
1da177e4 1349
f5bbdacc
TG
1350 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1351 chip->read_buf(mtd, oob, eccbytes);
1352 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1353
c32b8dcc 1354 if (stat < 0)
f5bbdacc 1355 mtd->ecc_stats.failed++;
61b03bd7 1356 else
f5bbdacc 1357 mtd->ecc_stats.corrected += stat;
61b03bd7 1358
f5bbdacc 1359 oob += eccbytes;
1da177e4 1360
f5bbdacc
TG
1361 if (chip->ecc.postpad) {
1362 chip->read_buf(mtd, oob, chip->ecc.postpad);
1363 oob += chip->ecc.postpad;
61b03bd7 1364 }
f5bbdacc 1365 }
1da177e4 1366
f5bbdacc 1367 /* Calculate remaining oob bytes */
7e4178f9 1368 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1369 if (i)
1370 chip->read_buf(mtd, oob, i);
61b03bd7 1371
f5bbdacc
TG
1372 return 0;
1373}
1da177e4 1374
f5bbdacc 1375/**
7854d3f7 1376 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1377 * @chip: nand chip structure
1378 * @oob: oob destination address
1379 * @ops: oob ops structure
1380 * @len: size of oob to transfer
8593fbc6
TG
1381 */
1382static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1383 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1384{
f8ac0414 1385 switch (ops->mode) {
8593fbc6
TG
1386
1387 case MTD_OOB_PLACE:
1388 case MTD_OOB_RAW:
1389 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1390 return oob + len;
1391
1392 case MTD_OOB_AUTO: {
1393 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1394 uint32_t boffs = 0, roffs = ops->ooboffs;
1395 size_t bytes = 0;
8593fbc6 1396
f8ac0414 1397 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1398 /* Read request not from offset 0? */
7bc3312b
TG
1399 if (unlikely(roffs)) {
1400 if (roffs >= free->length) {
1401 roffs -= free->length;
1402 continue;
1403 }
1404 boffs = free->offset + roffs;
1405 bytes = min_t(size_t, len,
1406 (free->length - roffs));
1407 roffs = 0;
1408 } else {
1409 bytes = min_t(size_t, len, free->length);
1410 boffs = free->offset;
1411 }
1412 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1413 oob += bytes;
1414 }
1415 return oob;
1416 }
1417 default:
1418 BUG();
1419 }
1420 return NULL;
1421}
1422
1423/**
7854d3f7 1424 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1425 * @mtd: MTD device structure
1426 * @from: offset to read from
1427 * @ops: oob ops structure
f5bbdacc
TG
1428 *
1429 * Internal function. Called with chip held.
1430 */
8593fbc6
TG
1431static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1432 struct mtd_oob_ops *ops)
f5bbdacc
TG
1433{
1434 int chipnr, page, realpage, col, bytes, aligned;
1435 struct nand_chip *chip = mtd->priv;
1436 struct mtd_ecc_stats stats;
1437 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1438 int sndcmd = 1;
1439 int ret = 0;
8593fbc6 1440 uint32_t readlen = ops->len;
7014568b 1441 uint32_t oobreadlen = ops->ooblen;
9aca334e
ML
1442 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1443 mtd->oobavail : mtd->oobsize;
1444
8593fbc6 1445 uint8_t *bufpoi, *oob, *buf;
1da177e4 1446
f5bbdacc 1447 stats = mtd->ecc_stats;
1da177e4 1448
f5bbdacc
TG
1449 chipnr = (int)(from >> chip->chip_shift);
1450 chip->select_chip(mtd, chipnr);
61b03bd7 1451
f5bbdacc
TG
1452 realpage = (int)(from >> chip->page_shift);
1453 page = realpage & chip->pagemask;
1da177e4 1454
f5bbdacc 1455 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1456
8593fbc6
TG
1457 buf = ops->datbuf;
1458 oob = ops->oobbuf;
1459
f8ac0414 1460 while (1) {
f5bbdacc
TG
1461 bytes = min(mtd->writesize - col, readlen);
1462 aligned = (bytes == mtd->writesize);
61b03bd7 1463
8b6e50c9 1464 /* Is the current page in the buffer? */
8593fbc6 1465 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1466 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1467
f5bbdacc
TG
1468 if (likely(sndcmd)) {
1469 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1470 sndcmd = 0;
1da177e4 1471 }
1da177e4 1472
f5bbdacc 1473 /* Now read the page into the buffer */
956e944c 1474 if (unlikely(ops->mode == MTD_OOB_RAW))
46a8cf2d
SN
1475 ret = chip->ecc.read_page_raw(mtd, chip,
1476 bufpoi, page);
3d459559 1477 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
7351d3a5
FF
1478 ret = chip->ecc.read_subpage(mtd, chip,
1479 col, bytes, bufpoi);
956e944c 1480 else
46a8cf2d
SN
1481 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1482 page);
f5bbdacc 1483 if (ret < 0)
1da177e4 1484 break;
f5bbdacc
TG
1485
1486 /* Transfer not aligned data */
1487 if (!aligned) {
c1194c79
AB
1488 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1489 !(mtd->ecc_stats.failed - stats.failed))
3d459559 1490 chip->pagebuf = realpage;
4bf63fcb 1491 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1492 }
1493
8593fbc6
TG
1494 buf += bytes;
1495
1496 if (unlikely(oob)) {
9aca334e 1497
b64d39d8
ML
1498 int toread = min(oobreadlen, max_oobsize);
1499
1500 if (toread) {
1501 oob = nand_transfer_oob(chip,
1502 oob, ops, toread);
1503 oobreadlen -= toread;
1504 }
8593fbc6
TG
1505 }
1506
f5bbdacc
TG
1507 if (!(chip->options & NAND_NO_READRDY)) {
1508 /*
1509 * Apply delay or wait for ready/busy pin. Do
1510 * this before the AUTOINCR check, so no
1511 * problems arise if a chip which does auto
1512 * increment is marked as NOAUTOINCR by the
1513 * board driver.
1514 */
1515 if (!chip->dev_ready)
1516 udelay(chip->chip_delay);
1517 else
1518 nand_wait_ready(mtd);
1da177e4 1519 }
8593fbc6 1520 } else {
4bf63fcb 1521 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6
TG
1522 buf += bytes;
1523 }
1da177e4 1524
f5bbdacc 1525 readlen -= bytes;
61b03bd7 1526
f5bbdacc 1527 if (!readlen)
61b03bd7 1528 break;
1da177e4 1529
8b6e50c9 1530 /* For subsequent reads align to page boundary */
1da177e4
LT
1531 col = 0;
1532 /* Increment page address */
1533 realpage++;
1534
ace4dfee 1535 page = realpage & chip->pagemask;
1da177e4
LT
1536 /* Check, if we cross a chip boundary */
1537 if (!page) {
1538 chipnr++;
ace4dfee
TG
1539 chip->select_chip(mtd, -1);
1540 chip->select_chip(mtd, chipnr);
1da177e4 1541 }
f5bbdacc 1542
8b6e50c9
BN
1543 /*
1544 * Check, if the chip supports auto page increment or if we
1545 * have hit a block boundary.
