]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/nand/nand_base.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
38b8d208 39#include <linux/nmi.h>
1da177e4
LT
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
193bd400 44#include <linux/mtd/nand_bch.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
7351d3a5 47#include <linux/io.h>
1da177e4 48#include <linux/mtd/partitions.h>
d48f62b9 49#include <linux/of.h>
1da177e4 50
41b207a7
BB
51static int nand_get_device(struct mtd_info *mtd, int new_state);
52
53static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54 struct mtd_oob_ops *ops);
1da177e4
LT
55
56/* Define default oob placement schemes for large and small page devices */
41b207a7
BB
57static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58 struct mtd_oob_region *oobregion)
59{
60 struct nand_chip *chip = mtd_to_nand(mtd);
61 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 62
41b207a7
BB
63 if (section > 1)
64 return -ERANGE;
1da177e4 65
41b207a7
BB
66 if (!section) {
67 oobregion->offset = 0;
68 oobregion->length = 4;
69 } else {
70 oobregion->offset = 6;
71 oobregion->length = ecc->total - 4;
72 }
1da177e4 73
41b207a7
BB
74 return 0;
75}
76
77static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
78 struct mtd_oob_region *oobregion)
79{
80 if (section > 1)
81 return -ERANGE;
1da177e4 82
41b207a7
BB
83 if (mtd->oobsize == 16) {
84 if (section)
85 return -ERANGE;
86
87 oobregion->length = 8;
88 oobregion->offset = 8;
89 } else {
90 oobregion->length = 2;
91 if (!section)
92 oobregion->offset = 3;
93 else
94 oobregion->offset = 6;
95 }
96
97 return 0;
98}
99
100const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
101 .ecc = nand_ooblayout_ecc_sp,
102 .free = nand_ooblayout_free_sp,
81ec5364 103};
41b207a7 104EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
81ec5364 105
41b207a7
BB
106static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
107 struct mtd_oob_region *oobregion)
108{
109 struct nand_chip *chip = mtd_to_nand(mtd);
110 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 111
41b207a7
BB
112 if (section)
113 return -ERANGE;
8593fbc6 114
41b207a7
BB
115 oobregion->length = ecc->total;
116 oobregion->offset = mtd->oobsize - oobregion->length;
117
118 return 0;
119}
120
121static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
122 struct mtd_oob_region *oobregion)
123{
124 struct nand_chip *chip = mtd_to_nand(mtd);
125 struct nand_ecc_ctrl *ecc = &chip->ecc;
126
127 if (section)
128 return -ERANGE;
129
130 oobregion->length = mtd->oobsize - ecc->total - 2;
131 oobregion->offset = 2;
132
133 return 0;
134}
135
136const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
137 .ecc = nand_ooblayout_ecc_lp,
138 .free = nand_ooblayout_free_lp,
139};
140EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
d470a97c 141
6a623e07
AC
142/*
143 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
144 * are placed at a fixed offset.
145 */
146static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
147 struct mtd_oob_region *oobregion)
148{
149 struct nand_chip *chip = mtd_to_nand(mtd);
150 struct nand_ecc_ctrl *ecc = &chip->ecc;
151
152 if (section)
153 return -ERANGE;
154
155 switch (mtd->oobsize) {
156 case 64:
157 oobregion->offset = 40;
158 break;
159 case 128:
160 oobregion->offset = 80;
161 break;
162 default:
163 return -EINVAL;
164 }
165
166 oobregion->length = ecc->total;
167 if (oobregion->offset + oobregion->length > mtd->oobsize)
168 return -ERANGE;
169
170 return 0;
171}
172
173static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
174 struct mtd_oob_region *oobregion)
175{
176 struct nand_chip *chip = mtd_to_nand(mtd);
177 struct nand_ecc_ctrl *ecc = &chip->ecc;
178 int ecc_offset = 0;
179
180 if (section < 0 || section > 1)
181 return -ERANGE;
182
183 switch (mtd->oobsize) {
184 case 64:
185 ecc_offset = 40;
186 break;
187 case 128:
188 ecc_offset = 80;
189 break;
190 default:
191 return -EINVAL;
192 }
193
194 if (section == 0) {
195 oobregion->offset = 2;
196 oobregion->length = ecc_offset - 2;
197 } else {
198 oobregion->offset = ecc_offset + ecc->total;
199 oobregion->length = mtd->oobsize - oobregion->offset;
200 }
201
202 return 0;
203}
204
d4ed3b90 205static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
6a623e07
AC
206 .ecc = nand_ooblayout_ecc_lp_hamming,
207 .free = nand_ooblayout_free_lp_hamming,
208};
209
6fe5a6ac
VS
210static int check_offs_len(struct mtd_info *mtd,
211 loff_t ofs, uint64_t len)
212{
862eba51 213 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
214 int ret = 0;
215
216 /* Start address must align on block boundary */
daae74ca 217 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 218 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
219 ret = -EINVAL;
220 }
221
222 /* Length must align on block boundary */
daae74ca 223 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 224 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
225 ret = -EINVAL;
226 }
227
6fe5a6ac
VS
228 return ret;
229}
230
1da177e4
LT
231/**
232 * nand_release_device - [GENERIC] release chip
8b6e50c9 233 * @mtd: MTD device structure
61b03bd7 234 *
b0bb6903 235 * Release chip lock and wake up anyone waiting on the device.
1da177e4 236 */
e0c7d767 237static void nand_release_device(struct mtd_info *mtd)
1da177e4 238{
862eba51 239 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 240
a36ed299 241 /* Release the controller and the chip */
ace4dfee
TG
242 spin_lock(&chip->controller->lock);
243 chip->controller->active = NULL;
244 chip->state = FL_READY;
245 wake_up(&chip->controller->wq);
246 spin_unlock(&chip->controller->lock);
1da177e4
LT
247}
248
249/**
250 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 251 * @mtd: MTD device structure
1da177e4 252 *
7854d3f7 253 * Default read function for 8bit buswidth
1da177e4 254 */
58dd8f2b 255static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 256{
862eba51 257 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 258 return readb(chip->IO_ADDR_R);
1da177e4
LT
259}
260
1da177e4 261/**
7854d3f7 262 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 263 * @mtd: MTD device structure
1da177e4 264 *
7854d3f7
BN
265 * Default read function for 16bit buswidth with endianness conversion.
266 *
1da177e4 267 */
58dd8f2b 268static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 269{
862eba51 270 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 271 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
272}
273
1da177e4
LT
274/**
275 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 276 * @mtd: MTD device structure
1da177e4 277 *
7854d3f7 278 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
279 */
280static u16 nand_read_word(struct mtd_info *mtd)
281{
862eba51 282 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 283 return readw(chip->IO_ADDR_R);
1da177e4
LT
284}
285
1da177e4
LT
286/**
287 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
288 * @mtd: MTD device structure
289 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
290 *
291 * Default select function for 1 chip devices.
292 */
ace4dfee 293static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 294{
862eba51 295 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
296
297 switch (chipnr) {
1da177e4 298 case -1:
ace4dfee 299 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
300 break;
301 case 0:
1da177e4
LT
302 break;
303
304 default:
305 BUG();
306 }
307}
308
05f78359
UKK
309/**
310 * nand_write_byte - [DEFAULT] write single byte to chip
311 * @mtd: MTD device structure
312 * @byte: value to write
313 *
314 * Default function to write a byte to I/O[7:0]
315 */
316static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
317{
862eba51 318 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
319
320 chip->write_buf(mtd, &byte, 1);
321}
322
323/**
324 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
325 * @mtd: MTD device structure
326 * @byte: value to write
327 *
328 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
329 */
330static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
331{
862eba51 332 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
333 uint16_t word = byte;
334
335 /*
336 * It's not entirely clear what should happen to I/O[15:8] when writing
337 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
338 *
339 * When the host supports a 16-bit bus width, only data is
340 * transferred at the 16-bit width. All address and command line
341 * transfers shall use only the lower 8-bits of the data bus. During
342 * command transfers, the host may place any value on the upper
343 * 8-bits of the data bus. During address transfers, the host shall
344 * set the upper 8-bits of the data bus to 00h.
345 *
346 * One user of the write_byte callback is nand_onfi_set_features. The
347 * four parameters are specified to be written to I/O[7:0], but this is
348 * neither an address nor a command transfer. Let's assume a 0 on the
349 * upper I/O lines is OK.
350 */
351 chip->write_buf(mtd, (uint8_t *)&word, 2);
352}
353
1da177e4
LT
354/**
355 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
356 * @mtd: MTD device structure
357 * @buf: data buffer
358 * @len: number of bytes to write
1da177e4 359 *
7854d3f7 360 * Default write function for 8bit buswidth.
1da177e4 361 */
58dd8f2b 362static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 363{
862eba51 364 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 365
76413839 366 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
367}
368
369/**
61b03bd7 370 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
371 * @mtd: MTD device structure
372 * @buf: buffer to store date
373 * @len: number of bytes to read
1da177e4 374 *
7854d3f7 375 * Default read function for 8bit buswidth.
1da177e4 376 */
58dd8f2b 377static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 378{
862eba51 379 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 380
76413839 381 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
382}
383
1da177e4
LT
384/**
385 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
386 * @mtd: MTD device structure
387 * @buf: data buffer
388 * @len: number of bytes to write
1da177e4 389 *
7854d3f7 390 * Default write function for 16bit buswidth.
1da177e4 391 */
58dd8f2b 392static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 393{
862eba51 394 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 395 u16 *p = (u16 *) buf;
61b03bd7 396
76413839 397 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
398}
399
400/**
61b03bd7 401 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
402 * @mtd: MTD device structure
403 * @buf: buffer to store date
404 * @len: number of bytes to read
1da177e4 405 *
7854d3f7 406 * Default read function for 16bit buswidth.
1da177e4 407 */
58dd8f2b 408static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 409{
862eba51 410 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 411 u16 *p = (u16 *) buf;
1da177e4 412
76413839 413 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
414}
415
1da177e4
LT
416/**
417 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
418 * @mtd: MTD device structure
419 * @ofs: offset from device start
1da177e4 420 *
61b03bd7 421 * Check, if the block is bad.
1da177e4 422 */
9f3e0429 423static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
1da177e4 424{
c120e75e 425 int page, page_end, res;
862eba51 426 struct nand_chip *chip = mtd_to_nand(mtd);
c120e75e 427 u8 bad;
1da177e4 428
5fb1549d 429 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
430 ofs += mtd->erasesize - mtd->writesize;
431
1a12f46a 432 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
c120e75e 433 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
1a12f46a 434
c120e75e
MY
435 for (; page < page_end; page++) {
436 res = chip->ecc.read_oob(mtd, chip, page);
437 if (res)
438 return res;
439
440 bad = chip->oob_poi[chip->badblockpos];
cdbec050
BN
441
442 if (likely(chip->badblockbits == 8))
443 res = bad != 0xFF;
e0b58d0a 444 else
cdbec050 445 res = hweight8(bad) < chip->badblockbits;
c120e75e
MY
446 if (res)
447 return res;
448 }
e0b58d0a 449
c120e75e 450 return 0;
1da177e4
LT
451}
452
453/**
5a0edb25 454 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
455 * @mtd: MTD device structure
456 * @ofs: offset from device start
1da177e4 457 *
8b6e50c9 458 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
459 * specific driver. It provides the details for writing a bad block marker to a
460 * block.
461 */
462static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
463{
862eba51 464 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
465 struct mtd_oob_ops ops;
466 uint8_t buf[2] = { 0, 0 };
467 int ret = 0, res, i = 0;
468
0ec56dc4 469 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
470 ops.oobbuf = buf;
471 ops.ooboffs = chip->badblockpos;
472 if (chip->options & NAND_BUSWIDTH_16) {
473 ops.ooboffs &= ~0x01;
474 ops.len = ops.ooblen = 2;
475 } else {
476 ops.len = ops.ooblen = 1;
477 }
478 ops.mode = MTD_OPS_PLACE_OOB;
479
480 /* Write to first/last page(s) if necessary */
481 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
482 ofs += mtd->erasesize - mtd->writesize;
483 do {
484 res = nand_do_write_oob(mtd, ofs, &ops);
485 if (!ret)
486 ret = res;
487
488 i++;
489 ofs += mtd->writesize;
490 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
491
492 return ret;
493}
494
495/**
496 * nand_block_markbad_lowlevel - mark a block bad
497 * @mtd: MTD device structure
498 * @ofs: offset from device start
499 *
500 * This function performs the generic NAND bad block marking steps (i.e., bad
501 * block table(s) and/or marker(s)). We only allow the hardware driver to
502 * specify how to write bad block markers to OOB (chip->block_markbad).
503 *
b32843b7 504 * We try operations in the following order:
e2414f4c 505 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
506 * (2) write bad block marker to OOB area of affected block (unless flag
507 * NAND_BBT_NO_OOB_BBM is present)
508 * (3) update the BBT
509 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 510 * procedures, and dump the error in the end.
1da177e4 511*/
5a0edb25 512static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 513{
862eba51 514 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 515 int res, ret = 0;
61b03bd7 516
b32843b7 517 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
518 struct erase_info einfo;
519
520 /* Attempt erase before marking OOB */
521 memset(&einfo, 0, sizeof(einfo));
522 einfo.mtd = mtd;
523 einfo.addr = ofs;
daae74ca 524 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 525 nand_erase_nand(mtd, &einfo, 0);
1da177e4 526
b32843b7 527 /* Write bad block marker to OOB */
6a8214aa 528 nand_get_device(mtd, FL_WRITING);
5a0edb25 529 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 530 nand_release_device(mtd);
f1a28c02 531 }
e2414f4c 532
b32843b7
BN
533 /* Mark block bad in BBT */
534 if (chip->bbt) {
535 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
536 if (!ret)
537 ret = res;
538 }
539
f1a28c02
TG
540 if (!ret)
541 mtd->ecc_stats.badblocks++;
c0b8ba7b 542
f1a28c02 543 return ret;
1da177e4
LT
544}
545
61b03bd7 546/**
1da177e4 547 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 548 * @mtd: MTD device structure
1da177e4 549 *
8b6e50c9
BN
550 * Check, if the device is write protected. The function expects, that the
551 * device is already selected.
1da177e4 552 */
e0c7d767 553static int nand_check_wp(struct mtd_info *mtd)
1da177e4 554{
862eba51 555 struct nand_chip *chip = mtd_to_nand(mtd);
93edbad6 556
8b6e50c9 557 /* Broken xD cards report WP despite being writable */
93edbad6
ML
558 if (chip->options & NAND_BROKEN_XD)
559 return 0;
560
1da177e4 561 /* Check the WP bit */
ace4dfee
TG
562 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
563 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
564}
565
8471bb73 566/**
c30e1f79 567 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
568 * @mtd: MTD device structure
569 * @ofs: offset from device start
570 *
c30e1f79 571 * Check if the block is marked as reserved.
8471bb73
EG
572 */
573static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
574{
862eba51 575 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
576
577 if (!chip->bbt)
578 return 0;
579 /* Return info from the table */
580 return nand_isreserved_bbt(mtd, ofs);
581}
582
1da177e4
LT
583/**
584 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
585 * @mtd: MTD device structure
586 * @ofs: offset from device start
8b6e50c9 587 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
588 *
589 * Check, if the block is bad. Either by reading the bad block table or
590 * calling of the scan function.
591 */
9f3e0429 592static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1da177e4 593{
862eba51 594 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 595
ace4dfee 596 if (!chip->bbt)
9f3e0429 597 return chip->block_bad(mtd, ofs);
61b03bd7 598
1da177e4 599 /* Return info from the table */
e0c7d767 600 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
601}
602
2af7c653
SK
603/**
604 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
605 * @mtd: MTD device structure
606 * @timeo: Timeout
2af7c653
SK
607 *
608 * Helper function for nand_wait_ready used when needing to wait in interrupt
609 * context.
610 */
611static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
612{
862eba51 613 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
614 int i;
615
616 /* Wait for the device to get ready */
617 for (i = 0; i < timeo; i++) {
618 if (chip->dev_ready(mtd))
619 break;
620 touch_softlockup_watchdog();
621 mdelay(1);
622 }
623}
624
b70af9be
AS
625/**
626 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
627 * @mtd: MTD device structure
628 *
629 * Wait for the ready pin after a command, and warn if a timeout occurs.
630 */
4b648b02 631void nand_wait_ready(struct mtd_info *mtd)
3b88775c 632{
862eba51 633 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 634 unsigned long timeo = 400;
3b88775c 635
2af7c653 636 if (in_interrupt() || oops_in_progress)
b70af9be 637 return panic_nand_wait_ready(mtd, timeo);
2af7c653 638
7854d3f7 639 /* Wait until command is processed or timeout occurs */
b70af9be 640 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 641 do {
ace4dfee 642 if (chip->dev_ready(mtd))
4c7e054f 643 return;
b70af9be 644 cond_resched();
61b03bd7 645 } while (time_before(jiffies, timeo));
b70af9be 646
9ebfdf5b
BN
647 if (!chip->dev_ready(mtd))
648 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
3b88775c 649}
4b648b02 650EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 651
60c70d66
RQ
652/**
653 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
654 * @mtd: MTD device structure
655 * @timeo: Timeout in ms
656 *
657 * Wait for status ready (i.e. command done) or timeout.
658 */
659static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
660{
862eba51 661 register struct nand_chip *chip = mtd_to_nand(mtd);
60c70d66
RQ
662
663 timeo = jiffies + msecs_to_jiffies(timeo);
664 do {
665 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
666 break;
667 touch_softlockup_watchdog();
668 } while (time_before(jiffies, timeo));
669};
670
1da177e4
LT
671/**
672 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
673 * @mtd: MTD device structure
674 * @command: the command to be sent
675 * @column: the column address for this command, -1 if none
676 * @page_addr: the page address for this command, -1 if none
1da177e4 677 *
8b6e50c9 678 * Send command to NAND device. This function is used for small page devices
51148f1f 679 * (512 Bytes per page).
1da177e4 680 */
7abd3ef9
TG
681static void nand_command(struct mtd_info *mtd, unsigned int command,
682 int column, int page_addr)
1da177e4 683{
862eba51 684 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 685 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 686
8b6e50c9 687 /* Write out the command to the device */
1da177e4
LT
688 if (command == NAND_CMD_SEQIN) {
689 int readcmd;
690
28318776 691 if (column >= mtd->writesize) {
1da177e4 692 /* OOB area */
28318776 693 column -= mtd->writesize;
1da177e4
LT
694 readcmd = NAND_CMD_READOOB;
695 } else if (column < 256) {
696 /* First 256 bytes --> READ0 */
697 readcmd = NAND_CMD_READ0;
698 } else {
699 column -= 256;
700 readcmd = NAND_CMD_READ1;
701 }
ace4dfee 702 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 703 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 704 }
ace4dfee 705 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 706
8b6e50c9 707 /* Address cycle, when necessary */
7abd3ef9
TG
708 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
709 /* Serially input address */
710 if (column != -1) {
711 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
712 if (chip->options & NAND_BUSWIDTH_16 &&
713 !nand_opcode_8bits(command))
7abd3ef9 714 column >>= 1;
ace4dfee 715 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
716 ctrl &= ~NAND_CTRL_CHANGE;
717 }
718 if (page_addr != -1) {
ace4dfee 719 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 720 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 721 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 722 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
723 if (chip->chipsize > (32 << 20))
724 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 725 }
ace4dfee 726 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
727
728 /*
8b6e50c9
BN
729 * Program and erase have their own busy handlers status and sequential
730 * in needs no delay
e0c7d767 731 */
1da177e4 732 switch (command) {
61b03bd7 733
1da177e4
LT
734 case NAND_CMD_PAGEPROG:
735 case NAND_CMD_ERASE1:
736 case NAND_CMD_ERASE2:
737 case NAND_CMD_SEQIN:
738 case NAND_CMD_STATUS:
3158fa0e 739 case NAND_CMD_READID:
c5d664aa 740 case NAND_CMD_SET_FEATURES:
1da177e4
LT
741 return;
742
743 case NAND_CMD_RESET:
ace4dfee 744 if (chip->dev_ready)
1da177e4 745 break;
ace4dfee
TG
746 udelay(chip->chip_delay);
747 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 748 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
749 chip->cmd_ctrl(mtd,
750 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
751 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
752 nand_wait_status_ready(mtd, 250);
1da177e4
LT
753 return;
754
e0c7d767 755 /* This applies to read commands */
1da177e4 756 default:
61b03bd7 757 /*
1da177e4
LT
758 * If we don't have access to the busy pin, we apply the given
759 * command delay
e0c7d767 760 */
ace4dfee
TG
761 if (!chip->dev_ready) {
762 udelay(chip->chip_delay);
1da177e4 763 return;
61b03bd7 764 }
1da177e4 765 }
8b6e50c9
BN
766 /*
767 * Apply this short delay always to ensure that we do wait tWB in
768 * any case on any machine.
