]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/mtd/nand/raw/fsmc_nand.c
Merge tag 'iio-fixes-5.0a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / nand / raw / fsmc_nand.c
CommitLineData
bb696344 1// SPDX-License-Identifier: GPL-2.0
6c009ab8 2/*
6c009ab8
LW
3 * ST Microelectronics
4 * Flexible Static Memory Controller (FSMC)
5 * Driver for NAND portions
6 *
7 * Copyright © 2010 ST Microelectronics
8 * Vipin Kumar <vipin.kumar@st.com>
9 * Ashish Priyadarshi
10 *
187c5448 11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
7b6afee7
BB
12 * Copyright © 2007 STMicroelectronics Pvt. Ltd.
13 * Copyright © 2009 Alessandro Rubini
6c009ab8
LW
14 */
15
16#include <linux/clk.h>
4774fb0a
VK
17#include <linux/completion.h>
18#include <linux/dmaengine.h>
19#include <linux/dma-direction.h>
20#include <linux/dma-mapping.h>
6c009ab8
LW
21#include <linux/err.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/resource.h>
25#include <linux/sched.h>
26#include <linux/types.h>
27#include <linux/mtd/mtd.h>
d4092d76 28#include <linux/mtd/rawnand.h>
6c009ab8
LW
29#include <linux/mtd/nand_ecc.h>
30#include <linux/platform_device.h>
eea62819 31#include <linux/of.h>
6c009ab8
LW
32#include <linux/mtd/partitions.h>
33#include <linux/io.h>
34#include <linux/slab.h>
593cd871 35#include <linux/amba/bus.h>
6c009ab8
LW
36#include <mtd/mtd-abi.h>
37
4404d7d8
LW
38/* fsmc controller registers for NOR flash */
39#define CTRL 0x0
40 /* ctrl register definitions */
fc43f45e
BB
41 #define BANK_ENABLE BIT(0)
42 #define MUXED BIT(1)
4404d7d8 43 #define NOR_DEV (2 << 2)
fc43f45e
BB
44 #define WIDTH_16 BIT(4)
45 #define RSTPWRDWN BIT(6)
46 #define WPROT BIT(7)
47 #define WRT_ENABLE BIT(12)
48 #define WAIT_ENB BIT(13)
4404d7d8
LW
49
50#define CTRL_TIM 0x4
51 /* ctrl_tim register definitions */
52
53#define FSMC_NOR_BANK_SZ 0x8
54#define FSMC_NOR_REG_SIZE 0x40
55
fc43f45e
BB
56#define FSMC_NOR_REG(base, bank, reg) ((base) + \
57 (FSMC_NOR_BANK_SZ * (bank)) + \
58 (reg))
4404d7d8
LW
59
60/* fsmc controller registers for NAND flash */
8f3931ed 61#define FSMC_PC 0x00
4404d7d8 62 /* pc register definitions */
fc43f45e
BB
63 #define FSMC_RESET BIT(0)
64 #define FSMC_WAITON BIT(1)
65 #define FSMC_ENABLE BIT(2)
66 #define FSMC_DEVTYPE_NAND BIT(3)
67 #define FSMC_DEVWID_16 BIT(4)
68 #define FSMC_ECCEN BIT(6)
69 #define FSMC_ECCPLEN_256 BIT(7)
4404d7d8
LW
70 #define FSMC_TCLR_SHIFT (9)
71 #define FSMC_TCLR_MASK (0xF)
4404d7d8
LW
72 #define FSMC_TAR_SHIFT (13)
73 #define FSMC_TAR_MASK (0xF)
74#define STS 0x04
75 /* sts register definitions */
fc43f45e 76 #define FSMC_CODE_RDY BIT(15)
4404d7d8
LW
77#define COMM 0x08
78 /* comm register definitions */
4404d7d8
LW
79 #define FSMC_TSET_SHIFT 0
80 #define FSMC_TSET_MASK 0xFF
4404d7d8
LW
81 #define FSMC_TWAIT_SHIFT 8
82 #define FSMC_TWAIT_MASK 0xFF
4404d7d8
LW
83 #define FSMC_THOLD_SHIFT 16
84 #define FSMC_THOLD_MASK 0xFF
4404d7d8
LW
85 #define FSMC_THIZ_SHIFT 24
86 #define FSMC_THIZ_MASK 0xFF
87#define ATTRIB 0x0C
88#define IOATA 0x10
89#define ECC1 0x14
90#define ECC2 0x18
91#define ECC3 0x1C
92#define FSMC_NAND_BANK_SZ 0x20
93
4404d7d8
LW
94#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
95
96struct fsmc_nand_timings {
fc43f45e
BB
97 u8 tclr;
98 u8 tar;
99 u8 thiz;
100 u8 thold;
101 u8 twait;
102 u8 tset;
4404d7d8
LW
103};
104
105enum access_mode {
106 USE_DMA_ACCESS = 1,
107 USE_WORD_ACCESS,
108};
109
e7cda017
TP
110/**
111 * struct fsmc_nand_data - structure for FSMC NAND device state
112 *
ad71148c 113 * @base: Inherit from the nand_controller struct
e7cda017 114 * @pid: Part ID on the AMBA PrimeCell format
e7cda017 115 * @nand: Chip related info for a NAND flash.
e7cda017
TP
116 *
117 * @bank: Bank number for probed device.
5b47f407
BB
118 * @dev: Parent device
119 * @mode: Access mode
e7cda017
TP
120 * @clk: Clock structure for FSMC.