e0c7d767 1546 */
f5bbdacc 1547 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
61b03bd7 1548 sndcmd = 1;
1da177e4
LT
1549 }
1550
8593fbc6 1551 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1552 if (oob)
1553 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1554
f5bbdacc
TG
1555 if (ret)
1556 return ret;
1557
9a1fcdfd
TG
1558 if (mtd->ecc_stats.failed - stats.failed)
1559 return -EBADMSG;
1560
1561 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
f5bbdacc
TG
1562}
1563
1564/**
25985edc 1565 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1566 * @mtd: MTD device structure
1567 * @from: offset to read from
1568 * @len: number of bytes to read
1569 * @retlen: pointer to variable to store the number of read bytes
1570 * @buf: the databuffer to put data
f5bbdacc 1571 *
8b6e50c9 1572 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1573 */
1574static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1575 size_t *retlen, uint8_t *buf)
1576{
8593fbc6 1577 struct nand_chip *chip = mtd->priv;
f5bbdacc
TG
1578 int ret;
1579
f5bbdacc
TG
1580 /* Do not allow reads past end of device */
1581 if ((from + len) > mtd->size)
1582 return -EINVAL;
1583 if (!len)
1584 return 0;
1585
8593fbc6 1586 nand_get_device(chip, mtd, FL_READING);
f5bbdacc 1587
8593fbc6
TG
1588 chip->ops.len = len;
1589 chip->ops.datbuf = buf;
1590 chip->ops.oobbuf = NULL;
1591
1592 ret = nand_do_read_ops(mtd, from, &chip->ops);
f5bbdacc 1593
7fd5aecc
RP
1594 *retlen = chip->ops.retlen;
1595
f5bbdacc
TG
1596 nand_release_device(mtd);
1597
1598 return ret;
1da177e4
LT
1599}
1600
7bc3312b 1601/**
7854d3f7 1602 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1603 * @mtd: mtd info structure
1604 * @chip: nand chip info structure
1605 * @page: page number to read
1606 * @sndcmd: flag whether to issue read command or not
7bc3312b
TG
1607 */
1608static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1609 int page, int sndcmd)
1610{
1611 if (sndcmd) {
1612 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1613 sndcmd = 0;
1614 }
1615 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1616 return sndcmd;
1617}
1618
1619/**
7854d3f7 1620 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1621 * with syndromes
8b6e50c9
BN
1622 * @mtd: mtd info structure
1623 * @chip: nand chip info structure
1624 * @page: page number to read
1625 * @sndcmd: flag whether to issue read command or not
7bc3312b
TG
1626 */
1627static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1628 int page, int sndcmd)
1629{
1630 uint8_t *buf = chip->oob_poi;
1631 int length = mtd->oobsize;
1632 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1633 int eccsize = chip->ecc.size;
1634 uint8_t *bufpoi = buf;
1635 int i, toread, sndrnd = 0, pos;
1636
1637 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1638 for (i = 0; i < chip->ecc.steps; i++) {
1639 if (sndrnd) {
1640 pos = eccsize + i * (eccsize + chunk);
1641 if (mtd->writesize > 512)
1642 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1643 else
1644 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1645 } else
1646 sndrnd = 1;
1647 toread = min_t(int, length, chunk);
1648 chip->read_buf(mtd, bufpoi, toread);
1649 bufpoi += toread;
1650 length -= toread;
1651 }
1652 if (length > 0)
1653 chip->read_buf(mtd, bufpoi, length);
1654
1655 return 1;
1656}
1657
1658/**
7854d3f7 1659 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1660 * @mtd: mtd info structure
1661 * @chip: nand chip info structure
1662 * @page: page number to write
7bc3312b
TG
1663 */
1664static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1665 int page)
1666{
1667 int status = 0;
1668 const uint8_t *buf = chip->oob_poi;
1669 int length = mtd->oobsize;
1670
1671 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1672 chip->write_buf(mtd, buf, length);
1673 /* Send command to program the OOB data */
1674 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1675
1676 status = chip->waitfunc(mtd, chip);
1677
0d420f9d 1678 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1679}
1680
1681/**
7854d3f7 1682 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1683 * with syndrome - only for large page flash
1684 * @mtd: mtd info structure
1685 * @chip: nand chip info structure
1686 * @page: page number to write
7bc3312b
TG
1687 */
1688static int nand_write_oob_syndrome(struct mtd_info *mtd,
1689 struct nand_chip *chip, int page)
1690{
1691 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1692 int eccsize = chip->ecc.size, length = mtd->oobsize;
1693 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1694 const uint8_t *bufpoi = chip->oob_poi;
1695
1696 /*
1697 * data-ecc-data-ecc ... ecc-oob
1698 * or
1699 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1700 */
1701 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1702 pos = steps * (eccsize + chunk);
1703 steps = 0;
1704 } else
8b0036ee 1705 pos = eccsize;
7bc3312b
TG
1706
1707 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1708 for (i = 0; i < steps; i++) {
1709 if (sndcmd) {
1710 if (mtd->writesize <= 512) {
1711 uint32_t fill = 0xFFFFFFFF;
1712
1713 len = eccsize;
1714 while (len > 0) {
1715 int num = min_t(int, len, 4);
1716 chip->write_buf(mtd, (uint8_t *)&fill,
1717 num);
1718 len -= num;
1719 }
1720 } else {
1721 pos = eccsize + i * (eccsize + chunk);
1722 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1723 }
1724 } else
1725 sndcmd = 1;
1726 len = min_t(int, length, chunk);
1727 chip->write_buf(mtd, bufpoi, len);
1728 bufpoi += len;
1729 length -= len;
1730 }
1731 if (length > 0)
1732 chip->write_buf(mtd, bufpoi, length);
1733
1734 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1735 status = chip->waitfunc(mtd, chip);
1736
1737 return status & NAND_STATUS_FAIL ? -EIO : 0;
1738}
1739
1da177e4 1740/**
7854d3f7 1741 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1742 * @mtd: MTD device structure
1743 * @from: offset to read from
1744 * @ops: oob operations description structure
1da177e4 1745 *
8b6e50c9 1746 * NAND read out-of-band data from the spare area.
1da177e4 1747 */
8593fbc6
TG
1748static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1749 struct mtd_oob_ops *ops)
1da177e4 1750{
7bc3312b 1751 int page, realpage, chipnr, sndcmd = 1;
ace4dfee 1752 struct nand_chip *chip = mtd->priv;
041e4575 1753 struct mtd_ecc_stats stats;
7314e9e7 1754 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
7014568b
VW
1755 int readlen = ops->ooblen;
1756 int len;
7bc3312b 1757 uint8_t *buf = ops->oobbuf;
61b03bd7 1758
20d8e248 1759 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1760 __func__, (unsigned long long)from, readlen);
1da177e4 1761
041e4575
BN
1762 stats = mtd->ecc_stats;
1763
03736155 1764 if (ops->mode == MTD_OOB_AUTO)
7014568b 1765 len = chip->ecc.layout->oobavail;
03736155
AH
1766 else
1767 len = mtd->oobsize;
1768
1769 if (unlikely(ops->ooboffs >= len)) {
20d8e248 1770 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1771 "outside oob\n", __func__);
03736155
AH
1772 return -EINVAL;
1773 }
1774
1775 /* Do not allow reads past end of device */
1776 if (unlikely(from >= mtd->size ||
1777 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1778 (from >> chip->page_shift)) * len)) {
20d8e248 1779 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1780 "of device\n", __func__);
03736155
AH
1781 return -EINVAL;
1782 }
7014568b 1783
7314e9e7 1784 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1785 chip->select_chip(mtd, chipnr);
1da177e4 1786
7314e9e7
TG
1787 /* Shift to get page */
1788 realpage = (int)(from >> chip->page_shift);
1789 page = realpage & chip->pagemask;
1da177e4 1790
f8ac0414 1791 while (1) {
7bc3312b 1792 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
7014568b
VW
1793
1794 len = min(len, readlen);
1795 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1796
7314e9e7
TG
1797 if (!(chip->options & NAND_NO_READRDY)) {
1798 /*
1799 * Apply delay or wait for ready/busy pin. Do this
1800 * before the AUTOINCR check, so no problems arise if a
1801 * chip which does auto increment is marked as
1802 * NOAUTOINCR by the board driver.
19870da7 1803 */
ace4dfee
TG
1804 if (!chip->dev_ready)
1805 udelay(chip->chip_delay);
19870da7
TG
1806 else
1807 nand_wait_ready(mtd);
7314e9e7 1808 }
19870da7 1809
7014568b 1810 readlen -= len;
0d420f9d
SZ
1811 if (!readlen)
1812 break;
1813
7314e9e7
TG
1814 /* Increment page address */
1815 realpage++;
1816
1817 page = realpage & chip->pagemask;
1818 /* Check, if we cross a chip boundary */
1819 if (!page) {
1820 chipnr++;
1821 chip->select_chip(mtd, -1);
1822 chip->select_chip(mtd, chipnr);
1da177e4 1823 }
7314e9e7 1824
8b6e50c9
BN
1825 /*
1826 * Check, if the chip supports auto page increment or if we
1827 * have hit a block boundary.
7314e9e7
TG
1828 */
1829 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1830 sndcmd = 1;
1da177e4
LT
1831 }
1832
7014568b 1833 ops->oobretlen = ops->ooblen;
041e4575
BN
1834
1835 if (mtd->ecc_stats.failed - stats.failed)
1836 return -EBADMSG;
1837
1838 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1839}
1840
1841/**
8593fbc6 1842 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1843 * @mtd: MTD device structure
1844 * @from: offset to read from
1845 * @ops: oob operation description structure
1da177e4 1846 *
8b6e50c9 1847 * NAND read data and/or out-of-band data.
1da177e4 1848 */
8593fbc6
TG
1849static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1850 struct mtd_oob_ops *ops)
1da177e4 1851{
ace4dfee 1852 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1853 int ret = -ENOTSUPP;
1854
1855 ops->retlen = 0;
1da177e4
LT
1856
1857 /* Do not allow reads past end of device */
7014568b 1858 if (ops->datbuf && (from + ops->len) > mtd->size) {
20d8e248 1859 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1860 "beyond end of device\n", __func__);
1da177e4
LT
1861 return -EINVAL;
1862 }
1863
ace4dfee 1864 nand_get_device(chip, mtd, FL_READING);
1da177e4 1865
f8ac0414 1866 switch (ops->mode) {
8593fbc6
TG
1867 case MTD_OOB_PLACE:
1868 case MTD_OOB_AUTO:
8593fbc6 1869 case MTD_OOB_RAW:
8593fbc6 1870 break;
1da177e4 1871
8593fbc6
TG
1872 default:
1873 goto out;
1874 }
1da177e4 1875
8593fbc6
TG
1876 if (!ops->datbuf)
1877 ret = nand_do_read_oob(mtd, from, ops);
1878 else
1879 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1880
7351d3a5 1881out:
8593fbc6
TG
1882 nand_release_device(mtd);
1883 return ret;
1884}
61b03bd7 1885
1da177e4 1886
8593fbc6 1887/**
7854d3f7 1888 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1889 * @mtd: mtd info structure
1890 * @chip: nand chip info structure
1891 * @buf: data buffer
52ff49df 1892 *
7854d3f7 1893 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1894 */
1895static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1896 const uint8_t *buf)
1897{
1898 chip->write_buf(mtd, buf, mtd->writesize);
1899 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4
LT
1900}
1901
52ff49df 1902/**
7854d3f7 1903 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1904 * @mtd: mtd info structure
1905 * @chip: nand chip info structure
1906 * @buf: data buffer
52ff49df
DB
1907 *
1908 * We need a special oob layout and handling even when ECC isn't checked.
