]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/mtd/nand/nandsim.c
[MTD] NAND: nandsim page-wise allocation (1/2)
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / nandsim.c
CommitLineData
1da177e4
LT
1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
61b03bd7 6 * Copyright (C) 2004 Nokia Corporation
1da177e4
LT
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 *
51502287 25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
1da177e4
LT
26 */
27
1da177e4
LT
28#include <linux/init.h>
29#include <linux/types.h>
30#include <linux/module.h>
31#include <linux/moduleparam.h>
32#include <linux/vmalloc.h>
33#include <linux/slab.h>
34#include <linux/errno.h>
35#include <linux/string.h>
36#include <linux/mtd/mtd.h>
37#include <linux/mtd/nand.h>
38#include <linux/mtd/partitions.h>
39#include <linux/delay.h>
1da177e4
LT
40
41/* Default simulator parameters values */
42#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
43 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
44 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
46#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
47#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
48#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
49#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
50#endif
51
52#ifndef CONFIG_NANDSIM_ACCESS_DELAY
53#define CONFIG_NANDSIM_ACCESS_DELAY 25
54#endif
55#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
56#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
57#endif
58#ifndef CONFIG_NANDSIM_ERASE_DELAY
59#define CONFIG_NANDSIM_ERASE_DELAY 2
60#endif
61#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
62#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
63#endif
64#ifndef CONFIG_NANDSIM_INPUT_CYCLE
65#define CONFIG_NANDSIM_INPUT_CYCLE 50
66#endif
67#ifndef CONFIG_NANDSIM_BUS_WIDTH
68#define CONFIG_NANDSIM_BUS_WIDTH 8
69#endif
70#ifndef CONFIG_NANDSIM_DO_DELAYS
71#define CONFIG_NANDSIM_DO_DELAYS 0
72#endif
73#ifndef CONFIG_NANDSIM_LOG
74#define CONFIG_NANDSIM_LOG 0
75#endif
76#ifndef CONFIG_NANDSIM_DBG
77#define CONFIG_NANDSIM_DBG 0
78#endif
79
80static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
81static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
82static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
83static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
84static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
85static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
86static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
87static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
88static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
89static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
90static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
91static uint log = CONFIG_NANDSIM_LOG;
92static uint dbg = CONFIG_NANDSIM_DBG;
93
94module_param(first_id_byte, uint, 0400);
95module_param(second_id_byte, uint, 0400);
96module_param(third_id_byte, uint, 0400);
97module_param(fourth_id_byte, uint, 0400);
98module_param(access_delay, uint, 0400);
99module_param(programm_delay, uint, 0400);
100module_param(erase_delay, uint, 0400);
101module_param(output_cycle, uint, 0400);
102module_param(input_cycle, uint, 0400);
103module_param(bus_width, uint, 0400);
104module_param(do_delays, uint, 0400);
105module_param(log, uint, 0400);
106module_param(dbg, uint, 0400);
107
108MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
109MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
110MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
111MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
112MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
113MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
114MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
115MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
116MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
117MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
118MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
119MODULE_PARM_DESC(log, "Perform logging if not zero");
120MODULE_PARM_DESC(dbg, "Output debug information if not zero");
121
122/* The largest possible page size */
123#define NS_LARGEST_PAGE_SIZE 2048
61b03bd7 124
1da177e4
LT
125/* The prefix for simulator output */
126#define NS_OUTPUT_PREFIX "[nandsim]"
127
128/* Simulator's output macros (logging, debugging, warning, error) */
129#define NS_LOG(args...) \
130 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
131#define NS_DBG(args...) \
132 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
133#define NS_WARN(args...) \
134 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
135#define NS_ERR(args...) \
136 do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
137
138/* Busy-wait delay macros (microseconds, milliseconds) */
139#define NS_UDELAY(us) \
140 do { if (do_delays) udelay(us); } while(0)
141#define NS_MDELAY(us) \
142 do { if (do_delays) mdelay(us); } while(0)
61b03bd7 143
1da177e4
LT
144/* Is the nandsim structure initialized ? */
145#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
146
147/* Good operation completion status */
148#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
149
150/* Operation failed completion status */
61b03bd7 151#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
1da177e4
LT
152
153/* Calculate the page offset in flash RAM image by (row, column) address */
154#define NS_RAW_OFFSET(ns) \
155 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
61b03bd7 156
1da177e4
LT
157/* Calculate the OOB offset in flash RAM image by (row, column) address */
158#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
159
160/* After a command is input, the simulator goes to one of the following states */
161#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
162#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
163#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
164#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
165#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
166#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
167#define STATE_CMD_STATUS 0x00000007 /* read status */
168#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
169#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
170#define STATE_CMD_READID 0x0000000A /* read ID */
171#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
172#define STATE_CMD_RESET 0x0000000C /* reset */
173#define STATE_CMD_MASK 0x0000000F /* command states mask */
174
175/* After an addres is input, the simulator goes to one of these states */
176#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
177#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
178#define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
179#define STATE_ADDR_MASK 0x00000030 /* address states mask */
180
181/* Durind data input/output the simulator is in these states */
182#define STATE_DATAIN 0x00000100 /* waiting for data input */
183#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
184
185#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
186#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
187#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
188#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
189#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
190
191/* Previous operation is done, ready to accept new requests */
192#define STATE_READY 0x00000000
193
194/* This state is used to mark that the next state isn't known yet */
195#define STATE_UNKNOWN 0x10000000
196
197/* Simulator's actions bit masks */
198#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
199#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
200#define ACTION_SECERASE 0x00300000 /* erase sector */
201#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
202#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
203#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
204#define ACTION_MASK 0x00700000 /* action mask */
205
206#define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
207#define NS_OPER_STATES 6 /* Maximum number of states in operation */
208
209#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
210#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
211#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
212#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
213#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
214#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
215#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
216#define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
217#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
218
219/* Remove action bits ftom state */
220#define NS_STATE(x) ((x) & ~ACTION_MASK)
61b03bd7
TG
221
222/*
1da177e4
LT
223 * Maximum previous states which need to be saved. Currently saving is
224 * only needed for page programm operation with preceeded read command
225 * (which is only valid for 512-byte pages).
