]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/mtd/nand/raw/nand_base.c
mtd: rawnand: Make sure we wait tWB before polling the STATUS reg
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / raw / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
38b8d208 39#include <linux/nmi.h>
1da177e4
LT
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
d4092d76 42#include <linux/mtd/rawnand.h>
1da177e4 43#include <linux/mtd/nand_ecc.h>
193bd400 44#include <linux/mtd/nand_bch.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
7351d3a5 47#include <linux/io.h>
1da177e4 48#include <linux/mtd/partitions.h>
d48f62b9 49#include <linux/of.h>
1da177e4 50
41b207a7
BB
51static int nand_get_device(struct mtd_info *mtd, int new_state);
52
53static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54 struct mtd_oob_ops *ops);
1da177e4
LT
55
56/* Define default oob placement schemes for large and small page devices */
41b207a7
BB
57static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58 struct mtd_oob_region *oobregion)
59{
60 struct nand_chip *chip = mtd_to_nand(mtd);
61 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 62
41b207a7
BB
63 if (section > 1)
64 return -ERANGE;
1da177e4 65
41b207a7
BB
66 if (!section) {
67 oobregion->offset = 0;
f7f8c175
MR
68 if (mtd->oobsize == 16)
69 oobregion->length = 4;
70 else
71 oobregion->length = 3;
41b207a7 72 } else {
f7f8c175
MR
73 if (mtd->oobsize == 8)
74 return -ERANGE;
75
41b207a7
BB
76 oobregion->offset = 6;
77 oobregion->length = ecc->total - 4;
78 }
1da177e4 79
41b207a7
BB
80 return 0;
81}
82
83static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
84 struct mtd_oob_region *oobregion)
85{
86 if (section > 1)
87 return -ERANGE;
1da177e4 88
41b207a7
BB
89 if (mtd->oobsize == 16) {
90 if (section)
91 return -ERANGE;
92
93 oobregion->length = 8;
94 oobregion->offset = 8;
95 } else {
96 oobregion->length = 2;
97 if (!section)
98 oobregion->offset = 3;
99 else
100 oobregion->offset = 6;
101 }
102
103 return 0;
104}
105
106const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
107 .ecc = nand_ooblayout_ecc_sp,
108 .free = nand_ooblayout_free_sp,
81ec5364 109};
41b207a7 110EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
81ec5364 111
41b207a7
BB
112static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
113 struct mtd_oob_region *oobregion)
114{
115 struct nand_chip *chip = mtd_to_nand(mtd);
116 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 117
882fd157 118 if (section || !ecc->total)
41b207a7 119 return -ERANGE;
8593fbc6 120
41b207a7
BB
121 oobregion->length = ecc->total;
122 oobregion->offset = mtd->oobsize - oobregion->length;
123
124 return 0;
125}
126
127static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
128 struct mtd_oob_region *oobregion)
129{
130 struct nand_chip *chip = mtd_to_nand(mtd);
131 struct nand_ecc_ctrl *ecc = &chip->ecc;
132
133 if (section)
134 return -ERANGE;
135
136 oobregion->length = mtd->oobsize - ecc->total - 2;
137 oobregion->offset = 2;
138
139 return 0;
140}
141
142const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
143 .ecc = nand_ooblayout_ecc_lp,
144 .free = nand_ooblayout_free_lp,
145};
146EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
d470a97c 147
6a623e07
AC
148/*
149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
150 * are placed at a fixed offset.
151 */
152static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
153 struct mtd_oob_region *oobregion)
154{
155 struct nand_chip *chip = mtd_to_nand(mtd);
156 struct nand_ecc_ctrl *ecc = &chip->ecc;
157
158 if (section)
159 return -ERANGE;
160
161 switch (mtd->oobsize) {
162 case 64:
163 oobregion->offset = 40;
164 break;
165 case 128:
166 oobregion->offset = 80;
167 break;
168 default:
169 return -EINVAL;
170 }
171
172 oobregion->length = ecc->total;
173 if (oobregion->offset + oobregion->length > mtd->oobsize)
174 return -ERANGE;
175
176 return 0;
177}
178
179static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
180 struct mtd_oob_region *oobregion)
181{
182 struct nand_chip *chip = mtd_to_nand(mtd);
183 struct nand_ecc_ctrl *ecc = &chip->ecc;
184 int ecc_offset = 0;
185
186 if (section < 0 || section > 1)
187 return -ERANGE;
188
189 switch (mtd->oobsize) {
190 case 64:
191 ecc_offset = 40;
192 break;
193 case 128:
194 ecc_offset = 80;
195 break;
196 default:
197 return -EINVAL;
198 }
199
200 if (section == 0) {
201 oobregion->offset = 2;
202 oobregion->length = ecc_offset - 2;
203 } else {
204 oobregion->offset = ecc_offset + ecc->total;
205 oobregion->length = mtd->oobsize - oobregion->offset;
206 }
207
208 return 0;
209}
210
d4ed3b90 211static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
6a623e07
AC
212 .ecc = nand_ooblayout_ecc_lp_hamming,
213 .free = nand_ooblayout_free_lp_hamming,
214};
215
6fe5a6ac
VS
216static int check_offs_len(struct mtd_info *mtd,
217 loff_t ofs, uint64_t len)
218{
862eba51 219 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
220 int ret = 0;
221
222 /* Start address must align on block boundary */
daae74ca 223 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 224 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
225 ret = -EINVAL;
226 }
227
228 /* Length must align on block boundary */
daae74ca 229 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 230 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
231 ret = -EINVAL;
232 }
233
6fe5a6ac
VS
234 return ret;
235}
236
1da177e4
LT
237/**
238 * nand_release_device - [GENERIC] release chip
8b6e50c9 239 * @mtd: MTD device structure
61b03bd7 240 *
b0bb6903 241 * Release chip lock and wake up anyone waiting on the device.