1909 */
7351d3a5
FF
1910static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1911 struct nand_chip *chip,
1912 const uint8_t *buf)
52ff49df
DB
1913{
1914 int eccsize = chip->ecc.size;
1915 int eccbytes = chip->ecc.bytes;
1916 uint8_t *oob = chip->oob_poi;
1917 int steps, size;
1918
1919 for (steps = chip->ecc.steps; steps > 0; steps--) {
1920 chip->write_buf(mtd, buf, eccsize);
1921 buf += eccsize;
1922
1923 if (chip->ecc.prepad) {
1924 chip->write_buf(mtd, oob, chip->ecc.prepad);
1925 oob += chip->ecc.prepad;
1926 }
1927
1928 chip->read_buf(mtd, oob, eccbytes);
1929 oob += eccbytes;
1930
1931 if (chip->ecc.postpad) {
1932 chip->write_buf(mtd, oob, chip->ecc.postpad);
1933 oob += chip->ecc.postpad;
1934 }
1935 }
1936
1937 size = mtd->oobsize - (oob - chip->oob_poi);
1938 if (size)
1939 chip->write_buf(mtd, oob, size);
1940}
9223a456 1941/**
7854d3f7 1942 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
1943 * @mtd: mtd info structure
1944 * @chip: nand chip info structure
1945 * @buf: data buffer
9223a456 1946 */
f75e5097
TG
1947static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1948 const uint8_t *buf)
9223a456 1949{
f75e5097
TG
1950 int i, eccsize = chip->ecc.size;
1951 int eccbytes = chip->ecc.bytes;
1952 int eccsteps = chip->ecc.steps;
4bf63fcb 1953 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1954 const uint8_t *p = buf;
8b099a39 1955 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1956
7854d3f7 1957 /* Software ECC calculation */
8593fbc6
TG
1958 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1959 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1960
8593fbc6
TG
1961 for (i = 0; i < chip->ecc.total; i++)
1962 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1963
90424de8 1964 chip->ecc.write_page_raw(mtd, chip, buf);
f75e5097 1965}
9223a456 1966
f75e5097 1967/**
7854d3f7 1968 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
1969 * @mtd: mtd info structure
1970 * @chip: nand chip info structure
1971 * @buf: data buffer
f75e5097
TG
1972 */
1973static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1974 const uint8_t *buf)
1975{
1976 int i, eccsize = chip->ecc.size;
1977 int eccbytes = chip->ecc.bytes;
1978 int eccsteps = chip->ecc.steps;
4bf63fcb 1979 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1980 const uint8_t *p = buf;
8b099a39 1981 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1982
f75e5097
TG
1983 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1984 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1985 chip->write_buf(mtd, p, eccsize);
f75e5097 1986 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1987 }
1988
f75e5097
TG
1989 for (i = 0; i < chip->ecc.total; i++)
1990 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1991
1992 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
9223a456
TG
1993}
1994
61b03bd7 1995/**
7854d3f7 1996 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
1997 * @mtd: mtd info structure
1998 * @chip: nand chip info structure
1999 * @buf: data buffer
1da177e4 2000 *
8b6e50c9
BN
2001 * The hw generator calculates the error syndrome automatically. Therefore we
2002 * need a special oob layout and handling.
f75e5097
TG
2003 */
2004static void nand_write_page_syndrome(struct mtd_info *mtd,
2005 struct nand_chip *chip, const uint8_t *buf)
1da177e4 2006{
f75e5097
TG
2007 int i, eccsize = chip->ecc.size;
2008 int eccbytes = chip->ecc.bytes;
2009 int eccsteps = chip->ecc.steps;
2010 const uint8_t *p = buf;
2011 uint8_t *oob = chip->oob_poi;
1da177e4 2012
f75e5097 2013 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2014
f75e5097
TG
2015 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2016 chip->write_buf(mtd, p, eccsize);
61b03bd7 2017
f75e5097
TG
2018 if (chip->ecc.prepad) {
2019 chip->write_buf(mtd, oob, chip->ecc.prepad);
2020 oob += chip->ecc.prepad;
2021 }
2022
2023 chip->ecc.calculate(mtd, p, oob);
2024 chip->write_buf(mtd, oob, eccbytes);
2025 oob += eccbytes;
2026
2027 if (chip->ecc.postpad) {
2028 chip->write_buf(mtd, oob, chip->ecc.postpad);
2029 oob += chip->ecc.postpad;
1da177e4 2030 }
1da177e4 2031 }
f75e5097
TG
2032
2033 /* Calculate remaining oob bytes */
7e4178f9 2034 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2035 if (i)
2036 chip->write_buf(mtd, oob, i);
2037}
2038
2039/**
956e944c 2040 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2041 * @mtd: MTD device structure
2042 * @chip: NAND chip descriptor
2043 * @buf: the data to write
2044 * @page: page number to write
2045 * @cached: cached programming
2046 * @raw: use _raw version of write_page
f75e5097
TG
2047 */
2048static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
956e944c 2049 const uint8_t *buf, int page, int cached, int raw)
f75e5097
TG
2050{
2051 int status;
2052
2053 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2054
956e944c
DW
2055 if (unlikely(raw))
2056 chip->ecc.write_page_raw(mtd, chip, buf);
2057 else
2058 chip->ecc.write_page(mtd, chip, buf);
f75e5097
TG
2059
2060 /*
7854d3f7 2061 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2062 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2063 */
2064 cached = 0;
2065
2066 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2067
2068 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2069 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2070 /*
2071 * See if operation failed and additional status checks are
8b6e50c9 2072 * available.
f75e5097
TG
2073 */
2074 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2075 status = chip->errstat(mtd, chip, FL_WRITING, status,
2076 page);
2077
2078 if (status & NAND_STATUS_FAIL)
2079 return -EIO;
2080 } else {
2081 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2082 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2083 }
2084
2085#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2086 /* Send command to read back the data */
2087 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2088
2089 if (chip->verify_buf(mtd, buf, mtd->writesize))
2090 return -EIO;
2091#endif
2092 return 0;
1da177e4
LT
2093}
2094
8593fbc6 2095/**
7854d3f7 2096 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2097 * @mtd: MTD device structure
8b6e50c9
BN
2098 * @oob: oob data buffer
2099 * @len: oob data write length
2100 * @ops: oob ops structure
8593fbc6 2101 */
f722013e
TAA
2102static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2103 struct mtd_oob_ops *ops)
8593fbc6 2104{
f722013e
TAA
2105 struct nand_chip *chip = mtd->priv;
2106
2107 /*
2108 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2109 * data from a previous OOB read.
2110 */
2111 memset(chip->oob_poi, 0xff, mtd->oobsize);
2112
f8ac0414 2113 switch (ops->mode) {
8593fbc6
TG
2114
2115 case MTD_OOB_PLACE:
2116 case MTD_OOB_RAW:
2117 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2118 return oob + len;
2119
2120 case MTD_OOB_AUTO: {
2121 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2122 uint32_t boffs = 0, woffs = ops->ooboffs;
2123 size_t bytes = 0;
8593fbc6 2124
f8ac0414 2125 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2126 /* Write request not from offset 0? */
7bc3312b
TG
2127 if (unlikely(woffs)) {
2128 if (woffs >= free->length) {
2129 woffs -= free->length;
2130 continue;
2131 }
2132 boffs = free->offset + woffs;
2133 bytes = min_t(size_t, len,
2134 (free->length - woffs));
2135 woffs = 0;
2136 } else {
2137 bytes = min_t(size_t, len, free->length);
2138 boffs = free->offset;
2139 }
8b0036ee 2140 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2141 oob += bytes;
2142 }
2143 return oob;
2144 }
2145 default:
2146 BUG();
2147 }
2148 return NULL;
2149}
2150
f8ac0414 2151#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2152
2153/**
7854d3f7 2154 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2155 * @mtd: MTD device structure
2156 * @to: offset to write to
2157 * @ops: oob operations description structure
1da177e4 2158 *
8b6e50c9 2159 * NAND write with ECC.