226 */
227#define NS_MAX_PREVSTATES 1
228
61b03bd7 229/*
1da177e4
LT
230 * The structure which describes all the internal simulator data.
231 */
232struct nandsim {
233 struct mtd_partition part;
234
235 uint busw; /* flash chip bus width (8 or 16) */
236 u_char ids[4]; /* chip's ID bytes */
237 uint32_t options; /* chip's characteristic bits */
238 uint32_t state; /* current chip state */
239 uint32_t nxstate; /* next expected state */
61b03bd7 240
1da177e4
LT
241 uint32_t *op; /* current operation, NULL operations isn't known yet */
242 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
243 uint16_t npstates; /* number of previous states saved */
244 uint16_t stateidx; /* current state index */
245
246 /* The simulated NAND flash image */
247 union flash_media {
248 u_char *byte;
249 uint16_t *word;
250 } mem;
251
252 /* Internal buffer of page + OOB size bytes */
253 union internal_buffer {
254 u_char *byte; /* for byte access */
255 uint16_t *word; /* for 16-bit word access */
256 } buf;
257
258 /* NAND flash "geometry" */
259 struct nandsin_geometry {
260 uint32_t totsz; /* total flash size, bytes */
261 uint32_t secsz; /* flash sector (erase block) size, bytes */
262 uint pgsz; /* NAND flash page size, bytes */
263 uint oobsz; /* page OOB area size, bytes */
264 uint32_t totszoob; /* total flash size including OOB, bytes */
265 uint pgszoob; /* page size including OOB , bytes*/
266 uint secszoob; /* sector size including OOB, bytes */
267 uint pgnum; /* total number of pages */
268 uint pgsec; /* number of pages per sector */
269 uint secshift; /* bits number in sector size */
270 uint pgshift; /* bits number in page size */
271 uint oobshift; /* bits number in OOB size */
272 uint pgaddrbytes; /* bytes per page address */
273 uint secaddrbytes; /* bytes per sector address */
274 uint idbytes; /* the number ID bytes that this chip outputs */
275 } geom;
276
277 /* NAND flash internal registers */
278 struct nandsim_regs {
279 unsigned command; /* the command register */
280 u_char status; /* the status register */
281 uint row; /* the page number */
282 uint column; /* the offset within page */
283 uint count; /* internal counter */
284 uint num; /* number of bytes which must be processed */
285 uint off; /* fixed page offset */
286 } regs;
287
288 /* NAND flash lines state */
289 struct ns_lines_status {
290 int ce; /* chip Enable */
291 int cle; /* command Latch Enable */
292 int ale; /* address Latch Enable */
293 int wp; /* write Protect */
294 } lines;
295};
296
297/*
298 * Operations array. To perform any operation the simulator must pass
299 * through the correspondent states chain.
300 */
301static struct nandsim_operations {
302 uint32_t reqopts; /* options which are required to perform the operation */
303 uint32_t states[NS_OPER_STATES]; /* operation's states */
304} ops[NS_OPER_NUM] = {
305 /* Read page + OOB from the beginning */
306 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
307 STATE_DATAOUT, STATE_READY}},
308 /* Read page + OOB from the second half */
309 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
310 STATE_DATAOUT, STATE_READY}},
311 /* Read OOB */
312 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
313 STATE_DATAOUT, STATE_READY}},
314 /* Programm page starting from the beginning */
315 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
316 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
317 /* Programm page starting from the beginning */
318 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
319 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
320 /* Programm page starting from the second half */
321 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
322 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
323 /* Programm OOB */
324 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
325 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
326 /* Erase sector */
327 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
328 /* Read status */
329 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
330 /* Read multi-plane status */
331 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
332 /* Read ID */
333 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
334 /* Large page devices read page */
335 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
336 STATE_DATAOUT, STATE_READY}}
337};
338
339/* MTD structure for NAND controller */
340static struct mtd_info *nsmtd;
341
342static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
343
344/*
345 * Initialize the nandsim structure.
346 *
347 * RETURNS: 0 if success, -ERRNO if failure.