769 */
e0c7d767 770 ndelay(100);
3b88775c
TG
771
772 nand_wait_ready(mtd);
1da177e4
LT
773}
774
6ea40a3b
BB
775static void nand_ccs_delay(struct nand_chip *chip)
776{
777 /*
778 * The controller already takes care of waiting for tCCS when the RNDIN
779 * or RNDOUT command is sent, return directly.
780 */
781 if (!(chip->options & NAND_WAIT_TCCS))
782 return;
783
784 /*
785 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
786 * (which should be safe for all NANDs).
787 */
788 if (chip->data_interface && chip->data_interface->timings.sdr.tCCS_min)
789 ndelay(chip->data_interface->timings.sdr.tCCS_min / 1000);
790 else
791 ndelay(500);
792}
793
1da177e4
LT
794/**
795 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
796 * @mtd: MTD device structure
797 * @command: the command to be sent
798 * @column: the column address for this command, -1 if none
799 * @page_addr: the page address for this command, -1 if none
1da177e4 800 *
7abd3ef9 801 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
802 * devices. We don't have the separate regions as we have in the small page
803 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 804 */
7abd3ef9
TG
805static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
806 int column, int page_addr)
1da177e4 807{
862eba51 808 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
809
810 /* Emulate NAND_CMD_READOOB */
811 if (command == NAND_CMD_READOOB) {
28318776 812 column += mtd->writesize;
1da177e4
LT
813 command = NAND_CMD_READ0;
814 }
61b03bd7 815
7abd3ef9 816 /* Command latch cycle */
fb066ada 817 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
818
819 if (column != -1 || page_addr != -1) {
7abd3ef9 820 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
821
822 /* Serially input address */
823 if (column != -1) {
824 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
825 if (chip->options & NAND_BUSWIDTH_16 &&
826 !nand_opcode_8bits(command))
1da177e4 827 column >>= 1;
ace4dfee 828 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 829 ctrl &= ~NAND_CTRL_CHANGE;
fde85cfd 830
f5b88de2 831 /* Only output a single addr cycle for 8bits opcodes. */
fde85cfd
BB
832 if (!nand_opcode_8bits(command))
833 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 834 }
1da177e4 835 if (page_addr != -1) {
ace4dfee
TG
836 chip->cmd_ctrl(mtd, page_addr, ctrl);
837 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 838 NAND_NCE | NAND_ALE);
1da177e4 839 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
840 if (chip->chipsize > (128 << 20))
841 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 842 NAND_NCE | NAND_ALE);
1da177e4 843 }
1da177e4 844 }
ace4dfee 845 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
846
847 /*
8b6e50c9 848 * Program and erase have their own busy handlers status, sequential
7a442f17 849 * in and status need no delay.
30f464b7 850 */
1da177e4 851 switch (command) {
61b03bd7 852
1da177e4
LT
853 case NAND_CMD_CACHEDPROG:
854 case NAND_CMD_PAGEPROG:
855 case NAND_CMD_ERASE1:
856 case NAND_CMD_ERASE2:
857 case NAND_CMD_SEQIN:
858 case NAND_CMD_STATUS:
3158fa0e 859 case NAND_CMD_READID:
c5d664aa 860 case NAND_CMD_SET_FEATURES:
30f464b7 861 return;
1da177e4 862
6ea40a3b
BB
863 case NAND_CMD_RNDIN:
864 nand_ccs_delay(chip);
865 return;
866
1da177e4 867 case NAND_CMD_RESET:
ace4dfee 868 if (chip->dev_ready)
1da177e4 869 break;
ace4dfee 870 udelay(chip->chip_delay);
12efdde3
TG
871 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
872 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
873 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
874 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
875 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
876 nand_wait_status_ready(mtd, 250);
1da177e4
LT
877 return;
878
7bc3312b
TG
879 case NAND_CMD_RNDOUT:
880 /* No ready / busy check necessary */
881 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
882 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
883 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
884 NAND_NCE | NAND_CTRL_CHANGE);
6ea40a3b
BB
885
886 nand_ccs_delay(chip);
7bc3312b
TG
887 return;
888
1da177e4 889 case NAND_CMD_READ0:
12efdde3
TG
890 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
891 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
892 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
893 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 894
e0c7d767 895 /* This applies to read commands */
1da177e4 896 default:
61b03bd7 897 /*
1da177e4 898 * If we don't have access to the busy pin, we apply the given
8b6e50c9 899 * command delay.
e0c7d767 900 */
ace4dfee
TG
901 if (!chip->dev_ready) {
902 udelay(chip->chip_delay);
1da177e4 903 return;
61b03bd7 904 }
1da177e4 905 }
3b88775c 906
8b6e50c9
BN
907 /*
908 * Apply this short delay always to ensure that we do wait tWB in
909 * any case on any machine.
910 */
e0c7d767 911 ndelay(100);
3b88775c
TG
912
913 nand_wait_ready(mtd);
1da177e4
LT
914}
915
2af7c653
SK
916/**
917 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
918 * @chip: the nand chip descriptor
919 * @mtd: MTD device structure
920 * @new_state: the state which is requested
2af7c653
SK
921 *
922 * Used when in panic, no locks are taken.
923 */
924static void panic_nand_get_device(struct nand_chip *chip,
925 struct mtd_info *mtd, int new_state)
926{
7854d3f7 927 /* Hardware controller shared among independent devices */
2af7c653
SK
928 chip->controller->active = chip;
929 chip->state = new_state;
930}
931
1da177e4
LT
932/**
933 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
934 * @mtd: MTD device structure
935 * @new_state: the state which is requested
1da177e4
LT
936 *
937 * Get the device and lock it for exclusive access
938 */
2c0a2bed 939static int
6a8214aa 940nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 941{
862eba51 942 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
943 spinlock_t *lock = &chip->controller->lock;
944 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 945 DECLARE_WAITQUEUE(wait, current);
7351d3a5 946retry:
0dfc6246
TG
947 spin_lock(lock);
948
b8b3ee9a 949 /* Hardware controller shared among independent devices */
ace4dfee
TG
950 if (!chip->controller->active)
951 chip->controller->active = chip;
a36ed299 952
ace4dfee
TG
953 if (chip->controller->active == chip && chip->state == FL_READY) {
954 chip->state = new_state;
0dfc6246 955 spin_unlock(lock);
962034f4
VW
956 return 0;
957 }
958 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
959 if (chip->controller->active->state == FL_PM_SUSPENDED) {
960 chip->state = FL_PM_SUSPENDED;
961 spin_unlock(lock);
962 return 0;
6b0d9a84 963 }
0dfc6246
TG
964 }
965 set_current_state(TASK_UNINTERRUPTIBLE);
966 add_wait_queue(wq, &wait);
967 spin_unlock(lock);
968 schedule();
969 remove_wait_queue(wq, &wait);
1da177e4
LT
970 goto retry;
971}
972
2af7c653 973/**
8b6e50c9
BN
974 * panic_nand_wait - [GENERIC] wait until the command is done
975 * @mtd: MTD device structure
976 * @chip: NAND chip structure
977 * @timeo: timeout
2af7c653
SK
978 *
979 * Wait for command done. This is a helper function for nand_wait used when
980 * we are in interrupt context. May happen when in panic and trying to write
b595076a 981 * an oops through mtdoops.
2af7c653
SK
982 */
983static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
984 unsigned long timeo)
985{
986 int i;
987 for (i = 0; i < timeo; i++) {
988 if (chip->dev_ready) {
989 if (chip->dev_ready(mtd))
990 break;
991 } else {
992 if (chip->read_byte(mtd) & NAND_STATUS_READY)
993 break;
994 }
995 mdelay(1);
f8ac0414 996 }
2af7c653
SK
997}
998
1da177e4 999/**
8b6e50c9
BN
1000 * nand_wait - [DEFAULT] wait until the command is done
1001 * @mtd: MTD device structure
1002 * @chip: NAND chip structure
1da177e4 1003 *
b70af9be 1004 * Wait for command done. This applies to erase and program only.
844d3b42 1005 */
7bc3312b 1006static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
1007{
1008
b70af9be
AS
1009 int status;
1010 unsigned long timeo = 400;
1da177e4 1011
8b6e50c9
BN
1012 /*
1013 * Apply this short delay always to ensure that we do wait tWB in any
1014 * case on any machine.
1015 */
e0c7d767 1016 ndelay(100);
1da177e4 1017
14c65786 1018 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 1019
2af7c653
SK
1020 if (in_interrupt() || oops_in_progress)
1021 panic_nand_wait(mtd, chip, timeo);
1022 else {
6d2559f8 1023 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 1024 do {
2af7c653
SK
1025 if (chip->dev_ready) {
1026 if (chip->dev_ready(mtd))
1027 break;
1028 } else {
1029 if (chip->read_byte(mtd) & NAND_STATUS_READY)
1030 break;
1031 }
1032 cond_resched();
b70af9be 1033 } while (time_before(jiffies, timeo));
1da177e4 1034 }
8fe833c1 1035
ace4dfee 1036 status = (int)chip->read_byte(mtd);
f251b8df
MC
1037 /* This can happen if in case of timeout or buggy dev_ready */
1038 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
1039 return status;
1040}
1041
d8e725dd
BB
1042/**
1043 * nand_reset_data_interface - Reset data interface and timings
1044 * @chip: The NAND chip
1045 *
1046 * Reset the Data interface and timings to ONFI mode 0.
1047 *
1048 * Returns 0 for success or negative error code otherwise.
1049 */
1050static int nand_reset_data_interface(struct nand_chip *chip)
1051{
1052 struct mtd_info *mtd = nand_to_mtd(chip);
1053 const struct nand_data_interface *conf;
1054 int ret;
1055
1056 if (!chip->setup_data_interface)
1057 return 0;
1058
1059 /*
1060 * The ONFI specification says:
1061 * "
1062 * To transition from NV-DDR or NV-DDR2 to the SDR data
1063 * interface, the host shall use the Reset (FFh) command
1064 * using SDR timing mode 0. A device in any timing mode is
1065 * required to recognize Reset (FFh) command issued in SDR
1066 * timing mode 0.
1067 * "
1068 *
1069 * Configure the data interface in SDR mode and set the
1070 * timings to timing mode 0.
1071 */
1072
1073 conf = nand_get_default_data_interface();
1074 ret = chip->setup_data_interface(mtd, conf, false);
1075 if (ret)
1076 pr_err("Failed to configure data interface to SDR timing mode 0\n");
1077
1078 return ret;
1079}
1080
1081/**
1082 * nand_setup_data_interface - Setup the best data interface and timings
1083 * @chip: The NAND chip
1084 *
1085 * Find and configure the best data interface and NAND timings supported by
1086 * the chip and the driver.
1087 * First tries to retrieve supported timing modes from ONFI information,
1088 * and if the NAND chip does not support ONFI, relies on the
1089 * ->onfi_timing_mode_default specified in the nand_ids table.
1090 *
1091 * Returns 0 for success or negative error code otherwise.
1092 */
1093static int nand_setup_data_interface(struct nand_chip *chip)
1094{
1095 struct mtd_info *mtd = nand_to_mtd(chip);
1096 int ret;
1097
1098 if (!chip->setup_data_interface || !chip->data_interface)
1099 return 0;
1100
1101 /*
1102 * Ensure the timing mode has been changed on the chip side
1103 * before changing timings on the controller side.
1104 */
1105 if (chip->onfi_version) {
1106 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1107 chip->onfi_timing_mode_default,
1108 };
1109
1110 ret = chip->onfi_set_features(mtd, chip,
1111 ONFI_FEATURE_ADDR_TIMING_MODE,
1112 tmode_param);
1113 if (ret)
1114 goto err;
1115 }
1116
1117 ret = chip->setup_data_interface(mtd, chip->data_interface, false);
1118err:
1119 return ret;
1120}
1121
1122/**
1123 * nand_init_data_interface - find the best data interface and timings
1124 * @chip: The NAND chip
1125 *
1126 * Find the best data interface and NAND timings supported by the chip
1127 * and the driver.
1128 * First tries to retrieve supported timing modes from ONFI information,
1129 * and if the NAND chip does not support ONFI, relies on the
1130 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1131 * function nand_chip->data_interface is initialized with the best timing mode
1132 * available.
1133 *
1134 * Returns 0 for success or negative error code otherwise.
1135 */
1136static int nand_init_data_interface(struct nand_chip *chip)
1137{
1138 struct mtd_info *mtd = nand_to_mtd(chip);
1139 int modes, mode, ret;
1140
1141 if (!chip->setup_data_interface)
1142 return 0;
1143
1144 /*
1145 * First try to identify the best timings from ONFI parameters and
1146 * if the NAND does not support ONFI, fallback to the default ONFI
1147 * timing mode.
1148 */
1149 modes = onfi_get_async_timing_mode(chip);
1150 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1151 if (!chip->onfi_timing_mode_default)
1152 return 0;
1153
1154 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1155 }
1156
1157 chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1158 GFP_KERNEL);
1159 if (!chip->data_interface)
1160 return -ENOMEM;
1161
1162 for (mode = fls(modes) - 1; mode >= 0; mode--) {
1163 ret = onfi_init_data_interface(chip, chip->data_interface,
1164 NAND_SDR_IFACE, mode);
1165 if (ret)
1166 continue;
1167
1168 ret = chip->setup_data_interface(mtd, chip->data_interface,
1169 true);
1170 if (!ret) {
1171 chip->onfi_timing_mode_default = mode;
1172 break;
1173 }
1174 }
1175
1176 return 0;
1177}
1178
1179static void nand_release_data_interface(struct nand_chip *chip)
1180{
1181 kfree(chip->data_interface);
1182}
1183
2f94abfe
SH
1184/**
1185 * nand_reset - Reset and initialize a NAND device
1186 * @chip: The NAND chip
73f907fd 1187 * @chipnr: Internal die id
2f94abfe
SH
1188 *
1189 * Returns 0 for success or negative error code otherwise
1190 */
73f907fd 1191int nand_reset(struct nand_chip *chip, int chipnr)
2f94abfe
SH
1192{
1193 struct mtd_info *mtd = nand_to_mtd(chip);
d8e725dd
BB
1194 int ret;
1195
1196 ret = nand_reset_data_interface(chip);
1197 if (ret)
1198 return ret;
2f94abfe 1199
73f907fd
BB
1200 /*
1201 * The CS line has to be released before we can apply the new NAND
1202 * interface settings, hence this weird ->select_chip() dance.
1203 */
1204 chip->select_chip(mtd, chipnr);
2f94abfe 1205 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
73f907fd 1206 chip->select_chip(mtd, -1);
2f94abfe 1207
73f907fd 1208 chip->select_chip(mtd, chipnr);
d8e725dd 1209 ret = nand_setup_data_interface(chip);
73f907fd 1210 chip->select_chip(mtd, -1);
d8e725dd
BB
1211 if (ret)
1212 return ret;
1213
2f94abfe
SH
1214 return 0;
1215}
1216
7d70f334 1217/**
b6d676db 1218 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
1219 * @mtd: mtd info
1220 * @ofs: offset to start unlock from
1221 * @len: length to unlock
8b6e50c9
BN
1222 * @invert: when = 0, unlock the range of blocks within the lower and
1223 * upper boundary address
1224 * when = 1, unlock the range of blocks outside the boundaries
1225 * of the lower and upper boundary address
7d70f334 1226 *
8b6e50c9 1227 * Returs unlock status.
7d70f334
VS
1228 */
1229static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
1230 uint64_t len, int invert)
1231{
1232 int ret = 0;
1233 int status, page;
862eba51 1234 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334
VS
1235
1236 /* Submit address of first page to unlock */
1237 page = ofs >> chip->page_shift;
1238 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
1239
1240 /* Submit address of last page to unlock */
1241 page = (ofs + len) >> chip->page_shift;
1242 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
1243 (page | invert) & chip->pagemask);
1244
1245 /* Call wait ready function */
1246 status = chip->waitfunc(mtd, chip);
7d70f334 1247 /* See if device thinks it succeeded */
74830966 1248 if (status & NAND_STATUS_FAIL) {
289c0522 1249 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1250 __func__, status);
1251 ret = -EIO;
1252 }
1253
1254 return ret;
1255}
1256
1257/**
b6d676db 1258 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
1259 * @mtd: mtd info
1260 * @ofs: offset to start unlock from
1261 * @len: length to unlock
7d70f334 1262 *
8b6e50c9 1263 * Returns unlock status.
7d70f334
VS
1264 */
1265int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1266{
1267 int ret = 0;
1268 int chipnr;
862eba51 1269 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1270
289c0522 1271 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1272 __func__, (unsigned long long)ofs, len);
1273
1274 if (check_offs_len(mtd, ofs, len))
b1a2348a 1275 return -EINVAL;
7d70f334
VS
1276
1277 /* Align to last block address if size addresses end of the device */
1278 if (ofs + len == mtd->size)
1279 len -= mtd->erasesize;
1280
6a8214aa 1281 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
1282
1283 /* Shift to get chip number */
1284 chipnr = ofs >> chip->chip_shift;
1285
57d3a9a8
WD
1286 /*
1287 * Reset the chip.
1288 * If we want to check the WP through READ STATUS and check the bit 7
1289 * we must reset the chip
1290 * some operation can also clear the bit 7 of status register
1291 * eg. erase/program a locked block
1292 */
73f907fd
BB
1293 nand_reset(chip, chipnr);
1294
1295 chip->select_chip(mtd, chipnr);
57d3a9a8 1296
7d70f334
VS
1297 /* Check, if it is write protected */
1298 if (nand_check_wp(mtd)) {
289c0522 1299 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1300 __func__);
1301 ret = -EIO;
1302 goto out;
1303 }
1304
1305 ret = __nand_unlock(mtd, ofs, len, 0);
1306
1307out:
b0bb6903 1308 chip->select_chip(mtd, -1);
7d70f334
VS
1309 nand_release_device(mtd);
1310
1311 return ret;
1312}
7351d3a5 1313EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1314
1315/**
b6d676db 1316 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1317 * @mtd: mtd info
1318 * @ofs: offset to start unlock from
1319 * @len: length to unlock
7d70f334 1320 *
8b6e50c9
BN
1321 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1322 * have this feature, but it allows only to lock all blocks, not for specified
1323 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1324 * now.
7d70f334 1325 *
8b6e50c9 1326 * Returns lock status.
7d70f334
VS
1327 */
1328int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1329{
1330 int ret = 0;
1331 int chipnr, status, page;
862eba51 1332 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1333
289c0522 1334 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1335 __func__, (unsigned long long)ofs, len);
1336
1337 if (check_offs_len(mtd, ofs, len))
b1a2348a 1338 return -EINVAL;
7d70f334 1339
6a8214aa 1340 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1341
1342 /* Shift to get chip number */
1343 chipnr = ofs >> chip->chip_shift;
1344
57d3a9a8
WD
1345 /*
1346 * Reset the chip.
1347 * If we want to check the WP through READ STATUS and check the bit 7
1348 * we must reset the chip
1349 * some operation can also clear the bit 7 of status register
1350 * eg. erase/program a locked block
1351 */
73f907fd
BB
1352 nand_reset(chip, chipnr);
1353
1354 chip->select_chip(mtd, chipnr);
57d3a9a8 1355
7d70f334
VS
1356 /* Check, if it is write protected */
1357 if (nand_check_wp(mtd)) {
289c0522 1358 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1359 __func__);
1360 status = MTD_ERASE_FAILED;
1361 ret = -EIO;
1362 goto out;
1363 }
1364
1365 /* Submit address of first page to lock */
1366 page = ofs >> chip->page_shift;
1367 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1368
1369 /* Call wait ready function */
1370 status = chip->waitfunc(mtd, chip);
7d70f334 1371 /* See if device thinks it succeeded */
74830966 1372 if (status & NAND_STATUS_FAIL) {
289c0522 1373 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1374 __func__, status);
1375 ret = -EIO;
1376 goto out;
1377 }
1378
1379 ret = __nand_unlock(mtd, ofs, len, 0x1);
1380
1381out:
b0bb6903 1382 chip->select_chip(mtd, -1);
7d70f334
VS
1383 nand_release_device(mtd);
1384
1385 return ret;
1386}
7351d3a5 1387EXPORT_SYMBOL(nand_lock);
7d70f334 1388
730a43fb
BB
1389/**
1390 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1391 * @buf: buffer to test
1392 * @len: buffer length
1393 * @bitflips_threshold: maximum number of bitflips
1394 *
1395 * Check if a buffer contains only 0xff, which means the underlying region
1396 * has been erased and is ready to be programmed.