1da177e4 242 */
e0c7d767 243static void nand_release_device(struct mtd_info *mtd)
1da177e4 244{
862eba51 245 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 246
a36ed299 247 /* Release the controller and the chip */
ace4dfee
TG
248 spin_lock(&chip->controller->lock);
249 chip->controller->active = NULL;
250 chip->state = FL_READY;
251 wake_up(&chip->controller->wq);
252 spin_unlock(&chip->controller->lock);
1da177e4
LT
253}
254
255/**
256 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 257 * @mtd: MTD device structure
1da177e4 258 *
7854d3f7 259 * Default read function for 8bit buswidth
1da177e4 260 */
58dd8f2b 261static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 262{
862eba51 263 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 264 return readb(chip->IO_ADDR_R);
1da177e4
LT
265}
266
1da177e4 267/**
7854d3f7 268 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 269 * @mtd: MTD device structure
1da177e4 270 *
7854d3f7
BN
271 * Default read function for 16bit buswidth with endianness conversion.
272 *
1da177e4 273 */
58dd8f2b 274static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 275{
862eba51 276 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 277 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
278}
279
1da177e4
LT
280/**
281 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 282 * @mtd: MTD device structure
1da177e4 283 *
7854d3f7 284 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
285 */
286static u16 nand_read_word(struct mtd_info *mtd)
287{
862eba51 288 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 289 return readw(chip->IO_ADDR_R);
1da177e4
LT
290}
291
1da177e4
LT
292/**
293 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
294 * @mtd: MTD device structure
295 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
296 *
297 * Default select function for 1 chip devices.
298 */
ace4dfee 299static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 300{
862eba51 301 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
302
303 switch (chipnr) {
1da177e4 304 case -1:
ace4dfee 305 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
306 break;
307 case 0:
1da177e4
LT
308 break;
309
310 default:
311 BUG();
312 }
313}
314
05f78359
UKK
315/**
316 * nand_write_byte - [DEFAULT] write single byte to chip
317 * @mtd: MTD device structure
318 * @byte: value to write
319 *
320 * Default function to write a byte to I/O[7:0]
321 */
322static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
323{
862eba51 324 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
325
326 chip->write_buf(mtd, &byte, 1);
327}
328
329/**
330 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
331 * @mtd: MTD device structure
332 * @byte: value to write
333 *
334 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
335 */
336static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
337{
862eba51 338 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
339 uint16_t word = byte;
340
341 /*
342 * It's not entirely clear what should happen to I/O[15:8] when writing
343 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
344 *
345 * When the host supports a 16-bit bus width, only data is
346 * transferred at the 16-bit width. All address and command line
347 * transfers shall use only the lower 8-bits of the data bus. During
348 * command transfers, the host may place any value on the upper
349 * 8-bits of the data bus. During address transfers, the host shall
350 * set the upper 8-bits of the data bus to 00h.
351 *
b958758e 352 * One user of the write_byte callback is nand_set_features. The
05f78359
UKK
353 * four parameters are specified to be written to I/O[7:0], but this is
354 * neither an address nor a command transfer. Let's assume a 0 on the
355 * upper I/O lines is OK.
356 */
357 chip->write_buf(mtd, (uint8_t *)&word, 2);
358}
359
1da177e4
LT
360/**
361 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
362 * @mtd: MTD device structure
363 * @buf: data buffer
364 * @len: number of bytes to write
1da177e4 365 *
7854d3f7 366 * Default write function for 8bit buswidth.
1da177e4 367 */
58dd8f2b 368static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 369{
862eba51 370 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 371
76413839 372 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
373}
374
375/**
61b03bd7 376 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
377 * @mtd: MTD device structure
378 * @buf: buffer to store date
379 * @len: number of bytes to read
1da177e4 380 *
7854d3f7 381 * Default read function for 8bit buswidth.
1da177e4 382 */
58dd8f2b 383static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 384{
862eba51 385 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 386
76413839 387 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
388}
389
1da177e4
LT
390/**
391 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
392 * @mtd: MTD device structure
393 * @buf: data buffer
394 * @len: number of bytes to write
1da177e4 395 *
7854d3f7 396 * Default write function for 16bit buswidth.
1da177e4 397 */
58dd8f2b 398static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 399{
862eba51 400 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 401 u16 *p = (u16 *) buf;
61b03bd7 402
76413839 403 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
404}
405
406/**
61b03bd7 407 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
408 * @mtd: MTD device structure
409 * @buf: buffer to store date
410 * @len: number of bytes to read
1da177e4 411 *
7854d3f7 412 * Default read function for 16bit buswidth.