348 */
349static int
350init_nandsim(struct mtd_info *mtd)
351{
352 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
353 struct nandsim *ns = (struct nandsim *)(chip->priv);
354 int i;
355
356 if (NS_IS_INITIALIZED(ns)) {
357 NS_ERR("init_nandsim: nandsim is already initialized\n");
358 return -EIO;
359 }
360
361 /* Force mtd to not do delays */
362 chip->chip_delay = 0;
363
364 /* Initialize the NAND flash parameters */
365 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
366 ns->geom.totsz = mtd->size;
28318776 367 ns->geom.pgsz = mtd->writesize;
1da177e4
LT
368 ns->geom.oobsz = mtd->oobsize;
369 ns->geom.secsz = mtd->erasesize;
370 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
371 ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz;
372 ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
373 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
374 ns->geom.pgshift = chip->page_shift;
375 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
376 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
377 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
378 ns->options = 0;
379
380 if (ns->geom.pgsz == 256) {
381 ns->options |= OPT_PAGE256;
382 }
383 else if (ns->geom.pgsz == 512) {
384 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
385 if (ns->busw == 8)
386 ns->options |= OPT_PAGE512_8BIT;
387 } else if (ns->geom.pgsz == 2048) {
388 ns->options |= OPT_PAGE2048;
389 } else {
390 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
391 return -EIO;
392 }
393
394 if (ns->options & OPT_SMALLPAGE) {
395 if (ns->geom.totsz < (64 << 20)) {
396 ns->geom.pgaddrbytes = 3;
397 ns->geom.secaddrbytes = 2;
398 } else {
399 ns->geom.pgaddrbytes = 4;
400 ns->geom.secaddrbytes = 3;
401 }
402 } else {
403 if (ns->geom.totsz <= (128 << 20)) {
404 ns->geom.pgaddrbytes = 5;
405 ns->geom.secaddrbytes = 2;
406 } else {
407 ns->geom.pgaddrbytes = 5;
408 ns->geom.secaddrbytes = 3;
409 }
410 }
61b03bd7 411
1da177e4
LT
412 /* Detect how many ID bytes the NAND chip outputs */
413 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
414 if (second_id_byte != nand_flash_ids[i].id)
415 continue;
416 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
417 ns->options |= OPT_AUTOINCR;
418 }
419
420 if (ns->busw == 16)
421 NS_WARN("16-bit flashes support wasn't tested\n");
422
423 printk("flash size: %u MiB\n", ns->geom.totsz >> 20);
424 printk("page size: %u bytes\n", ns->geom.pgsz);
425 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
426 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
427 printk("pages number: %u\n", ns->geom.pgnum);
428 printk("pages per sector: %u\n", ns->geom.pgsec);
429 printk("bus width: %u\n", ns->busw);
430 printk("bits in sector size: %u\n", ns->geom.secshift);
431 printk("bits in page size: %u\n", ns->geom.pgshift);
432 printk("bits in OOB size: %u\n", ns->geom.oobshift);
433 printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
434 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
435 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
436 printk("options: %#x\n", ns->options);
437
438 /* Map / allocate and initialize the flash image */
1da177e4
LT
439 ns->mem.byte = vmalloc(ns->geom.totszoob);
440 if (!ns->mem.byte) {
441 NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
442 ns->geom.totszoob);
443 return -ENOMEM;
444 }
445 memset(ns->mem.byte, 0xFF, ns->geom.totszoob);
1da177e4
LT
446
447 /* Allocate / initialize the internal buffer */
448 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
449 if (!ns->buf.byte) {
450 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
451 ns->geom.pgszoob);
452 goto error;
453 }
454 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
455
456 /* Fill the partition_info structure */
457 ns->part.name = "NAND simulator partition";
458 ns->part.offset = 0;
459 ns->part.size = ns->geom.totsz;
460
461 return 0;
462
463error:
1da177e4 464 vfree(ns->mem.byte);
1da177e4
LT
465
466 return -ENOMEM;
467}
468
469/*
470 * Free the nandsim structure.
471 */
472static void
473free_nandsim(struct nandsim *ns)
474{
475 kfree(ns->buf.byte);
1da177e4 476 vfree(ns->mem.byte);
1da177e4
LT
477
478 return;
479}
480
481/*
482 * Returns the string representation of 'state' state.
483 */
484static char *
485get_state_name(uint32_t state)
486{
487 switch (NS_STATE(state)) {
488 case STATE_CMD_READ0:
489 return "STATE_CMD_READ0";
490 case STATE_CMD_READ1:
491 return "STATE_CMD_READ1";
492 case STATE_CMD_PAGEPROG:
493 return "STATE_CMD_PAGEPROG";
494 case STATE_CMD_READOOB:
495 return "STATE_CMD_READOOB";
496 case STATE_CMD_READSTART:
497 return "STATE_CMD_READSTART";
498 case STATE_CMD_ERASE1:
499 return "STATE_CMD_ERASE1";
500 case STATE_CMD_STATUS:
501 return "STATE_CMD_STATUS";
502 case STATE_CMD_STATUS_M:
503 return "STATE_CMD_STATUS_M";
504 case STATE_CMD_SEQIN:
505 return "STATE_CMD_SEQIN";
506 case STATE_CMD_READID:
507 return "STATE_CMD_READID";
508 case STATE_CMD_ERASE2:
509 return "STATE_CMD_ERASE2";
510 case STATE_CMD_RESET:
511 return "STATE_CMD_RESET";
512 case STATE_ADDR_PAGE:
513 return "STATE_ADDR_PAGE";
514 case STATE_ADDR_SEC:
515 return "STATE_ADDR_SEC";
516 case STATE_ADDR_ZERO:
517 return "STATE_ADDR_ZERO";
518 case STATE_DATAIN:
519 return "STATE_DATAIN";
520 case STATE_DATAOUT:
521 return "STATE_DATAOUT";
522 case STATE_DATAOUT_ID:
523 return "STATE_DATAOUT_ID";
524 case STATE_DATAOUT_STATUS:
525 return "STATE_DATAOUT_STATUS";
526 case STATE_DATAOUT_STATUS_M:
527 return "STATE_DATAOUT_STATUS_M";
528 case STATE_READY:
529 return "STATE_READY";
530 case STATE_UNKNOWN:
531 return "STATE_UNKNOWN";
532 }
533
534 NS_ERR("get_state_name: unknown state, BUG\n");
535 return NULL;
536}
537
538/*
539 * Check if command is valid.
540 *
541 * RETURNS: 1 if wrong command, 0 if right.
542 */
543static int
544check_command(int cmd)
545{
546 switch (cmd) {
61b03bd7 547
1da177e4
LT
548 case NAND_CMD_READ0:
549 case NAND_CMD_READSTART:
550 case NAND_CMD_PAGEPROG:
551 case NAND_CMD_READOOB:
552 case NAND_CMD_ERASE1:
553 case NAND_CMD_STATUS:
554 case NAND_CMD_SEQIN:
555 case NAND_CMD_READID:
556 case NAND_CMD_ERASE2:
557 case NAND_CMD_RESET:
558 case NAND_CMD_READ1:
559 return 0;
61b03bd7 560
1da177e4
LT
561 case NAND_CMD_STATUS_MULTI:
562 default:
563 return 1;
564 }
565}
566
567/*
568 * Returns state after command is accepted by command number.