121 *
122 * @read_dma_chan: DMA channel for read access
123 * @write_dma_chan: DMA channel for write access to NAND
124 * @dma_access_complete: Completion structure
125 *
5b47f407
BB
126 * @dev_timings: NAND timings
127 *
e7cda017
TP
128 * @data_pa: NAND Physical port for Data.
129 * @data_va: NAND port for Data.
130 * @cmd_va: NAND port for Command.
131 * @addr_va: NAND port for Address.
4df6ed4f 132 * @regs_va: Registers base address for a given bank.
e7cda017
TP
133 */
134struct fsmc_nand_data {
ad71148c 135 struct nand_controller base;
e7cda017
TP
136 u32 pid;
137 struct nand_chip nand;
e7cda017
TP
138
139 unsigned int bank;
140 struct device *dev;
141 enum access_mode mode;
142 struct clk *clk;
143
144 /* DMA related objects */
145 struct dma_chan *read_dma_chan;
146 struct dma_chan *write_dma_chan;
147 struct completion dma_access_complete;
148
149 struct fsmc_nand_timings *dev_timings;
150
151 dma_addr_t data_pa;
152 void __iomem *data_va;
153 void __iomem *cmd_va;
154 void __iomem *addr_va;
155 void __iomem *regs_va;
e7cda017
TP
156};
157
22b46957
BB
158static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
159 struct mtd_oob_region *oobregion)
160{
161 struct nand_chip *chip = mtd_to_nand(mtd);
162
163 if (section >= chip->ecc.steps)
164 return -ERANGE;
165
166 oobregion->offset = (section * 16) + 2;
167 oobregion->length = 3;
168
169 return 0;
170}
171
172static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
173 struct mtd_oob_region *oobregion)
174{
175 struct nand_chip *chip = mtd_to_nand(mtd);
176
177 if (section >= chip->ecc.steps)
178 return -ERANGE;
179
180 oobregion->offset = (section * 16) + 8;
181
182 if (section < chip->ecc.steps - 1)
183 oobregion->length = 8;
184 else
185 oobregion->length = mtd->oobsize - oobregion->offset;
186
187 return 0;
188}
189
190static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
191 .ecc = fsmc_ecc1_ooblayout_ecc,
192 .free = fsmc_ecc1_ooblayout_free,
193};
194
04a123a9
BB
195/*
196 * ECC placement definitions in oobfree type format.
197 * There are 13 bytes of ecc for every 512 byte block and it has to be read
198 * consecutively and immediately after the 512 byte data block for hardware to
199 * generate the error bit offsets in 512 byte data.
200 */
22b46957
BB
201static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
202 struct mtd_oob_region *oobregion)
203{
204 struct nand_chip *chip = mtd_to_nand(mtd);
205
206 if (section >= chip->ecc.steps)
207 return -ERANGE;
208
209 oobregion->length = chip->ecc.bytes;
210
211 if (!section && mtd->writesize <= 512)
212 oobregion->offset = 0;
213 else
214 oobregion->offset = (section * 16) + 2;
215
216 return 0;
217}
218
219static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
220 struct mtd_oob_region *oobregion)
221{
222 struct nand_chip *chip = mtd_to_nand(mtd);
223
224 if (section >= chip->ecc.steps)
225 return -ERANGE;
226
227 oobregion->offset = (section * 16) + 15;
228
229 if (section < chip->ecc.steps - 1)
230 oobregion->length = 3;
231 else
232 oobregion->length = mtd->oobsize - oobregion->offset;
233
234 return 0;
235}
236
237static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
238 .ecc = fsmc_ecc4_ooblayout_ecc,
239 .free = fsmc_ecc4_ooblayout_free,
240};
241
bfc535f4 242static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
277af429 243{
bfc535f4 244 return container_of(chip, struct fsmc_nand_data, nand);
277af429
BB
245}
246
6c009ab8
LW
247/*
248 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
249 *
250 * This routine initializes timing parameters related to NAND memory access in
251 * FSMC registers
252 */
6335b509 253static void fsmc_nand_setup(struct fsmc_nand_data *host,
1debdb96 254 struct fsmc_nand_timings *tims)
6c009ab8 255{
fc43f45e
BB
256 u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
257 u32 tclr, tar, thiz, thold, twait, tset;
e2f6bce8
VK
258
259 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
260 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
261 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
262 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
263 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
264 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
6c009ab8 265
6335b509 266 if (host->nand.options & NAND_BUSWIDTH_16)
fc43f45e 267 value |= FSMC_DEVWID_16;
4df6ed4f 268
fc43f45e 269 writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
4df6ed4f
MR
270 writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
271 writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
6c009ab8
LW
272}
273
d9fb0795
TP
274static int fsmc_calc_timings(struct fsmc_nand_data *host,
275 const struct nand_sdr_timings *sdrt,
276 struct fsmc_nand_timings *tims)
277{
278 unsigned long hclk = clk_get_rate(host->clk);