1da177e4 2160 */
8593fbc6
TG
2161static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2162 struct mtd_oob_ops *ops)
1da177e4 2163{
29072b96 2164 int chipnr, realpage, page, blockmask, column;
ace4dfee 2165 struct nand_chip *chip = mtd->priv;
8593fbc6 2166 uint32_t writelen = ops->len;
782ce79a
ML
2167
2168 uint32_t oobwritelen = ops->ooblen;
2169 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2170 mtd->oobavail : mtd->oobsize;
2171
8593fbc6
TG
2172 uint8_t *oob = ops->oobbuf;
2173 uint8_t *buf = ops->datbuf;
29072b96 2174 int ret, subpage;
1da177e4 2175
8593fbc6 2176 ops->retlen = 0;
29072b96
TG
2177 if (!writelen)
2178 return 0;
1da177e4 2179
8b6e50c9 2180 /* Reject writes, which are not page aligned */
8593fbc6 2181 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2182 pr_notice("%s: attempt to write non page aligned data\n",
2183 __func__);
1da177e4
LT
2184 return -EINVAL;
2185 }
2186
29072b96
TG
2187 column = to & (mtd->writesize - 1);
2188 subpage = column || (writelen & (mtd->writesize - 1));
2189
2190 if (subpage && oob)
2191 return -EINVAL;
1da177e4 2192
6a930961
TG
2193 chipnr = (int)(to >> chip->chip_shift);
2194 chip->select_chip(mtd, chipnr);
2195
1da177e4
LT
2196 /* Check, if it is write protected */
2197 if (nand_check_wp(mtd))
8593fbc6 2198 return -EIO;
1da177e4 2199
f75e5097
TG
2200 realpage = (int)(to >> chip->page_shift);
2201 page = realpage & chip->pagemask;
2202 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2203
2204 /* Invalidate the page cache, when we write to the cached page */
2205 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2206 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2207 chip->pagebuf = -1;
61b03bd7 2208
782ce79a 2209 /* Don't allow multipage oob writes with offset */
cdcf12b2 2210 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
782ce79a
ML
2211 return -EINVAL;
2212
f8ac0414 2213 while (1) {
29072b96 2214 int bytes = mtd->writesize;
f75e5097 2215 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2216 uint8_t *wbuf = buf;
2217
8b6e50c9 2218 /* Partial page write? */
29072b96
TG
2219 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2220 cached = 0;
2221 bytes = min_t(int, bytes - column, (int) writelen);
2222 chip->pagebuf = -1;
2223 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2224 memcpy(&chip->buffers->databuf[column], buf, bytes);
2225 wbuf = chip->buffers->databuf;
2226 }
1da177e4 2227
782ce79a
ML
2228 if (unlikely(oob)) {
2229 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2230 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2231 oobwritelen -= len;
f722013e
TAA
2232 } else {
2233 /* We still need to erase leftover OOB data */
2234 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2235 }
8593fbc6 2236
29072b96 2237 ret = chip->write_page(mtd, chip, wbuf, page, cached,
956e944c 2238 (ops->mode == MTD_OOB_RAW));
f75e5097
TG
2239 if (ret)
2240 break;
2241
2242 writelen -= bytes;
2243 if (!writelen)
2244 break;
2245
29072b96 2246 column = 0;
f75e5097
TG
2247 buf += bytes;
2248 realpage++;
2249
2250 page = realpage & chip->pagemask;
2251 /* Check, if we cross a chip boundary */
2252 if (!page) {
2253 chipnr++;
2254 chip->select_chip(mtd, -1);
2255 chip->select_chip(mtd, chipnr);
1da177e4
LT
2256 }
2257 }
8593fbc6 2258
8593fbc6 2259 ops->retlen = ops->len - writelen;
7014568b
VW
2260 if (unlikely(oob))
2261 ops->oobretlen = ops->ooblen;
1da177e4
LT
2262 return ret;
2263}
2264
2af7c653
SK
2265/**
2266 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2267 * @mtd: MTD device structure
2268 * @to: offset to write to
2269 * @len: number of bytes to write
2270 * @retlen: pointer to variable to store the number of written bytes
2271 * @buf: the data to write
2af7c653
SK
2272 *
2273 * NAND write with ECC. Used when performing writes in interrupt context, this
2274 * may for example be called by mtdoops when writing an oops while in panic.
2275 */
2276static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2277 size_t *retlen, const uint8_t *buf)
2278{
2279 struct nand_chip *chip = mtd->priv;
2280 int ret;
2281
2282 /* Do not allow reads past end of device */
2283 if ((to + len) > mtd->size)
2284 return -EINVAL;
2285 if (!len)
2286 return 0;
2287
8b6e50c9 2288 /* Wait for the device to get ready */
2af7c653
SK
2289 panic_nand_wait(mtd, chip, 400);
2290
8b6e50c9 2291 /* Grab the device */
2af7c653
SK
2292 panic_nand_get_device(chip, mtd, FL_WRITING);
2293
2294 chip->ops.len = len;
2295 chip->ops.datbuf = (uint8_t *)buf;
2296 chip->ops.oobbuf = NULL;
2297
2298 ret = nand_do_write_ops(mtd, to, &chip->ops);
2299
2300 *retlen = chip->ops.retlen;
2301 return ret;
2302}
2303
f75e5097 2304/**
8593fbc6 2305 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2306 * @mtd: MTD device structure
2307 * @to: offset to write to
2308 * @len: number of bytes to write
2309 * @retlen: pointer to variable to store the number of written bytes
2310 * @buf: the data to write
f75e5097 2311 *
8b6e50c9 2312 * NAND write with ECC.
f75e5097 2313 */
8593fbc6
TG
2314static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2315 size_t *retlen, const uint8_t *buf)
f75e5097
TG
2316{
2317 struct nand_chip *chip = mtd->priv;
f75e5097
TG
2318 int ret;
2319
8593fbc6
TG
2320 /* Do not allow reads past end of device */
2321 if ((to + len) > mtd->size)
f75e5097 2322 return -EINVAL;
8593fbc6
TG
2323 if (!len)
2324 return 0;
f75e5097 2325
7bc3312b 2326 nand_get_device(chip, mtd, FL_WRITING);
f75e5097 2327
8593fbc6
TG
2328 chip->ops.len = len;
2329 chip->ops.datbuf = (uint8_t *)buf;
2330 chip->ops.oobbuf = NULL;
f75e5097 2331
8593fbc6 2332 ret = nand_do_write_ops(mtd, to, &chip->ops);
f75e5097 2333
7fd5aecc
RP
2334 *retlen = chip->ops.retlen;
2335
f75e5097 2336 nand_release_device(mtd);
8593fbc6 2337
8593fbc6 2338 return ret;
f75e5097 2339}
7314e9e7 2340
1da177e4 2341/**
8593fbc6 2342 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2343 * @mtd: MTD device structure
2344 * @to: offset to write to
2345 * @ops: oob operation description structure
1da177e4 2346 *
8b6e50c9 2347 * NAND write out-of-band.
1da177e4 2348 */
8593fbc6
TG
2349static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2350 struct mtd_oob_ops *ops)
1da177e4 2351{
03736155 2352 int chipnr, page, status, len;
ace4dfee 2353 struct nand_chip *chip = mtd->priv;
1da177e4 2354
20d8e248 2355 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2356 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2357
03736155
AH
2358 if (ops->mode == MTD_OOB_AUTO)
2359 len = chip->ecc.layout->oobavail;
2360 else
2361 len = mtd->oobsize;
2362
1da177e4 2363 /* Do not allow write past end of page */
03736155 2364 if ((ops->ooboffs + ops->ooblen) > len) {
20d8e248 2365 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2366 "past end of page\n", __func__);
1da177e4
LT
2367 return -EINVAL;
2368 }
2369
03736155 2370 if (unlikely(ops->ooboffs >= len)) {
20d8e248 2371 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2372 "write outside oob\n", __func__);
03736155
AH
2373 return -EINVAL;
2374 }
2375
775adc3d 2376 /* Do not allow write past end of device */
03736155
AH
2377 if (unlikely(to >= mtd->size ||
2378 ops->ooboffs + ops->ooblen >
2379 ((mtd->size >> chip->page_shift) -
2380 (to >> chip->page_shift)) * len)) {
20d8e248 2381 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2382 "end of device\n", __func__);
03736155
AH
2383 return -EINVAL;
2384 }
2385
7314e9e7 2386 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2387 chip->select_chip(mtd, chipnr);
1da177e4 2388
7314e9e7
TG
2389 /* Shift to get page */
2390 page = (int)(to >> chip->page_shift);
2391
2392 /*
2393 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2394 * of my DiskOnChip 2000 test units) will clear the whole data page too
2395 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2396 * it in the doc2000 driver in August 1999. dwmw2.
2397 */
ace4dfee 2398 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2399
2400 /* Check, if it is write protected */
2401 if (nand_check_wp(mtd))
8593fbc6 2402 return -EROFS;
61b03bd7 2403
1da177e4 2404 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2405 if (page == chip->pagebuf)
2406 chip->pagebuf = -1;
1da177e4 2407
f722013e 2408 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
7bc3312b 2409 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2410
7bc3312b
TG
2411 if (status)
2412 return status;
1da177e4 2413
7014568b 2414 ops->oobretlen = ops->ooblen;
1da177e4 2415
7bc3312b 2416 return 0;
8593fbc6
TG
2417}
2418
2419/**
2420 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2421 * @mtd: MTD device structure
2422 * @to: offset to write to
2423 * @ops: oob operation description structure
8593fbc6
TG
2424 */
2425static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2426 struct mtd_oob_ops *ops)
2427{
8593fbc6
TG
2428 struct nand_chip *chip = mtd->priv;
2429 int ret = -ENOTSUPP;
2430
2431 ops->retlen = 0;
2432
2433 /* Do not allow writes past end of device */
7014568b 2434 if (ops->datbuf && (to + ops->len) > mtd->size) {
20d8e248 2435 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2436 "end of device\n", __func__);
8593fbc6
TG
2437 return -EINVAL;
2438 }
2439
7bc3312b 2440 nand_get_device(chip, mtd, FL_WRITING);
8593fbc6 2441
f8ac0414 2442 switch (ops->mode) {
8593fbc6
TG
2443 case MTD_OOB_PLACE:
2444 case MTD_OOB_AUTO:
8593fbc6 2445 case MTD_OOB_RAW:
8593fbc6
TG
2446 break;
2447
2448 default:
2449 goto out;
2450 }
2451
2452 if (!ops->datbuf)
2453 ret = nand_do_write_oob(mtd, to, ops);
2454 else
2455 ret = nand_do_write_ops(mtd, to, ops);
2456
7351d3a5 2457out:
1da177e4 2458 nand_release_device(mtd);
1da177e4
LT
2459 return ret;
2460}
2461
1da177e4 2462/**
7854d3f7 2463 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2464 * @mtd: MTD device structure
2465 * @page: the page address of the block which will be erased
1da177e4 2466 *
8b6e50c9 2467 * Standard erase command for NAND chips.
1da177e4 2468 */
e0c7d767 2469static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2470{
ace4dfee 2471 struct nand_chip *chip = mtd->priv;
1da177e4 2472 /* Send commands to erase a block */
ace4dfee
TG
2473 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2474 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2475}
2476
2477/**
7854d3f7 2478 * multi_erase_cmd - [GENERIC] AND specific block erase command function
8b6e50c9
BN
2479 * @mtd: MTD device structure
2480 * @page: the page address of the block which will be erased
1da177e4 2481 *
8b6e50c9 2482 * AND multi block erase command function. Erase 4 consecutive blocks.