569 */
570static uint32_t
571get_state_by_command(unsigned command)
572{
573 switch (command) {
574 case NAND_CMD_READ0:
575 return STATE_CMD_READ0;
576 case NAND_CMD_READ1:
577 return STATE_CMD_READ1;
578 case NAND_CMD_PAGEPROG:
579 return STATE_CMD_PAGEPROG;
580 case NAND_CMD_READSTART:
581 return STATE_CMD_READSTART;
582 case NAND_CMD_READOOB:
583 return STATE_CMD_READOOB;
584 case NAND_CMD_ERASE1:
585 return STATE_CMD_ERASE1;
586 case NAND_CMD_STATUS:
587 return STATE_CMD_STATUS;
588 case NAND_CMD_STATUS_MULTI:
589 return STATE_CMD_STATUS_M;
590 case NAND_CMD_SEQIN:
591 return STATE_CMD_SEQIN;
592 case NAND_CMD_READID:
593 return STATE_CMD_READID;
594 case NAND_CMD_ERASE2:
595 return STATE_CMD_ERASE2;
596 case NAND_CMD_RESET:
597 return STATE_CMD_RESET;
598 }
599
600 NS_ERR("get_state_by_command: unknown command, BUG\n");
601 return 0;
602}
603
604/*
605 * Move an address byte to the correspondent internal register.
606 */
607static inline void
608accept_addr_byte(struct nandsim *ns, u_char bt)
609{
610 uint byte = (uint)bt;
61b03bd7 611
1da177e4
LT
612 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
613 ns->regs.column |= (byte << 8 * ns->regs.count);
614 else {
615 ns->regs.row |= (byte << 8 * (ns->regs.count -
616 ns->geom.pgaddrbytes +
617 ns->geom.secaddrbytes));
618 }
619
620 return;
621}
61b03bd7 622
1da177e4
LT
623/*
624 * Switch to STATE_READY state.
625 */
61b03bd7 626static inline void
1da177e4
LT
627switch_to_ready_state(struct nandsim *ns, u_char status)
628{
629 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
630
631 ns->state = STATE_READY;
632 ns->nxstate = STATE_UNKNOWN;
633 ns->op = NULL;
634 ns->npstates = 0;
635 ns->stateidx = 0;
636 ns->regs.num = 0;
637 ns->regs.count = 0;
638 ns->regs.off = 0;
639 ns->regs.row = 0;
640 ns->regs.column = 0;
641 ns->regs.status = status;
642}
643
644/*
645 * If the operation isn't known yet, try to find it in the global array
646 * of supported operations.
647 *
648 * Operation can be unknown because of the following.
649 * 1. New command was accepted and this is the firs call to find the
650 * correspondent states chain. In this case ns->npstates = 0;
651 * 2. There is several operations which begin with the same command(s)
652 * (for example program from the second half and read from the
653 * second half operations both begin with the READ1 command). In this
654 * case the ns->pstates[] array contains previous states.
61b03bd7 655 *
1da177e4
LT
656 * Thus, the function tries to find operation containing the following
657 * states (if the 'flag' parameter is 0):
658 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
659 *
660 * If (one and only one) matching operation is found, it is accepted (
661 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
662 * zeroed).
61b03bd7 663 *
1da177e4
LT
664 * If there are several maches, the current state is pushed to the
665 * ns->pstates.
666 *
667 * The operation can be unknown only while commands are input to the chip.
668 * As soon as address command is accepted, the operation must be known.
669 * In such situation the function is called with 'flag' != 0, and the
670 * operation is searched using the following pattern:
671 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
61b03bd7 672 *
1da177e4
LT
673 * It is supposed that this pattern must either match one operation on
674 * none. There can't be ambiguity in that case.
675 *
676 * If no matches found, the functions does the following:
677 * 1. if there are saved states present, try to ignore them and search
678 * again only using the last command. If nothing was found, switch
679 * to the STATE_READY state.
680 * 2. if there are no saved states, switch to the STATE_READY state.
681 *
682 * RETURNS: -2 - no matched operations found.
683 * -1 - several matches.
684 * 0 - operation is found.
685 */
686static int
687find_operation(struct nandsim *ns, uint32_t flag)
688{
689 int opsfound = 0;
690 int i, j, idx = 0;
61b03bd7 691
1da177e4
LT
692 for (i = 0; i < NS_OPER_NUM; i++) {
693
694 int found = 1;
61b03bd7 695
1da177e4
LT
696 if (!(ns->options & ops[i].reqopts))
697 /* Ignore operations we can't perform */
698 continue;
61b03bd7 699
1da177e4
LT
700 if (flag) {
701 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
702 continue;
703 } else {
704 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
705 continue;
706 }
707
61b03bd7 708 for (j = 0; j < ns->npstates; j++)
1da177e4
LT
709 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
710 && (ns->options & ops[idx].reqopts)) {
711 found = 0;
712 break;
713 }
714
715 if (found) {
716 idx = i;
717 opsfound += 1;
718 }
719 }
720
721 if (opsfound == 1) {
722 /* Exact match */
723 ns->op = &ops[idx].states[0];
724 if (flag) {
61b03bd7 725 /*
1da177e4
LT
726 * In this case the find_operation function was
727 * called when address has just began input. But it isn't
728 * yet fully input and the current state must
729 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
730 * state must be the next state (ns->nxstate).