1da177e4 413 */
58dd8f2b 414static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 415{
862eba51 416 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 417 u16 *p = (u16 *) buf;
1da177e4 418
76413839 419 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
420}
421
1da177e4
LT
422/**
423 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
424 * @mtd: MTD device structure
425 * @ofs: offset from device start
1da177e4 426 *
61b03bd7 427 * Check, if the block is bad.
1da177e4 428 */
9f3e0429 429static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
1da177e4 430{
c120e75e 431 int page, page_end, res;
862eba51 432 struct nand_chip *chip = mtd_to_nand(mtd);
c120e75e 433 u8 bad;
1da177e4 434
5fb1549d 435 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
436 ofs += mtd->erasesize - mtd->writesize;
437
1a12f46a 438 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
c120e75e 439 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
1a12f46a 440
c120e75e
MY
441 for (; page < page_end; page++) {
442 res = chip->ecc.read_oob(mtd, chip, page);
443 if (res)
444 return res;
445
446 bad = chip->oob_poi[chip->badblockpos];
cdbec050
BN
447
448 if (likely(chip->badblockbits == 8))
449 res = bad != 0xFF;
e0b58d0a 450 else
cdbec050 451 res = hweight8(bad) < chip->badblockbits;
c120e75e
MY
452 if (res)
453 return res;
454 }
e0b58d0a 455
c120e75e 456 return 0;
1da177e4
LT
457}
458
459/**
5a0edb25 460 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
461 * @mtd: MTD device structure
462 * @ofs: offset from device start
1da177e4 463 *
8b6e50c9 464 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
465 * specific driver. It provides the details for writing a bad block marker to a
466 * block.
467 */
468static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
469{
862eba51 470 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
471 struct mtd_oob_ops ops;
472 uint8_t buf[2] = { 0, 0 };
473 int ret = 0, res, i = 0;
474
0ec56dc4 475 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
476 ops.oobbuf = buf;
477 ops.ooboffs = chip->badblockpos;
478 if (chip->options & NAND_BUSWIDTH_16) {
479 ops.ooboffs &= ~0x01;
480 ops.len = ops.ooblen = 2;
481 } else {
482 ops.len = ops.ooblen = 1;
483 }
484 ops.mode = MTD_OPS_PLACE_OOB;
485
486 /* Write to first/last page(s) if necessary */
487 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
488 ofs += mtd->erasesize - mtd->writesize;
489 do {
490 res = nand_do_write_oob(mtd, ofs, &ops);
491 if (!ret)
492 ret = res;
493
494 i++;
495 ofs += mtd->writesize;
496 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
497
498 return ret;
499}
500
501/**
502 * nand_block_markbad_lowlevel - mark a block bad
503 * @mtd: MTD device structure
504 * @ofs: offset from device start
505 *
506 * This function performs the generic NAND bad block marking steps (i.e., bad
507 * block table(s) and/or marker(s)). We only allow the hardware driver to
508 * specify how to write bad block markers to OOB (chip->block_markbad).
509 *
b32843b7 510 * We try operations in the following order:
b6f6c294 511 *
e2414f4c 512 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
513 * (2) write bad block marker to OOB area of affected block (unless flag
514 * NAND_BBT_NO_OOB_BBM is present)
515 * (3) update the BBT
b6f6c294 516 *
b32843b7 517 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 518 * procedures, and dump the error in the end.
1da177e4 519*/
5a0edb25 520static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 521{
862eba51 522 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 523 int res, ret = 0;
61b03bd7 524
b32843b7 525 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
526 struct erase_info einfo;
527
528 /* Attempt erase before marking OOB */
529 memset(&einfo, 0, sizeof(einfo));
00918429 530 einfo.addr = ofs;
daae74ca 531 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 532 nand_erase_nand(mtd, &einfo, 0);
1da177e4 533
b32843b7 534 /* Write bad block marker to OOB */
6a8214aa 535 nand_get_device(mtd, FL_WRITING);
5a0edb25 536 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 537 nand_release_device(mtd);
f1a28c02 538 }
e2414f4c 539
b32843b7
BN
540 /* Mark block bad in BBT */
541 if (chip->bbt) {
542 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
543 if (!ret)
544 ret = res;
545 }
546
f1a28c02
TG
547 if (!ret)
548 mtd->ecc_stats.badblocks++;
c0b8ba7b 549
f1a28c02 550 return ret;
1da177e4
LT
551}
552
61b03bd7 553/**
1da177e4 554 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 555 * @mtd: MTD device structure
1da177e4 556 *
8b6e50c9
BN
557 * Check, if the device is write protected. The function expects, that the
558 * device is already selected.
1da177e4 559 */
e0c7d767 560static int nand_check_wp(struct mtd_info *mtd)
1da177e4 561{
862eba51 562 struct nand_chip *chip = mtd_to_nand(mtd);
97d90da8
BB
563 u8 status;
564 int ret;
93edbad6 565
8b6e50c9 566 /* Broken xD cards report WP despite being writable */
93edbad6
ML
567 if (chip->options & NAND_BROKEN_XD)
568 return 0;
569
1da177e4 570 /* Check the WP bit */
97d90da8
BB
571 ret = nand_status_op(chip, &status);
572 if (ret)
573 return ret;
574
575 return status & NAND_STATUS_WP ? 0 : 1;
1da177e4
LT
576}
577
8471bb73 578/**
c30e1f79 579 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
580 * @mtd: MTD device structure
581 * @ofs: offset from device start
582 *
c30e1f79 583 * Check if the block is marked as reserved.