279 unsigned long hclkn = NSEC_PER_SEC / hclk;
fc43f45e 280 u32 thiz, thold, twait, tset;
d9fb0795
TP
281
282 if (sdrt->tRC_min < 30000)
283 return -EOPNOTSUPP;
284
285 tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
286 if (tims->tar > FSMC_TAR_MASK)
287 tims->tar = FSMC_TAR_MASK;
288 tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
289 if (tims->tclr > FSMC_TCLR_MASK)
290 tims->tclr = FSMC_TCLR_MASK;
291
292 thiz = sdrt->tCS_min - sdrt->tWP_min;
293 tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
294
295 thold = sdrt->tDH_min;
296 if (thold < sdrt->tCH_min)
297 thold = sdrt->tCH_min;
298 if (thold < sdrt->tCLH_min)
299 thold = sdrt->tCLH_min;
300 if (thold < sdrt->tWH_min)
301 thold = sdrt->tWH_min;
302 if (thold < sdrt->tALH_min)
303 thold = sdrt->tALH_min;
304 if (thold < sdrt->tREH_min)
305 thold = sdrt->tREH_min;
306 tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
307 if (tims->thold == 0)
308 tims->thold = 1;
309 else if (tims->thold > FSMC_THOLD_MASK)
310 tims->thold = FSMC_THOLD_MASK;
311
312 twait = max(sdrt->tRP_min, sdrt->tWP_min);
313 tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
314 if (tims->twait == 0)
315 tims->twait = 1;
316 else if (tims->twait > FSMC_TWAIT_MASK)
317 tims->twait = FSMC_TWAIT_MASK;
318
319 tset = max(sdrt->tCS_min - sdrt->tWP_min,
320 sdrt->tCEA_max - sdrt->tREA_max);
321 tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
322 if (tims->tset == 0)
323 tims->tset = 1;
324 else if (tims->tset > FSMC_TSET_MASK)
325 tims->tset = FSMC_TSET_MASK;
326
327 return 0;
328}
329
858838b8 330static int fsmc_setup_data_interface(struct nand_chip *nand, int csline,
104e442a 331 const struct nand_data_interface *conf)
d9fb0795 332{
1e809f7e 333 struct fsmc_nand_data *host = nand_to_fsmc(nand);
d9fb0795
TP
334 struct fsmc_nand_timings tims;
335 const struct nand_sdr_timings *sdrt;
336 int ret;
337
338 sdrt = nand_get_sdr_timings(conf);
339 if (IS_ERR(sdrt))
340 return PTR_ERR(sdrt);
341
342 ret = fsmc_calc_timings(host, sdrt, &tims);
343 if (ret)
344 return ret;
345
104e442a 346 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
d9fb0795
TP
347 return 0;
348
349 fsmc_nand_setup(host, &tims);
350
351 return 0;
352}
353
6c009ab8
LW
354/*
355 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
356 */
ec47636c 357static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
6c009ab8 358{
bfc535f4 359 struct fsmc_nand_data *host = nand_to_fsmc(chip);
4df6ed4f 360
8f3931ed
BB
361 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
362 host->regs_va + FSMC_PC);
363 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
364 host->regs_va + FSMC_PC);
365 writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
366 host->regs_va + FSMC_PC);
6c009ab8
LW
367}
368
369/*
370 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
25985edc 371 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
372 * max of 8-bits)
373 */
fc43f45e
BB
374static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
375 u8 *ecc)
6c009ab8 376{
bfc535f4 377 struct fsmc_nand_data *host = nand_to_fsmc(chip);
fc43f45e 378 u32 ecc_tmp;
6c009ab8
LW
379 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
380
381 do {
4df6ed4f 382 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
6c009ab8 383 break;
fc43f45e
BB
384
385 cond_resched();
6c009ab8
LW
386 } while (!time_after_eq(jiffies, deadline));
387
712c4add
VK
388 if (time_after_eq(jiffies, deadline)) {
389 dev_err(host->dev, "calculate ecc timed out\n");
390 return -ETIMEDOUT;
391 }
392
4df6ed4f 393 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
fc43f45e
BB
394 ecc[0] = ecc_tmp;
395 ecc[1] = ecc_tmp >> 8;
396 ecc[2] = ecc_tmp >> 16;
397 ecc[3] = ecc_tmp >> 24;
6c009ab8 398
4df6ed4f 399 ecc_tmp = readl_relaxed(host->regs_va + ECC2);
fc43f45e
BB
400 ecc[4] = ecc_tmp;
401 ecc[5] = ecc_tmp >> 8;
402 ecc[6] = ecc_tmp >> 16;
403 ecc[7] = ecc_tmp >> 24;
6c009ab8 404
4df6ed4f 405 ecc_tmp = readl_relaxed(host->regs_va + ECC3);
fc43f45e
BB
406 ecc[8] = ecc_tmp;
407 ecc[9] = ecc_tmp >> 8;
408 ecc[10] = ecc_tmp >> 16;
409 ecc[11] = ecc_tmp >> 24;
6c009ab8 410
4df6ed4f 411 ecc_tmp = readl_relaxed(host->regs_va + STS);
fc43f45e 412 ecc[12] = ecc_tmp >> 16;
6c009ab8
LW
413
414 return 0;
415}
416
417/*
418 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
25985edc 419 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
420 * max of 1-bit)
421 */
fc43f45e
BB
422static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
423 u8 *ecc)
6c009ab8 424{
bfc535f4 425 struct fsmc_nand_data *host = nand_to_fsmc(chip);
fc43f45e 426 u32 ecc_tmp;
6c009ab8 427
4df6ed4f 428 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
fc43f45e
BB
429 ecc[0] = ecc_tmp;
430 ecc[1] = ecc_tmp >> 8;
431 ecc[2] = ecc_tmp >> 16;
6c009ab8
LW
432
433 return 0;
434}
435