1da177e4 2483 */
e0c7d767 2484static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2485{
ace4dfee 2486 struct nand_chip *chip = mtd->priv;
1da177e4 2487 /* Send commands to erase a block */
ace4dfee
TG
2488 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2489 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2490 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2491 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2492 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2493}
2494
2495/**
2496 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2497 * @mtd: MTD device structure
2498 * @instr: erase instruction
1da177e4 2499 *
8b6e50c9 2500 * Erase one ore more blocks.
1da177e4 2501 */
e0c7d767 2502static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2503{
e0c7d767 2504 return nand_erase_nand(mtd, instr, 0);
1da177e4 2505}
61b03bd7 2506
30f464b7 2507#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2508/**
7854d3f7 2509 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2510 * @mtd: MTD device structure
2511 * @instr: erase instruction
2512 * @allowbbt: allow erasing the bbt area
1da177e4 2513 *
8b6e50c9 2514 * Erase one ore more blocks.
1da177e4 2515 */
ace4dfee
TG
2516int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2517 int allowbbt)
1da177e4 2518{
69423d99 2519 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2520 struct nand_chip *chip = mtd->priv;
f8ac0414 2521 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
ace4dfee 2522 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2523 loff_t len;
1da177e4 2524
20d8e248 2525 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2526 __func__, (unsigned long long)instr->addr,
2527 (unsigned long long)instr->len);
1da177e4 2528
6fe5a6ac 2529 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2530 return -EINVAL;
1da177e4 2531
bb0eb217 2532 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1da177e4
LT
2533
2534 /* Grab the lock and see if the device is available */
ace4dfee 2535 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
2536
2537 /* Shift to get first page */
ace4dfee
TG
2538 page = (int)(instr->addr >> chip->page_shift);
2539 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2540
2541 /* Calculate pages in each block */
ace4dfee 2542 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2543
2544 /* Select the NAND device */
ace4dfee 2545 chip->select_chip(mtd, chipnr);
1da177e4 2546
1da177e4
LT
2547 /* Check, if it is write protected */
2548 if (nand_check_wp(mtd)) {
20d8e248 2549 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2550 __func__);
1da177e4
LT
2551 instr->state = MTD_ERASE_FAILED;
2552 goto erase_exit;
2553 }
2554
ace4dfee
TG
2555 /*
2556 * If BBT requires refresh, set the BBT page mask to see if the BBT
2557 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2558 * can not be matched. This is also done when the bbt is actually
7854d3f7 2559 * erased to avoid recursive updates.
ace4dfee
TG
2560 */
2561 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2562 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2563
1da177e4
LT
2564 /* Loop through the pages */
2565 len = instr->len;
2566
2567 instr->state = MTD_ERASING;
2568
2569 while (len) {
8b6e50c9 2570 /* Heck if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2571 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2572 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2573 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2574 __func__, page);
1da177e4
LT
2575 instr->state = MTD_ERASE_FAILED;
2576 goto erase_exit;
2577 }
61b03bd7 2578
ace4dfee
TG
2579 /*
2580 * Invalidate the page cache, if we erase the block which
8b6e50c9 2581 * contains the current cached page.
ace4dfee
TG
2582 */
2583 if (page <= chip->pagebuf && chip->pagebuf <
2584 (page + pages_per_block))
2585 chip->pagebuf = -1;
1da177e4 2586
ace4dfee 2587 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2588
7bc3312b 2589 status = chip->waitfunc(mtd, chip);
1da177e4 2590
ace4dfee
TG
2591 /*
2592 * See if operation failed and additional status checks are
2593 * available
2594 */
2595 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2596 status = chip->errstat(mtd, chip, FL_ERASING,
2597 status, page);
068e3c0a 2598
1da177e4 2599 /* See if block erase succeeded */
a4ab4c5d 2600 if (status & NAND_STATUS_FAIL) {
20d8e248 2601 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2602 "page 0x%08x\n", __func__, page);
1da177e4 2603 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2604 instr->fail_addr =
2605 ((loff_t)page << chip->page_shift);
1da177e4
LT
2606 goto erase_exit;
2607 }
30f464b7 2608
ace4dfee
TG
2609 /*
2610 * If BBT requires refresh, set the BBT rewrite flag to the
8b6e50c9 2611 * page being erased.
ace4dfee
TG
2612 */
2613 if (bbt_masked_page != 0xffffffff &&
2614 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2615 rewrite_bbt[chipnr] =
2616 ((loff_t)page << chip->page_shift);
61b03bd7 2617
1da177e4 2618 /* Increment page address and decrement length */
ace4dfee 2619 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2620 page += pages_per_block;
2621
2622 /* Check, if we cross a chip boundary */
ace4dfee 2623 if (len && !(page & chip->pagemask)) {
1da177e4 2624 chipnr++;
ace4dfee
TG
2625 chip->select_chip(mtd, -1);
2626 chip->select_chip(mtd, chipnr);
30f464b7 2627
ace4dfee
TG
2628 /*
2629 * If BBT requires refresh and BBT-PERCHIP, set the BBT
8b6e50c9 2630 * page mask to see if this BBT should be rewritten.
ace4dfee
TG
2631 */
2632 if (bbt_masked_page != 0xffffffff &&
2633 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2634 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2635 BBT_PAGE_MASK;
1da177e4
LT
2636 }
2637 }
2638 instr->state = MTD_ERASE_DONE;
2639
7351d3a5 2640erase_exit:
1da177e4
LT
2641
2642 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2643
2644 /* Deselect and wake up anyone waiting on the device */
2645 nand_release_device(mtd);
2646
49defc01
DW
2647 /* Do call back function */
2648 if (!ret)
2649 mtd_erase_callback(instr);
2650
ace4dfee
TG
2651 /*
2652 * If BBT requires refresh and erase was successful, rewrite any
8b6e50c9 2653 * selected bad block tables.
ace4dfee
TG
2654 */
2655 if (bbt_masked_page == 0xffffffff || ret)
2656 return ret;
2657
2658 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2659 if (!rewrite_bbt[chipnr])
2660 continue;
8b6e50c9 2661 /* Update the BBT for chip */
20d8e248 2662 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2663 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2664 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
ace4dfee 2665 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2666 }
2667
1da177e4
LT
2668 /* Return more or less happy */
2669 return ret;
2670}
2671
2672/**
2673 * nand_sync - [MTD Interface] sync
8b6e50c9 2674 * @mtd: MTD device structure
1da177e4 2675 *
8b6e50c9 2676 * Sync is actually a wait for chip ready function.