8471bb73
EG
584 */
585static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
586{
862eba51 587 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
588
589 if (!chip->bbt)
590 return 0;
591 /* Return info from the table */
592 return nand_isreserved_bbt(mtd, ofs);
593}
594
1da177e4
LT
595/**
596 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
597 * @mtd: MTD device structure
598 * @ofs: offset from device start
8b6e50c9 599 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
600 *
601 * Check, if the block is bad. Either by reading the bad block table or
602 * calling of the scan function.
603 */
9f3e0429 604static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1da177e4 605{
862eba51 606 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 607
ace4dfee 608 if (!chip->bbt)
9f3e0429 609 return chip->block_bad(mtd, ofs);
61b03bd7 610
1da177e4 611 /* Return info from the table */
e0c7d767 612 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
613}
614
2af7c653
SK
615/**
616 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
617 * @mtd: MTD device structure
618 * @timeo: Timeout
2af7c653
SK
619 *
620 * Helper function for nand_wait_ready used when needing to wait in interrupt
621 * context.
622 */
623static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
624{
862eba51 625 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
626 int i;
627
628 /* Wait for the device to get ready */
629 for (i = 0; i < timeo; i++) {
630 if (chip->dev_ready(mtd))
631 break;
632 touch_softlockup_watchdog();
633 mdelay(1);
634 }
635}
636
b70af9be
AS
637/**
638 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
639 * @mtd: MTD device structure
640 *
641 * Wait for the ready pin after a command, and warn if a timeout occurs.
642 */
4b648b02 643void nand_wait_ready(struct mtd_info *mtd)
3b88775c 644{
862eba51 645 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 646 unsigned long timeo = 400;
3b88775c 647
2af7c653 648 if (in_interrupt() || oops_in_progress)
b70af9be 649 return panic_nand_wait_ready(mtd, timeo);
2af7c653 650
7854d3f7 651 /* Wait until command is processed or timeout occurs */
b70af9be 652 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 653 do {
ace4dfee 654 if (chip->dev_ready(mtd))
4c7e054f 655 return;
b70af9be 656 cond_resched();
61b03bd7 657 } while (time_before(jiffies, timeo));
b70af9be 658
9ebfdf5b
BN
659 if (!chip->dev_ready(mtd))
660 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
3b88775c 661}
4b648b02 662EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 663
60c70d66
RQ
664/**
665 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
666 * @mtd: MTD device structure
667 * @timeo: Timeout in ms
668 *
669 * Wait for status ready (i.e. command done) or timeout.
670 */
671static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
672{
862eba51 673 register struct nand_chip *chip = mtd_to_nand(mtd);
97d90da8 674 int ret;
60c70d66
RQ
675
676 timeo = jiffies + msecs_to_jiffies(timeo);
677 do {
97d90da8
BB
678 u8 status;
679
680 ret = nand_read_data_op(chip, &status, sizeof(status), true);
681 if (ret)
682 return;
683
684 if (status & NAND_STATUS_READY)
60c70d66
RQ
685 break;
686 touch_softlockup_watchdog();
687 } while (time_before(jiffies, timeo));
688};
689
8878b126
MR
690/**
691 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
692 * @chip: NAND chip structure
693 * @timeout_ms: Timeout in ms
694 *
695 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
696 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
697 * returned.
698 *
699 * This helper is intended to be used when the controller does not have access
700 * to the NAND R/B pin.
701 *
702 * Be aware that calling this helper from an ->exec_op() implementation means
703 * ->exec_op() must be re-entrant.
704 *
705 * Return 0 if the NAND chip is ready, a negative error otherwise.
706 */
707int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
708{
3057fcef 709 const struct nand_sdr_timings *timings;
8878b126
MR
710 u8 status = 0;
711 int ret;
712
713 if (!chip->exec_op)
714 return -ENOTSUPP;
715
3057fcef
BB
716 /* Wait tWB before polling the STATUS reg. */
717 timings = nand_get_sdr_timings(&chip->data_interface);
718 ndelay(PSEC_TO_NSEC(timings->tWB_max));
719
8878b126
MR
720 ret = nand_status_op(chip, NULL);
721 if (ret)
722 return ret;
723
724 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
725 do {
726 ret = nand_read_data_op(chip, &status, sizeof(status), true);
727 if (ret)
728 break;
729
730 if (status & NAND_STATUS_READY)
731 break;
732
733 /*
734 * Typical lowest execution time for a tR on most NANDs is 10us,
735 * use this as polling delay before doing something smarter (ie.
736 * deriving a delay from the timeout value, timeout_ms/ratio).
737 */
738 udelay(10);
739 } while (time_before(jiffies, timeout_ms));
740
741 /*
742 * We have to exit READ_STATUS mode in order to read real data on the
743 * bus in case the WAITRDY instruction is preceding a DATA_IN
744 * instruction.