519300cf 436/* Count the number of 0's in buff upto a max of max_bits */
fc43f45e 437static int count_written_bits(u8 *buff, int size, int max_bits)
519300cf
VK
438{
439 int k, written_bits = 0;
440
441 for (k = 0; k < size; k++) {
442 written_bits += hweight8(~buff[k]);
443 if (written_bits > max_bits)
444 break;
445 }
446
447 return written_bits;
448}
449
4774fb0a
VK
450static void dma_complete(void *param)
451{
452 struct fsmc_nand_data *host = param;
453
454 complete(&host->dma_access_complete);
455}
456
457static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
fc43f45e 458 enum dma_data_direction direction)
4774fb0a
VK
459{
460 struct dma_chan *chan;
461 struct dma_device *dma_dev;
462 struct dma_async_tx_descriptor *tx;
463 dma_addr_t dma_dst, dma_src, dma_addr;
464 dma_cookie_t cookie;
465 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
466 int ret;
818a45b1 467 unsigned long time_left;
4774fb0a
VK
468
469 if (direction == DMA_TO_DEVICE)
470 chan = host->write_dma_chan;
471 else if (direction == DMA_FROM_DEVICE)
472 chan = host->read_dma_chan;
473 else
474 return -EINVAL;
475
476 dma_dev = chan->device;
477 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
478
479 if (direction == DMA_TO_DEVICE) {
480 dma_src = dma_addr;
481 dma_dst = host->data_pa;
4774fb0a
VK
482 } else {
483 dma_src = host->data_pa;
484 dma_dst = dma_addr;
4774fb0a
VK
485 }
486
487 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
488 len, flags);
4774fb0a
VK
489 if (!tx) {
490 dev_err(host->dev, "device_prep_dma_memcpy error\n");
d1806a5c
BZ
491 ret = -EIO;
492 goto unmap_dma;
4774fb0a
VK
493 }
494
495 tx->callback = dma_complete;
496 tx->callback_param = host;
497 cookie = tx->tx_submit(tx);
498
499 ret = dma_submit_error(cookie);
500 if (ret) {
501 dev_err(host->dev, "dma_submit_error %d\n", cookie);
d1806a5c 502 goto unmap_dma;
4774fb0a
VK
503 }
504
505 dma_async_issue_pending(chan);
506
818a45b1 507 time_left =
928aa2ae 508 wait_for_completion_timeout(&host->dma_access_complete,
fc43f45e 509 msecs_to_jiffies(3000));
818a45b1 510 if (time_left == 0) {
b177ea34 511 dmaengine_terminate_all(chan);
4774fb0a 512 dev_err(host->dev, "wait_for_completion_timeout\n");
0bda3e19 513 ret = -ETIMEDOUT;
d1806a5c 514 goto unmap_dma;
4774fb0a
VK
515 }
516
d1806a5c
BZ
517 ret = 0;
518
519unmap_dma:
520 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
521
522 return ret;
4774fb0a
VK
523}
524
604e7544
VK
525/*
526 * fsmc_write_buf - write buffer to chip
bfc535f4 527 * @host: FSMC NAND controller
604e7544
VK
528 * @buf: data buffer
529 * @len: number of bytes to write
530 */
fc43f45e 531static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
bfc535f4 532 int len)
604e7544
VK
533{
534 int i;
604e7544 535
fc43f45e
BB
536 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
537 IS_ALIGNED(len, sizeof(u32))) {
538 u32 *p = (u32 *)buf;
539
604e7544
VK
540 len = len >> 2;
541 for (i = 0; i < len; i++)
4df6ed4f 542 writel_relaxed(p[i], host->data_va);
604e7544
VK
543 } else {
544 for (i = 0; i < len; i++)
4df6ed4f 545 writeb_relaxed(buf[i], host->data_va);
604e7544
VK
546 }
547}
548
549/*
550 * fsmc_read_buf - read chip data into buffer
bfc535f4 551 * @host: FSMC NAND controller
604e7544
VK
552 * @buf: buffer to store date
553 * @len: number of bytes to read
554 */
fc43f45e 555static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
604e7544
VK
556{
557 int i;
604e7544 558
fc43f45e
BB
559 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
560 IS_ALIGNED(len, sizeof(u32))) {
561 u32 *p = (u32 *)buf;
562
604e7544
VK
563 len = len >> 2;
564 for (i = 0; i < len; i++)
4df6ed4f 565 p[i] = readl_relaxed(host->data_va);
604e7544
VK
566 } else {
567 for (i = 0; i < len; i++)
4df6ed4f 568 buf[i] = readb_relaxed(host->data_va);
604e7544
VK
569 }
570}
571
4774fb0a
VK
572/*
573 * fsmc_read_buf_dma - read chip data into buffer
bfc535f4 574 * @host: FSMC NAND controller
4774fb0a
VK
575 * @buf: buffer to store date
576 * @len: number of bytes to read
577 */
fc43f45e 578static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
bfc535f4 579 int len)
4774fb0a 580{
4774fb0a
VK
581 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
582}
583
584/*
585 * fsmc_write_buf_dma - write buffer to chip
bfc535f4 586 * @host: FSMC NAND controller
4774fb0a
VK
587 * @buf: data buffer
588 * @len: number of bytes to write
589 */
fc43f45e 590static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
bfc535f4 591 int len)
4774fb0a 592{
4774fb0a
VK
593 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
594}
595
4da712e7
MR
596/*
597 * fsmc_exec_op - hook called by the core to execute NAND operations
598 *
599 * This controller is simple enough and thus does not need to use the parser
600 * provided by the core, instead, handle every situation here.