731 */
732 ns->stateidx = ns->npstates - 1;
733 } else {
734 ns->stateidx = ns->npstates;
735 }
736 ns->npstates = 0;
737 ns->state = ns->op[ns->stateidx];
738 ns->nxstate = ns->op[ns->stateidx + 1];
739 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
740 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
741 return 0;
742 }
61b03bd7 743
1da177e4
LT
744 if (opsfound == 0) {
745 /* Nothing was found. Try to ignore previous commands (if any) and search again */
746 if (ns->npstates != 0) {
747 NS_DBG("find_operation: no operation found, try again with state %s\n",
748 get_state_name(ns->state));
749 ns->npstates = 0;
750 return find_operation(ns, 0);
751
752 }
753 NS_DBG("find_operation: no operations found\n");
754 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
755 return -2;
756 }
61b03bd7 757
1da177e4
LT
758 if (flag) {
759 /* This shouldn't happen */
760 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
761 return -2;
762 }
61b03bd7 763
1da177e4
LT
764 NS_DBG("find_operation: there is still ambiguity\n");
765
766 ns->pstates[ns->npstates++] = ns->state;
767
768 return -1;
769}
770
771/*
772 * If state has any action bit, perform this action.
773 *
774 * RETURNS: 0 if success, -1 if error.
775 */
776static int
777do_state_action(struct nandsim *ns, uint32_t action)
778{
779 int i, num;
780 int busdiv = ns->busw == 8 ? 1 : 2;
781
782 action &= ACTION_MASK;
61b03bd7 783
1da177e4
LT
784 /* Check that page address input is correct */
785 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
786 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
787 return -1;
788 }
789
790 switch (action) {
791
792 case ACTION_CPY:
793 /*
794 * Copy page data to the internal buffer.
795 */
796
797 /* Column shouldn't be very large */
798 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
799 NS_ERR("do_state_action: column number is too large\n");
800 break;
801 }
802 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
803 memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num);
804
805 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
806 num, NS_RAW_OFFSET(ns) + ns->regs.off);
61b03bd7 807
1da177e4
LT
808 if (ns->regs.off == 0)
809 NS_LOG("read page %d\n", ns->regs.row);
810 else if (ns->regs.off < ns->geom.pgsz)
811 NS_LOG("read page %d (second half)\n", ns->regs.row);
812 else
813 NS_LOG("read OOB of page %d\n", ns->regs.row);
61b03bd7 814
1da177e4
LT
815 NS_UDELAY(access_delay);
816 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
817
818 break;
819
820 case ACTION_SECERASE:
821 /*
822 * Erase sector.
823 */
61b03bd7 824
1da177e4
LT
825 if (ns->lines.wp) {
826 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
827 return -1;
828 }
61b03bd7 829
1da177e4
LT
830 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
831 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
832 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
833 return -1;
834 }
61b03bd7 835
1da177e4
LT
836 ns->regs.row = (ns->regs.row <<
837 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
838 ns->regs.column = 0;
61b03bd7 839
1da177e4
LT
840 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
841 ns->regs.row, NS_RAW_OFFSET(ns));
842 NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
843
844 memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob);
61b03bd7 845
1da177e4 846 NS_MDELAY(erase_delay);
61b03bd7 847
1da177e4
LT
848 break;
849
850 case ACTION_PRGPAGE:
851 /*
852 * Programm page - move internal buffer data to the page.
853 */
854
855 if (ns->lines.wp) {
856 NS_WARN("do_state_action: device is write-protected, programm\n");
857 return -1;
858 }
859
860 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
861 if (num != ns->regs.count) {
862 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
863 ns->regs.count, num);
864 return -1;
865 }
866
867 for (i = 0; i < num; i++)
868 ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i];
869
870 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
871 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
872 NS_LOG("programm page %d\n", ns->regs.row);
61b03bd7 873
1da177e4
LT
874 NS_UDELAY(programm_delay);
875 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
61b03bd7 876
1da177e4 877 break;
61b03bd7 878
1da177e4
LT
879 case ACTION_ZEROOFF:
880 NS_DBG("do_state_action: set internal offset to 0\n");
881 ns->regs.off = 0;
882 break;
883
884 case ACTION_HALFOFF:
885 if (!(ns->options & OPT_PAGE512_8BIT)) {
886 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
887 "byte page size 8x chips\n");
888 return -1;
889 }
890 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
891 ns->regs.off = ns->geom.pgsz/2;
892 break;
893
894 case ACTION_OOBOFF:
895 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
896 ns->regs.off = ns->geom.pgsz;
897 break;
61b03bd7 898
1da177e4
LT
899 default:
900 NS_DBG("do_state_action: BUG! unknown action\n");
901 }
902
903 return 0;
904}
905
906/*
907 * Switch simulator's state.
908 */
909static void
910switch_state(struct nandsim *ns)
911{
912 if (ns->op) {
913 /*
914 * The current operation have already been identified.
915 * Just follow the states chain.
916 */
61b03bd7 917
1da177e4
LT
918 ns->stateidx += 1;
919 ns->state = ns->nxstate;
920 ns->nxstate = ns->op[ns->stateidx + 1];
921
922 NS_DBG("switch_state: operation is known, switch to the next state, "
923 "state: %s, nxstate: %s\n",
924 get_state_name(ns->state), get_state_name(ns->nxstate));
925
926 /* See, whether we need to do some action */
927 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
928 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
929 return;
930 }
61b03bd7 931
1da177e4
LT
932 } else {
933 /*
934 * We don't yet know which operation we perform.
935 * Try to identify it.
936 */
937
61b03bd7 938 /*
1da177e4
LT
939 * The only event causing the switch_state function to
940 * be called with yet unknown operation is new command.