1397 * The bitflips_threshold specify the maximum number of bitflips before
1398 * considering the region is not erased.
1399 * Note: The logic of this function has been extracted from the memweight
1400 * implementation, except that nand_check_erased_buf function exit before
1401 * testing the whole buffer if the number of bitflips exceed the
1402 * bitflips_threshold value.
1403 *
1404 * Returns a positive number of bitflips less than or equal to
1405 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1406 * threshold.
1407 */
1408static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1409{
1410 const unsigned char *bitmap = buf;
1411 int bitflips = 0;
1412 int weight;
1413
1414 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1415 len--, bitmap++) {
1416 weight = hweight8(*bitmap);
1417 bitflips += BITS_PER_BYTE - weight;
1418 if (unlikely(bitflips > bitflips_threshold))
1419 return -EBADMSG;
1420 }
1421
1422 for (; len >= sizeof(long);
1423 len -= sizeof(long), bitmap += sizeof(long)) {
1424 weight = hweight_long(*((unsigned long *)bitmap));
1425 bitflips += BITS_PER_LONG - weight;
1426 if (unlikely(bitflips > bitflips_threshold))
1427 return -EBADMSG;
1428 }
1429
1430 for (; len > 0; len--, bitmap++) {
1431 weight = hweight8(*bitmap);
1432 bitflips += BITS_PER_BYTE - weight;
1433 if (unlikely(bitflips > bitflips_threshold))
1434 return -EBADMSG;
1435 }
1436
1437 return bitflips;
1438}
1439
1440/**
1441 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1442 * 0xff data
1443 * @data: data buffer to test
1444 * @datalen: data length
1445 * @ecc: ECC buffer
1446 * @ecclen: ECC length
1447 * @extraoob: extra OOB buffer
1448 * @extraooblen: extra OOB length
1449 * @bitflips_threshold: maximum number of bitflips
1450 *
1451 * Check if a data buffer and its associated ECC and OOB data contains only
1452 * 0xff pattern, which means the underlying region has been erased and is
1453 * ready to be programmed.
1454 * The bitflips_threshold specify the maximum number of bitflips before
1455 * considering the region as not erased.
1456 *
1457 * Note:
1458 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1459 * different from the NAND page size. When fixing bitflips, ECC engines will
1460 * report the number of errors per chunk, and the NAND core infrastructure
1461 * expect you to return the maximum number of bitflips for the whole page.
1462 * This is why you should always use this function on a single chunk and
1463 * not on the whole page. After checking each chunk you should update your
1464 * max_bitflips value accordingly.
1465 * 2/ When checking for bitflips in erased pages you should not only check
1466 * the payload data but also their associated ECC data, because a user might
1467 * have programmed almost all bits to 1 but a few. In this case, we
1468 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1469 * this case.
1470 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1471 * data are protected by the ECC engine.
1472 * It could also be used if you support subpages and want to attach some
1473 * extra OOB data to an ECC chunk.
1474 *
1475 * Returns a positive number of bitflips less than or equal to
1476 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1477 * threshold. In case of success, the passed buffers are filled with 0xff.
1478 */
1479int nand_check_erased_ecc_chunk(void *data, int datalen,
1480 void *ecc, int ecclen,
1481 void *extraoob, int extraooblen,
1482 int bitflips_threshold)
1483{
1484 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1485
1486 data_bitflips = nand_check_erased_buf(data, datalen,
1487 bitflips_threshold);
1488 if (data_bitflips < 0)
1489 return data_bitflips;
1490
1491 bitflips_threshold -= data_bitflips;
1492
1493 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1494 if (ecc_bitflips < 0)
1495 return ecc_bitflips;
1496
1497 bitflips_threshold -= ecc_bitflips;
1498
1499 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1500 bitflips_threshold);
1501 if (extraoob_bitflips < 0)
1502 return extraoob_bitflips;
1503
1504 if (data_bitflips)
1505 memset(data, 0xff, datalen);
1506
1507 if (ecc_bitflips)
1508 memset(ecc, 0xff, ecclen);
1509
1510 if (extraoob_bitflips)
1511 memset(extraoob, 0xff, extraooblen);
1512
1513 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1514}
1515EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1516
8593fbc6 1517/**
7854d3f7 1518 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1519 * @mtd: mtd info structure
1520 * @chip: nand chip info structure
1521 * @buf: buffer to store read data
1fbb938d 1522 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1523 * @page: page number to read
52ff49df 1524 *
7854d3f7 1525 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1526 */
1527static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1528 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1529{
1530 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1531 if (oob_required)
1532 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1533 return 0;
1534}
1535
52ff49df 1536/**
7854d3f7 1537 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1538 * @mtd: mtd info structure
1539 * @chip: nand chip info structure
1540 * @buf: buffer to store read data
1fbb938d 1541 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1542 * @page: page number to read
52ff49df
DB
1543 *
1544 * We need a special oob layout and handling even when OOB isn't used.
1545 */
7351d3a5 1546static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1547 struct nand_chip *chip, uint8_t *buf,
1548 int oob_required, int page)
52ff49df
DB
1549{
1550 int eccsize = chip->ecc.size;
1551 int eccbytes = chip->ecc.bytes;
1552 uint8_t *oob = chip->oob_poi;
1553 int steps, size;
1554
1555 for (steps = chip->ecc.steps; steps > 0; steps--) {
1556 chip->read_buf(mtd, buf, eccsize);
1557 buf += eccsize;
1558
1559 if (chip->ecc.prepad) {
1560 chip->read_buf(mtd, oob, chip->ecc.prepad);
1561 oob += chip->ecc.prepad;
1562 }
1563
1564 chip->read_buf(mtd, oob, eccbytes);
1565 oob += eccbytes;
1566
1567 if (chip->ecc.postpad) {
1568 chip->read_buf(mtd, oob, chip->ecc.postpad);
1569 oob += chip->ecc.postpad;
1570 }
1571 }
1572
1573 size = mtd->oobsize - (oob - chip->oob_poi);
1574 if (size)
1575 chip->read_buf(mtd, oob, size);
1576
1577 return 0;
1578}
1579
1da177e4 1580/**
7854d3f7 1581 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1582 * @mtd: mtd info structure
1583 * @chip: nand chip info structure
1584 * @buf: buffer to store read data
1fbb938d 1585 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1586 * @page: page number to read
068e3c0a 1587 */
f5bbdacc 1588static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1589 uint8_t *buf, int oob_required, int page)
1da177e4 1590{
846031d3 1591 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
1592 int eccbytes = chip->ecc.bytes;
1593 int eccsteps = chip->ecc.steps;
1594 uint8_t *p = buf;
4bf63fcb
DW
1595 uint8_t *ecc_calc = chip->buffers->ecccalc;
1596 uint8_t *ecc_code = chip->buffers->ecccode;
3f91e94f 1597 unsigned int max_bitflips = 0;
f5bbdacc 1598
1fbb938d 1599 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1600
1601 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1602 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1603
846031d3
BB
1604 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1605 chip->ecc.total);
1606 if (ret)
1607 return ret;
f5bbdacc
TG
1608
1609 eccsteps = chip->ecc.steps;
1610 p = buf;
1611
1612 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1613 int stat;
1614
1615 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1616 if (stat < 0) {
f5bbdacc 1617 mtd->ecc_stats.failed++;
3f91e94f 1618 } else {
f5bbdacc 1619 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1620 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1621 }
f5bbdacc 1622 }
3f91e94f 1623 return max_bitflips;
22c60f5f 1624}
1da177e4 1625
3d459559 1626/**
837a6ba4 1627 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1628 * @mtd: mtd info structure
1629 * @chip: nand chip info structure
1630 * @data_offs: offset of requested data within the page
1631 * @readlen: data length
1632 * @bufpoi: buffer to store read data
e004debd 1633 * @page: page number to read
3d459559 1634 */
7351d3a5 1635static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1636 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1637 int page)
3d459559 1638{
846031d3 1639 int start_step, end_step, num_steps, ret;
3d459559
AK
1640 uint8_t *p;
1641 int data_col_addr, i, gaps = 0;
1642 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1643 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
846031d3 1644 int index, section = 0;
3f91e94f 1645 unsigned int max_bitflips = 0;
846031d3 1646 struct mtd_oob_region oobregion = { };
3d459559 1647
7854d3f7 1648 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1649 start_step = data_offs / chip->ecc.size;
1650 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1651 num_steps = end_step - start_step + 1;
4a4163ca 1652 index = start_step * chip->ecc.bytes;
3d459559 1653
8b6e50c9 1654 /* Data size aligned to ECC ecc.size */
3d459559
AK
1655 datafrag_len = num_steps * chip->ecc.size;
1656 eccfrag_len = num_steps * chip->ecc.bytes;
1657
1658 data_col_addr = start_step * chip->ecc.size;
1659 /* If we read not a page aligned data */
1660 if (data_col_addr != 0)
1661 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1662
1663 p = bufpoi + data_col_addr;
1664 chip->read_buf(mtd, p, datafrag_len);
1665
8b6e50c9 1666 /* Calculate ECC */
3d459559
AK
1667 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1668 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1669
8b6e50c9
BN
1670 /*
1671 * The performance is faster if we position offsets according to
7854d3f7 1672 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1673 */
846031d3
BB
1674 ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
1675 if (ret)
1676 return ret;
1677
1678 if (oobregion.length < eccfrag_len)
1679 gaps = 1;
1680
3d459559
AK
1681 if (gaps) {
1682 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1683 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1684 } else {
8b6e50c9 1685 /*
7854d3f7 1686 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1687 * about buswidth alignment in read_buf.
1688 */
846031d3 1689 aligned_pos = oobregion.offset & ~(busw - 1);
3d459559 1690 aligned_len = eccfrag_len;
846031d3 1691 if (oobregion.offset & (busw - 1))
3d459559 1692 aligned_len++;
846031d3
BB
1693 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
1694 (busw - 1))
3d459559
AK
1695 aligned_len++;
1696
7351d3a5 1697 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
846031d3 1698 mtd->writesize + aligned_pos, -1);
3d459559
AK
1699 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1700 }
1701
846031d3
BB
1702 ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
1703 chip->oob_poi, index, eccfrag_len);
1704 if (ret)
1705 return ret;
3d459559
AK
1706
1707 p = bufpoi + data_col_addr;
1708 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1709 int stat;
1710
7351d3a5
FF
1711 stat = chip->ecc.correct(mtd, p,
1712 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
40cbe6ee
BB
1713 if (stat == -EBADMSG &&
1714 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1715 /* check for empty pages with bitflips */
1716 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1717 &chip->buffers->ecccode[i],
1718 chip->ecc.bytes,
1719 NULL, 0,
1720 chip->ecc.strength);
1721 }
1722
3f91e94f 1723 if (stat < 0) {
3d459559 1724 mtd->ecc_stats.failed++;
3f91e94f 1725 } else {
3d459559 1726 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1727 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1728 }
3d459559 1729 }
3f91e94f 1730 return max_bitflips;
3d459559
AK
1731}
1732
068e3c0a 1733/**
7854d3f7 1734 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1735 * @mtd: mtd info structure
1736 * @chip: nand chip info structure
1737 * @buf: buffer to store read data
1fbb938d 1738 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1739 * @page: page number to read
068e3c0a 1740 *
7854d3f7 1741 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1742 */
f5bbdacc 1743static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1744 uint8_t *buf, int oob_required, int page)
1da177e4 1745{
846031d3 1746 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
1747 int eccbytes = chip->ecc.bytes;
1748 int eccsteps = chip->ecc.steps;
1749 uint8_t *p = buf;
4bf63fcb
DW
1750 uint8_t *ecc_calc = chip->buffers->ecccalc;
1751 uint8_t *ecc_code = chip->buffers->ecccode;
3f91e94f 1752 unsigned int max_bitflips = 0;
f5bbdacc
TG
1753
1754 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1755 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1756 chip->read_buf(mtd, p, eccsize);
1757 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1758 }
f75e5097 1759 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1760
846031d3
BB
1761 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1762 chip->ecc.total);
1763 if (ret)
1764 return ret;
1da177e4 1765
f5bbdacc
TG
1766 eccsteps = chip->ecc.steps;
1767 p = buf;
61b03bd7 1768
f5bbdacc
TG
1769 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1770 int stat;
1da177e4 1771
f5bbdacc 1772 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
40cbe6ee
BB
1773 if (stat == -EBADMSG &&
1774 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1775 /* check for empty pages with bitflips */
1776 stat = nand_check_erased_ecc_chunk(p, eccsize,
1777 &ecc_code[i], eccbytes,
1778 NULL, 0,
1779 chip->ecc.strength);
1780 }
1781
3f91e94f 1782 if (stat < 0) {
f5bbdacc 1783 mtd->ecc_stats.failed++;
3f91e94f 1784 } else {
f5bbdacc 1785 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1786 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1787 }
f5bbdacc 1788 }
3f91e94f 1789 return max_bitflips;
f5bbdacc 1790}
1da177e4 1791
6e0cb135 1792/**
7854d3f7 1793 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1794 * @mtd: mtd info structure
1795 * @chip: nand chip info structure
1796 * @buf: buffer to store read data
1fbb938d 1797 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1798 * @page: page number to read
6e0cb135 1799 *
8b6e50c9
BN
1800 * Hardware ECC for large page chips, require OOB to be read first. For this
1801 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1802 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1803 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1804 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1805 */
1806static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1807 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135 1808{
846031d3 1809 int i, eccsize = chip->ecc.size, ret;
6e0cb135
SN
1810 int eccbytes = chip->ecc.bytes;
1811 int eccsteps = chip->ecc.steps;
1812 uint8_t *p = buf;
1813 uint8_t *ecc_code = chip->buffers->ecccode;
6e0cb135 1814 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1815 unsigned int max_bitflips = 0;
6e0cb135
SN
1816
1817 /* Read the OOB area first */
1818 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1819 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1820 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1821
846031d3
BB
1822 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1823 chip->ecc.total);
1824 if (ret)
1825 return ret;
6e0cb135
SN
1826
1827 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1828 int stat;
1829
1830 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1831 chip->read_buf(mtd, p, eccsize);
1832 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1833
1834 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
40cbe6ee
BB
1835 if (stat == -EBADMSG &&
1836 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1837 /* check for empty pages with bitflips */
1838 stat = nand_check_erased_ecc_chunk(p, eccsize,
1839 &ecc_code[i], eccbytes,
1840 NULL, 0,
1841 chip->ecc.strength);
1842 }
1843
3f91e94f 1844 if (stat < 0) {
6e0cb135 1845 mtd->ecc_stats.failed++;
3f91e94f 1846 } else {
6e0cb135 1847 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1848 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1849 }
6e0cb135 1850 }
3f91e94f 1851 return max_bitflips;
6e0cb135
SN
1852}
1853
f5bbdacc 1854/**
7854d3f7 1855 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1856 * @mtd: mtd info structure
1857 * @chip: nand chip info structure
1858 * @buf: buffer to store read data
1fbb938d 1859 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1860 * @page: page number to read
f5bbdacc 1861 *
8b6e50c9
BN
1862 * The hw generator calculates the error syndrome automatically. Therefore we
1863 * need a special oob layout and handling.
f5bbdacc
TG
1864 */
1865static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1866 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1867{
1868 int i, eccsize = chip->ecc.size;
1869 int eccbytes = chip->ecc.bytes;
1870 int eccsteps = chip->ecc.steps;
40cbe6ee 1871 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
f5bbdacc 1872 uint8_t *p = buf;
f75e5097 1873 uint8_t *oob = chip->oob_poi;
3f91e94f 1874 unsigned int max_bitflips = 0;
1da177e4 1875
f5bbdacc
TG
1876 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1877 int stat;
61b03bd7 1878
f5bbdacc
TG
1879 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1880 chip->read_buf(mtd, p, eccsize);
1da177e4 1881
f5bbdacc
TG
1882 if (chip->ecc.prepad) {
1883 chip->read_buf(mtd, oob, chip->ecc.prepad);
1884 oob += chip->ecc.prepad;
1885 }
1da177e4 1886
f5bbdacc
TG
1887 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1888 chip->read_buf(mtd, oob, eccbytes);
1889 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1890
f5bbdacc 1891 oob += eccbytes;
1da177e4 1892
f5bbdacc
TG
1893 if (chip->ecc.postpad) {
1894 chip->read_buf(mtd, oob, chip->ecc.postpad);
1895 oob += chip->ecc.postpad;
61b03bd7 1896 }
40cbe6ee
BB
1897
1898 if (stat == -EBADMSG &&
1899 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1900 /* check for empty pages with bitflips */
1901 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1902 oob - eccpadbytes,
1903 eccpadbytes,
1904 NULL, 0,
1905 chip->ecc.strength);
1906 }
1907
1908 if (stat < 0) {
1909 mtd->ecc_stats.failed++;
1910 } else {
1911 mtd->ecc_stats.corrected += stat;
1912 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1913 }
f5bbdacc 1914 }
1da177e4 1915
f5bbdacc 1916 /* Calculate remaining oob bytes */
7e4178f9 1917 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1918 if (i)
1919 chip->read_buf(mtd, oob, i);
61b03bd7 1920
3f91e94f 1921 return max_bitflips;
f5bbdacc 1922}
1da177e4 1923
f5bbdacc 1924/**
7854d3f7 1925 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
846031d3 1926 * @mtd: mtd info structure
8b6e50c9
BN
1927 * @oob: oob destination address
1928 * @ops: oob ops structure
1929 * @len: size of oob to transfer
8593fbc6 1930 */
846031d3 1931static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
7014568b 1932 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1933{
846031d3
BB
1934 struct nand_chip *chip = mtd_to_nand(mtd);
1935 int ret;
1936
f8ac0414 1937 switch (ops->mode) {
8593fbc6 1938
0612b9dd
BN
1939 case MTD_OPS_PLACE_OOB:
1940 case MTD_OPS_RAW:
8593fbc6
TG
1941 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1942 return oob + len;
1943
846031d3
BB
1944 case MTD_OPS_AUTO_OOB:
1945 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
1946 ops->ooboffs, len);
1947 BUG_ON(ret);
1948 return oob + len;
1949
8593fbc6
TG
1950 default:
1951 BUG();
1952 }
1953 return NULL;
1954}
1955
ba84fb59
BN
1956/**
1957 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1958 * @mtd: MTD device structure
1959 * @retry_mode: the retry mode to use
1960 *
1961 * Some vendors supply a special command to shift the Vt threshold, to be used
1962 * when there are too many bitflips in a page (i.e., ECC error). After setting
1963 * a new threshold, the host should retry reading the page.
1964 */
1965static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1966{
862eba51 1967 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
1968
1969 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1970
1971 if (retry_mode >= chip->read_retries)
1972 return -EINVAL;
1973
1974 if (!chip->setup_read_retry)
1975 return -EOPNOTSUPP;
1976
1977 return chip->setup_read_retry(mtd, retry_mode);
1978}
1979
8593fbc6 1980/**
7854d3f7 1981 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1982 * @mtd: MTD device structure
1983 * @from: offset to read from
1984 * @ops: oob ops structure
f5bbdacc
TG
1985 *
1986 * Internal function. Called with chip held.