1da177e4 2677 */
e0c7d767 2678static void nand_sync(struct mtd_info *mtd)
1da177e4 2679{
ace4dfee 2680 struct nand_chip *chip = mtd->priv;
1da177e4 2681
20d8e248 2682 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
1da177e4
LT
2683
2684 /* Grab the lock and see if the device is available */
ace4dfee 2685 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 2686 /* Release it and go back */
e0c7d767 2687 nand_release_device(mtd);
1da177e4
LT
2688}
2689
1da177e4 2690/**
ace4dfee 2691 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2692 * @mtd: MTD device structure
2693 * @offs: offset relative to mtd start
1da177e4 2694 */
ace4dfee 2695static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4
LT
2696{
2697 /* Check for invalid offset */
ace4dfee 2698 if (offs > mtd->size)
1da177e4 2699 return -EINVAL;
61b03bd7 2700
ace4dfee 2701 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2702}
2703
2704/**
ace4dfee 2705 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2706 * @mtd: MTD device structure
2707 * @ofs: offset relative to mtd start
1da177e4 2708 */
e0c7d767 2709static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2710{
ace4dfee 2711 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2712 int ret;
2713
f8ac0414
FF
2714 ret = nand_block_isbad(mtd, ofs);
2715 if (ret) {
8b6e50c9 2716 /* If it was bad already, return success and do nothing */
1da177e4
LT
2717 if (ret > 0)
2718 return 0;
e0c7d767
DW
2719 return ret;
2720 }
1da177e4 2721
ace4dfee 2722 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2723}
2724
962034f4
VW
2725/**
2726 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2727 * @mtd: MTD device structure
962034f4
VW
2728 */
2729static int nand_suspend(struct mtd_info *mtd)
2730{
ace4dfee 2731 struct nand_chip *chip = mtd->priv;
962034f4 2732
ace4dfee 2733 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
2734}
2735
2736/**
2737 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2738 * @mtd: MTD device structure
962034f4
VW
2739 */
2740static void nand_resume(struct mtd_info *mtd)
2741{
ace4dfee 2742 struct nand_chip *chip = mtd->priv;
962034f4 2743
ace4dfee 2744 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2745 nand_release_device(mtd);
2746 else
d0370219
BN
2747 pr_err("%s called for a chip which is not in suspended state\n",
2748 __func__);
962034f4
VW
2749}
2750
8b6e50c9 2751/* Set default functions */
ace4dfee 2752static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2753{
1da177e4 2754 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2755 if (!chip->chip_delay)
2756 chip->chip_delay = 20;
1da177e4
LT
2757
2758 /* check, if a user supplied command function given */
ace4dfee
TG
2759 if (chip->cmdfunc == NULL)
2760 chip->cmdfunc = nand_command;
1da177e4
LT
2761
2762 /* check, if a user supplied wait function given */
ace4dfee
TG
2763 if (chip->waitfunc == NULL)
2764 chip->waitfunc = nand_wait;
2765
2766 if (!chip->select_chip)
2767 chip->select_chip = nand_select_chip;
2768 if (!chip->read_byte)
2769 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2770 if (!chip->read_word)
2771 chip->read_word = nand_read_word;
2772 if (!chip->block_bad)
2773 chip->block_bad = nand_block_bad;
2774 if (!chip->block_markbad)
2775 chip->block_markbad = nand_default_block_markbad;
2776 if (!chip->write_buf)
2777 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2778 if (!chip->read_buf)
2779 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2780 if (!chip->verify_buf)
2781 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2782 if (!chip->scan_bbt)
2783 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2784
2785 if (!chip->controller) {
2786 chip->controller = &chip->hwcontrol;
2787 spin_lock_init(&chip->controller->lock);
2788 init_waitqueue_head(&chip->controller->wq);
2789 }
2790
7aa65bfd
TG
2791}
2792
8b6e50c9 2793/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2794static void sanitize_string(uint8_t *s, size_t len)
2795{
2796 ssize_t i;
2797
8b6e50c9 2798 /* Null terminate */
d1e1f4e4
FF
2799 s[len - 1] = 0;
2800
8b6e50c9 2801 /* Remove non printable chars */
d1e1f4e4
FF
2802 for (i = 0; i < len - 1; i++) {
2803 if (s[i] < ' ' || s[i] > 127)
2804 s[i] = '?';
2805 }
2806
8b6e50c9 2807 /* Remove trailing spaces */
d1e1f4e4
FF
2808 strim(s);
2809}
2810
2811static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2812{
2813 int i;
2814 while (len--) {
2815 crc ^= *p++ << 8;
2816 for (i = 0; i < 8; i++)
2817 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2818 }
2819
2820 return crc;
2821}
2822
6fb277ba 2823/*
8b6e50c9 2824 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
2825 */
2826static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 2827 int *busw)
6fb277ba
FF
2828{
2829 struct nand_onfi_params *p = &chip->onfi_params;
2830 int i;
2831 int val;
2832
7854d3f7 2833 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
2834 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2835 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2836 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2837 return 0;
2838
9a4d4d69 2839 pr_info("ONFI flash detected\n");
6fb277ba
FF
2840 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2841 for (i = 0; i < 3; i++) {
2842 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2843 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2844 le16_to_cpu(p->crc)) {
9a4d4d69 2845 pr_info("ONFI param page %d valid\n", i);
6fb277ba
FF
2846 break;
2847 }
2848 }
2849
2850 if (i == 3)
2851 return 0;
2852
8b6e50c9 2853 /* Check version */
6fb277ba 2854 val = le16_to_cpu(p->revision);
b7b1a29d
BN
2855 if (val & (1 << 5))
2856 chip->onfi_version = 23;
2857 else if (val & (1 << 4))
6fb277ba
FF
2858 chip->onfi_version = 22;
2859 else if (val & (1 << 3))
2860 chip->onfi_version = 21;
2861 else if (val & (1 << 2))
2862 chip->onfi_version = 20;
b7b1a29d 2863 else if (val & (1 << 1))
6fb277ba 2864 chip->onfi_version = 10;
b7b1a29d
BN
2865 else
2866 chip->onfi_version = 0;
2867
2868 if (!chip->onfi_version) {
d0370219 2869 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
b7b1a29d
BN
2870 return 0;
2871 }
6fb277ba
FF
2872
2873 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2874 sanitize_string(p->model, sizeof(p->model));
2875 if (!mtd->name)
2876 mtd->name = p->model;
2877 mtd->writesize = le32_to_cpu(p->byte_per_page);
2878 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2879 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4ccb3b44 2880 chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
08c248fb 2881 *busw = 0;
6fb277ba 2882 if (le16_to_cpu(p->features) & 1)
08c248fb 2883 *busw = NAND_BUSWIDTH_16;
6fb277ba
FF
2884
2885 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2886 chip->options |= (NAND_NO_READRDY |
2887 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2888
2889 return 1;
2890}
2891
7aa65bfd 2892/*
8b6e50c9 2893 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
2894 */
2895static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 2896 struct nand_chip *chip,
7351d3a5
FF
2897 int busw,
2898 int *maf_id, int *dev_id,
5e81e88a 2899 struct nand_flash_dev *type)
7aa65bfd 2900{
d1e1f4e4 2901 int i, maf_idx;
426c457a 2902 u8 id_data[8];
6fb277ba 2903 int ret;
1da177e4
LT
2904
2905 /* Select the device */
ace4dfee 2906 chip->select_chip(mtd, 0);
1da177e4 2907
ef89a880
KB
2908 /*
2909 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 2910 * after power-up.
ef89a880
KB
2911 */
2912 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2913
1da177e4 2914 /* Send the command for reading device ID */
ace4dfee 2915 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2916
2917 /* Read manufacturer and device IDs */
ace4dfee 2918 *maf_id = chip->read_byte(mtd);
d1e1f4e4 2919 *dev_id = chip->read_byte(mtd);
1da177e4 2920
8b6e50c9
BN
2921 /*
2922 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
2923 * interface concerns can cause random data which looks like a
2924 * possibly credible NAND flash to appear. If the two results do
2925 * not match, ignore the device completely.
2926 */
2927
2928 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2929
d1e1f4e4 2930 for (i = 0; i < 2; i++)
426c457a 2931 id_data[i] = chip->read_byte(mtd);
ed8165c7 2932
d1e1f4e4 2933 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
9a4d4d69 2934 pr_info("%s: second ID read did not match "
d0370219
BN
2935 "%02x,%02x against %02x,%02x\n", __func__,
2936 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
2937 return ERR_PTR(-ENODEV);
2938 }
2939
7aa65bfd 2940 if (!type)
5e81e88a
DW
2941 type = nand_flash_ids;
2942
2943 for (; type->name != NULL; type++)
d1e1f4e4 2944 if (*dev_id == type->id)
f8ac0414 2945 break;
5e81e88a 2946
d1e1f4e4
FF
2947 chip->onfi_version = 0;
2948 if (!type->name || !type->pagesize) {
6fb277ba 2949 /* Check is chip is ONFI compliant */
08c248fb 2950 ret = nand_flash_detect_onfi(mtd, chip, &busw);
6fb277ba
FF
2951 if (ret)
2952 goto ident_done;
d1e1f4e4
FF
2953 }
2954
2955 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2956
2957 /* Read entire ID string */
2958
2959 for (i = 0; i < 8; i++)
2960 id_data[i] = chip->read_byte(mtd);
2961
5e81e88a 2962 if (!type->name)
7aa65bfd
TG
2963 return ERR_PTR(-ENODEV);
2964
ba0251fe
TG
2965 if (!mtd->name)
2966 mtd->name = type->name;
2967
69423d99 2968 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 2969
12a40a57 2970 if (!type->pagesize && chip->init_size) {
8b6e50c9 2971 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
2972 busw = chip->init_size(mtd, chip, id_data);
2973 } else if (!type->pagesize) {
7aa65bfd 2974 int extid;
29072b96 2975 /* The 3rd id byte holds MLC / multichip data */
426c457a 2976 chip->cellinfo = id_data[2];
7aa65bfd 2977 /* The 4th id byte is the important one */
426c457a 2978 extid = id_data[3];
61b03bd7 2979
426c457a
KC
2980 /*
2981 * Field definitions are in the following datasheets:
2982 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
34c5bf6c 2983 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
426c457a
KC
2984 *
2985 * Check for wraparound + Samsung ID + nonzero 6th byte
2986 * to decide what to do.
2987 */
2988 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2989 id_data[0] == NAND_MFR_SAMSUNG &&
cfe3fdad 2990 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
426c457a
KC
2991 id_data[5] != 0x00) {
2992 /* Calc pagesize */
2993 mtd->writesize = 2048 << (extid & 0x03);
2994 extid >>= 2;
2995 /* Calc oobsize */
34c5bf6c
BN
2996 switch (extid & 0x03) {
2997 case 1:
2998 mtd->oobsize = 128;
2999 break;
3000 case 2:
3001 mtd->oobsize = 218;
3002 break;
3003 case 3:
3004 mtd->oobsize = 400;
3005 break;
3006 default:
3007 mtd->oobsize = 436;
3008 break;
3009 }
426c457a
KC
3010 extid >>= 2;
3011 /* Calc blocksize */
3012 mtd->erasesize = (128 * 1024) <<
3013 (((extid >> 1) & 0x04) | (extid & 0x03));
3014 busw = 0;
3015 } else {
3016 /* Calc pagesize */
3017 mtd->writesize = 1024 << (extid & 0x03);
3018 extid >>= 2;
3019 /* Calc oobsize */
3020 mtd->oobsize = (8 << (extid & 0x01)) *
3021 (mtd->writesize >> 9);
3022 extid >>= 2;
3023 /* Calc blocksize. Blocksize is multiples of 64KiB */
3024 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3025 extid >>= 2;
3026 /* Get buswidth information */
3027 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3028 }
7aa65bfd
TG
3029 } else {
3030 /*
8b6e50c9 3031 * Old devices have chip data hardcoded in the device id table.
7aa65bfd 3032 */
ba0251fe
TG
3033 mtd->erasesize = type->erasesize;
3034 mtd->writesize = type->pagesize;
4cbb9b80 3035 mtd->oobsize = mtd->writesize / 32;
ba0251fe 3036 busw = type->options & NAND_BUSWIDTH_16;
2173bae8
BN
3037
3038 /*
3039 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3040 * some Spansion chips have erasesize that conflicts with size
8b6e50c9 3041 * listed in nand_ids table.