941 */
942 ns->state = get_state_by_command(ns->regs.command);
943
944 NS_DBG("switch_state: operation is unknown, try to find it\n");
945
946 if (find_operation(ns, 0) != 0)
947 return;
948
949 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
950 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
951 return;
952 }
953 }
954
955 /* For 16x devices column means the page offset in words */
956 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
957 NS_DBG("switch_state: double the column number for 16x device\n");
958 ns->regs.column <<= 1;
959 }
960
961 if (NS_STATE(ns->nxstate) == STATE_READY) {
962 /*
963 * The current state is the last. Return to STATE_READY
964 */
965
966 u_char status = NS_STATUS_OK(ns);
61b03bd7 967
1da177e4
LT
968 /* In case of data states, see if all bytes were input/output */
969 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
970 && ns->regs.count != ns->regs.num) {
971 NS_WARN("switch_state: not all bytes were processed, %d left\n",
972 ns->regs.num - ns->regs.count);
973 status = NS_STATUS_FAILED(ns);
974 }
61b03bd7 975
1da177e4
LT
976 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
977
978 switch_to_ready_state(ns, status);
979
980 return;
981 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
61b03bd7 982 /*
1da177e4
LT
983 * If the next state is data input/output, switch to it now
984 */
61b03bd7 985
1da177e4
LT
986 ns->state = ns->nxstate;
987 ns->nxstate = ns->op[++ns->stateidx + 1];
988 ns->regs.num = ns->regs.count = 0;
989
990 NS_DBG("switch_state: the next state is data I/O, switch, "
991 "state: %s, nxstate: %s\n",
992 get_state_name(ns->state), get_state_name(ns->nxstate));
993
994 /*
995 * Set the internal register to the count of bytes which
996 * are expected to be input or output
997 */
998 switch (NS_STATE(ns->state)) {
999 case STATE_DATAIN:
1000 case STATE_DATAOUT:
1001 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1002 break;
61b03bd7 1003
1da177e4
LT
1004 case STATE_DATAOUT_ID:
1005 ns->regs.num = ns->geom.idbytes;
1006 break;
61b03bd7 1007
1da177e4
LT
1008 case STATE_DATAOUT_STATUS:
1009 case STATE_DATAOUT_STATUS_M:
1010 ns->regs.count = ns->regs.num = 0;
1011 break;
61b03bd7 1012
1da177e4
LT
1013 default:
1014 NS_ERR("switch_state: BUG! unknown data state\n");
1015 }
1016
1017 } else if (ns->nxstate & STATE_ADDR_MASK) {
1018 /*
1019 * If the next state is address input, set the internal
1020 * register to the number of expected address bytes
1021 */
1022
1023 ns->regs.count = 0;
61b03bd7 1024
1da177e4
LT
1025 switch (NS_STATE(ns->nxstate)) {
1026 case STATE_ADDR_PAGE:
1027 ns->regs.num = ns->geom.pgaddrbytes;
61b03bd7 1028
1da177e4
LT
1029 break;
1030 case STATE_ADDR_SEC:
1031 ns->regs.num = ns->geom.secaddrbytes;
1032 break;
61b03bd7 1033
1da177e4
LT
1034 case STATE_ADDR_ZERO:
1035 ns->regs.num = 1;
1036 break;
1037
1038 default:
1039 NS_ERR("switch_state: BUG! unknown address state\n");
1040 }
1041 } else {
61b03bd7 1042 /*
1da177e4
LT
1043 * Just reset internal counters.
1044 */
1045
1046 ns->regs.num = 0;
1047 ns->regs.count = 0;
1048 }
1049}
1050
1da177e4
LT
1051static u_char
1052ns_nand_read_byte(struct mtd_info *mtd)
1053{
1054 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1055 u_char outb = 0x00;
1056
1057 /* Sanity and correctness checks */
1058 if (!ns->lines.ce) {
1059 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1060 return outb;
1061 }
1062 if (ns->lines.ale || ns->lines.cle) {
1063 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1064 return outb;
1065 }
1066 if (!(ns->state & STATE_DATAOUT_MASK)) {
1067 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1068 "return %#x\n", get_state_name(ns->state), (uint)outb);
1069 return outb;
1070 }
1071
1072 /* Status register may be read as many times as it is wanted */
1073 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1074 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1075 return ns->regs.status;
1076 }
1077
1078 /* Check if there is any data in the internal buffer which may be read */
1079 if (ns->regs.count == ns->regs.num) {
1080 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1081 return outb;
1082 }
1083
1084 switch (NS_STATE(ns->state)) {
1085 case STATE_DATAOUT:
1086 if (ns->busw == 8) {
1087 outb = ns->buf.byte[ns->regs.count];
1088 ns->regs.count += 1;
1089 } else {
1090 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1091 ns->regs.count += 2;
1092 }
1093 break;
1094 case STATE_DATAOUT_ID:
1095 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1096 outb = ns->ids[ns->regs.count];
1097 ns->regs.count += 1;
1098 break;
1099 default:
1100 BUG();
1101 }
61b03bd7 1102
1da177e4
LT
1103 if (ns->regs.count == ns->regs.num) {
1104 NS_DBG("read_byte: all bytes were read\n");
1105
1106 /*
1107 * The OPT_AUTOINCR allows to read next conseqitive pages without
1108 * new read operation cycle.
1109 */
1110 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1111 ns->regs.count = 0;
1112 if (ns->regs.row + 1 < ns->geom.pgnum)
1113 ns->regs.row += 1;
1114 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1115 do_state_action(ns, ACTION_CPY);
1116 }
1117 else if (NS_STATE(ns->nxstate) == STATE_READY)
1118 switch_state(ns);
61b03bd7 1119
1da177e4 1120 }
61b03bd7 1121
1da177e4
LT
1122 return outb;
1123}
1124
1125static void
1126ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1127{
1128 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
61b03bd7 1129
1da177e4
LT
1130 /* Sanity and correctness checks */
1131 if (!ns->lines.ce) {
1132 NS_ERR("write_byte: chip is disabled, ignore write\n");
1133 return;
1134 }
1135 if (ns->lines.ale && ns->lines.cle) {
1136 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1137 return;
1138 }
61b03bd7 1139
1da177e4
LT
1140 if (ns->lines.cle == 1) {
1141 /*
1142 * The byte written is a command.