1987 */
8593fbc6
TG
1988static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1989 struct mtd_oob_ops *ops)
f5bbdacc 1990{
e47f3db4 1991 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 1992 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 1993 int ret = 0;
8593fbc6 1994 uint32_t readlen = ops->len;
7014568b 1995 uint32_t oobreadlen = ops->ooblen;
29f1058a 1996 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
9aca334e 1997
8593fbc6 1998 uint8_t *bufpoi, *oob, *buf;
66507c7b 1999 int use_bufpoi;
edbc4540 2000 unsigned int max_bitflips = 0;
ba84fb59 2001 int retry_mode = 0;
b72f3dfb 2002 bool ecc_fail = false;
1da177e4 2003
f5bbdacc
TG
2004 chipnr = (int)(from >> chip->chip_shift);
2005 chip->select_chip(mtd, chipnr);
61b03bd7 2006
f5bbdacc
TG
2007 realpage = (int)(from >> chip->page_shift);
2008 page = realpage & chip->pagemask;
1da177e4 2009
f5bbdacc 2010 col = (int)(from & (mtd->writesize - 1));
61b03bd7 2011
8593fbc6
TG
2012 buf = ops->datbuf;
2013 oob = ops->oobbuf;
e47f3db4 2014 oob_required = oob ? 1 : 0;
8593fbc6 2015
f8ac0414 2016 while (1) {
b72f3dfb
BN
2017 unsigned int ecc_failures = mtd->ecc_stats.failed;
2018
f5bbdacc
TG
2019 bytes = min(mtd->writesize - col, readlen);
2020 aligned = (bytes == mtd->writesize);
61b03bd7 2021
66507c7b
KD
2022 if (!aligned)
2023 use_bufpoi = 1;
2024 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
2025 use_bufpoi = !virt_addr_valid(buf) ||
2026 !IS_ALIGNED((unsigned long)buf,
2027 chip->buf_align);
66507c7b
KD
2028 else
2029 use_bufpoi = 0;
2030
8b6e50c9 2031 /* Is the current page in the buffer? */
8593fbc6 2032 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
2033 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
2034
2035 if (use_bufpoi && aligned)
2036 pr_debug("%s: using read bounce buffer for buf@%p\n",
2037 __func__, buf);
61b03bd7 2038
ba84fb59 2039read_retry:
3371d663
MG
2040 if (nand_standard_page_accessors(&chip->ecc))
2041 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 2042
edbc4540
MD
2043 /*
2044 * Now read the page into the buffer. Absent an error,
2045 * the read methods return max bitflips per ecc step.
2046 */
0612b9dd 2047 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 2048 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
2049 oob_required,
2050 page);
a5ff4f10
JW
2051 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
2052 !oob)
7351d3a5 2053 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
2054 col, bytes, bufpoi,
2055 page);
956e944c 2056 else
46a8cf2d 2057 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 2058 oob_required, page);
6d77b9d0 2059 if (ret < 0) {
66507c7b 2060 if (use_bufpoi)
6d77b9d0
BN
2061 /* Invalidate page cache */
2062 chip->pagebuf = -1;
1da177e4 2063 break;
6d77b9d0 2064 }
f5bbdacc
TG
2065
2066 /* Transfer not aligned data */
66507c7b 2067 if (use_bufpoi) {
a5ff4f10 2068 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 2069 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 2070 (ops->mode != MTD_OPS_RAW)) {
3d459559 2071 chip->pagebuf = realpage;
edbc4540
MD
2072 chip->pagebuf_bitflips = ret;
2073 } else {
6d77b9d0
BN
2074 /* Invalidate page cache */
2075 chip->pagebuf = -1;
edbc4540 2076 }
4bf63fcb 2077 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
2078 }
2079
8593fbc6 2080 if (unlikely(oob)) {
b64d39d8
ML
2081 int toread = min(oobreadlen, max_oobsize);
2082
2083 if (toread) {
846031d3 2084 oob = nand_transfer_oob(mtd,
b64d39d8
ML
2085 oob, ops, toread);
2086 oobreadlen -= toread;
2087 }
8593fbc6 2088 }
5bc7c33c
BN
2089
2090 if (chip->options & NAND_NEED_READRDY) {
2091 /* Apply delay or wait for ready/busy pin */
2092 if (!chip->dev_ready)
2093 udelay(chip->chip_delay);
2094 else
2095 nand_wait_ready(mtd);
2096 }
b72f3dfb 2097
ba84fb59 2098 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 2099 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
2100 retry_mode++;
2101 ret = nand_setup_read_retry(mtd,
2102 retry_mode);
2103 if (ret < 0)
2104 break;
2105
2106 /* Reset failures; retry */
2107 mtd->ecc_stats.failed = ecc_failures;
2108 goto read_retry;
2109 } else {
2110 /* No more retry modes; real failure */
2111 ecc_fail = true;
2112 }
2113 }
2114
2115 buf += bytes;
07604686 2116 max_bitflips = max_t(unsigned int, max_bitflips, ret);
8593fbc6 2117 } else {
4bf63fcb 2118 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 2119 buf += bytes;
edbc4540
MD
2120 max_bitflips = max_t(unsigned int, max_bitflips,
2121 chip->pagebuf_bitflips);
8593fbc6 2122 }
1da177e4 2123
f5bbdacc 2124 readlen -= bytes;
61b03bd7 2125
ba84fb59
BN
2126 /* Reset to retry mode 0 */
2127 if (retry_mode) {
2128 ret = nand_setup_read_retry(mtd, 0);
2129 if (ret < 0)
2130 break;
2131 retry_mode = 0;
2132 }
2133
f5bbdacc 2134 if (!readlen)
61b03bd7 2135 break;
1da177e4 2136
8b6e50c9 2137 /* For subsequent reads align to page boundary */
1da177e4
LT
2138 col = 0;
2139 /* Increment page address */
2140 realpage++;
2141
ace4dfee 2142 page = realpage & chip->pagemask;
1da177e4
LT
2143 /* Check, if we cross a chip boundary */
2144 if (!page) {
2145 chipnr++;
ace4dfee
TG
2146 chip->select_chip(mtd, -1);
2147 chip->select_chip(mtd, chipnr);
1da177e4 2148 }
1da177e4 2149 }
b0bb6903 2150 chip->select_chip(mtd, -1);
1da177e4 2151
8593fbc6 2152 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
2153 if (oob)
2154 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 2155
3f91e94f 2156 if (ret < 0)
f5bbdacc
TG
2157 return ret;
2158
b72f3dfb 2159 if (ecc_fail)
9a1fcdfd
TG
2160 return -EBADMSG;
2161
edbc4540 2162 return max_bitflips;
f5bbdacc
TG
2163}
2164
2165/**
25985edc 2166 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
2167 * @mtd: MTD device structure
2168 * @from: offset to read from
2169 * @len: number of bytes to read
2170 * @retlen: pointer to variable to store the number of read bytes
2171 * @buf: the databuffer to put data
f5bbdacc 2172 *
8b6e50c9 2173 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
2174 */
2175static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
2176 size_t *retlen, uint8_t *buf)
2177{
4a89ff88 2178 struct mtd_oob_ops ops;
f5bbdacc
TG
2179 int ret;
2180
6a8214aa 2181 nand_get_device(mtd, FL_READING);
0ec56dc4 2182 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2183 ops.len = len;
2184 ops.datbuf = buf;
11041ae6 2185 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2186 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 2187 *retlen = ops.retlen;
f5bbdacc 2188 nand_release_device(mtd);
f5bbdacc 2189 return ret;
1da177e4
LT
2190}
2191
7bc3312b 2192/**
7854d3f7 2193 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
2194 * @mtd: mtd info structure
2195 * @chip: nand chip info structure
2196 * @page: page number to read
7bc3312b 2197 */
9d02fc2a 2198int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b 2199{
5c2ffb11 2200 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 2201 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 2202 return 0;
7bc3312b 2203}
9d02fc2a 2204EXPORT_SYMBOL(nand_read_oob_std);
7bc3312b
TG
2205
2206/**
7854d3f7 2207 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 2208 * with syndromes
8b6e50c9
BN
2209 * @mtd: mtd info structure
2210 * @chip: nand chip info structure
2211 * @page: page number to read
7bc3312b 2212 */
9d02fc2a
BB
2213int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2214 int page)
7bc3312b 2215{
7bc3312b
TG
2216 int length = mtd->oobsize;
2217 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2218 int eccsize = chip->ecc.size;
2ea69d21 2219 uint8_t *bufpoi = chip->oob_poi;
7bc3312b
TG
2220 int i, toread, sndrnd = 0, pos;
2221
2222 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
2223 for (i = 0; i < chip->ecc.steps; i++) {
2224 if (sndrnd) {
2225 pos = eccsize + i * (eccsize + chunk);
2226 if (mtd->writesize > 512)
2227 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
2228 else
2229 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
2230 } else
2231 sndrnd = 1;
2232 toread = min_t(int, length, chunk);
2233 chip->read_buf(mtd, bufpoi, toread);
2234 bufpoi += toread;
2235 length -= toread;
2236 }
2237 if (length > 0)
2238 chip->read_buf(mtd, bufpoi, length);
2239
5c2ffb11 2240 return 0;
7bc3312b 2241}
9d02fc2a 2242EXPORT_SYMBOL(nand_read_oob_syndrome);
7bc3312b
TG
2243
2244/**
7854d3f7 2245 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
2246 * @mtd: mtd info structure
2247 * @chip: nand chip info structure
2248 * @page: page number to write
7bc3312b 2249 */
9d02fc2a 2250int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b
TG
2251{
2252 int status = 0;
2253 const uint8_t *buf = chip->oob_poi;
2254 int length = mtd->oobsize;
2255
2256 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
2257 chip->write_buf(mtd, buf, length);
2258 /* Send command to program the OOB data */
2259 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2260
2261 status = chip->waitfunc(mtd, chip);
2262
0d420f9d 2263 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b 2264}
9d02fc2a 2265EXPORT_SYMBOL(nand_write_oob_std);
7bc3312b
TG
2266
2267/**
7854d3f7 2268 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
2269 * with syndrome - only for large page flash
2270 * @mtd: mtd info structure
2271 * @chip: nand chip info structure
2272 * @page: page number to write
7bc3312b 2273 */
9d02fc2a
BB
2274int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2275 int page)
7bc3312b
TG
2276{
2277 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2278 int eccsize = chip->ecc.size, length = mtd->oobsize;
2279 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2280 const uint8_t *bufpoi = chip->oob_poi;
2281
2282 /*
2283 * data-ecc-data-ecc ... ecc-oob
2284 * or
2285 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2286 */
2287 if (!chip->ecc.prepad && !chip->ecc.postpad) {
2288 pos = steps * (eccsize + chunk);
2289 steps = 0;
2290 } else
8b0036ee 2291 pos = eccsize;
7bc3312b
TG
2292
2293 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2294 for (i = 0; i < steps; i++) {
2295 if (sndcmd) {
2296 if (mtd->writesize <= 512) {
2297 uint32_t fill = 0xFFFFFFFF;
2298
2299 len = eccsize;
2300 while (len > 0) {
2301 int num = min_t(int, len, 4);
2302 chip->write_buf(mtd, (uint8_t *)&fill,
2303 num);
2304 len -= num;
2305 }
2306 } else {
2307 pos = eccsize + i * (eccsize + chunk);
2308 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2309 }
2310 } else
2311 sndcmd = 1;
2312 len = min_t(int, length, chunk);
2313 chip->write_buf(mtd, bufpoi, len);
2314 bufpoi += len;
2315 length -= len;
2316 }
2317 if (length > 0)
2318 chip->write_buf(mtd, bufpoi, length);
2319
2320 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2321 status = chip->waitfunc(mtd, chip);
2322
2323 return status & NAND_STATUS_FAIL ? -EIO : 0;
2324}
9d02fc2a 2325EXPORT_SYMBOL(nand_write_oob_syndrome);
7bc3312b 2326
1da177e4 2327/**
7854d3f7 2328 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
2329 * @mtd: MTD device structure
2330 * @from: offset to read from
2331 * @ops: oob operations description structure
1da177e4 2332 *
8b6e50c9 2333 * NAND read out-of-band data from the spare area.
1da177e4 2334 */
8593fbc6
TG
2335static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2336 struct mtd_oob_ops *ops)
1da177e4 2337{
c00a0991 2338 int page, realpage, chipnr;
862eba51 2339 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 2340 struct mtd_ecc_stats stats;
7014568b
VW
2341 int readlen = ops->ooblen;
2342 int len;
7bc3312b 2343 uint8_t *buf = ops->oobbuf;
1951f2f7 2344 int ret = 0;
61b03bd7 2345
289c0522 2346 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 2347 __func__, (unsigned long long)from, readlen);
1da177e4 2348
041e4575
BN
2349 stats = mtd->ecc_stats;
2350
29f1058a 2351 len = mtd_oobavail(mtd, ops);
03736155
AH
2352
2353 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2354 pr_debug("%s: attempt to start read outside oob\n",
2355 __func__);
03736155
AH
2356 return -EINVAL;
2357 }
2358
2359 /* Do not allow reads past end of device */
2360 if (unlikely(from >= mtd->size ||
2361 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2362 (from >> chip->page_shift)) * len)) {
289c0522
BN
2363 pr_debug("%s: attempt to read beyond end of device\n",
2364 __func__);
03736155
AH
2365 return -EINVAL;
2366 }
7014568b 2367
7314e9e7 2368 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 2369 chip->select_chip(mtd, chipnr);
1da177e4 2370
7314e9e7
TG
2371 /* Shift to get page */
2372 realpage = (int)(from >> chip->page_shift);
2373 page = realpage & chip->pagemask;
1da177e4 2374
f8ac0414 2375 while (1) {
0612b9dd 2376 if (ops->mode == MTD_OPS_RAW)
1951f2f7 2377 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 2378 else
1951f2f7
SL
2379 ret = chip->ecc.read_oob(mtd, chip, page);
2380
2381 if (ret < 0)
2382 break;
7014568b
VW
2383
2384 len = min(len, readlen);
846031d3 2385 buf = nand_transfer_oob(mtd, buf, ops, len);
8593fbc6 2386
5bc7c33c
BN
2387 if (chip->options & NAND_NEED_READRDY) {
2388 /* Apply delay or wait for ready/busy pin */
2389 if (!chip->dev_ready)
2390 udelay(chip->chip_delay);
2391 else
2392 nand_wait_ready(mtd);
2393 }
2394
7014568b 2395 readlen -= len;
0d420f9d
SZ
2396 if (!readlen)
2397 break;
2398
7314e9e7
TG
2399 /* Increment page address */
2400 realpage++;
2401
2402 page = realpage & chip->pagemask;
2403 /* Check, if we cross a chip boundary */
2404 if (!page) {
2405 chipnr++;
2406 chip->select_chip(mtd, -1);
2407 chip->select_chip(mtd, chipnr);
1da177e4
LT
2408 }
2409 }
b0bb6903 2410 chip->select_chip(mtd, -1);
1da177e4 2411
1951f2f7
SL
2412 ops->oobretlen = ops->ooblen - readlen;
2413
2414 if (ret < 0)
2415 return ret;
041e4575
BN
2416
2417 if (mtd->ecc_stats.failed - stats.failed)
2418 return -EBADMSG;
2419
2420 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
2421}
2422
2423/**
8593fbc6 2424 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
2425 * @mtd: MTD device structure
2426 * @from: offset to read from
2427 * @ops: oob operation description structure
1da177e4 2428 *
8b6e50c9 2429 * NAND read data and/or out-of-band data.
1da177e4 2430 */
8593fbc6
TG
2431static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2432 struct mtd_oob_ops *ops)
1da177e4 2433{
fc6b4d12 2434 int ret;
8593fbc6
TG
2435
2436 ops->retlen = 0;
1da177e4
LT
2437
2438 /* Do not allow reads past end of device */
7014568b 2439 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
2440 pr_debug("%s: attempt to read beyond end of device\n",
2441 __func__);
1da177e4
LT
2442 return -EINVAL;
2443 }
2444
fc6b4d12
AS
2445 if (ops->mode != MTD_OPS_PLACE_OOB &&
2446 ops->mode != MTD_OPS_AUTO_OOB &&
2447 ops->mode != MTD_OPS_RAW)
2448 return -ENOTSUPP;
1da177e4 2449
fc6b4d12 2450 nand_get_device(mtd, FL_READING);
1da177e4 2451
8593fbc6
TG
2452 if (!ops->datbuf)
2453 ret = nand_do_read_oob(mtd, from, ops);
2454 else
2455 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2456
8593fbc6
TG
2457 nand_release_device(mtd);
2458 return ret;
2459}
61b03bd7 2460
1da177e4 2461
8593fbc6 2462/**
7854d3f7 2463 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2464 * @mtd: mtd info structure
2465 * @chip: nand chip info structure
2466 * @buf: data buffer
1fbb938d 2467 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2468 * @page: page number to write
52ff49df 2469 *
7854d3f7 2470 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2471 */
fdbad98d 2472static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 2473 const uint8_t *buf, int oob_required, int page)
8593fbc6
TG
2474{
2475 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2476 if (oob_required)
2477 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2478
2479 return 0;
1da177e4
LT
2480}
2481
52ff49df 2482/**
7854d3f7 2483 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2484 * @mtd: mtd info structure
2485 * @chip: nand chip info structure
2486 * @buf: data buffer
1fbb938d 2487 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2488 * @page: page number to write
52ff49df
DB
2489 *
2490 * We need a special oob layout and handling even when ECC isn't checked.
2491 */
fdbad98d 2492static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2493 struct nand_chip *chip,
45aaeff9
BB
2494 const uint8_t *buf, int oob_required,
2495 int page)
52ff49df
DB
2496{
2497 int eccsize = chip->ecc.size;
2498 int eccbytes = chip->ecc.bytes;
2499 uint8_t *oob = chip->oob_poi;
2500 int steps, size;
2501
2502 for (steps = chip->ecc.steps; steps > 0; steps--) {
2503 chip->write_buf(mtd, buf, eccsize);
2504 buf += eccsize;
2505
2506 if (chip->ecc.prepad) {
2507 chip->write_buf(mtd, oob, chip->ecc.prepad);
2508 oob += chip->ecc.prepad;
2509 }
2510
60c3bc1f 2511 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2512 oob += eccbytes;
2513
2514 if (chip->ecc.postpad) {
2515 chip->write_buf(mtd, oob, chip->ecc.postpad);
2516 oob += chip->ecc.postpad;
2517 }
2518 }
2519
2520 size = mtd->oobsize - (oob - chip->oob_poi);
2521 if (size)
2522 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2523
2524 return 0;
52ff49df 2525}
9223a456 2526/**
7854d3f7 2527 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2528 * @mtd: mtd info structure
2529 * @chip: nand chip info structure
2530 * @buf: data buffer
1fbb938d 2531 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2532 * @page: page number to write
9223a456 2533 */
fdbad98d 2534static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2535 const uint8_t *buf, int oob_required,
2536 int page)
9223a456 2537{
846031d3 2538 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
2539 int eccbytes = chip->ecc.bytes;
2540 int eccsteps = chip->ecc.steps;
4bf63fcb 2541 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2542 const uint8_t *p = buf;
9223a456 2543
7854d3f7 2544 /* Software ECC calculation */
8593fbc6
TG
2545 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2546 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2547
846031d3
BB
2548 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2549 chip->ecc.total);
2550 if (ret)
2551 return ret;
9223a456 2552
45aaeff9 2553 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 2554}
9223a456 2555
f75e5097 2556/**
7854d3f7 2557 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2558 * @mtd: mtd info structure
2559 * @chip: nand chip info structure
2560 * @buf: data buffer
1fbb938d 2561 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2562 * @page: page number to write
f75e5097 2563 */
fdbad98d 2564static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2565 const uint8_t *buf, int oob_required,
2566 int page)
f75e5097 2567{
846031d3 2568 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
2569 int eccbytes = chip->ecc.bytes;
2570 int eccsteps = chip->ecc.steps;
4bf63fcb 2571 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2572 const uint8_t *p = buf;
9223a456 2573
f75e5097
TG
2574 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2575 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2576 chip->write_buf(mtd, p, eccsize);
f75e5097 2577 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2578 }
2579
846031d3
BB
2580 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2581 chip->ecc.total);
2582 if (ret)
2583 return ret;
f75e5097
TG
2584
2585 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2586
2587 return 0;
9223a456
TG
2588}
2589
837a6ba4
GP
2590
2591/**
73c8aaf4 2592 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
2593 * @mtd: mtd info structure
2594 * @chip: nand chip info structure
d6a95080 2595 * @offset: column address of subpage within the page
837a6ba4 2596 * @data_len: data length
d6a95080 2597 * @buf: data buffer
837a6ba4 2598 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2599 * @page: page number to write
837a6ba4
GP
2600 */
2601static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2602 struct nand_chip *chip, uint32_t offset,
d6a95080 2603 uint32_t data_len, const uint8_t *buf,
45aaeff9 2604 int oob_required, int page)
837a6ba4
GP
2605{
2606 uint8_t *oob_buf = chip->oob_poi;
2607 uint8_t *ecc_calc = chip->buffers->ecccalc;
2608 int ecc_size = chip->ecc.size;
2609 int ecc_bytes = chip->ecc.bytes;
2610 int ecc_steps = chip->ecc.steps;
837a6ba4
GP
2611 uint32_t start_step = offset / ecc_size;
2612 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2613 int oob_bytes = mtd->oobsize / ecc_steps;
846031d3 2614 int step, ret;
837a6ba4
GP
2615
2616 for (step = 0; step < ecc_steps; step++) {
2617 /* configure controller for WRITE access */
2618 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2619
2620 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2621 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2622
2623 /* mask ECC of un-touched subpages by padding 0xFF */
2624 if ((step < start_step) || (step > end_step))
2625 memset(ecc_calc, 0xff, ecc_bytes);
2626 else
d6a95080 2627 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2628
2629 /* mask OOB of un-touched subpages by padding 0xFF */
2630 /* if oob_required, preserve OOB metadata of written subpage */
2631 if (!oob_required || (step < start_step) || (step > end_step))
2632 memset(oob_buf, 0xff, oob_bytes);
2633
d6a95080 2634 buf += ecc_size;
837a6ba4
GP
2635 ecc_calc += ecc_bytes;
2636 oob_buf += oob_bytes;
2637 }
2638
2639 /* copy calculated ECC for whole page to chip->buffer->oob */
2640 /* this include masked-value(0xFF) for unwritten subpages */
2641 ecc_calc = chip->buffers->ecccalc;
846031d3
BB
2642 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2643 chip->ecc.total);
2644 if (ret)
2645 return ret;
837a6ba4
GP
2646
2647 /* write OOB buffer to NAND device */
2648 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2649
2650 return 0;
2651}
2652
2653
61b03bd7 2654/**
7854d3f7 2655 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2656 * @mtd: mtd info structure
2657 * @chip: nand chip info structure
2658 * @buf: data buffer
1fbb938d 2659 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2660 * @page: page number to write
1da177e4 2661 *
8b6e50c9
BN
2662 * The hw generator calculates the error syndrome automatically. Therefore we
2663 * need a special oob layout and handling.