2173bae8
BN
3042 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3043 */
3044 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3045 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3046 id_data[7] == 0x00 && mtd->writesize == 512) {
3047 mtd->erasesize = 128 * 1024;
3048 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3049 }
7aa65bfd 3050 }
d1e1f4e4
FF
3051 /* Get chip options, preserve non chip based options */
3052 chip->options &= ~NAND_CHIPOPTIONS_MSK;
3053 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3054
8b6e50c9
BN
3055 /*
3056 * Check if chip is not a Samsung device. Do not clear the
3057 * options for chips which do not have an extended id.
d1e1f4e4
FF
3058 */
3059 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3060 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3061ident_done:
3062
3063 /*
8b6e50c9 3064 * Set chip as a default. Board drivers can override it, if necessary.
d1e1f4e4
FF
3065 */
3066 chip->options |= NAND_NO_AUTOINCR;
1da177e4 3067
7aa65bfd 3068 /* Try to identify manufacturer */
9a909867 3069 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3070 if (nand_manuf_ids[maf_idx].id == *maf_id)
3071 break;
3072 }
0ea4a755 3073
7aa65bfd
TG
3074 /*
3075 * Check, if buswidth is correct. Hardware drivers should set
8b6e50c9 3076 * chip correct!
7aa65bfd 3077 */
ace4dfee 3078 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
9a4d4d69 3079 pr_info("NAND device: Manufacturer ID:"
d0370219
BN
3080 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3081 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
9a4d4d69 3082 pr_warn("NAND bus width %d instead %d bit\n",
d0370219
BN
3083 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3084 busw ? 16 : 8);
7aa65bfd
TG
3085 return ERR_PTR(-EINVAL);
3086 }
61b03bd7 3087
7aa65bfd 3088 /* Calculate the address shift from the page size */
ace4dfee 3089 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3090 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3091 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3092
ace4dfee 3093 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3094 ffs(mtd->erasesize) - 1;
69423d99
AH
3095 if (chip->chipsize & 0xffffffff)
3096 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3097 else {
3098 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3099 chip->chip_shift += 32 - 1;
3100 }
1da177e4 3101
26d9be11
AB
3102 chip->badblockbits = 8;
3103
7aa65bfd 3104 /* Set the bad block position */
065a1ed8 3105 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
c7b28e25 3106 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
065a1ed8
BN
3107 else
3108 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
61b03bd7 3109
b60b08b0
KC
3110 /*
3111 * Bad block marker is stored in the last page of each block
c7b28e25
BN
3112 * on Samsung and Hynix MLC devices; stored in first two pages
3113 * of each block on Micron devices with 2KiB pages and on
13ed7aed
BN
3114 * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3115 * only the first page.
b60b08b0
KC
3116 */
3117 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3118 (*maf_id == NAND_MFR_SAMSUNG ||
3119 *maf_id == NAND_MFR_HYNIX))
5fb1549d 3120 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
c7b28e25
BN
3121 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3122 (*maf_id == NAND_MFR_SAMSUNG ||
3123 *maf_id == NAND_MFR_HYNIX ||
13ed7aed 3124 *maf_id == NAND_MFR_TOSHIBA ||
c7b28e25
BN
3125 *maf_id == NAND_MFR_AMD)) ||
3126 (mtd->writesize == 2048 &&
3127 *maf_id == NAND_MFR_MICRON))
5fb1549d 3128 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
c7b28e25 3129
7aa65bfd 3130 /* Check for AND chips with 4 page planes */
ace4dfee
TG
3131 if (chip->options & NAND_4PAGE_ARRAY)
3132 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 3133 else
ace4dfee 3134 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3135
8b6e50c9 3136 /* Do not replace user supplied command function! */
ace4dfee
TG
3137 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3138 chip->cmdfunc = nand_command_lp;
7aa65bfd 3139
9a4d4d69 3140 pr_info("NAND device: Manufacturer ID:"
d1e1f4e4
FF
3141 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3142 nand_manuf_ids[maf_idx].name,
0b524fb9 3143 chip->onfi_version ? chip->onfi_params.model : type->name);
7aa65bfd
TG
3144
3145 return type;
3146}
3147
7aa65bfd 3148/**
3b85c321 3149 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3150 * @mtd: MTD device structure
3151 * @maxchips: number of chips to scan for
3152 * @table: alternative NAND ID table
7aa65bfd 3153 *
8b6e50c9
BN
3154 * This is the first phase of the normal nand_scan() function. It reads the
3155 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3156 *
3b85c321 3157 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3158 */
5e81e88a
DW
3159int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3160 struct nand_flash_dev *table)
7aa65bfd 3161{
d1e1f4e4 3162 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3163 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3164 struct nand_flash_dev *type;
3165
7aa65bfd 3166 /* Get buswidth to select the correct functions */
ace4dfee 3167 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3168 /* Set the default functions */
ace4dfee 3169 nand_set_defaults(chip, busw);
7aa65bfd
TG
3170
3171 /* Read the flash type */
7351d3a5
FF
3172 type = nand_get_flash_type(mtd, chip, busw,
3173 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3174
3175 if (IS_ERR(type)) {
b1c6e6db 3176 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3177 pr_warn("No NAND device found\n");
ace4dfee 3178 chip->select_chip(mtd, -1);
7aa65bfd 3179 return PTR_ERR(type);
1da177e4
LT
3180 }
3181
7aa65bfd 3182 /* Check for a chip array */
e0c7d767 3183 for (i = 1; i < maxchips; i++) {
ace4dfee 3184 chip->select_chip(mtd, i);
ef89a880
KB
3185 /* See comment in nand_get_flash_type for reset */
3186 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3187 /* Send the command for reading device ID */
ace4dfee 3188 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3189 /* Read manufacturer and device IDs */
ace4dfee 3190 if (nand_maf_id != chip->read_byte(mtd) ||
d1e1f4e4 3191 nand_dev_id != chip->read_byte(mtd))
1da177e4
LT
3192 break;
3193 }
3194 if (i > 1)
9a4d4d69 3195 pr_info("%d NAND chips detected\n", i);
61b03bd7 3196
1da177e4 3197 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3198 chip->numchips = i;
3199 mtd->size = i * chip->chipsize;
7aa65bfd 3200
3b85c321
DW
3201 return 0;
3202}
7351d3a5 3203EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3204
3205
3206/**
3207 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3208 * @mtd: MTD device structure
3b85c321 3209 *
8b6e50c9
BN
3210 * This is the second phase of the normal nand_scan() function. It fills out
3211 * all the uninitialized function pointers with the defaults and scans for a
3212 * bad block table if appropriate.
3b85c321
DW
3213 */
3214int nand_scan_tail(struct mtd_info *mtd)
3215{
3216 int i;
3217 struct nand_chip *chip = mtd->priv;
3218
4bf63fcb
DW
3219 if (!(chip->options & NAND_OWN_BUFFERS))
3220 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3221 if (!chip->buffers)
3222 return -ENOMEM;
3223
7dcdcbef 3224 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3225 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3226
7aa65bfd 3227 /*
8b6e50c9 3228 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3229 */
193bd400 3230 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3231 switch (mtd->oobsize) {
1da177e4 3232 case 8:
5bd34c09 3233 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3234 break;
3235 case 16:
5bd34c09 3236 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3237 break;
3238 case 64:
5bd34c09 3239 chip->ecc.layout = &nand_oob_64;
1da177e4 3240 break;
81ec5364
TG
3241 case 128:
3242 chip->ecc.layout = &nand_oob_128;
3243 break;
1da177e4 3244 default:
d0370219
BN
3245 pr_warn("No oob scheme defined for oobsize %d\n",
3246 mtd->oobsize);
1da177e4
LT
3247 BUG();
3248 }
3249 }
61b03bd7 3250
956e944c
DW
3251 if (!chip->write_page)
3252 chip->write_page = nand_write_page;
3253
61b03bd7 3254 /*
8b6e50c9 3255 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3256 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3257 */
956e944c 3258
ace4dfee 3259 switch (chip->ecc.mode) {
6e0cb135
SN
3260 case NAND_ECC_HW_OOB_FIRST:
3261 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3262 if (!chip->ecc.calculate || !chip->ecc.correct ||
3263 !chip->ecc.hwctl) {
9a4d4d69 3264 pr_warn("No ECC functions supplied; "
d0370219 3265 "hardware ECC not possible\n");
6e0cb135
SN
3266 BUG();
3267 }
3268 if (!chip->ecc.read_page)
3269 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3270
6dfc6d25 3271 case NAND_ECC_HW:
8b6e50c9 3272 /* Use standard hwecc read page function? */
f5bbdacc
TG
3273 if (!chip->ecc.read_page)
3274 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3275 if (!chip->ecc.write_page)
3276 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3277 if (!chip->ecc.read_page_raw)
3278 chip->ecc.read_page_raw = nand_read_page_raw;
3279 if (!chip->ecc.write_page_raw)
3280 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3281 if (!chip->ecc.read_oob)
3282 chip->ecc.read_oob = nand_read_oob_std;
3283 if (!chip->ecc.write_oob)
3284 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3285
6dfc6d25 3286 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3287 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3288 !chip->ecc.hwctl) &&
3289 (!chip->ecc.read_page ||
1c45f604 3290 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3291 !chip->ecc.write_page ||
1c45f604 3292 chip->ecc.write_page == nand_write_page_hwecc)) {
9a4d4d69 3293 pr_warn("No ECC functions supplied; "
d0370219 3294 "hardware ECC not possible\n");
6dfc6d25
TG
3295 BUG();
3296 }
8b6e50c9 3297 /* Use standard syndrome read/write page function? */
f5bbdacc
TG
3298 if (!chip->ecc.read_page)
3299 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3300 if (!chip->ecc.write_page)
3301 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3302 if (!chip->ecc.read_page_raw)
3303 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3304 if (!chip->ecc.write_page_raw)
3305 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3306 if (!chip->ecc.read_oob)
3307 chip->ecc.read_oob = nand_read_oob_syndrome;
3308 if (!chip->ecc.write_oob)
3309 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3310
ace4dfee 3311 if (mtd->writesize >= chip->ecc.size)
6dfc6d25 3312 break;
9a4d4d69 3313 pr_warn("%d byte HW ECC not possible on "
d0370219
BN
3314 "%d byte page size, fallback to SW ECC\n",
3315 chip->ecc.size, mtd->writesize);
ace4dfee 3316 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3317
6dfc6d25 3318 case NAND_ECC_SOFT:
ace4dfee
TG
3319 chip->ecc.calculate = nand_calculate_ecc;
3320 chip->ecc.correct = nand_correct_data;
f5bbdacc 3321 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3322 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3323 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3324 chip->ecc.read_page_raw = nand_read_page_raw;
3325 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3326 chip->ecc.read_oob = nand_read_oob_std;
3327 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3328 if (!chip->ecc.size)
3329 chip->ecc.size = 256;
ace4dfee 3330 chip->ecc.bytes = 3;
1da177e4 3331 break;
61b03bd7 3332
193bd400
ID
3333 case NAND_ECC_SOFT_BCH:
3334 if (!mtd_nand_has_bch()) {
9a4d4d69 3335 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
193bd400
ID
3336 BUG();
3337 }
3338 chip->ecc.calculate = nand_bch_calculate_ecc;
3339 chip->ecc.correct = nand_bch_correct_data;
3340 chip->ecc.read_page = nand_read_page_swecc;
3341 chip->ecc.read_subpage = nand_read_subpage;
3342 chip->ecc.write_page = nand_write_page_swecc;
3343 chip->ecc.read_page_raw = nand_read_page_raw;
3344 chip->ecc.write_page_raw = nand_write_page_raw;
3345 chip->ecc.read_oob = nand_read_oob_std;
3346 chip->ecc.write_oob = nand_write_oob_std;
3347 /*
3348 * Board driver should supply ecc.size and ecc.bytes values to
3349 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3350 * for details. Otherwise, default to 4 bits for large page
3351 * devices.