1143 */
1144
1145 if (byte == NAND_CMD_RESET) {
1146 NS_LOG("reset chip\n");
1147 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1148 return;
1149 }
1150
61b03bd7 1151 /*
1da177e4
LT
1152 * Chip might still be in STATE_DATAOUT
1153 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1154 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1155 */
1156 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1157 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1158 || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1159 switch_state(ns);
1160
1161 /* Check if chip is expecting command */
1162 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1163 /*
1164 * We are in situation when something else (not command)
1165 * was expected but command was input. In this case ignore
1166 * previous command(s)/state(s) and accept the last one.
1167 */
1168 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1169 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1170 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1171 }
61b03bd7 1172
1da177e4
LT
1173 /* Check that the command byte is correct */
1174 if (check_command(byte)) {
1175 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1176 return;
1177 }
61b03bd7 1178
1da177e4
LT
1179 NS_DBG("command byte corresponding to %s state accepted\n",
1180 get_state_name(get_state_by_command(byte)));
1181 ns->regs.command = byte;
1182 switch_state(ns);
1183
1184 } else if (ns->lines.ale == 1) {
1185 /*
1186 * The byte written is an address.
1187 */
1188
1189 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1190
1191 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1192
1193 if (find_operation(ns, 1) < 0)
1194 return;
61b03bd7 1195
1da177e4
LT
1196 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1197 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1198 return;
1199 }
61b03bd7 1200
1da177e4
LT
1201 ns->regs.count = 0;
1202 switch (NS_STATE(ns->nxstate)) {
1203 case STATE_ADDR_PAGE:
1204 ns->regs.num = ns->geom.pgaddrbytes;
1205 break;
1206 case STATE_ADDR_SEC:
1207 ns->regs.num = ns->geom.secaddrbytes;
1208 break;
1209 case STATE_ADDR_ZERO:
1210 ns->regs.num = 1;
1211 break;
1212 default:
1213 BUG();
1214 }
1215 }
1216
1217 /* Check that chip is expecting address */
1218 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1219 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1220 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1221 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1222 return;
1223 }
61b03bd7 1224
1da177e4
LT
1225 /* Check if this is expected byte */
1226 if (ns->regs.count == ns->regs.num) {
1227 NS_ERR("write_byte: no more address bytes expected\n");
1228 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1229 return;
1230 }
1231
1232 accept_addr_byte(ns, byte);
1233
1234 ns->regs.count += 1;
1235
1236 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1237 (uint)byte, ns->regs.count, ns->regs.num);
1238
1239 if (ns->regs.count == ns->regs.num) {
1240 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1241 switch_state(ns);
1242 }
61b03bd7 1243
1da177e4
LT
1244 } else {
1245 /*
1246 * The byte written is an input data.
1247 */
61b03bd7 1248
1da177e4
LT
1249 /* Check that chip is expecting data input */
1250 if (!(ns->state & STATE_DATAIN_MASK)) {
1251 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1252 "switch to %s\n", (uint)byte,
1253 get_state_name(ns->state), get_state_name(STATE_READY));
1254 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1255 return;
1256 }
1257
1258 /* Check if this is expected byte */
1259 if (ns->regs.count == ns->regs.num) {
1260 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1261 ns->regs.num);
1262 return;
1263 }
1264
1265 if (ns->busw == 8) {
1266 ns->buf.byte[ns->regs.count] = byte;
1267 ns->regs.count += 1;
1268 } else {
1269 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1270 ns->regs.count += 2;
1271 }
1272 }
1273
1274 return;
1275}
1276
7abd3ef9
TG
1277static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1278{
1279 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1280
1281 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1282 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1283 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1284
1285 if (cmd != NAND_CMD_NONE)
1286 ns_nand_write_byte(mtd, cmd);
1287}
1288
1da177e4
LT
1289static int
1290ns_device_ready(struct mtd_info *mtd)
1291{
1292 NS_DBG("device_ready\n");
1293 return 1;
1294}
1295
1296static uint16_t
1297ns_nand_read_word(struct mtd_info *mtd)
1298{
1299 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1300
1301 NS_DBG("read_word\n");
61b03bd7 1302
1da177e4
LT
1303 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1304}
1305
61b03bd7 1306static void
1da177e4
LT
1307ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1308{
1309 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1310
1311 /* Check that chip is expecting data input */
1312 if (!(ns->state & STATE_DATAIN_MASK)) {
1313 NS_ERR("write_buf: data input isn't expected, state is %s, "
1314 "switch to STATE_READY\n", get_state_name(ns->state));
1315 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1316 return;
1317 }
1318
1319 /* Check if these are expected bytes */
1320 if (ns->regs.count + len > ns->regs.num) {
1321 NS_ERR("write_buf: too many input bytes\n");
1322 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1323 return;
1324 }
1325