601 */
602static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
603 bool check_only)
604{
bfc535f4 605 struct fsmc_nand_data *host = nand_to_fsmc(chip);
4da712e7
MR
606 const struct nand_op_instr *instr = NULL;
607 int ret = 0;
608 unsigned int op_id;
609 int i;
610
611 pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
550b9fc4 612
4da712e7
MR
613 for (op_id = 0; op_id < op->ninstrs; op_id++) {
614 instr = &op->instrs[op_id];
615
616 switch (instr->type) {
617 case NAND_OP_CMD_INSTR:
618 pr_debug(" ->CMD [0x%02x]\n",
619 instr->ctx.cmd.opcode);
620
621 writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
622 break;
623
624 case NAND_OP_ADDR_INSTR:
625 pr_debug(" ->ADDR [%d cyc]",
626 instr->ctx.addr.naddrs);
627
628 for (i = 0; i < instr->ctx.addr.naddrs; i++)
629 writeb_relaxed(instr->ctx.addr.addrs[i],
630 host->addr_va);
631 break;
632
633 case NAND_OP_DATA_IN_INSTR:
634 pr_debug(" ->DATA_IN [%d B%s]\n", instr->ctx.data.len,
635 instr->ctx.data.force_8bit ?
636 ", force 8-bit" : "");
637
638 if (host->mode == USE_DMA_ACCESS)
bfc535f4 639 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
4da712e7
MR
640 instr->ctx.data.len);
641 else
bfc535f4 642 fsmc_read_buf(host, instr->ctx.data.buf.in,
4da712e7
MR
643 instr->ctx.data.len);
644 break;
645
646 case NAND_OP_DATA_OUT_INSTR:
647 pr_debug(" ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
648 instr->ctx.data.force_8bit ?
649 ", force 8-bit" : "");
650
651 if (host->mode == USE_DMA_ACCESS)
fc43f45e
BB
652 fsmc_write_buf_dma(host,
653 instr->ctx.data.buf.out,
4da712e7
MR
654 instr->ctx.data.len);
655 else
bfc535f4 656 fsmc_write_buf(host, instr->ctx.data.buf.out,
4da712e7
MR
657 instr->ctx.data.len);
658 break;
659
660 case NAND_OP_WAITRDY_INSTR:
661 pr_debug(" ->WAITRDY [max %d ms]\n",
662 instr->ctx.waitrdy.timeout_ms);
663
664 ret = nand_soft_waitrdy(chip,
665 instr->ctx.waitrdy.timeout_ms);
666 break;
667 }
668 }
669
670 return ret;
671}
672
6c009ab8
LW
673/*
674 * fsmc_read_page_hwecc
6c009ab8
LW
675 * @chip: nand chip info structure
676 * @buf: buffer to store read data
1fbb938d 677 * @oob_required: caller expects OOB data read to chip->oob_poi
6c009ab8
LW
678 * @page: page number to read
679 *
25985edc 680 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
6c009ab8
LW
681 * performed in a strict sequence as follows:
682 * data(512 byte) -> ecc(13 byte)
25985edc 683 * After this read, fsmc hardware generates and reports error data bits(up to a
6c009ab8
LW
684 * max of 8 bits)
685 */
fc43f45e 686static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
b9761687 687 int oob_required, int page)
6c009ab8 688{
b9761687 689 struct mtd_info *mtd = nand_to_mtd(chip);
6c009ab8
LW
690 int i, j, s, stat, eccsize = chip->ecc.size;
691 int eccbytes = chip->ecc.bytes;
692 int eccsteps = chip->ecc.steps;
fc43f45e
BB
693 u8 *p = buf;
694 u8 *ecc_calc = chip->ecc.calc_buf;
695 u8 *ecc_code = chip->ecc.code_buf;
41d6f0d0 696 int off, len, ret, group = 0;
6c009ab8 697 /*
fc43f45e 698 * ecc_oob is intentionally taken as u16. In 16bit devices, we
6c009ab8
LW
699 * end up reading 14 bytes (7 words) from oob. The local array is
700 * to maintain word alignment
701 */
fc43f45e
BB
702 u16 ecc_oob[7];
703 u8 *oob = (u8 *)&ecc_oob[0];
3f91e94f 704 unsigned int max_bitflips = 0;
6c009ab8
LW
705
706 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
97d90da8 707 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
ec47636c 708 chip->ecc.hwctl(chip, NAND_ECC_READ);
41d6f0d0
GS
709 ret = nand_read_data_op(chip, p, eccsize, false);
710 if (ret)
711 return ret;
6c009ab8
LW
712
713 for (j = 0; j < eccbytes;) {
04a123a9 714 struct mtd_oob_region oobregion;
04a123a9
BB
715
716 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
717 if (ret)
718 return ret;
719
720 off = oobregion.offset;
721 len = oobregion.length;
6c009ab8
LW
722
723 /*
4cbe1bf0
VK
724 * length is intentionally kept a higher multiple of 2
725 * to read at least 13 bytes even in case of 16 bit NAND
726 * devices
727 */
aea686b4
VK
728 if (chip->options & NAND_BUSWIDTH_16)
729 len = roundup(len, 2);
730
97d90da8 731 nand_read_oob_op(chip, page, off, oob + j, len);
6c009ab8
LW
732 j += len;
733 }
734
519300cf 735 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
af37d2c3 736 chip->ecc.calculate(chip, p, &ecc_calc[i]);
6c009ab8 737
00da2ea9 738 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 739 if (stat < 0) {
6c009ab8 740 mtd->ecc_stats.failed++;
3f91e94f 741 } else {
6c009ab8 742 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
743 max_bitflips = max_t(unsigned int, max_bitflips, stat);
744 }
6c009ab8
LW
745 }
746
3f91e94f 747 return max_bitflips;
6c009ab8
LW
748}
749
750/*
753e0139 751 * fsmc_bch8_correct_data
6c009ab8
LW
752 * @mtd: mtd info structure
753 * @dat: buffer of read data
754 * @read_ecc: ecc read from device spare area
755 * @calc_ecc: ecc calculated from read data
756 *
757 * calc_ecc is a 104 bit information containing maximum of 8 error
fc43f45e 758 * offset information of 13 bits each in 512 bytes of read data.