193bd400
ID
3352 */
3353 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3354 chip->ecc.size = 512;
3355 chip->ecc.bytes = 7;
3356 }
3357 chip->ecc.priv = nand_bch_init(mtd,
3358 chip->ecc.size,
3359 chip->ecc.bytes,
3360 &chip->ecc.layout);
3361 if (!chip->ecc.priv) {
9a4d4d69 3362 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3363 BUG();
3364 }
3365 break;
3366
61b03bd7 3367 case NAND_ECC_NONE:
9a4d4d69 3368 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3369 "This is not recommended!\n");
8593fbc6
TG
3370 chip->ecc.read_page = nand_read_page_raw;
3371 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3372 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3373 chip->ecc.read_page_raw = nand_read_page_raw;
3374 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3375 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3376 chip->ecc.size = mtd->writesize;
3377 chip->ecc.bytes = 0;
1da177e4 3378 break;
956e944c 3379
1da177e4 3380 default:
d0370219 3381 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
61b03bd7 3382 BUG();
1da177e4 3383 }
61b03bd7 3384
5bd34c09
TG
3385 /*
3386 * The number of bytes available for a client to place data into
8b6e50c9 3387 * the out of band area.
5bd34c09
TG
3388 */
3389 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3390 for (i = 0; chip->ecc.layout->oobfree[i].length
3391 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3392 chip->ecc.layout->oobavail +=
3393 chip->ecc.layout->oobfree[i].length;
1f92267c 3394 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3395
7aa65bfd
TG
3396 /*
3397 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3398 * mode.
7aa65bfd 3399 */
ace4dfee 3400 chip->ecc.steps = mtd->writesize / chip->ecc.size;
f8ac0414 3401 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
9a4d4d69 3402 pr_warn("Invalid ECC parameters\n");
6dfc6d25 3403 BUG();
1da177e4 3404 }
f5bbdacc 3405 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3406
8b6e50c9 3407 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
29072b96
TG
3408 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3409 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
f8ac0414 3410 switch (chip->ecc.steps) {
29072b96
TG
3411 case 2:
3412 mtd->subpage_sft = 1;
3413 break;
3414 case 4:
3415 case 8:
81ec5364 3416 case 16:
29072b96
TG
3417 mtd->subpage_sft = 2;
3418 break;
3419 }
3420 }
3421 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3422
04bbd0ea 3423 /* Initialize state */
ace4dfee 3424 chip->state = FL_READY;
1da177e4
LT
3425
3426 /* De-select the device */
ace4dfee 3427 chip->select_chip(mtd, -1);
1da177e4
LT
3428
3429 /* Invalidate the pagebuffer reference */
ace4dfee 3430 chip->pagebuf = -1;
1da177e4
LT
3431
3432 /* Fill in remaining MTD driver data */
3433 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3434 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3435 MTD_CAP_NANDFLASH;
1da177e4
LT
3436 mtd->erase = nand_erase;
3437 mtd->point = NULL;
3438 mtd->unpoint = NULL;
3439 mtd->read = nand_read;
3440 mtd->write = nand_write;
2af7c653 3441 mtd->panic_write = panic_nand_write;
1da177e4
LT
3442 mtd->read_oob = nand_read_oob;
3443 mtd->write_oob = nand_write_oob;
1da177e4
LT
3444 mtd->sync = nand_sync;
3445 mtd->lock = NULL;
3446 mtd->unlock = NULL;
962034f4
VW
3447 mtd->suspend = nand_suspend;
3448 mtd->resume = nand_resume;
1da177e4
LT
3449 mtd->block_isbad = nand_block_isbad;
3450 mtd->block_markbad = nand_block_markbad;
cbcab65a 3451 mtd->writebufsize = mtd->writesize;
1da177e4 3452
5bd34c09
TG
3453 /* propagate ecc.layout to mtd_info */
3454 mtd->ecclayout = chip->ecc.layout;
1da177e4 3455
0040bf38 3456 /* Check, if we should skip the bad block table scan */
ace4dfee 3457 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3458 return 0;
1da177e4
LT
3459
3460 /* Build bad block table */
ace4dfee 3461 return chip->scan_bbt(mtd);
1da177e4 3462}
7351d3a5 3463EXPORT_SYMBOL(nand_scan_tail);
1da177e4 3464
8b6e50c9
BN
3465/*
3466 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 3467 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
3468 * to call us from in-kernel code if the core NAND support is modular.
3469 */
3b85c321
DW
3470#ifdef MODULE
3471#define caller_is_module() (1)
3472#else
3473#define caller_is_module() \
a6e6abd5 3474 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3475#endif
3476
3477/**
3478 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3479 * @mtd: MTD device structure
3480 * @maxchips: number of chips to scan for
3b85c321 3481 *
8b6e50c9
BN
3482 * This fills out all the uninitialized function pointers with the defaults.
3483 * The flash ID is read and the mtd/chip structures are filled with the
3484 * appropriate values. The mtd->owner field must be set to the module of the
3485 * caller.
3b85c321
DW
3486 */
3487int nand_scan(struct mtd_info *mtd, int maxchips)
3488{
3489 int ret;
3490
3491 /* Many callers got this wrong, so check for it for a while... */
3492 if (!mtd->owner && caller_is_module()) {
d0370219 3493 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
3494 BUG();
3495 }
3496
5e81e88a 3497 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3498 if (!ret)
3499 ret = nand_scan_tail(mtd);
3500 return ret;
3501}
7351d3a5 3502EXPORT_SYMBOL(nand_scan);
3b85c321 3503
1da177e4 3504/**
61b03bd7 3505 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
3506 * @mtd: MTD device structure
3507 */
e0c7d767 3508void nand_release(struct mtd_info *mtd)
1da177e4 3509{
ace4dfee 3510 struct nand_chip *chip = mtd->priv;
1da177e4 3511
193bd400
ID
3512 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3513 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3514
5ffcaf3d 3515 mtd_device_unregister(mtd);
1da177e4 3516
fa671646 3517 /* Free bad block table memory */
ace4dfee 3518 kfree(chip->bbt);
4bf63fcb
DW
3519 if (!(chip->options & NAND_OWN_BUFFERS))
3520 kfree(chip->buffers);
58373ff0
BN
3521
3522 /* Free bad block descriptor memory */
3523 if (chip->badblock_pattern && chip->badblock_pattern->options
3524 & NAND_BBT_DYNAMICSTRUCT)
3525 kfree(chip->badblock_pattern);
1da177e4 3526}
e0c7d767 3527EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3528
3529static int __init nand_base_init(void)
3530{
3531 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3532 return 0;
3533}
3534
3535static void __exit nand_base_exit(void)
3536{
3537 led_trigger_unregister_simple(nand_led_trigger);
3538}
3539
3540module_init(nand_base_init);
3541module_exit(nand_base_exit);
3542
e0c7d767 3543MODULE_LICENSE("GPL");
7351d3a5
FF
3544MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3545MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 3546MODULE_DESCRIPTION("Generic NAND flash driver code");