f75e5097 2664 */
fdbad98d 2665static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 2666 struct nand_chip *chip,
45aaeff9
BB
2667 const uint8_t *buf, int oob_required,
2668 int page)
1da177e4 2669{
f75e5097
TG
2670 int i, eccsize = chip->ecc.size;
2671 int eccbytes = chip->ecc.bytes;
2672 int eccsteps = chip->ecc.steps;
2673 const uint8_t *p = buf;
2674 uint8_t *oob = chip->oob_poi;
1da177e4 2675
f75e5097 2676 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2677
f75e5097
TG
2678 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2679 chip->write_buf(mtd, p, eccsize);
61b03bd7 2680
f75e5097
TG
2681 if (chip->ecc.prepad) {
2682 chip->write_buf(mtd, oob, chip->ecc.prepad);
2683 oob += chip->ecc.prepad;
2684 }
2685
2686 chip->ecc.calculate(mtd, p, oob);
2687 chip->write_buf(mtd, oob, eccbytes);
2688 oob += eccbytes;
2689
2690 if (chip->ecc.postpad) {
2691 chip->write_buf(mtd, oob, chip->ecc.postpad);
2692 oob += chip->ecc.postpad;
1da177e4 2693 }
1da177e4 2694 }
f75e5097
TG
2695
2696 /* Calculate remaining oob bytes */
7e4178f9 2697 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2698 if (i)
2699 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2700
2701 return 0;
f75e5097
TG
2702}
2703
2704/**
f107d7a4 2705 * nand_write_page - write one page
8b6e50c9
BN
2706 * @mtd: MTD device structure
2707 * @chip: NAND chip descriptor
837a6ba4
GP
2708 * @offset: address offset within the page
2709 * @data_len: length of actual data to be written
8b6e50c9 2710 * @buf: the data to write
1fbb938d 2711 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2712 * @page: page number to write
2713 * @cached: cached programming
2714 * @raw: use _raw version of write_page
f75e5097
TG
2715 */
2716static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2717 uint32_t offset, int data_len, const uint8_t *buf,
2718 int oob_required, int page, int cached, int raw)
f75e5097 2719{
837a6ba4
GP
2720 int status, subpage;
2721
2722 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2723 chip->ecc.write_subpage)
2724 subpage = offset || (data_len < mtd->writesize);
2725 else
2726 subpage = 0;
f75e5097 2727
3371d663
MG
2728 if (nand_standard_page_accessors(&chip->ecc))
2729 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
f75e5097 2730
956e944c 2731 if (unlikely(raw))
837a6ba4 2732 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 2733 oob_required, page);
837a6ba4
GP
2734 else if (subpage)
2735 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 2736 buf, oob_required, page);
956e944c 2737 else
45aaeff9
BB
2738 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2739 page);
fdbad98d
JW
2740
2741 if (status < 0)
2742 return status;
f75e5097
TG
2743
2744 /*
7854d3f7 2745 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2746 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2747 */
2748 cached = 0;
2749
3239a6cd 2750 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097 2751
3371d663
MG
2752 if (nand_standard_page_accessors(&chip->ecc))
2753 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2754 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2755 /*
2756 * See if operation failed and additional status checks are
8b6e50c9 2757 * available.
f75e5097
TG
2758 */
2759 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2760 status = chip->errstat(mtd, chip, FL_WRITING, status,
2761 page);
2762
2763 if (status & NAND_STATUS_FAIL)
2764 return -EIO;
2765 } else {
2766 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2767 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2768 }
2769
f75e5097 2770 return 0;
1da177e4
LT
2771}
2772
8593fbc6 2773/**
7854d3f7 2774 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2775 * @mtd: MTD device structure
8b6e50c9
BN
2776 * @oob: oob data buffer
2777 * @len: oob data write length
2778 * @ops: oob ops structure
8593fbc6 2779 */
f722013e
TAA
2780static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2781 struct mtd_oob_ops *ops)
8593fbc6 2782{
862eba51 2783 struct nand_chip *chip = mtd_to_nand(mtd);
846031d3 2784 int ret;
f722013e
TAA
2785
2786 /*
2787 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2788 * data from a previous OOB read.
2789 */
2790 memset(chip->oob_poi, 0xff, mtd->oobsize);
2791
f8ac0414 2792 switch (ops->mode) {
8593fbc6 2793
0612b9dd
BN
2794 case MTD_OPS_PLACE_OOB:
2795 case MTD_OPS_RAW:
8593fbc6
TG
2796 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2797 return oob + len;
2798
846031d3
BB
2799 case MTD_OPS_AUTO_OOB:
2800 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
2801 ops->ooboffs, len);
2802 BUG_ON(ret);
2803 return oob + len;
2804
8593fbc6
TG
2805 default:
2806 BUG();
2807 }
2808 return NULL;
2809}
2810
f8ac0414 2811#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2812
2813/**
7854d3f7 2814 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2815 * @mtd: MTD device structure
2816 * @to: offset to write to
2817 * @ops: oob operations description structure
1da177e4 2818 *
8b6e50c9 2819 * NAND write with ECC.
1da177e4 2820 */
8593fbc6
TG
2821static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2822 struct mtd_oob_ops *ops)
1da177e4 2823{
29072b96 2824 int chipnr, realpage, page, blockmask, column;
862eba51 2825 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 2826 uint32_t writelen = ops->len;
782ce79a
ML
2827
2828 uint32_t oobwritelen = ops->ooblen;
29f1058a 2829 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
782ce79a 2830
8593fbc6
TG
2831 uint8_t *oob = ops->oobbuf;
2832 uint8_t *buf = ops->datbuf;
837a6ba4 2833 int ret;
e47f3db4 2834 int oob_required = oob ? 1 : 0;
1da177e4 2835
8593fbc6 2836 ops->retlen = 0;
29072b96
TG
2837 if (!writelen)
2838 return 0;
1da177e4 2839
8b6e50c9 2840 /* Reject writes, which are not page aligned */
8593fbc6 2841 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2842 pr_notice("%s: attempt to write non page aligned data\n",
2843 __func__);
1da177e4
LT
2844 return -EINVAL;
2845 }
2846
29072b96 2847 column = to & (mtd->writesize - 1);
1da177e4 2848
6a930961
TG
2849 chipnr = (int)(to >> chip->chip_shift);
2850 chip->select_chip(mtd, chipnr);
2851
1da177e4 2852 /* Check, if it is write protected */
b0bb6903
HS
2853 if (nand_check_wp(mtd)) {
2854 ret = -EIO;
2855 goto err_out;
2856 }
1da177e4 2857
f75e5097
TG
2858 realpage = (int)(to >> chip->page_shift);
2859 page = realpage & chip->pagemask;
2860 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2861
2862 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2863 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2864 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2865 chip->pagebuf = -1;
61b03bd7 2866
782ce79a 2867 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2868 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2869 ret = -EINVAL;
2870 goto err_out;
2871 }
782ce79a 2872
f8ac0414 2873 while (1) {
29072b96 2874 int bytes = mtd->writesize;
f75e5097 2875 int cached = writelen > bytes && page != blockmask;
29072b96 2876 uint8_t *wbuf = buf;
66507c7b 2877 int use_bufpoi;
144f4c98 2878 int part_pagewr = (column || writelen < mtd->writesize);
66507c7b
KD
2879
2880 if (part_pagewr)
2881 use_bufpoi = 1;
2882 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
2883 use_bufpoi = !virt_addr_valid(buf) ||
2884 !IS_ALIGNED((unsigned long)buf,
2885 chip->buf_align);
66507c7b
KD
2886 else
2887 use_bufpoi = 0;
29072b96 2888
66507c7b
KD
2889 /* Partial page write?, or need to use bounce buffer */
2890 if (use_bufpoi) {
2891 pr_debug("%s: using write bounce buffer for buf@%p\n",
2892 __func__, buf);
29072b96 2893 cached = 0;
66507c7b
KD
2894 if (part_pagewr)
2895 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2896 chip->pagebuf = -1;
2897 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2898 memcpy(&chip->buffers->databuf[column], buf, bytes);
2899 wbuf = chip->buffers->databuf;
2900 }
1da177e4 2901
782ce79a
ML
2902 if (unlikely(oob)) {
2903 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2904 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2905 oobwritelen -= len;
f722013e
TAA
2906 } else {
2907 /* We still need to erase leftover OOB data */
2908 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2909 }
f107d7a4
BB
2910
2911 ret = nand_write_page(mtd, chip, column, bytes, wbuf,
2912 oob_required, page, cached,
2913 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2914 if (ret)
2915 break;
2916
2917 writelen -= bytes;
2918 if (!writelen)
2919 break;
2920
29072b96 2921 column = 0;
f75e5097
TG
2922 buf += bytes;
2923 realpage++;
2924
2925 page = realpage & chip->pagemask;
2926 /* Check, if we cross a chip boundary */
2927 if (!page) {
2928 chipnr++;
2929 chip->select_chip(mtd, -1);
2930 chip->select_chip(mtd, chipnr);
1da177e4
LT
2931 }
2932 }
8593fbc6 2933
8593fbc6 2934 ops->retlen = ops->len - writelen;
7014568b
VW
2935 if (unlikely(oob))
2936 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2937
2938err_out:
2939 chip->select_chip(mtd, -1);
1da177e4
LT
2940 return ret;
2941}
2942
2af7c653
SK
2943/**
2944 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2945 * @mtd: MTD device structure
2946 * @to: offset to write to
2947 * @len: number of bytes to write
2948 * @retlen: pointer to variable to store the number of written bytes
2949 * @buf: the data to write
2af7c653
SK
2950 *
2951 * NAND write with ECC. Used when performing writes in interrupt context, this
2952 * may for example be called by mtdoops when writing an oops while in panic.
2953 */
2954static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2955 size_t *retlen, const uint8_t *buf)
2956{
862eba51 2957 struct nand_chip *chip = mtd_to_nand(mtd);
4a89ff88 2958 struct mtd_oob_ops ops;
2af7c653
SK
2959 int ret;
2960
8b6e50c9 2961 /* Wait for the device to get ready */
2af7c653
SK
2962 panic_nand_wait(mtd, chip, 400);
2963
8b6e50c9 2964 /* Grab the device */
2af7c653
SK
2965 panic_nand_get_device(chip, mtd, FL_WRITING);
2966
0ec56dc4 2967 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2968 ops.len = len;
2969 ops.datbuf = (uint8_t *)buf;
11041ae6 2970 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2971
4a89ff88 2972 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2973
4a89ff88 2974 *retlen = ops.retlen;
2af7c653
SK
2975 return ret;
2976}
2977
f75e5097 2978/**
8593fbc6 2979 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2980 * @mtd: MTD device structure
2981 * @to: offset to write to
2982 * @len: number of bytes to write
2983 * @retlen: pointer to variable to store the number of written bytes
2984 * @buf: the data to write
f75e5097 2985 *
8b6e50c9 2986 * NAND write with ECC.
f75e5097 2987 */
8593fbc6
TG
2988static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2989 size_t *retlen, const uint8_t *buf)
f75e5097 2990{
4a89ff88 2991 struct mtd_oob_ops ops;
f75e5097
TG
2992 int ret;
2993
6a8214aa 2994 nand_get_device(mtd, FL_WRITING);
0ec56dc4 2995 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2996 ops.len = len;
2997 ops.datbuf = (uint8_t *)buf;
11041ae6 2998 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2999 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 3000 *retlen = ops.retlen;
f75e5097 3001 nand_release_device(mtd);
8593fbc6 3002 return ret;
f75e5097 3003}
7314e9e7 3004
1da177e4 3005/**
8593fbc6 3006 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
3007 * @mtd: MTD device structure
3008 * @to: offset to write to
3009 * @ops: oob operation description structure
1da177e4 3010 *
8b6e50c9 3011 * NAND write out-of-band.
1da177e4 3012 */
8593fbc6
TG
3013static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
3014 struct mtd_oob_ops *ops)
1da177e4 3015{
03736155 3016 int chipnr, page, status, len;
862eba51 3017 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 3018
289c0522 3019 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 3020 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 3021
29f1058a 3022 len = mtd_oobavail(mtd, ops);
03736155 3023
1da177e4 3024 /* Do not allow write past end of page */
03736155 3025 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
3026 pr_debug("%s: attempt to write past end of page\n",
3027 __func__);
1da177e4
LT
3028 return -EINVAL;
3029 }
3030
03736155 3031 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
3032 pr_debug("%s: attempt to start write outside oob\n",
3033 __func__);
03736155
AH
3034 return -EINVAL;
3035 }
3036
775adc3d 3037 /* Do not allow write past end of device */
03736155
AH
3038 if (unlikely(to >= mtd->size ||
3039 ops->ooboffs + ops->ooblen >
3040 ((mtd->size >> chip->page_shift) -
3041 (to >> chip->page_shift)) * len)) {
289c0522
BN
3042 pr_debug("%s: attempt to write beyond end of device\n",
3043 __func__);
03736155
AH
3044 return -EINVAL;
3045 }
3046
7314e9e7 3047 chipnr = (int)(to >> chip->chip_shift);
7314e9e7
TG
3048
3049 /*
3050 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
3051 * of my DiskOnChip 2000 test units) will clear the whole data page too
3052 * if we don't do this. I have no clue why, but I seem to have 'fixed'
3053 * it in the doc2000 driver in August 1999. dwmw2.
3054 */
73f907fd
BB
3055 nand_reset(chip, chipnr);
3056
3057 chip->select_chip(mtd, chipnr);
3058
3059 /* Shift to get page */
3060 page = (int)(to >> chip->page_shift);
1da177e4
LT
3061
3062 /* Check, if it is write protected */
b0bb6903
HS
3063 if (nand_check_wp(mtd)) {
3064 chip->select_chip(mtd, -1);
8593fbc6 3065 return -EROFS;
b0bb6903 3066 }
61b03bd7 3067
1da177e4 3068 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
3069 if (page == chip->pagebuf)
3070 chip->pagebuf = -1;
1da177e4 3071
f722013e 3072 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 3073
0612b9dd 3074 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
3075 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
3076 else
3077 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 3078
b0bb6903
HS
3079 chip->select_chip(mtd, -1);
3080
7bc3312b
TG
3081 if (status)
3082 return status;
1da177e4 3083
7014568b 3084 ops->oobretlen = ops->ooblen;
1da177e4 3085
7bc3312b 3086 return 0;
8593fbc6
TG
3087}
3088
3089/**
3090 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
3091 * @mtd: MTD device structure
3092 * @to: offset to write to
3093 * @ops: oob operation description structure
8593fbc6
TG
3094 */
3095static int nand_write_oob(struct mtd_info *mtd, loff_t to,
3096 struct mtd_oob_ops *ops)
3097{
8593fbc6
TG
3098 int ret = -ENOTSUPP;
3099
3100 ops->retlen = 0;
3101
3102 /* Do not allow writes past end of device */
7014568b 3103 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
3104 pr_debug("%s: attempt to write beyond end of device\n",
3105 __func__);
8593fbc6
TG
3106 return -EINVAL;
3107 }
3108
6a8214aa 3109 nand_get_device(mtd, FL_WRITING);
8593fbc6 3110
f8ac0414 3111 switch (ops->mode) {
0612b9dd
BN
3112 case MTD_OPS_PLACE_OOB:
3113 case MTD_OPS_AUTO_OOB:
3114 case MTD_OPS_RAW:
8593fbc6
TG
3115 break;
3116
3117 default:
3118 goto out;
3119 }
3120
3121 if (!ops->datbuf)
3122 ret = nand_do_write_oob(mtd, to, ops);
3123 else
3124 ret = nand_do_write_ops(mtd, to, ops);
3125
7351d3a5 3126out:
1da177e4 3127 nand_release_device(mtd);
1da177e4
LT
3128 return ret;
3129}
3130
1da177e4 3131/**
49c50b97 3132 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
3133 * @mtd: MTD device structure
3134 * @page: the page address of the block which will be erased
1da177e4 3135 *
49c50b97 3136 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 3137 */
49c50b97 3138static int single_erase(struct mtd_info *mtd, int page)
1da177e4 3139{
862eba51 3140 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 3141 /* Send commands to erase a block */
ace4dfee
TG
3142 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
3143 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
3144
3145 return chip->waitfunc(mtd, chip);
1da177e4
LT
3146}
3147
1da177e4
LT
3148/**
3149 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
3150 * @mtd: MTD device structure
3151 * @instr: erase instruction
1da177e4 3152 *
8b6e50c9 3153 * Erase one ore more blocks.
1da177e4 3154 */
e0c7d767 3155static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 3156{
e0c7d767 3157 return nand_erase_nand(mtd, instr, 0);
1da177e4 3158}
61b03bd7 3159
1da177e4 3160/**
7854d3f7 3161 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
3162 * @mtd: MTD device structure
3163 * @instr: erase instruction
3164 * @allowbbt: allow erasing the bbt area
1da177e4 3165 *
8b6e50c9 3166 * Erase one ore more blocks.