745 */
746 nand_exit_status_op(chip);
747
748 if (ret)
749 return ret;
750
751 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
752};
753EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
754
1da177e4
LT
755/**
756 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
757 * @mtd: MTD device structure
758 * @command: the command to be sent
759 * @column: the column address for this command, -1 if none
760 * @page_addr: the page address for this command, -1 if none
1da177e4 761 *
8b6e50c9 762 * Send command to NAND device. This function is used for small page devices
51148f1f 763 * (512 Bytes per page).
1da177e4 764 */
7abd3ef9
TG
765static void nand_command(struct mtd_info *mtd, unsigned int command,
766 int column, int page_addr)
1da177e4 767{
862eba51 768 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 769 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 770
8b6e50c9 771 /* Write out the command to the device */
1da177e4
LT
772 if (command == NAND_CMD_SEQIN) {
773 int readcmd;
774
28318776 775 if (column >= mtd->writesize) {
1da177e4 776 /* OOB area */
28318776 777 column -= mtd->writesize;
1da177e4
LT
778 readcmd = NAND_CMD_READOOB;
779 } else if (column < 256) {
780 /* First 256 bytes --> READ0 */
781 readcmd = NAND_CMD_READ0;
782 } else {
783 column -= 256;
784 readcmd = NAND_CMD_READ1;
785 }
ace4dfee 786 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 787 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 788 }
df467899
MR
789 if (command != NAND_CMD_NONE)
790 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 791
8b6e50c9 792 /* Address cycle, when necessary */
7abd3ef9
TG
793 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
794 /* Serially input address */
795 if (column != -1) {
796 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
797 if (chip->options & NAND_BUSWIDTH_16 &&
798 !nand_opcode_8bits(command))
7abd3ef9 799 column >>= 1;
ace4dfee 800 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
801 ctrl &= ~NAND_CTRL_CHANGE;
802 }
803 if (page_addr != -1) {
ace4dfee 804 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 805 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 806 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
14157f86 807 if (chip->options & NAND_ROW_ADDR_3)
ace4dfee 808 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 809 }
ace4dfee 810 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
811
812 /*
8b6e50c9
BN
813 * Program and erase have their own busy handlers status and sequential
814 * in needs no delay
e0c7d767 815 */
1da177e4 816 switch (command) {
61b03bd7 817
df467899 818 case NAND_CMD_NONE:
1da177e4
LT
819 case NAND_CMD_PAGEPROG:
820 case NAND_CMD_ERASE1:
821 case NAND_CMD_ERASE2:
822 case NAND_CMD_SEQIN:
823 case NAND_CMD_STATUS:
3158fa0e 824 case NAND_CMD_READID:
c5d664aa 825 case NAND_CMD_SET_FEATURES:
1da177e4
LT
826 return;
827
828 case NAND_CMD_RESET:
ace4dfee 829 if (chip->dev_ready)
1da177e4 830 break;
ace4dfee
TG
831 udelay(chip->chip_delay);
832 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 833 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
834 chip->cmd_ctrl(mtd,
835 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
836 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
837 nand_wait_status_ready(mtd, 250);
1da177e4
LT
838 return;
839
e0c7d767 840 /* This applies to read commands */
2165c4a1
BB
841 case NAND_CMD_READ0:
842 /*
843 * READ0 is sometimes used to exit GET STATUS mode. When this
844 * is the case no address cycles are requested, and we can use
845 * this information to detect that we should not wait for the
846 * device to be ready.
847 */
848 if (column == -1 && page_addr == -1)
849 return;
850
1da177e4 851 default:
61b03bd7 852 /*
1da177e4
LT
853 * If we don't have access to the busy pin, we apply the given
854 * command delay
e0c7d767 855 */
ace4dfee
TG
856 if (!chip->dev_ready) {
857 udelay(chip->chip_delay);
1da177e4 858 return;
61b03bd7 859 }
1da177e4 860 }
8b6e50c9
BN
861 /*
862 * Apply this short delay always to ensure that we do wait tWB in
863 * any case on any machine.
864 */
e0c7d767 865 ndelay(100);
3b88775c
TG
866
867 nand_wait_ready(mtd);
1da177e4
LT
868}
869
6ea40a3b
BB
870static void nand_ccs_delay(struct nand_chip *chip)
871{
872 /*
873 * The controller already takes care of waiting for tCCS when the RNDIN
874 * or RNDOUT command is sent, return directly.
875 */
876 if (!(chip->options & NAND_WAIT_TCCS))
877 return;
878
879 /*
880 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
881 * (which should be safe for all NANDs).