1326 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1327 ns->regs.count += len;
61b03bd7 1328
1da177e4
LT
1329 if (ns->regs.count == ns->regs.num) {
1330 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1331 }
1332}
1333
61b03bd7 1334static void
1da177e4
LT
1335ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1336{
1337 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1338
1339 /* Sanity and correctness checks */
1340 if (!ns->lines.ce) {
1341 NS_ERR("read_buf: chip is disabled\n");
1342 return;
1343 }
1344 if (ns->lines.ale || ns->lines.cle) {
1345 NS_ERR("read_buf: ALE or CLE pin is high\n");
1346 return;
1347 }
1348 if (!(ns->state & STATE_DATAOUT_MASK)) {
1349 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1350 get_state_name(ns->state));
1351 return;
1352 }
1353
1354 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1355 int i;
1356
1357 for (i = 0; i < len; i++)
1358 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1359
1360 return;
1361 }
1362
1363 /* Check if these are expected bytes */
1364 if (ns->regs.count + len > ns->regs.num) {
1365 NS_ERR("read_buf: too many bytes to read\n");
1366 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1367 return;
1368 }
1369
1370 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1371 ns->regs.count += len;
61b03bd7 1372
1da177e4
LT
1373 if (ns->regs.count == ns->regs.num) {
1374 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1375 ns->regs.count = 0;
1376 if (ns->regs.row + 1 < ns->geom.pgnum)
1377 ns->regs.row += 1;
1378 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1379 do_state_action(ns, ACTION_CPY);
1380 }
1381 else if (NS_STATE(ns->nxstate) == STATE_READY)
1382 switch_state(ns);
1383 }
61b03bd7 1384
1da177e4
LT
1385 return;
1386}
1387
61b03bd7 1388static int
1da177e4
LT
1389ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1390{
1391 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1392
1393 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1394 NS_DBG("verify_buf: the buffer is OK\n");
1395 return 0;
1396 } else {
1397 NS_DBG("verify_buf: the buffer is wrong\n");
1398 return -EFAULT;
1399 }
1400}
1401
1da177e4
LT
1402/*
1403 * Module initialization function
1404 */
2b9175c1 1405static int __init ns_init_module(void)
1da177e4
LT
1406{
1407 struct nand_chip *chip;
1408 struct nandsim *nand;
1409 int retval = -ENOMEM;
1410
1411 if (bus_width != 8 && bus_width != 16) {
1412 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1413 return -EINVAL;
1414 }
61b03bd7 1415
1da177e4
LT
1416 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1417 nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1418 + sizeof(struct nandsim), GFP_KERNEL);
1419 if (!nsmtd) {
1420 NS_ERR("unable to allocate core structures.\n");
1421 return -ENOMEM;
1422 }
1423 memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1424 sizeof(struct nandsim));
1425 chip = (struct nand_chip *)(nsmtd + 1);
1426 nsmtd->priv = (void *)chip;
1427 nand = (struct nandsim *)(chip + 1);
61b03bd7 1428 chip->priv = (void *)nand;
1da177e4
LT
1429
1430 /*
1431 * Register simulator's callbacks.
1432 */
7abd3ef9 1433 chip->cmd_ctrl = ns_hwcontrol;
1da177e4
LT
1434 chip->read_byte = ns_nand_read_byte;
1435 chip->dev_ready = ns_device_ready;
1da177e4
LT
1436 chip->write_buf = ns_nand_write_buf;
1437 chip->read_buf = ns_nand_read_buf;
1438 chip->verify_buf = ns_nand_verify_buf;
1da177e4 1439 chip->read_word = ns_nand_read_word;
6dfc6d25 1440 chip->ecc.mode = NAND_ECC_SOFT;
51502287 1441 chip->options |= NAND_SKIP_BBTSCAN;
1da177e4 1442
61b03bd7 1443 /*
1da177e4 1444 * Perform minimum nandsim structure initialization to handle
61b03bd7 1445 * the initial ID read command correctly
1da177e4
LT
1446 */
1447 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1448 nand->geom.idbytes = 4;
1449 else
1450 nand->geom.idbytes = 2;
1451 nand->regs.status = NS_STATUS_OK(nand);
1452 nand->nxstate = STATE_UNKNOWN;
1453 nand->options |= OPT_PAGE256; /* temporary value */
1454 nand->ids[0] = first_id_byte;
1455 nand->ids[1] = second_id_byte;
1456 nand->ids[2] = third_id_byte;
1457 nand->ids[3] = fourth_id_byte;
1458 if (bus_width == 16) {
1459 nand->busw = 16;
1460 chip->options |= NAND_BUSWIDTH_16;
1461 }
1462
552d9205
DW
1463 nsmtd->owner = THIS_MODULE;
1464
1da177e4
LT
1465 if ((retval = nand_scan(nsmtd, 1)) != 0) {
1466 NS_ERR("can't register NAND Simulator\n");
1467 if (retval > 0)
1468 retval = -ENXIO;
1469 goto error;
1470 }
1471
51502287
AB
1472 if ((retval = init_nandsim(nsmtd)) != 0) {
1473 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1474 goto error;
1475 }
61b03bd7 1476
51502287
AB
1477 if ((retval = nand_default_bbt(nsmtd)) != 0) {
1478 free_nandsim(nand);
1479 goto error;
1480 }
1481
1da177e4
LT
1482 /* Register NAND as one big partition */
1483 add_mtd_partitions(nsmtd, &nand->part, 1);
1484
1485 return 0;
1486
1487error:
1488 kfree(nsmtd);
1489
1490 return retval;
1491}
1492
1493module_init(ns_init_module);
1494
1495/*
1496 * Module clean-up function
1497 */
1498static void __exit ns_cleanup_module(void)
1499{
1500 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
1501
1502 free_nandsim(ns); /* Free nandsim private resources */
1503 nand_release(nsmtd); /* Unregisterd drived */
1504 kfree(nsmtd); /* Free other structures */
1505}
1506
1507module_exit(ns_cleanup_module);
1508
1509MODULE_LICENSE ("GPL");
1510MODULE_AUTHOR ("Artem B. Bityuckiy");
1511MODULE_DESCRIPTION ("The NAND flash simulator");
1512