1da177e4 3167 */
ace4dfee
TG
3168int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3169 int allowbbt)
1da177e4 3170{
69423d99 3171 int page, status, pages_per_block, ret, chipnr;
862eba51 3172 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 3173 loff_t len;
1da177e4 3174
289c0522
BN
3175 pr_debug("%s: start = 0x%012llx, len = %llu\n",
3176 __func__, (unsigned long long)instr->addr,
3177 (unsigned long long)instr->len);
1da177e4 3178
6fe5a6ac 3179 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 3180 return -EINVAL;
1da177e4 3181
1da177e4 3182 /* Grab the lock and see if the device is available */
6a8214aa 3183 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
3184
3185 /* Shift to get first page */
ace4dfee
TG
3186 page = (int)(instr->addr >> chip->page_shift);
3187 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
3188
3189 /* Calculate pages in each block */
ace4dfee 3190 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
3191
3192 /* Select the NAND device */
ace4dfee 3193 chip->select_chip(mtd, chipnr);
1da177e4 3194
1da177e4
LT
3195 /* Check, if it is write protected */
3196 if (nand_check_wp(mtd)) {
289c0522
BN
3197 pr_debug("%s: device is write protected!\n",
3198 __func__);
1da177e4
LT
3199 instr->state = MTD_ERASE_FAILED;
3200 goto erase_exit;
3201 }
3202
3203 /* Loop through the pages */
3204 len = instr->len;
3205
3206 instr->state = MTD_ERASING;
3207
3208 while (len) {
12183a20 3209 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee 3210 if (nand_block_checkbad(mtd, ((loff_t) page) <<
9f3e0429 3211 chip->page_shift, allowbbt)) {
d0370219
BN
3212 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3213 __func__, page);
1da177e4
LT
3214 instr->state = MTD_ERASE_FAILED;
3215 goto erase_exit;
3216 }
61b03bd7 3217
ace4dfee
TG
3218 /*
3219 * Invalidate the page cache, if we erase the block which
8b6e50c9 3220 * contains the current cached page.
ace4dfee
TG
3221 */
3222 if (page <= chip->pagebuf && chip->pagebuf <
3223 (page + pages_per_block))
3224 chip->pagebuf = -1;
1da177e4 3225
49c50b97 3226 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 3227
ace4dfee
TG
3228 /*
3229 * See if operation failed and additional status checks are
3230 * available
3231 */
3232 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
3233 status = chip->errstat(mtd, chip, FL_ERASING,
3234 status, page);
068e3c0a 3235
1da177e4 3236 /* See if block erase succeeded */
a4ab4c5d 3237 if (status & NAND_STATUS_FAIL) {
289c0522
BN
3238 pr_debug("%s: failed erase, page 0x%08x\n",
3239 __func__, page);
1da177e4 3240 instr->state = MTD_ERASE_FAILED;
69423d99
AH
3241 instr->fail_addr =
3242 ((loff_t)page << chip->page_shift);
1da177e4
LT
3243 goto erase_exit;
3244 }
30f464b7 3245
1da177e4 3246 /* Increment page address and decrement length */
daae74ca 3247 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
3248 page += pages_per_block;
3249
3250 /* Check, if we cross a chip boundary */
ace4dfee 3251 if (len && !(page & chip->pagemask)) {
1da177e4 3252 chipnr++;
ace4dfee
TG
3253 chip->select_chip(mtd, -1);
3254 chip->select_chip(mtd, chipnr);
1da177e4
LT
3255 }
3256 }
3257 instr->state = MTD_ERASE_DONE;
3258
7351d3a5 3259erase_exit:
1da177e4
LT
3260
3261 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
3262
3263 /* Deselect and wake up anyone waiting on the device */
b0bb6903 3264 chip->select_chip(mtd, -1);
1da177e4
LT
3265 nand_release_device(mtd);
3266
49defc01
DW
3267 /* Do call back function */
3268 if (!ret)
3269 mtd_erase_callback(instr);
3270
1da177e4
LT
3271 /* Return more or less happy */
3272 return ret;
3273}
3274
3275/**
3276 * nand_sync - [MTD Interface] sync
8b6e50c9 3277 * @mtd: MTD device structure
1da177e4 3278 *
8b6e50c9 3279 * Sync is actually a wait for chip ready function.
1da177e4 3280 */
e0c7d767 3281static void nand_sync(struct mtd_info *mtd)
1da177e4 3282{
289c0522 3283 pr_debug("%s: called\n", __func__);
1da177e4
LT
3284
3285 /* Grab the lock and see if the device is available */
6a8214aa 3286 nand_get_device(mtd, FL_SYNCING);
1da177e4 3287 /* Release it and go back */
e0c7d767 3288 nand_release_device(mtd);
1da177e4
LT
3289}
3290
1da177e4 3291/**
ace4dfee 3292 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
3293 * @mtd: MTD device structure
3294 * @offs: offset relative to mtd start
1da177e4 3295 */
ace4dfee 3296static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 3297{
9f3e0429
AT
3298 struct nand_chip *chip = mtd_to_nand(mtd);
3299 int chipnr = (int)(offs >> chip->chip_shift);
3300 int ret;
3301
3302 /* Select the NAND device */
3303 nand_get_device(mtd, FL_READING);
3304 chip->select_chip(mtd, chipnr);
3305
3306 ret = nand_block_checkbad(mtd, offs, 0);
3307
3308 chip->select_chip(mtd, -1);
3309 nand_release_device(mtd);
3310
3311 return ret;
1da177e4
LT
3312}
3313
3314/**
ace4dfee 3315 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
3316 * @mtd: MTD device structure
3317 * @ofs: offset relative to mtd start
1da177e4 3318 */
e0c7d767 3319static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 3320{
1da177e4
LT
3321 int ret;
3322
f8ac0414
FF
3323 ret = nand_block_isbad(mtd, ofs);
3324 if (ret) {
8b6e50c9 3325 /* If it was bad already, return success and do nothing */
1da177e4
LT
3326 if (ret > 0)
3327 return 0;
e0c7d767
DW
3328 return ret;
3329 }
1da177e4 3330
5a0edb25 3331 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
3332}
3333
5671842f
ZB
3334/**
3335 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
3336 * @mtd: MTD device structure
3337 * @ofs: offset relative to mtd start
3338 * @len: length of mtd
3339 */
3340static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
3341{
3342 struct nand_chip *chip = mtd_to_nand(mtd);
3343 u32 part_start_block;
3344 u32 part_end_block;
3345 u32 part_start_die;
3346 u32 part_end_die;
3347
3348 /*
3349 * max_bb_per_die and blocks_per_die used to determine
3350 * the maximum bad block count.
3351 */
3352 if (!chip->max_bb_per_die || !chip->blocks_per_die)
3353 return -ENOTSUPP;
3354
3355 /* Get the start and end of the partition in erase blocks. */
3356 part_start_block = mtd_div_by_eb(ofs, mtd);
3357 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
3358
3359 /* Get the start and end LUNs of the partition. */
3360 part_start_die = part_start_block / chip->blocks_per_die;
3361 part_end_die = part_end_block / chip->blocks_per_die;
3362
3363 /*
3364 * Look up the bad blocks per unit and multiply by the number of units
3365 * that the partition spans.
3366 */
3367 return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
3368}
3369
7db03ecc
HS
3370/**
3371 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3372 * @mtd: MTD device structure
3373 * @chip: nand chip info structure
3374 * @addr: feature address.
3375 * @subfeature_param: the subfeature parameters, a four bytes array.
3376 */
3377static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3378 int addr, uint8_t *subfeature_param)
3379{
3380 int status;
05f78359 3381 int i;
7db03ecc 3382
d914c932
DM
3383 if (!chip->onfi_version ||
3384 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3385 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3386 return -EINVAL;
3387
3388 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
3389 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3390 chip->write_byte(mtd, subfeature_param[i]);
3391
7db03ecc
HS
3392 status = chip->waitfunc(mtd, chip);
3393 if (status & NAND_STATUS_FAIL)
3394 return -EIO;
3395 return 0;
3396}
3397
3398/**
3399 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3400 * @mtd: MTD device structure
3401 * @chip: nand chip info structure
3402 * @addr: feature address.
3403 * @subfeature_param: the subfeature parameters, a four bytes array.
3404 */
3405static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3406 int addr, uint8_t *subfeature_param)
3407{
05f78359
UKK
3408 int i;
3409
d914c932
DM
3410 if (!chip->onfi_version ||
3411 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3412 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3413 return -EINVAL;
3414
7db03ecc 3415 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
3416 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3417 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
3418 return 0;
3419}
3420
962034f4
VW
3421/**
3422 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 3423 * @mtd: MTD device structure
962034f4
VW
3424 */
3425static int nand_suspend(struct mtd_info *mtd)
3426{
6a8214aa 3427 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
3428}
3429
3430/**
3431 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 3432 * @mtd: MTD device structure
962034f4
VW
3433 */
3434static void nand_resume(struct mtd_info *mtd)
3435{
862eba51 3436 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 3437
ace4dfee 3438 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
3439 nand_release_device(mtd);
3440 else
d0370219
BN
3441 pr_err("%s called for a chip which is not in suspended state\n",
3442 __func__);
962034f4
VW
3443}
3444
72ea4036
SB
3445/**
3446 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3447 * prevent further operations
3448 * @mtd: MTD device structure
3449 */
3450static void nand_shutdown(struct mtd_info *mtd)
3451{
9ca641b0 3452 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
3453}
3454
8b6e50c9 3455/* Set default functions */
29a198a1 3456static void nand_set_defaults(struct nand_chip *chip)
7aa65bfd 3457{
29a198a1
BB
3458 unsigned int busw = chip->options & NAND_BUSWIDTH_16;
3459
1da177e4 3460 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
3461 if (!chip->chip_delay)
3462 chip->chip_delay = 20;
1da177e4
LT
3463
3464 /* check, if a user supplied command function given */
ace4dfee
TG
3465 if (chip->cmdfunc == NULL)
3466 chip->cmdfunc = nand_command;
1da177e4
LT
3467
3468 /* check, if a user supplied wait function given */
ace4dfee
TG
3469 if (chip->waitfunc == NULL)
3470 chip->waitfunc = nand_wait;
3471
3472 if (!chip->select_chip)
3473 chip->select_chip = nand_select_chip;
68e80780 3474
4204cccd
HS
3475 /* set for ONFI nand */
3476 if (!chip->onfi_set_features)
3477 chip->onfi_set_features = nand_onfi_set_features;
3478 if (!chip->onfi_get_features)
3479 chip->onfi_get_features = nand_onfi_get_features;
3480
68e80780
BN
3481 /* If called twice, pointers that depend on busw may need to be reset */
3482 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
3483 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3484 if (!chip->read_word)
3485 chip->read_word = nand_read_word;
3486 if (!chip->block_bad)
3487 chip->block_bad = nand_block_bad;
3488 if (!chip->block_markbad)
3489 chip->block_markbad = nand_default_block_markbad;
68e80780 3490 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 3491 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
3492 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3493 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 3494 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 3495 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
3496 if (!chip->scan_bbt)
3497 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
3498
3499 if (!chip->controller) {
3500 chip->controller = &chip->hwcontrol;
d45bc58d 3501 nand_hw_control_init(chip->controller);
f75e5097
TG
3502 }
3503
477544c6
MY
3504 if (!chip->buf_align)
3505 chip->buf_align = 1;
7aa65bfd
TG
3506}
3507
8b6e50c9 3508/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3509static void sanitize_string(uint8_t *s, size_t len)
3510{
3511 ssize_t i;
3512
8b6e50c9 3513 /* Null terminate */
d1e1f4e4
FF
3514 s[len - 1] = 0;
3515
8b6e50c9 3516 /* Remove non printable chars */
d1e1f4e4
FF
3517 for (i = 0; i < len - 1; i++) {
3518 if (s[i] < ' ' || s[i] > 127)
3519 s[i] = '?';
3520 }
3521
8b6e50c9 3522 /* Remove trailing spaces */
d1e1f4e4
FF
3523 strim(s);
3524}
3525
3526static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3527{
3528 int i;
3529 while (len--) {
3530 crc ^= *p++ << 8;
3531 for (i = 0; i < 8; i++)
3532 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3533 }
3534
3535 return crc;
3536}
3537
6dcbe0cd 3538/* Parse the Extended Parameter Page. */
cbe435a1
BB
3539static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
3540 struct nand_onfi_params *p)
6dcbe0cd 3541{
cbe435a1 3542 struct mtd_info *mtd = nand_to_mtd(chip);
6dcbe0cd
HS
3543 struct onfi_ext_param_page *ep;
3544 struct onfi_ext_section *s;
3545 struct onfi_ext_ecc_info *ecc;
3546 uint8_t *cursor;
3547 int ret = -EINVAL;
3548 int len;
3549 int i;
3550
3551 len = le16_to_cpu(p->ext_param_page_length) * 16;
3552 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3553 if (!ep)
3554 return -ENOMEM;
6dcbe0cd
HS
3555
3556 /* Send our own NAND_CMD_PARAM. */
3557 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3558
3559 /* Use the Change Read Column command to skip the ONFI param pages. */
3560 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3561 sizeof(*p) * p->num_of_param_pages , -1);
3562
3563 /* Read out the Extended Parameter Page. */
3564 chip->read_buf(mtd, (uint8_t *)ep, len);
3565 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3566 != le16_to_cpu(ep->crc))) {
3567 pr_debug("fail in the CRC.\n");
3568 goto ext_out;
3569 }
3570
3571 /*
3572 * Check the signature.
3573 * Do not strictly follow the ONFI spec, maybe changed in future.
3574 */
3575 if (strncmp(ep->sig, "EPPS", 4)) {
3576 pr_debug("The signature is invalid.\n");
3577 goto ext_out;
3578 }
3579
3580 /* find the ECC section. */
3581 cursor = (uint8_t *)(ep + 1);
3582 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3583 s = ep->sections + i;
3584 if (s->type == ONFI_SECTION_TYPE_2)
3585 break;
3586 cursor += s->length * 16;
3587 }
3588 if (i == ONFI_EXT_SECTION_MAX) {
3589 pr_debug("We can not find the ECC section.\n");
3590 goto ext_out;
3591 }
3592
3593 /* get the info we want. */
3594 ecc = (struct onfi_ext_ecc_info *)cursor;
3595
4ae7d228
BN
3596 if (!ecc->codeword_size) {
3597 pr_debug("Invalid codeword size\n");
3598 goto ext_out;
6dcbe0cd
HS
3599 }
3600
4ae7d228
BN
3601 chip->ecc_strength_ds = ecc->ecc_bits;
3602 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3603 ret = 0;
6dcbe0cd
HS
3604
3605ext_out:
3606 kfree(ep);
3607 return ret;
3608}
3609
6fb277ba 3610/*
8b6e50c9 3611 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba 3612 */
29a198a1 3613static int nand_flash_detect_onfi(struct nand_chip *chip)
6fb277ba 3614{
cbe435a1 3615 struct mtd_info *mtd = nand_to_mtd(chip);
6fb277ba 3616 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3617 int i, j;
6fb277ba
FF
3618 int val;
3619
7854d3f7 3620 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3621 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3622 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3623 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3624 return 0;
3625
6fb277ba
FF
3626 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3627 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3628 for (j = 0; j < sizeof(*p); j++)
3629 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3630 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3631 le16_to_cpu(p->crc)) {
6fb277ba
FF
3632 break;
3633 }
3634 }
3635
c7f23a70
BN
3636 if (i == 3) {
3637 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3638 return 0;
c7f23a70 3639 }
6fb277ba 3640
8b6e50c9 3641 /* Check version */
6fb277ba 3642 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3643 if (val & (1 << 5))
3644 chip->onfi_version = 23;
3645 else if (val & (1 << 4))
6fb277ba
FF
3646 chip->onfi_version = 22;
3647 else if (val & (1 << 3))
3648 chip->onfi_version = 21;
3649 else if (val & (1 << 2))
3650 chip->onfi_version = 20;
b7b1a29d 3651 else if (val & (1 << 1))
6fb277ba 3652 chip->onfi_version = 10;
b7b1a29d
BN
3653
3654 if (!chip->onfi_version) {
20171642 3655 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3656 return 0;
3657 }
6fb277ba
FF
3658
3659 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3660 sanitize_string(p->model, sizeof(p->model));
3661 if (!mtd->name)
3662 mtd->name = p->model;
4355b70c 3663
6fb277ba 3664 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3665
3666 /*
3667 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3668 * (don't ask me who thought of this...). MTD assumes that these
3669 * dimensions will be power-of-2, so just truncate the remaining area.
3670 */
3671 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3672 mtd->erasesize *= mtd->writesize;
3673
6fb277ba 3674 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3675
3676 /* See erasesize comment */
3677 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3678 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3679 chip->bits_per_cell = p->bits_per_cell;
e2985fc1 3680
34da5f5f
ZB
3681 chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
3682 chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
3683
e2985fc1 3684 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
29a198a1 3685 chip->options |= NAND_BUSWIDTH_16;
6fb277ba 3686
10c86bab
HS
3687 if (p->ecc_bits != 0xff) {
3688 chip->ecc_strength_ds = p->ecc_bits;
3689 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3690 } else if (chip->onfi_version >= 21 &&
3691 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3692
3693 /*
3694 * The nand_flash_detect_ext_param_page() uses the
3695 * Change Read Column command which maybe not supported
3696 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3697 * now. We do not replace user supplied command function.
3698 */
3699 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3700 chip->cmdfunc = nand_command_lp;
3701
3702 /* The Extended Parameter Page is supported since ONFI 2.1. */
cbe435a1 3703 if (nand_flash_detect_ext_param_page(chip, p))
c7f23a70
BN
3704 pr_warn("Failed to detect ONFI extended param page\n");
3705 } else {
3706 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3707 }
3708
6fb277ba
FF
3709 return 1;
3710}
3711
91361818
HS
3712/*
3713 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3714 */
29a198a1 3715static int nand_flash_detect_jedec(struct nand_chip *chip)
91361818 3716{
cbe435a1 3717 struct mtd_info *mtd = nand_to_mtd(chip);
91361818
HS
3718 struct nand_jedec_params *p = &chip->jedec_params;
3719 struct jedec_ecc_info *ecc;
3720 int val;
3721 int i, j;
3722
3723 /* Try JEDEC for unknown chip or LP */
3724 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3725 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3726 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3727 chip->read_byte(mtd) != 'C')
3728 return 0;
3729
3730 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3731 for (i = 0; i < 3; i++) {
3732 for (j = 0; j < sizeof(*p); j++)
3733 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3734
3735 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3736 le16_to_cpu(p->crc))
3737 break;
3738 }
3739
3740 if (i == 3) {
3741 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3742 return 0;
3743 }
3744
3745 /* Check version */
3746 val = le16_to_cpu(p->revision);
3747 if (val & (1 << 2))
3748 chip->jedec_version = 10;
3749 else if (val & (1 << 1))
3750 chip->jedec_version = 1; /* vendor specific version */
3751
3752 if (!chip->jedec_version) {
3753 pr_info("unsupported JEDEC version: %d\n", val);
3754 return 0;
3755 }
3756
3757 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3758 sanitize_string(p->model, sizeof(p->model));
3759 if (!mtd->name)
3760 mtd->name = p->model;
3761
3762 mtd->writesize = le32_to_cpu(p->byte_per_page);
3763
3764 /* Please reference to the comment for nand_flash_detect_onfi. */
3765 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3766 mtd->erasesize *= mtd->writesize;
3767
3768 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3769
3770 /* Please reference to the comment for nand_flash_detect_onfi. */
3771 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3772 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3773 chip->bits_per_cell = p->bits_per_cell;
3774
3775 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
29a198a1 3776 chip->options |= NAND_BUSWIDTH_16;
91361818
HS
3777
3778 /* ECC info */
3779 ecc = &p->ecc_info[0];
3780
3781 if (ecc->codeword_size >= 9) {
3782 chip->ecc_strength_ds = ecc->ecc_bits;
3783 chip->ecc_step_ds = 1 << ecc->codeword_size;
3784 } else {
3785 pr_warn("Invalid codeword size\n");
3786 }
3787
3788 return 1;
3789}
3790
e3b88bd6
BN
3791/*
3792 * nand_id_has_period - Check if an ID string has a given wraparound period
3793 * @id_data: the ID string
3794 * @arrlen: the length of the @id_data array
3795 * @period: the period of repitition
3796 *
3797 * Check if an ID string is repeated within a given sequence of bytes at
3798 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3799 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3800 * if the repetition has a period of @period; otherwise, returns zero.
3801 */
3802static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3803{
3804 int i, j;
3805 for (i = 0; i < period; i++)
3806 for (j = i + period; j < arrlen; j += period)
3807 if (id_data[i] != id_data[j])
3808 return 0;
3809 return 1;
3810}
3811
3812/*
3813 * nand_id_len - Get the length of an ID string returned by CMD_READID
3814 * @id_data: the ID string
3815 * @arrlen: the length of the @id_data array
3816
3817 * Returns the length of the ID string, according to known wraparound/trailing
3818 * zero patterns. If no pattern exists, returns the length of the array.