882 */
17fa8044
MR
883 if (chip->setup_data_interface)
884 ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
6ea40a3b
BB
885 else
886 ndelay(500);
887}
888
1da177e4
LT
889/**
890 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
891 * @mtd: MTD device structure
892 * @command: the command to be sent
893 * @column: the column address for this command, -1 if none
894 * @page_addr: the page address for this command, -1 if none
1da177e4 895 *
7abd3ef9 896 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
897 * devices. We don't have the separate regions as we have in the small page
898 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 899 */
7abd3ef9
TG
900static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
901 int column, int page_addr)
1da177e4 902{
862eba51 903 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
904
905 /* Emulate NAND_CMD_READOOB */
906 if (command == NAND_CMD_READOOB) {
28318776 907 column += mtd->writesize;
1da177e4
LT
908 command = NAND_CMD_READ0;
909 }
61b03bd7 910
7abd3ef9 911 /* Command latch cycle */
df467899
MR
912 if (command != NAND_CMD_NONE)
913 chip->cmd_ctrl(mtd, command,
914 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
915
916 if (column != -1 || page_addr != -1) {
7abd3ef9 917 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
918
919 /* Serially input address */
920 if (column != -1) {
921 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
922 if (chip->options & NAND_BUSWIDTH_16 &&
923 !nand_opcode_8bits(command))
1da177e4 924 column >>= 1;
ace4dfee 925 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 926 ctrl &= ~NAND_CTRL_CHANGE;
fde85cfd 927
f5b88de2 928 /* Only output a single addr cycle for 8bits opcodes. */
fde85cfd
BB
929 if (!nand_opcode_8bits(command))
930 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 931 }
1da177e4 932 if (page_addr != -1) {
ace4dfee
TG
933 chip->cmd_ctrl(mtd, page_addr, ctrl);
934 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 935 NAND_NCE | NAND_ALE);
14157f86 936 if (chip->options & NAND_ROW_ADDR_3)
ace4dfee 937 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 938 NAND_NCE | NAND_ALE);
1da177e4 939 }
1da177e4 940 }
ace4dfee 941 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
942
943 /*
8b6e50c9 944 * Program and erase have their own busy handlers status, sequential
7a442f17 945 * in and status need no delay.
30f464b7 946 */
1da177e4 947 switch (command) {
61b03bd7 948
df467899 949 case NAND_CMD_NONE:
1da177e4
LT
950 case NAND_CMD_CACHEDPROG:
951 case NAND_CMD_PAGEPROG:
952 case NAND_CMD_ERASE1:
953 case NAND_CMD_ERASE2:
954 case NAND_CMD_SEQIN:
955 case NAND_CMD_STATUS:
3158fa0e 956 case NAND_CMD_READID:
c5d664aa 957 case NAND_CMD_SET_FEATURES:
30f464b7 958 return;
1da177e4 959
6ea40a3b
BB
960 case NAND_CMD_RNDIN:
961 nand_ccs_delay(chip);
962 return;
963
1da177e4 964 case NAND_CMD_RESET:
ace4dfee 965 if (chip->dev_ready)
1da177e4 966 break;
ace4dfee 967 udelay(chip->chip_delay);
12efdde3
TG
968 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
969 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
970 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
971 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
972 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
973 nand_wait_status_ready(mtd, 250);
1da177e4
LT
974 return;
975
7bc3312b
TG
976 case NAND_CMD_RNDOUT:
977 /* No ready / busy check necessary */
978 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
979 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
980 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
981 NAND_NCE | NAND_CTRL_CHANGE);
6ea40a3b
BB
982
983 nand_ccs_delay(chip);
7bc3312b
TG
984 return;
985
1da177e4 986 case NAND_CMD_READ0:
2165c4a1
BB
987 /*
988 * READ0 is sometimes used to exit GET STATUS mode. When this
989 * is the case no address cycles are requested, and we can use
990 * this information to detect that READSTART should not be
991 * issued.
992 */
993 if (column == -1 && page_addr == -1)
994 return;
995
12efdde3
TG
996 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
997 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
998 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
999 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 1000
e0c7d767 1001 /* This applies to read commands */
1da177e4 1002 default:
61b03bd7 1003 /*
1da177e4 1004 * If we don't have access to the busy pin, we apply the given
8b6e50c9 1005 * command delay.
e0c7d767 1006 */
ace4dfee
TG
1007 if (!chip->dev_ready) {
1008 udelay(chip->chip_delay);
1da177e4 1009 return;
61b03bd7 1010 }
1da177e4 1011 }
3b88775c 1012
8b6e50c9
BN
1013 /*
1014 * Apply this short delay always to ensure that we do wait tWB in
1015 * any case on any machine.
1016 */
e0c7d767 1017 ndelay(100);
3b88775c
TG
1018
1019 nand_wait_ready(mtd);
1da177e4
LT
1020}
1021
2af7c653
SK
1022/**
1023 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
1024 * @chip: the nand chip descriptor
1025 * @mtd: MTD device structure
1026 * @new_state: the state which is requested
2af7c653
SK
1027 *
1028 * Used when in panic, no locks are taken.