6c009ab8 759 */
fc43f45e
BB
760static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
761 u8 *read_ecc, u8 *calc_ecc)
6c009ab8 762{
bfc535f4 763 struct fsmc_nand_data *host = nand_to_fsmc(chip);
fc43f45e
BB
764 u32 err_idx[8];
765 u32 num_err, i;
766 u32 ecc1, ecc2, ecc3, ecc4;
6c009ab8 767
4df6ed4f 768 num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
519300cf
VK
769
770 /* no bit flipping */
771 if (likely(num_err == 0))
772 return 0;
773
774 /* too many errors */
775 if (unlikely(num_err > 8)) {
776 /*
777 * This is a temporary erase check. A newly erased page read
778 * would result in an ecc error because the oob data is also
779 * erased to FF and the calculated ecc for an FF data is not
780 * FF..FF.
781 * This is a workaround to skip performing correction in case
782 * data is FF..FF
783 *
784 * Logic:
785 * For every page, each bit written as 0 is counted until these
786 * number of bits are greater than 8 (the maximum correction
787 * capability of FSMC for each 512 + 13 bytes)
788 */
789
790 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
791 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
792
793 if ((bits_ecc + bits_data) <= 8) {
794 if (bits_data)
795 memset(dat, 0xff, chip->ecc.size);
796 return bits_data;
797 }
798
799 return -EBADMSG;
800 }
801
6c009ab8
LW
802 /*
803 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
804 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
805 *
806 * calc_ecc is a 104 bit information containing maximum of 8 error
fc43f45e
BB
807 * offset information of 13 bits each. calc_ecc is copied into a
808 * u64 array and error offset indexes are populated in err_idx
6c009ab8
LW
809 * array
810 */
4df6ed4f
MR
811 ecc1 = readl_relaxed(host->regs_va + ECC1);
812 ecc2 = readl_relaxed(host->regs_va + ECC2);
813 ecc3 = readl_relaxed(host->regs_va + ECC3);
814 ecc4 = readl_relaxed(host->regs_va + STS);
753e0139
AV
815
816 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
817 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
818 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
819 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
820 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
821 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
822 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
823 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
6c009ab8
LW
824
825 i = 0;
826 while (num_err--) {
827 change_bit(0, (unsigned long *)&err_idx[i]);
828 change_bit(1, (unsigned long *)&err_idx[i]);
829
b533f8d8 830 if (err_idx[i] < chip->ecc.size * 8) {
6c009ab8
LW
831 change_bit(err_idx[i], (unsigned long *)dat);
832 i++;
833 }
834 }
835 return i;
836}
837
4774fb0a
VK
838static bool filter(struct dma_chan *chan, void *slave)
839{
840 chan->private = slave;
841 return true;
842}
843
06f25510 844static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
a1b1e1d5
TP
845 struct fsmc_nand_data *host,
846 struct nand_chip *nand)
eea62819 847{
a1b1e1d5 848 struct device_node *np = pdev->dev.of_node;
eea62819 849 u32 val;
62b57f4c 850 int ret;
eea62819 851
a1b1e1d5 852 nand->options = 0;
ee56874f 853
eea62819
SR
854 if (!of_property_read_u32(np, "bank-width", &val)) {
855 if (val == 2) {
a1b1e1d5 856 nand->options |= NAND_BUSWIDTH_16;
eea62819
SR
857 } else if (val != 1) {
858 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
859 return -EINVAL;
860 }
861 }
ee56874f 862
eea62819 863 if (of_get_property(np, "nand-skip-bbtscan", NULL))
a1b1e1d5 864 nand->options |= NAND_SKIP_BBTSCAN;
eea62819 865
a1b1e1d5 866 host->dev_timings = devm_kzalloc(&pdev->dev,
fc43f45e
BB
867 sizeof(*host->dev_timings),
868 GFP_KERNEL);
a1b1e1d5 869 if (!host->dev_timings)
64ddba4d 870 return -ENOMEM;
fc43f45e 871
a1b1e1d5 872 ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
fc43f45e 873 sizeof(*host->dev_timings));
d9fb0795 874 if (ret)
a1b1e1d5 875 host->dev_timings = NULL;
64ddba4d
MYK
876
877 /* Set default NAND bank to 0 */
a1b1e1d5 878 host->bank = 0;
64ddba4d
MYK
879 if (!of_property_read_u32(np, "bank", &val)) {
880 if (val > 3) {
881 dev_err(&pdev->dev, "invalid bank %u\n", val);
882 return -EINVAL;
883 }
a1b1e1d5 884 host->bank = val;
64ddba4d 885 }
eea62819
SR
886 return 0;
887}
eea62819 888
3bbddfa3
MR
889static int fsmc_nand_attach_chip(struct nand_chip *nand)
890{
891 struct mtd_info *mtd = nand_to_mtd(nand);
bfc535f4 892 struct fsmc_nand_data *host = nand_to_fsmc(nand);
3bbddfa3
MR
893
894 if (AMBA_REV_BITS(host->pid) >= 8) {
895 switch (mtd->oobsize) {
896 case 16:
897 case 64:
898 case 128:
899 case 224:
900 case 256:
901 break;
902 default:
903 dev_warn(host->dev,
904 "No oob scheme defined for oobsize %d\n",
905 mtd->oobsize);
906 return -EINVAL;
907 }
908
909 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
910
911 return 0;
912 }
913
914 switch (nand->ecc.mode) {
915 case NAND_ECC_HW:
916 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
917 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
918 nand->ecc.correct = nand_correct_data;
919 nand->ecc.bytes = 3;
920 nand->ecc.strength = 1;
309600c1 921 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
3bbddfa3
MR
922 break;
923
924 case NAND_ECC_SOFT:
925 if (nand->ecc.algo == NAND_ECC_BCH) {
926 dev_info(host->dev,
927 "Using 4-bit SW BCH ECC scheme\n");
928 break;
929 }
930
931 case NAND_ECC_ON_DIE:
932 break;
933
934 default:
935 dev_err(host->dev, "Unsupported ECC mode!\n");
936 return -ENOTSUPP;
937 }
938
939 /*
940 * Don't set layout for BCH4 SW ECC. This will be
941 * generated later in nand_bch_init() later.