3819 */
3820static int nand_id_len(u8 *id_data, int arrlen)
3821{
3822 int last_nonzero, period;
3823
3824 /* Find last non-zero byte */
3825 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3826 if (id_data[last_nonzero])
3827 break;
3828
3829 /* All zeros */
3830 if (last_nonzero < 0)
3831 return 0;
3832
3833 /* Calculate wraparound period */
3834 for (period = 1; period < arrlen; period++)
3835 if (nand_id_has_period(id_data, arrlen, period))
3836 break;
3837
3838 /* There's a repeated pattern */
3839 if (period < arrlen)
3840 return period;
3841
3842 /* There are trailing zeros */
3843 if (last_nonzero < arrlen - 1)
3844 return last_nonzero + 1;
3845
3846 /* No pattern detected */
3847 return arrlen;
3848}
3849
7db906b7
HS
3850/* Extract the bits of per cell from the 3rd byte of the extended ID */
3851static int nand_get_bits_per_cell(u8 cellinfo)
3852{
3853 int bits;
3854
3855 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3856 bits >>= NAND_CI_CELLTYPE_SHIFT;
3857 return bits + 1;
3858}
3859
fc09bbc0
BN
3860/*
3861 * Many new NAND share similar device ID codes, which represent the size of the
3862 * chip. The rest of the parameters must be decoded according to generic or
3863 * manufacturer-specific "extended ID" decoding patterns.
3864 */
abbe26d1 3865void nand_decode_ext_id(struct nand_chip *chip)
fc09bbc0 3866{
cbe435a1 3867 struct mtd_info *mtd = nand_to_mtd(chip);
9b2d61f8 3868 int extid;
7f501f0a 3869 u8 *id_data = chip->id.data;
fc09bbc0 3870 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3871 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3872 /* The 4th id byte is the important one */
3873 extid = id_data[3];
3874
01389b6b
BB
3875 /* Calc pagesize */
3876 mtd->writesize = 1024 << (extid & 0x03);
3877 extid >>= 2;
3878 /* Calc oobsize */
3879 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
3880 extid >>= 2;
3881 /* Calc blocksize. Blocksize is multiples of 64KiB */
3882 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3883 extid >>= 2;
3884 /* Get buswidth information */
3885 if (extid & 0x1)
3886 chip->options |= NAND_BUSWIDTH_16;
fc09bbc0 3887}
abbe26d1 3888EXPORT_SYMBOL_GPL(nand_decode_ext_id);
fc09bbc0 3889
f23a481c
BN
3890/*
3891 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3892 * decodes a matching ID table entry and assigns the MTD size parameters for
3893 * the chip.
3894 */
29a198a1 3895static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
f23a481c 3896{
cbe435a1 3897 struct mtd_info *mtd = nand_to_mtd(chip);
f23a481c
BN
3898
3899 mtd->erasesize = type->erasesize;
3900 mtd->writesize = type->pagesize;
3901 mtd->oobsize = mtd->writesize / 32;
f23a481c 3902
1c195e90
HS
3903 /* All legacy ID NAND are small-page, SLC */
3904 chip->bits_per_cell = 1;
f23a481c
BN
3905}
3906
7e74c2d7
BN
3907/*
3908 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3909 * heuristic patterns using various detected parameters (e.g., manufacturer,
3910 * page size, cell-type information).
3911 */
7f501f0a 3912static void nand_decode_bbm_options(struct nand_chip *chip)
7e74c2d7 3913{
cbe435a1 3914 struct mtd_info *mtd = nand_to_mtd(chip);
7e74c2d7
BN
3915
3916 /* Set the bad block position */
3917 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3918 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3919 else
3920 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
7e74c2d7
BN
3921}
3922
ec6e87e3
HS
3923static inline bool is_full_id_nand(struct nand_flash_dev *type)
3924{
3925 return type->id_len;
3926}
3927
cbe435a1 3928static bool find_full_id_nand(struct nand_chip *chip,
29a198a1 3929 struct nand_flash_dev *type)
ec6e87e3 3930{
cbe435a1 3931 struct mtd_info *mtd = nand_to_mtd(chip);
7f501f0a 3932 u8 *id_data = chip->id.data;
cbe435a1 3933
ec6e87e3
HS
3934 if (!strncmp(type->id, id_data, type->id_len)) {
3935 mtd->writesize = type->pagesize;
3936 mtd->erasesize = type->erasesize;
3937 mtd->oobsize = type->oobsize;
3938
7db906b7 3939 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3940 chip->chipsize = (uint64_t)type->chipsize << 20;
3941 chip->options |= type->options;
57219342
HS
3942 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3943 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3944 chip->onfi_timing_mode_default =
3945 type->onfi_timing_mode_default;
ec6e87e3 3946
092b6a1d
CZ
3947 if (!mtd->name)
3948 mtd->name = type->name;
3949
ec6e87e3
HS
3950 return true;
3951 }
3952 return false;
3953}
3954
abbe26d1
BB
3955/*
3956 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
3957 * compliant and does not have a full-id or legacy-id entry in the nand_ids
3958 * table.
3959 */
3960static void nand_manufacturer_detect(struct nand_chip *chip)
3961{
3962 /*
3963 * Try manufacturer detection if available and use
3964 * nand_decode_ext_id() otherwise.
3965 */
3966 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
3967 chip->manufacturer.desc->ops->detect)
3968 chip->manufacturer.desc->ops->detect(chip);
3969 else
3970 nand_decode_ext_id(chip);
3971}
3972
3973/*
3974 * Manufacturer initialization. This function is called for all NANDs including
3975 * ONFI and JEDEC compliant ones.
3976 * Manufacturer drivers should put all their specific initialization code in
3977 * their ->init() hook.
3978 */
3979static int nand_manufacturer_init(struct nand_chip *chip)
3980{
3981 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
3982 !chip->manufacturer.desc->ops->init)
3983 return 0;
3984
3985 return chip->manufacturer.desc->ops->init(chip);
3986}
3987
3988/*
3989 * Manufacturer cleanup. This function is called for all NANDs including
3990 * ONFI and JEDEC compliant ones.
3991 * Manufacturer drivers should put all their specific cleanup code in their
3992 * ->cleanup() hook.
3993 */
3994static void nand_manufacturer_cleanup(struct nand_chip *chip)
3995{
3996 /* Release manufacturer private data */
3997 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
3998 chip->manufacturer.desc->ops->cleanup)
3999 chip->manufacturer.desc->ops->cleanup(chip);
4000}
4001
7aa65bfd 4002/*
8b6e50c9 4003 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd 4004 */
7bb42799 4005static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
7aa65bfd 4006{
bcc678c2 4007 const struct nand_manufacturer *manufacturer;
cbe435a1 4008 struct mtd_info *mtd = nand_to_mtd(chip);
bb77082f 4009 int busw;
abbe26d1 4010 int i, ret;
7f501f0a
BB
4011 u8 *id_data = chip->id.data;
4012 u8 maf_id, dev_id;
1da177e4 4013
ef89a880
KB
4014 /*
4015 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 4016 * after power-up.
ef89a880 4017 */
73f907fd
BB
4018 nand_reset(chip, 0);
4019
4020 /* Select the device */
4021 chip->select_chip(mtd, 0);
ef89a880 4022
1da177e4 4023 /* Send the command for reading device ID */
ace4dfee 4024 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
4025
4026 /* Read manufacturer and device IDs */
7f501f0a
BB
4027 maf_id = chip->read_byte(mtd);
4028 dev_id = chip->read_byte(mtd);
1da177e4 4029
8b6e50c9
BN
4030 /*
4031 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
4032 * interface concerns can cause random data which looks like a
4033 * possibly credible NAND flash to appear. If the two results do
4034 * not match, ignore the device completely.
4035 */
4036
4037 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4038
4aef9b78
BN
4039 /* Read entire ID string */
4040 for (i = 0; i < 8; i++)
426c457a 4041 id_data[i] = chip->read_byte(mtd);
ed8165c7 4042
7f501f0a 4043 if (id_data[0] != maf_id || id_data[1] != dev_id) {
20171642 4044 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
7f501f0a 4045 maf_id, dev_id, id_data[0], id_data[1]);
4722c0e9 4046 return -ENODEV;
ed8165c7
BD
4047 }
4048
7f501f0a
BB
4049 chip->id.len = nand_id_len(id_data, 8);
4050
abbe26d1
BB
4051 /* Try to identify manufacturer */
4052 manufacturer = nand_get_manufacturer(maf_id);
4053 chip->manufacturer.desc = manufacturer;
4054
7aa65bfd 4055 if (!type)
5e81e88a
DW
4056 type = nand_flash_ids;
4057
29a198a1
BB
4058 /*
4059 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4060 * override it.
4061 * This is required to make sure initial NAND bus width set by the
4062 * NAND controller driver is coherent with the real NAND bus width
4063 * (extracted by auto-detection code).
4064 */
4065 busw = chip->options & NAND_BUSWIDTH_16;
4066
4067 /*
4068 * The flag is only set (never cleared), reset it to its default value
4069 * before starting auto-detection.
4070 */
4071 chip->options &= ~NAND_BUSWIDTH_16;
4072
ec6e87e3
HS
4073 for (; type->name != NULL; type++) {
4074 if (is_full_id_nand(type)) {
29a198a1 4075 if (find_full_id_nand(chip, type))
ec6e87e3 4076 goto ident_done;
7f501f0a 4077 } else if (dev_id == type->dev_id) {
db5b09f6 4078 break;
ec6e87e3
HS
4079 }
4080 }
5e81e88a 4081
d1e1f4e4
FF
4082 chip->onfi_version = 0;
4083 if (!type->name || !type->pagesize) {
35fc5195 4084 /* Check if the chip is ONFI compliant */
29a198a1 4085 if (nand_flash_detect_onfi(chip))
6fb277ba 4086 goto ident_done;
91361818
HS
4087
4088 /* Check if the chip is JEDEC compliant */
29a198a1 4089 if (nand_flash_detect_jedec(chip))
91361818 4090 goto ident_done;
d1e1f4e4
FF
4091 }
4092
5e81e88a 4093 if (!type->name)
4722c0e9 4094 return -ENODEV;
7aa65bfd 4095
ba0251fe
TG
4096 if (!mtd->name)
4097 mtd->name = type->name;
4098
69423d99 4099 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 4100
abbe26d1
BB
4101 if (!type->pagesize)
4102 nand_manufacturer_detect(chip);
4103 else
29a198a1 4104 nand_decode_id(chip, type);
abbe26d1 4105
bf7a01bf
BN
4106 /* Get chip options */
4107 chip->options |= type->options;
d1e1f4e4 4108
d1e1f4e4
FF
4109ident_done:
4110
64b37b2a 4111 if (chip->options & NAND_BUSWIDTH_AUTO) {
29a198a1
BB
4112 WARN_ON(busw & NAND_BUSWIDTH_16);
4113 nand_set_defaults(chip);
64b37b2a
MC
4114 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4115 /*
4116 * Check, if buswidth is correct. Hardware drivers should set
4117 * chip correct!
4118 */
20171642 4119 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 4120 maf_id, dev_id);
bcc678c2
BB
4121 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4122 mtd->name);
29a198a1
BB
4123 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4124 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4722c0e9 4125 return -EINVAL;
7aa65bfd 4126 }
61b03bd7 4127
7f501f0a 4128 nand_decode_bbm_options(chip);
7e74c2d7 4129
7aa65bfd 4130 /* Calculate the address shift from the page size */
ace4dfee 4131 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 4132 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 4133 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 4134
ace4dfee 4135 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 4136 ffs(mtd->erasesize) - 1;
69423d99
AH
4137 if (chip->chipsize & 0xffffffff)
4138 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
4139 else {
4140 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4141 chip->chip_shift += 32 - 1;
4142 }
1da177e4 4143
26d9be11 4144 chip->badblockbits = 8;
49c50b97 4145 chip->erase = single_erase;
7aa65bfd 4146
8b6e50c9 4147 /* Do not replace user supplied command function! */
ace4dfee
TG
4148 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4149 chip->cmdfunc = nand_command_lp;
7aa65bfd 4150
abbe26d1
BB
4151 ret = nand_manufacturer_init(chip);
4152 if (ret)
4153 return ret;
4154
20171642 4155 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 4156 maf_id, dev_id);
ffdac6cd
HS
4157
4158 if (chip->onfi_version)
bcc678c2
BB
4159 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4160 chip->onfi_params.model);
ffdac6cd 4161 else if (chip->jedec_version)
bcc678c2
BB
4162 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4163 chip->jedec_params.model);
ffdac6cd 4164 else
bcc678c2
BB
4165 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4166 type->name);
ffdac6cd 4167
3755a991 4168 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 4169 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 4170 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4722c0e9 4171 return 0;
7aa65bfd
TG
4172}
4173
d48f62b9
BB
4174static const char * const nand_ecc_modes[] = {
4175 [NAND_ECC_NONE] = "none",
4176 [NAND_ECC_SOFT] = "soft",
4177 [NAND_ECC_HW] = "hw",
4178 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
4179 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
d48f62b9
BB
4180};
4181
4182static int of_get_nand_ecc_mode(struct device_node *np)
4183{
4184 const char *pm;
4185 int err, i;
4186
4187 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4188 if (err < 0)
4189 return err;
4190
4191 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4192 if (!strcasecmp(pm, nand_ecc_modes[i]))
4193 return i;
4194
ae211bcf
RM
4195 /*
4196 * For backward compatibility we support few obsoleted values that don't
4197 * have their mappings into nand_ecc_modes_t anymore (they were merged
4198 * with other enums).
4199 */
4200 if (!strcasecmp(pm, "soft_bch"))
4201 return NAND_ECC_SOFT;
4202
d48f62b9
BB
4203 return -ENODEV;
4204}
4205
ba4f46b2
RM
4206static const char * const nand_ecc_algos[] = {
4207 [NAND_ECC_HAMMING] = "hamming",
4208 [NAND_ECC_BCH] = "bch",
4209};
4210
d48f62b9
BB
4211static int of_get_nand_ecc_algo(struct device_node *np)
4212{
4213 const char *pm;
ba4f46b2 4214 int err, i;
d48f62b9 4215
ba4f46b2
RM
4216 err = of_property_read_string(np, "nand-ecc-algo", &pm);
4217 if (!err) {
4218 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4219 if (!strcasecmp(pm, nand_ecc_algos[i]))
4220 return i;
4221 return -ENODEV;
4222 }
d48f62b9
BB
4223
4224 /*
4225 * For backward compatibility we also read "nand-ecc-mode" checking
4226 * for some obsoleted values that were specifying ECC algorithm.
4227 */
4228 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4229 if (err < 0)
4230 return err;
4231
4232 if (!strcasecmp(pm, "soft"))
4233 return NAND_ECC_HAMMING;
4234 else if (!strcasecmp(pm, "soft_bch"))
4235 return NAND_ECC_BCH;
4236
4237 return -ENODEV;
4238}
4239
4240static int of_get_nand_ecc_step_size(struct device_node *np)
4241{
4242 int ret;
4243 u32 val;
4244
4245 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4246 return ret ? ret : val;
4247}
4248
4249static int of_get_nand_ecc_strength(struct device_node *np)
4250{
4251 int ret;
4252 u32 val;
4253
4254 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4255 return ret ? ret : val;
4256}
4257
4258static int of_get_nand_bus_width(struct device_node *np)
4259{
4260 u32 val;
4261
4262 if (of_property_read_u32(np, "nand-bus-width", &val))
4263 return 8;
4264
4265 switch (val) {
4266 case 8:
4267 case 16:
4268 return val;
4269 default:
4270 return -EIO;
4271 }
4272}
4273
4274static bool of_get_nand_on_flash_bbt(struct device_node *np)
4275{
4276 return of_property_read_bool(np, "nand-on-flash-bbt");
4277}
4278
7194a29a 4279static int nand_dt_init(struct nand_chip *chip)
5844feea 4280{
7194a29a 4281 struct device_node *dn = nand_get_flash_node(chip);
79082457 4282 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5844feea 4283
7194a29a
BB
4284 if (!dn)
4285 return 0;
4286
5844feea
BN
4287 if (of_get_nand_bus_width(dn) == 16)
4288 chip->options |= NAND_BUSWIDTH_16;
4289
4290 if (of_get_nand_on_flash_bbt(dn))
4291 chip->bbt_options |= NAND_BBT_USE_FLASH;
4292
4293 ecc_mode = of_get_nand_ecc_mode(dn);
79082457 4294 ecc_algo = of_get_nand_ecc_algo(dn);
5844feea
BN
4295 ecc_strength = of_get_nand_ecc_strength(dn);
4296 ecc_step = of_get_nand_ecc_step_size(dn);
4297
5844feea
BN
4298 if (ecc_mode >= 0)
4299 chip->ecc.mode = ecc_mode;
4300
79082457
RM
4301 if (ecc_algo >= 0)
4302 chip->ecc.algo = ecc_algo;
4303
5844feea
BN
4304 if (ecc_strength >= 0)
4305 chip->ecc.strength = ecc_strength;
4306
4307 if (ecc_step > 0)
4308 chip->ecc.size = ecc_step;
4309
ba78ee00
BB
4310 if (of_property_read_bool(dn, "nand-ecc-maximize"))
4311 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4312
5844feea
BN
4313 return 0;
4314}
4315
7aa65bfd 4316/**
3b85c321 4317 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4318 * @mtd: MTD device structure
4319 * @maxchips: number of chips to scan for
4320 * @table: alternative NAND ID table
7aa65bfd 4321 *
8b6e50c9
BN
4322 * This is the first phase of the normal nand_scan() function. It reads the
4323 * flash ID and sets up MTD fields accordingly.
7aa65bfd
TG
4324 *
4325 */
5e81e88a
DW
4326int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4327 struct nand_flash_dev *table)
7aa65bfd 4328{
bb77082f 4329 int i, nand_maf_id, nand_dev_id;
862eba51 4330 struct nand_chip *chip = mtd_to_nand(mtd);
5844feea
BN
4331 int ret;
4332
7194a29a
BB
4333 ret = nand_dt_init(chip);
4334 if (ret)
4335 return ret;
7aa65bfd 4336
f7a8e38f
BN
4337 if (!mtd->name && mtd->dev.parent)
4338 mtd->name = dev_name(mtd->dev.parent);
4339
76fe334f
AS
4340 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
4341 /*
4342 * Default functions assigned for chip_select() and
4343 * cmdfunc() both expect cmd_ctrl() to be populated,
4344 * so we need to check that that's the case
4345 */
4346 pr_err("chip.cmd_ctrl() callback is not provided");
4347 return -EINVAL;
4348 }
7aa65bfd 4349 /* Set the default functions */
29a198a1 4350 nand_set_defaults(chip);
7aa65bfd
TG
4351
4352 /* Read the flash type */
7bb42799 4353 ret = nand_detect(chip, table);
4722c0e9 4354 if (ret) {
b1c6e6db 4355 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 4356 pr_warn("No NAND device found\n");
ace4dfee 4357 chip->select_chip(mtd, -1);
4722c0e9 4358 return ret;
1da177e4
LT
4359 }
4360
73f907fd 4361 /* Initialize the ->data_interface field. */
d8e725dd
BB
4362 ret = nand_init_data_interface(chip);
4363 if (ret)
78771049 4364 goto err_nand_init;
d8e725dd 4365
73f907fd
BB
4366 /*
4367 * Setup the data interface correctly on the chip and controller side.
4368 * This explicit call to nand_setup_data_interface() is only required
4369 * for the first die, because nand_reset() has been called before
4370 * ->data_interface and ->default_onfi_timing_mode were set.
4371 * For the other dies, nand_reset() will automatically switch to the
4372 * best mode for us.