1029 */
1030static void panic_nand_get_device(struct nand_chip *chip,
1031 struct mtd_info *mtd, int new_state)
1032{
7854d3f7 1033 /* Hardware controller shared among independent devices */
2af7c653
SK
1034 chip->controller->active = chip;
1035 chip->state = new_state;
1036}
1037
1da177e4
LT
1038/**
1039 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
1040 * @mtd: MTD device structure
1041 * @new_state: the state which is requested
1da177e4
LT
1042 *
1043 * Get the device and lock it for exclusive access
1044 */
2c0a2bed 1045static int
6a8214aa 1046nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 1047{
862eba51 1048 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
1049 spinlock_t *lock = &chip->controller->lock;
1050 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 1051 DECLARE_WAITQUEUE(wait, current);
7351d3a5 1052retry:
0dfc6246
TG
1053 spin_lock(lock);
1054
b8b3ee9a 1055 /* Hardware controller shared among independent devices */
ace4dfee
TG
1056 if (!chip->controller->active)
1057 chip->controller->active = chip;
a36ed299 1058
ace4dfee
TG
1059 if (chip->controller->active == chip && chip->state == FL_READY) {
1060 chip->state = new_state;
0dfc6246 1061 spin_unlock(lock);
962034f4
VW
1062 return 0;
1063 }
1064 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
1065 if (chip->controller->active->state == FL_PM_SUSPENDED) {
1066 chip->state = FL_PM_SUSPENDED;
1067 spin_unlock(lock);
1068 return 0;
6b0d9a84 1069 }
0dfc6246
TG
1070 }
1071 set_current_state(TASK_UNINTERRUPTIBLE);
1072 add_wait_queue(wq, &wait);
1073 spin_unlock(lock);
1074 schedule();
1075 remove_wait_queue(wq, &wait);
1da177e4
LT
1076 goto retry;
1077}
1078
2af7c653 1079/**
8b6e50c9
BN
1080 * panic_nand_wait - [GENERIC] wait until the command is done
1081 * @mtd: MTD device structure
1082 * @chip: NAND chip structure
1083 * @timeo: timeout
2af7c653
SK
1084 *
1085 * Wait for command done. This is a helper function for nand_wait used when
1086 * we are in interrupt context. May happen when in panic and trying to write
b595076a 1087 * an oops through mtdoops.
2af7c653
SK
1088 */
1089static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1090 unsigned long timeo)
1091{
1092 int i;
1093 for (i = 0; i < timeo; i++) {
1094 if (chip->dev_ready) {
1095 if (chip->dev_ready(mtd))
1096 break;
1097 } else {
97d90da8
BB
1098 int ret;
1099 u8 status;
1100
1101 ret = nand_read_data_op(chip, &status, sizeof(status),
1102 true);
1103 if (ret)
1104 return;
1105
1106 if (status & NAND_STATUS_READY)
2af7c653
SK
1107 break;
1108 }
1109 mdelay(1);
f8ac0414 1110 }
2af7c653
SK
1111}
1112
1da177e4 1113/**
8b6e50c9
BN
1114 * nand_wait - [DEFAULT] wait until the command is done
1115 * @mtd: MTD device structure
1116 * @chip: NAND chip structure
1da177e4 1117 *
b70af9be 1118 * Wait for command done. This applies to erase and program only.
844d3b42 1119 */
7bc3312b 1120static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
1121{
1122
b70af9be 1123 unsigned long timeo = 400;
97d90da8
BB
1124 u8 status;
1125 int ret;
1da177e4 1126
8b6e50c9
BN
1127 /*
1128 * Apply this short delay always to ensure that we do wait tWB in any
1129 * case on any machine.
1130 */
e0c7d767 1131 ndelay(100);
1da177e4 1132
97d90da8
BB
1133 ret = nand_status_op(chip, NULL);
1134 if (ret)
1135 return ret;
1da177e4 1136
2af7c653
SK
1137 if (in_interrupt() || oops_in_progress)
1138 panic_nand_wait(mtd, chip, timeo);
1139 else {
6d2559f8 1140 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 1141 do {
2af7c653
SK
1142 if (chip->dev_ready) {
1143 if (chip->dev_ready(mtd))
1144 break;
1145 } else {
97d90da8
BB
1146 ret = nand_read_data_op(chip, &status,
1147 sizeof(status), true);
1148 if (ret)
1149 return ret;
1150
1151 if (status & NAND_STATUS_READY)
2af7c653
SK
1152 break;
1153 }
1154 cond_resched();
b70af9be 1155 } while (time_before(jiffies, timeo));
1da177e4 1156 }
8fe833c1 1157
97d90da8
BB
1158 ret = nand_read_data_op(chip, &status, sizeof(status), true);
1159 if (ret)
1160 return ret;
1161
f251b8df
MC
1162 /* This can happen if in case of timeout or buggy dev_ready */
1163 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
1164 return status;
1165}
1166
789157e4 1167static bool nand_supports_get_features(struct nand_chip *chip, int addr)
97baea1e 1168{
789157e4
MR
1169 return (chip->parameters.supports_set_get_features &&
1170 test_bit(addr, chip->parameters.get_feature_list));
1171}
1172
1173static bool nand_supports_set_features(struct nand_chip *chip, int addr)
1174{
1175 return (chip->parameters.supports_set_get_features &&
1176 test_bit(addr, chip->parameters.set_feature_list));
97baea1e
MR
1177}
1178
1179/**
1180 * nand_get_features - wrapper to perform a GET_FEATURE
1181 * @chip: NAND chip info structure
1182 * @addr: feature address
1183 * @subfeature_param: the subfeature parameters, a four bytes array
1184 *
1185 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1186 * operation cannot be handled.