942 */
943 if (nand->ecc.mode == NAND_ECC_HW) {
944 switch (mtd->oobsize) {
945 case 16:
946 case 64:
947 case 128:
948 mtd_set_ooblayout(mtd,
949 &fsmc_ecc1_ooblayout_ops);
950 break;
951 default:
952 dev_warn(host->dev,
953 "No oob scheme defined for oobsize %d\n",
954 mtd->oobsize);
955 return -EINVAL;
956 }
957 }
958
959 return 0;
960}
961
962static const struct nand_controller_ops fsmc_nand_controller_ops = {
963 .attach_chip = fsmc_nand_attach_chip,
f2abfeb2 964 .exec_op = fsmc_exec_op,
7a08dbae 965 .setup_data_interface = fsmc_setup_data_interface,
3bbddfa3
MR
966};
967
6c009ab8
LW
968/*
969 * fsmc_nand_probe - Probe function
970 * @pdev: platform device structure
971 */
972static int __init fsmc_nand_probe(struct platform_device *pdev)
973{
6c009ab8
LW
974 struct fsmc_nand_data *host;
975 struct mtd_info *mtd;
976 struct nand_chip *nand;
6c009ab8 977 struct resource *res;
4df6ed4f 978 void __iomem *base;
4774fb0a 979 dma_cap_mask_t mask;
4ad916bc 980 int ret = 0;
593cd871
LW
981 u32 pid;
982 int i;
6c009ab8 983
6c009ab8 984 /* Allocate memory for the device structure (and zero it) */
82b9dbe2 985 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
d9a21ae8 986 if (!host)
6c009ab8 987 return -ENOMEM;
6c009ab8 988
a1b1e1d5
TP
989 nand = &host->nand;
990
991 ret = fsmc_nand_probe_config_dt(pdev, host, nand);
992 if (ret)
993 return ret;
994
6c009ab8 995 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
b0de774c
TR
996 host->data_va = devm_ioremap_resource(&pdev->dev, res);
997 if (IS_ERR(host->data_va))
998 return PTR_ERR(host->data_va);
cbf29b83 999
6d7b42a4 1000 host->data_pa = (dma_addr_t)res->start;
6c009ab8 1001
6d7b42a4 1002 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
b0de774c
TR
1003 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1004 if (IS_ERR(host->addr_va))
1005 return PTR_ERR(host->addr_va);
6c009ab8 1006
6d7b42a4 1007 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
b0de774c
TR
1008 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1009 if (IS_ERR(host->cmd_va))
1010 return PTR_ERR(host->cmd_va);
6c009ab8
LW
1011
1012 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
4df6ed4f
MR
1013 base = devm_ioremap_resource(&pdev->dev, res);
1014 if (IS_ERR(base))
1015 return PTR_ERR(base);
1016
1017 host->regs_va = base + FSMC_NOR_REG_SIZE +
1018 (host->bank * FSMC_NAND_BANK_SZ);
6c009ab8 1019
fb8ed2ca 1020 host->clk = devm_clk_get(&pdev->dev, NULL);
6c009ab8
LW
1021 if (IS_ERR(host->clk)) {
1022 dev_err(&pdev->dev, "failed to fetch block clock\n");
82b9dbe2 1023 return PTR_ERR(host->clk);
6c009ab8
LW
1024 }
1025
e25da1c0 1026 ret = clk_prepare_enable(host->clk);
6c009ab8 1027 if (ret)
fb8ed2ca 1028 return ret;
6c009ab8 1029
593cd871
LW
1030 /*
1031 * This device ID is actually a common AMBA ID as used on the
1032 * AMBA PrimeCell bus. However it is not a PrimeCell.
1033 */
1034 for (pid = 0, i = 0; i < 4; i++)
fc43f45e
BB
1035 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1036 255) << (i * 8);
1037
593cd871 1038 host->pid = pid;
fc43f45e
BB
1039
1040 dev_info(&pdev->dev,
1041 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
593cd871
LW
1042 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1043 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1044
712c4add 1045 host->dev = &pdev->dev;
4774fb0a
VK
1046
1047 if (host->mode == USE_DMA_ACCESS)
1048 init_completion(&host->dma_access_complete);
1049
6c009ab8 1050 /* Link all private pointers */
bdf3a555 1051 mtd = nand_to_mtd(&host->nand);
a1b1e1d5 1052 nand_set_flash_node(nand, pdev->dev.of_node);
6c009ab8 1053
bdf3a555 1054 mtd->dev.parent = &pdev->dev;
6c009ab8 1055
e278fc71
SR
1056 /*
1057 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1058 * can overwrite this value if the DT provides a different value.