4373 */
4374 ret = nand_setup_data_interface(chip);
4375 if (ret)
78771049 4376 goto err_nand_init;
73f907fd 4377
7f501f0a
BB
4378 nand_maf_id = chip->id.data[0];
4379 nand_dev_id = chip->id.data[1];
4380
07300164
HS
4381 chip->select_chip(mtd, -1);
4382
7aa65bfd 4383 /* Check for a chip array */
e0c7d767 4384 for (i = 1; i < maxchips; i++) {
ef89a880 4385 /* See comment in nand_get_flash_type for reset */
73f907fd
BB
4386 nand_reset(chip, i);
4387
4388 chip->select_chip(mtd, i);
1da177e4 4389 /* Send the command for reading device ID */
ace4dfee 4390 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 4391 /* Read manufacturer and device IDs */
ace4dfee 4392 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
4393 nand_dev_id != chip->read_byte(mtd)) {
4394 chip->select_chip(mtd, -1);
1da177e4 4395 break;
07300164
HS
4396 }
4397 chip->select_chip(mtd, -1);
1da177e4
LT
4398 }
4399 if (i > 1)
20171642 4400 pr_info("%d chips detected\n", i);
61b03bd7 4401
1da177e4 4402 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
4403 chip->numchips = i;
4404 mtd->size = i * chip->chipsize;
7aa65bfd 4405
3b85c321 4406 return 0;
78771049
BN
4407
4408err_nand_init:
4409 /* Free manufacturer priv data. */
4410 nand_manufacturer_cleanup(chip);
4411
4412 return ret;
3b85c321 4413}
7351d3a5 4414EXPORT_SYMBOL(nand_scan_ident);
3b85c321 4415
06f384c9
RM
4416static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
4417{
4418 struct nand_chip *chip = mtd_to_nand(mtd);
4419 struct nand_ecc_ctrl *ecc = &chip->ecc;
4420
e4225ae8 4421 if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
06f384c9
RM
4422 return -EINVAL;
4423
4424 switch (ecc->algo) {
4425 case NAND_ECC_HAMMING:
4426 ecc->calculate = nand_calculate_ecc;
4427 ecc->correct = nand_correct_data;
4428 ecc->read_page = nand_read_page_swecc;
4429 ecc->read_subpage = nand_read_subpage;
4430 ecc->write_page = nand_write_page_swecc;
4431 ecc->read_page_raw = nand_read_page_raw;
4432 ecc->write_page_raw = nand_write_page_raw;
4433 ecc->read_oob = nand_read_oob_std;
4434 ecc->write_oob = nand_write_oob_std;
4435 if (!ecc->size)
4436 ecc->size = 256;
4437 ecc->bytes = 3;
4438 ecc->strength = 1;
4439 return 0;
4440 case NAND_ECC_BCH:
4441 if (!mtd_nand_has_bch()) {
4442 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4443 return -EINVAL;
4444 }
4445 ecc->calculate = nand_bch_calculate_ecc;
4446 ecc->correct = nand_bch_correct_data;
4447 ecc->read_page = nand_read_page_swecc;
4448 ecc->read_subpage = nand_read_subpage;
4449 ecc->write_page = nand_write_page_swecc;
4450 ecc->read_page_raw = nand_read_page_raw;
4451 ecc->write_page_raw = nand_write_page_raw;
4452 ecc->read_oob = nand_read_oob_std;
4453 ecc->write_oob = nand_write_oob_std;
8bbba481 4454
06f384c9
RM
4455 /*
4456 * Board driver should supply ecc.size and ecc.strength
4457 * values to select how many bits are correctable.
4458 * Otherwise, default to 4 bits for large page devices.
4459 */
4460 if (!ecc->size && (mtd->oobsize >= 64)) {
4461 ecc->size = 512;
4462 ecc->strength = 4;
4463 }
4464
4465 /*
4466 * if no ecc placement scheme was provided pickup the default
4467 * large page one.
4468 */
4469 if (!mtd->ooblayout) {
4470 /* handle large page devices only */
4471 if (mtd->oobsize < 64) {
4472 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4473 return -EINVAL;
4474 }
4475
4476 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
8bbba481
BB
4477
4478 }
4479
4480 /*
4481 * We can only maximize ECC config when the default layout is
4482 * used, otherwise we don't know how many bytes can really be
4483 * used.
4484 */
4485 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
4486 ecc->options & NAND_ECC_MAXIMIZE) {
4487 int steps, bytes;
4488
4489 /* Always prefer 1k blocks over 512bytes ones */
4490 ecc->size = 1024;
4491 steps = mtd->writesize / ecc->size;
4492
4493 /* Reserve 2 bytes for the BBM */
4494 bytes = (mtd->oobsize - 2) / steps;
4495 ecc->strength = bytes * 8 / fls(8 * ecc->size);
06f384c9
RM
4496 }
4497
4498 /* See nand_bch_init() for details. */
4499 ecc->bytes = 0;
4500 ecc->priv = nand_bch_init(mtd);
4501 if (!ecc->priv) {
4502 WARN(1, "BCH ECC initialization failed!\n");
4503 return -EINVAL;
4504 }
4505 return 0;
4506 default:
4507 WARN(1, "Unsupported ECC algorithm!\n");
4508 return -EINVAL;
4509 }
4510}
4511
67a9ad9b
EG
4512/*
4513 * Check if the chip configuration meet the datasheet requirements.
4514
4515 * If our configuration corrects A bits per B bytes and the minimum
4516 * required correction level is X bits per Y bytes, then we must ensure
4517 * both of the following are true:
4518 *
4519 * (1) A / B >= X / Y
4520 * (2) A >= X
4521 *
4522 * Requirement (1) ensures we can correct for the required bitflip density.
4523 * Requirement (2) ensures we can correct even when all bitflips are clumped
4524 * in the same sector.
4525 */
4526static bool nand_ecc_strength_good(struct mtd_info *mtd)
4527{
862eba51 4528 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
4529 struct nand_ecc_ctrl *ecc = &chip->ecc;
4530 int corr, ds_corr;
4531
4532 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4533 /* Not enough information */
4534 return true;
4535
4536 /*
4537 * We get the number of corrected bits per page to compare
4538 * the correction density.
4539 */
4540 corr = (mtd->writesize * ecc->strength) / ecc->size;
4541 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4542
4543 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4544}
3b85c321 4545
3371d663
MG
4546static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4547{
4548 struct nand_ecc_ctrl *ecc = &chip->ecc;
4549
4550 if (nand_standard_page_accessors(ecc))
4551 return false;
4552
4553 /*
4554 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4555 * controller driver implements all the page accessors because
4556 * default helpers are not suitable when the core does not
4557 * send the READ0/PAGEPROG commands.
4558 */
4559 return (!ecc->read_page || !ecc->write_page ||
4560 !ecc->read_page_raw || !ecc->write_page_raw ||
4561 (NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4562 (NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4563 ecc->hwctl && ecc->calculate));
4564}
4565
3b85c321
DW
4566/**
4567 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 4568 * @mtd: MTD device structure
3b85c321 4569 *
8b6e50c9
BN
4570 * This is the second phase of the normal nand_scan() function. It fills out
4571 * all the uninitialized function pointers with the defaults and scans for a
4572 * bad block table if appropriate.
3b85c321
DW
4573 */
4574int nand_scan_tail(struct mtd_info *mtd)
4575{
862eba51 4576 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 4577 struct nand_ecc_ctrl *ecc = &chip->ecc;
3deb9979 4578 struct nand_buffers *nbuf = NULL;
11eaf6df 4579 int ret;
3b85c321 4580
e2414f4c 4581 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
11eaf6df 4582 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
78771049
BN
4583 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
4584 ret = -EINVAL;
4585 goto err_ident;
4586 }
e2414f4c 4587
3371d663
MG
4588 if (invalid_ecc_page_accessors(chip)) {
4589 pr_err("Invalid ECC page accessors setup\n");
78771049
BN
4590 ret = -EINVAL;
4591 goto err_ident;
3371d663
MG
4592 }
4593
f02ea4e6 4594 if (!(chip->options & NAND_OWN_BUFFERS)) {
3deb9979 4595 nbuf = kzalloc(sizeof(*nbuf), GFP_KERNEL);
78771049
BN
4596 if (!nbuf) {
4597 ret = -ENOMEM;
4598 goto err_ident;
4599 }
3deb9979
MY
4600
4601 nbuf->ecccalc = kmalloc(mtd->oobsize, GFP_KERNEL);
4602 if (!nbuf->ecccalc) {
4603 ret = -ENOMEM;
4604 goto err_free;
4605 }
4606
4607 nbuf->ecccode = kmalloc(mtd->oobsize, GFP_KERNEL);
4608 if (!nbuf->ecccode) {
4609 ret = -ENOMEM;
4610 goto err_free;
4611 }
4612
4613 nbuf->databuf = kmalloc(mtd->writesize + mtd->oobsize,
4614 GFP_KERNEL);
4615 if (!nbuf->databuf) {
4616 ret = -ENOMEM;
4617 goto err_free;
4618 }
f02ea4e6
HS
4619
4620 chip->buffers = nbuf;
4621 } else {
78771049
BN
4622 if (!chip->buffers) {
4623 ret = -ENOMEM;
4624 goto err_ident;
4625 }
f02ea4e6 4626 }
4bf63fcb 4627
7dcdcbef 4628 /* Set the internal oob buffer location, just after the page data */
784f4d5e 4629 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 4630
7aa65bfd 4631 /*
8b6e50c9 4632 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 4633 */
06f384c9 4634 if (!mtd->ooblayout &&
e4225ae8 4635 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
61b03bd7 4636 switch (mtd->oobsize) {
1da177e4 4637 case 8:
1da177e4 4638 case 16:
41b207a7 4639 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
1da177e4
LT
4640 break;
4641 case 64:
81ec5364 4642 case 128:
6a623e07 4643 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
81ec5364 4644 break;
1da177e4 4645 default:
11eaf6df
EG
4646 WARN(1, "No oob scheme defined for oobsize %d\n",
4647 mtd->oobsize);
4648 ret = -EINVAL;
4649 goto err_free;
1da177e4
LT
4650 }
4651 }
61b03bd7 4652
61b03bd7 4653 /*
8b6e50c9 4654 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 4655 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 4656 */
956e944c 4657
97de79e0 4658 switch (ecc->mode) {
6e0cb135
SN
4659 case NAND_ECC_HW_OOB_FIRST:
4660 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 4661 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
11eaf6df
EG
4662 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4663 ret = -EINVAL;
4664 goto err_free;
6e0cb135 4665 }
97de79e0
HS
4666 if (!ecc->read_page)
4667 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 4668
6dfc6d25 4669 case NAND_ECC_HW:
8b6e50c9 4670 /* Use standard hwecc read page function? */
97de79e0
HS
4671 if (!ecc->read_page)
4672 ecc->read_page = nand_read_page_hwecc;
4673 if (!ecc->write_page)
4674 ecc->write_page = nand_write_page_hwecc;
4675 if (!ecc->read_page_raw)
4676 ecc->read_page_raw = nand_read_page_raw;
4677 if (!ecc->write_page_raw)
4678 ecc->write_page_raw = nand_write_page_raw;
4679 if (!ecc->read_oob)
4680 ecc->read_oob = nand_read_oob_std;
4681 if (!ecc->write_oob)
4682 ecc->write_oob = nand_write_oob_std;
4683 if (!ecc->read_subpage)
4684 ecc->read_subpage = nand_read_subpage;
44991b3d 4685 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
97de79e0 4686 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 4687
6dfc6d25 4688 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
4689 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4690 (!ecc->read_page ||
4691 ecc->read_page == nand_read_page_hwecc ||
4692 !ecc->write_page ||
4693 ecc->write_page == nand_write_page_hwecc)) {
11eaf6df
EG
4694 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4695 ret = -EINVAL;
4696 goto err_free;
6dfc6d25 4697 }
8b6e50c9 4698 /* Use standard syndrome read/write page function? */
97de79e0
HS
4699 if (!ecc->read_page)
4700 ecc->read_page = nand_read_page_syndrome;
4701 if (!ecc->write_page)
4702 ecc->write_page = nand_write_page_syndrome;
4703 if (!ecc->read_page_raw)
4704 ecc->read_page_raw = nand_read_page_raw_syndrome;
4705 if (!ecc->write_page_raw)
4706 ecc->write_page_raw = nand_write_page_raw_syndrome;
4707 if (!ecc->read_oob)
4708 ecc->read_oob = nand_read_oob_syndrome;
4709 if (!ecc->write_oob)
4710 ecc->write_oob = nand_write_oob_syndrome;
4711
4712 if (mtd->writesize >= ecc->size) {
4713 if (!ecc->strength) {
11eaf6df
EG
4714 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4715 ret = -EINVAL;
4716 goto err_free;
e2788c98 4717 }
6dfc6d25 4718 break;
e2788c98 4719 }
2ac63d90
RM
4720 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4721 ecc->size, mtd->writesize);
97de79e0 4722 ecc->mode = NAND_ECC_SOFT;
e9d4faed 4723 ecc->algo = NAND_ECC_HAMMING;
61b03bd7 4724
6dfc6d25 4725 case NAND_ECC_SOFT:
06f384c9
RM
4726 ret = nand_set_ecc_soft_ops(mtd);
4727 if (ret) {
11eaf6df
EG
4728 ret = -EINVAL;
4729 goto err_free;
193bd400
ID
4730 }
4731 break;
4732
61b03bd7 4733 case NAND_ECC_NONE:
2ac63d90 4734 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4735 ecc->read_page = nand_read_page_raw;
4736 ecc->write_page = nand_write_page_raw;
4737 ecc->read_oob = nand_read_oob_std;
4738 ecc->read_page_raw = nand_read_page_raw;
4739 ecc->write_page_raw = nand_write_page_raw;
4740 ecc->write_oob = nand_write_oob_std;
4741 ecc->size = mtd->writesize;
4742 ecc->bytes = 0;
4743 ecc->strength = 0;
1da177e4 4744 break;
956e944c 4745
1da177e4 4746 default:
11eaf6df
EG
4747 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
4748 ret = -EINVAL;
4749 goto err_free;
1da177e4 4750 }
61b03bd7 4751
9ce244b3 4752 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4753 if (!ecc->read_oob_raw)
4754 ecc->read_oob_raw = ecc->read_oob;
4755 if (!ecc->write_oob_raw)
4756 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4757
846031d3 4758 /* propagate ecc info to mtd_info */
846031d3
BB
4759 mtd->ecc_strength = ecc->strength;
4760 mtd->ecc_step_size = ecc->size;
67a9ad9b 4761
7aa65bfd
TG
4762 /*
4763 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4764 * mode.
7aa65bfd 4765 */
97de79e0
HS
4766 ecc->steps = mtd->writesize / ecc->size;
4767 if (ecc->steps * ecc->size != mtd->writesize) {
11eaf6df
EG
4768 WARN(1, "Invalid ECC parameters\n");
4769 ret = -EINVAL;
4770 goto err_free;
1da177e4 4771 }
97de79e0 4772 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4773
846031d3
BB
4774 /*
4775 * The number of bytes available for a client to place data into
4776 * the out of band area.
4777 */
4778 ret = mtd_ooblayout_count_freebytes(mtd);
4779 if (ret < 0)
4780 ret = 0;
4781
4782 mtd->oobavail = ret;
4783
4784 /* ECC sanity check: warn if it's too weak */
4785 if (!nand_ecc_strength_good(mtd))
4786 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4787 mtd->name);
4788
8b6e50c9 4789 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4790 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4791 switch (ecc->steps) {
29072b96
TG
4792 case 2:
4793 mtd->subpage_sft = 1;
4794 break;
4795 case 4:
4796 case 8:
81ec5364 4797 case 16:
29072b96
TG
4798 mtd->subpage_sft = 2;
4799 break;
4800 }
4801 }
4802 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4803
04bbd0ea 4804 /* Initialize state */
ace4dfee 4805 chip->state = FL_READY;
1da177e4 4806
1da177e4 4807 /* Invalidate the pagebuffer reference */
ace4dfee 4808 chip->pagebuf = -1;
1da177e4 4809
a5ff4f10 4810 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4811 switch (ecc->mode) {
4812 case NAND_ECC_SOFT:
4007e2d1
RL
4813 if (chip->page_shift > 9)
4814 chip->options |= NAND_SUBPAGE_READ;
4815 break;
4816
4817 default:
4818 break;
4819 }
a5ff4f10 4820
1da177e4 4821 /* Fill in remaining MTD driver data */
963d1c28 4822 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4823 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4824 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4825 mtd->_erase = nand_erase;
4826 mtd->_point = NULL;
4827 mtd->_unpoint = NULL;
4828 mtd->_read = nand_read;
4829 mtd->_write = nand_write;
4830 mtd->_panic_write = panic_nand_write;
4831 mtd->_read_oob = nand_read_oob;
4832 mtd->_write_oob = nand_write_oob;
4833 mtd->_sync = nand_sync;
4834 mtd->_lock = NULL;
4835 mtd->_unlock = NULL;
4836 mtd->_suspend = nand_suspend;
4837 mtd->_resume = nand_resume;
72ea4036 4838 mtd->_reboot = nand_shutdown;
8471bb73 4839 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4840 mtd->_block_isbad = nand_block_isbad;
4841 mtd->_block_markbad = nand_block_markbad;
5671842f 4842 mtd->_max_bad_blocks = nand_max_bad_blocks;
cbcab65a 4843 mtd->writebufsize = mtd->writesize;
1da177e4 4844
ea3b2ea2
SL
4845 /*
4846 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4847 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4848 * properly set.
4849 */
4850 if (!mtd->bitflip_threshold)
240181fd 4851 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 4852
0040bf38 4853 /* Check, if we should skip the bad block table scan */
ace4dfee 4854 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4855 return 0;
1da177e4
LT
4856
4857 /* Build bad block table */
44d4182e
BN
4858 ret = chip->scan_bbt(mtd);
4859 if (ret)
4860 goto err_free;
4861 return 0;
4862
11eaf6df 4863err_free:
3deb9979
MY
4864 if (nbuf) {
4865 kfree(nbuf->databuf);
4866 kfree(nbuf->ecccode);
4867 kfree(nbuf->ecccalc);
4868 kfree(nbuf);
4869 }
78771049
BN
4870
4871err_ident:
4872 /* Clean up nand_scan_ident(). */
4873
4874 /* Free manufacturer priv data. */
4875 nand_manufacturer_cleanup(chip);
4876
11eaf6df 4877 return ret;
1da177e4 4878}
7351d3a5 4879EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4880
8b6e50c9
BN
4881/*
4882 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4883 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4884 * to call us from in-kernel code if the core NAND support is modular.
4885 */
3b85c321
DW
4886#ifdef MODULE
4887#define caller_is_module() (1)
4888#else
4889#define caller_is_module() \
a6e6abd5 4890 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4891#endif
4892
4893/**
4894 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4895 * @mtd: MTD device structure
4896 * @maxchips: number of chips to scan for
3b85c321 4897 *
8b6e50c9
BN
4898 * This fills out all the uninitialized function pointers with the defaults.
4899 * The flash ID is read and the mtd/chip structures are filled with the
20c07a5b 4900 * appropriate values.
3b85c321
DW
4901 */
4902int nand_scan(struct mtd_info *mtd, int maxchips)
4903{
4904 int ret;
4905
5e81e88a 4906 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4907 if (!ret)
4908 ret = nand_scan_tail(mtd);
4909 return ret;
4910}
7351d3a5 4911EXPORT_SYMBOL(nand_scan);
3b85c321 4912
1da177e4 4913/**
d44154f9
RW
4914 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
4915 * @chip: NAND chip object
8b6e50c9 4916 */
d44154f9 4917void nand_cleanup(struct nand_chip *chip)
1da177e4 4918{
e4225ae8 4919 if (chip->ecc.mode == NAND_ECC_SOFT &&
06f384c9 4920 chip->ecc.algo == NAND_ECC_BCH)
193bd400
ID
4921 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4922
d8e725dd
BB
4923 nand_release_data_interface(chip);
4924
fa671646 4925 /* Free bad block table memory */
ace4dfee 4926 kfree(chip->bbt);
3deb9979
MY
4927 if (!(chip->options & NAND_OWN_BUFFERS) && chip->buffers) {
4928 kfree(chip->buffers->databuf);
4929 kfree(chip->buffers->ecccode);
4930 kfree(chip->buffers->ecccalc);
4bf63fcb 4931 kfree(chip->buffers);
3deb9979 4932 }
58373ff0
BN
4933
4934 /* Free bad block descriptor memory */
4935 if (chip->badblock_pattern && chip->badblock_pattern->options
4936 & NAND_BBT_DYNAMICSTRUCT)
4937 kfree(chip->badblock_pattern);
abbe26d1
BB
4938
4939 /* Free manufacturer priv data. */
4940 nand_manufacturer_cleanup(chip);
1da177e4 4941}
d44154f9
RW
4942EXPORT_SYMBOL_GPL(nand_cleanup);
4943
4944/**
4945 * nand_release - [NAND Interface] Unregister the MTD device and free resources
4946 * held by the NAND device
4947 * @mtd: MTD device structure
4948 */
4949void nand_release(struct mtd_info *mtd)
4950{
4951 mtd_device_unregister(mtd);
4952 nand_cleanup(mtd_to_nand(mtd));
4953}
e0c7d767 4954EXPORT_SYMBOL_GPL(nand_release);
8fe833c1 4955
e0c7d767 4956MODULE_LICENSE("GPL");
7351d3a5
FF
4957MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4958MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4959MODULE_DESCRIPTION("Generic NAND flash driver code");