1059 */
6c009ab8
LW
1060 nand->ecc.mode = NAND_ECC_HW;
1061 nand->ecc.hwctl = fsmc_enable_hwecc;
1062 nand->ecc.size = 512;
467e6e7b 1063 nand->badblockbits = 7;
6c009ab8 1064
4da712e7 1065 if (host->mode == USE_DMA_ACCESS) {
4774fb0a
VK
1066 dma_cap_zero(mask);
1067 dma_cap_set(DMA_MEMCPY, mask);
feb1e57e 1068 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
4774fb0a
VK
1069 if (!host->read_dma_chan) {
1070 dev_err(&pdev->dev, "Unable to get read dma channel\n");
43fab011 1071 goto disable_clk;
4774fb0a 1072 }
feb1e57e 1073 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
4774fb0a
VK
1074 if (!host->write_dma_chan) {
1075 dev_err(&pdev->dev, "Unable to get write dma channel\n");
43fab011 1076 goto release_dma_read_chan;
4774fb0a 1077 }
604e7544
VK
1078 }
1079
7a08dbae 1080 if (host->dev_timings) {
d9fb0795 1081 fsmc_nand_setup(host, host->dev_timings);
7a08dbae
BB
1082 nand->options |= NAND_KEEP_TIMINGS;
1083 }
6c009ab8 1084
593cd871 1085 if (AMBA_REV_BITS(host->pid) >= 8) {
6c009ab8
LW
1086 nand->ecc.read_page = fsmc_read_page_hwecc;
1087 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
753e0139 1088 nand->ecc.correct = fsmc_bch8_correct_data;
6c009ab8 1089 nand->ecc.bytes = 13;
6a918bad 1090 nand->ecc.strength = 8;
6c009ab8
LW
1091 }
1092
ad71148c
BB
1093 nand_controller_init(&host->base);
1094 host->base.ops = &fsmc_nand_controller_ops;
1095 nand->controller = &host->base;
1096
6c009ab8 1097 /*
25985edc 1098 * Scan to find existence of the device
6c009ab8 1099 */
00ad378f 1100 ret = nand_scan(nand, 1);
ad5678ec 1101 if (ret)
43fab011 1102 goto release_dma_write_chan;
6c009ab8 1103
bdf3a555 1104 mtd->name = "nand";
ede29a02 1105 ret = mtd_device_register(mtd, NULL, 0);
99335d00 1106 if (ret)
682cae27 1107 goto cleanup_nand;
6c009ab8
LW
1108
1109 platform_set_drvdata(pdev, host);
1110 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
43fab011 1111
6c009ab8
LW
1112 return 0;
1113
682cae27
MR
1114cleanup_nand:
1115 nand_cleanup(nand);
43fab011 1116release_dma_write_chan:
4774fb0a
VK
1117 if (host->mode == USE_DMA_ACCESS)
1118 dma_release_channel(host->write_dma_chan);
43fab011 1119release_dma_read_chan:
4774fb0a
VK
1120 if (host->mode == USE_DMA_ACCESS)
1121 dma_release_channel(host->read_dma_chan);
43fab011 1122disable_clk:
e25da1c0 1123 clk_disable_unprepare(host->clk);
43fab011 1124
6c009ab8
LW
1125 return ret;
1126}
1127
1128/*
1129 * Clean up routine
1130 */
1131static int fsmc_nand_remove(struct platform_device *pdev)
1132{
1133 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1134
6c009ab8 1135 if (host) {
59ac276f 1136 nand_release(&host->nand);
4774fb0a
VK
1137
1138 if (host->mode == USE_DMA_ACCESS) {
1139 dma_release_channel(host->write_dma_chan);
1140 dma_release_channel(host->read_dma_chan);
1141 }
e25da1c0 1142 clk_disable_unprepare(host->clk);
6c009ab8 1143 }
82b9dbe2 1144
6c009ab8
LW
1145 return 0;
1146}
1147
80ce4dde 1148#ifdef CONFIG_PM_SLEEP
6c009ab8
LW
1149static int fsmc_nand_suspend(struct device *dev)
1150{
1151 struct fsmc_nand_data *host = dev_get_drvdata(dev);
fc43f45e 1152
6c009ab8 1153 if (host)
e25da1c0 1154 clk_disable_unprepare(host->clk);
fc43f45e 1155
6c009ab8
LW
1156 return 0;
1157}
1158
1159static int fsmc_nand_resume(struct device *dev)
1160{
1161 struct fsmc_nand_data *host = dev_get_drvdata(dev);
fc43f45e 1162
f63acb75 1163 if (host) {
e25da1c0 1164 clk_prepare_enable(host->clk);
d9fb0795
TP
1165 if (host->dev_timings)
1166 fsmc_nand_setup(host, host->dev_timings);
f63acb75 1167 }
fc43f45e 1168
6c009ab8
LW
1169 return 0;
1170}
80ce4dde 1171#endif
6c009ab8 1172
f63acb75 1173static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
6c009ab8 1174
eea62819
SR
1175static const struct of_device_id fsmc_nand_id_table[] = {
1176 { .compatible = "st,spear600-fsmc-nand" },
ba785205 1177 { .compatible = "stericsson,fsmc-nand" },
eea62819
SR
1178 {}
1179};
1180MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
eea62819 1181
6c009ab8
LW
1182static struct platform_driver fsmc_nand_driver = {
1183 .remove = fsmc_nand_remove,
1184 .driver = {
6c009ab8 1185 .name = "fsmc-nand",
33575b25 1186 .of_match_table = fsmc_nand_id_table,
6c009ab8 1187 .pm = &fsmc_nand_pm_ops,
6c009ab8
LW
1188 },
1189};
1190
307d2a51 1191module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
6c009ab8 1192
bb696344 1193MODULE_LICENSE("GPL v2");
6c009ab8
LW
1194MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1195MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");