1187 */
1188int nand_get_features(struct nand_chip *chip, int addr,
1189 u8 *subfeature_param)
1190{
1191 struct mtd_info *mtd = nand_to_mtd(chip);
1192
789157e4 1193 if (!nand_supports_get_features(chip, addr))
97baea1e
MR
1194 return -ENOTSUPP;
1195
1196 return chip->get_features(mtd, chip, addr, subfeature_param);
1197}
1198EXPORT_SYMBOL_GPL(nand_get_features);
1199
1200/**
1201 * nand_set_features - wrapper to perform a SET_FEATURE
1202 * @chip: NAND chip info structure
1203 * @addr: feature address
1204 * @subfeature_param: the subfeature parameters, a four bytes array
1205 *
1206 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1207 * operation cannot be handled.
1208 */
1209int nand_set_features(struct nand_chip *chip, int addr,
1210 u8 *subfeature_param)
1211{
1212 struct mtd_info *mtd = nand_to_mtd(chip);
1213
789157e4 1214 if (!nand_supports_set_features(chip, addr))
97baea1e
MR
1215 return -ENOTSUPP;
1216
1217 return chip->set_features(mtd, chip, addr, subfeature_param);
1218}
1219EXPORT_SYMBOL_GPL(nand_set_features);
1220
d8e725dd
BB
1221/**
1222 * nand_reset_data_interface - Reset data interface and timings
1223 * @chip: The NAND chip
104e442a 1224 * @chipnr: Internal die id
d8e725dd
BB
1225 *
1226 * Reset the Data interface and timings to ONFI mode 0.
1227 *
1228 * Returns 0 for success or negative error code otherwise.
1229 */
104e442a 1230static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
d8e725dd
BB
1231{
1232 struct mtd_info *mtd = nand_to_mtd(chip);
d8e725dd
BB
1233 int ret;
1234
1235 if (!chip->setup_data_interface)
1236 return 0;
1237
1238 /*
1239 * The ONFI specification says:
1240 * "
1241 * To transition from NV-DDR or NV-DDR2 to the SDR data
1242 * interface, the host shall use the Reset (FFh) command
1243 * using SDR timing mode 0. A device in any timing mode is
1244 * required to recognize Reset (FFh) command issued in SDR
1245 * timing mode 0.
1246 * "
1247 *
1248 * Configure the data interface in SDR mode and set the
1249 * timings to timing mode 0.
1250 */
1251
17fa8044
MR
1252 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
1253 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
d8e725dd
BB
1254 if (ret)
1255 pr_err("Failed to configure data interface to SDR timing mode 0\n");
1256
1257 return ret;
1258}
1259
1260/**
1261 * nand_setup_data_interface - Setup the best data interface and timings
1262 * @chip: The NAND chip
104e442a 1263 * @chipnr: Internal die id
d8e725dd
BB
1264 *
1265 * Find and configure the best data interface and NAND timings supported by
1266 * the chip and the driver.
1267 * First tries to retrieve supported timing modes from ONFI information,
1268 * and if the NAND chip does not support ONFI, relies on the
1269 * ->onfi_timing_mode_default specified in the nand_ids table.
1270 *
1271 * Returns 0 for success or negative error code otherwise.
1272 */
104e442a 1273static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
d8e725dd
BB
1274{
1275 struct mtd_info *mtd = nand_to_mtd(chip);
97baea1e
MR
1276 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1277 chip->onfi_timing_mode_default,
1278 };
d8e725dd
BB
1279 int ret;
1280
17fa8044 1281 if (!chip->setup_data_interface)
d8e725dd
BB
1282 return 0;
1283
993447b7 1284 /* Change the mode on the chip side (if supported by the NAND chip) */
789157e4 1285 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
29714d6b 1286 chip->select_chip(mtd, chipnr);
993447b7
MR
1287 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1288 tmode_param);
29714d6b 1289 chip->select_chip(mtd, -1);
d8e725dd 1290 if (ret)
993447b7 1291 return ret;
d8e725dd
BB
1292 }
1293
97baea1e 1294 /* Change the mode on the controller side */
17fa8044 1295 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
415ae78f
MR
1296 if (ret)
1297 return ret;
1298
1299 /* Check the mode has been accepted by the chip, if supported */
789157e4 1300 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
415ae78f
MR
1301 return 0;
1302
1303 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
1304 chip->select_chip(mtd, chipnr);
1305 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1306 tmode_param);
1307 chip->select_chip(mtd, -1);
1308 if (ret)
1309 goto err_reset_chip;
1310
1311 if (tmode_param[0] != chip->onfi_timing_mode_default) {
1312 pr_warn("timing mode %d not acknowledged by the NAND chip\n",
1313 chip->onfi_timing_mode_default);
1314 goto err_reset_chip;
1315 }
1316
1317 return 0;
1318
1319err_reset_chip:
1320 /*
1321 * Fallback to mode 0 if the chip explicitly did not ack the chosen
1322 * timing mode.
1323 */
1324 nand_reset_data_interface(chip, chipnr);
1325 chip->select_chip(mtd, chipnr);
1326 nand_reset_op(chip);
1327 chip->select_chip(mtd, -1);
1328
d8e725dd
BB
1329 return ret;
1330}
1331
1332/**
1333 * nand_init_data_interface - find the best data interface and timings
1334 * @chip: The NAND chip
1335 *
1336 * Find the best data interface and NAND timings supported by the chip
1337 * and the driver.
1338 * First tries to retrieve supported timing modes from ONFI information,
1339 * and if the NAND chip does not support ONFI, relies on the
1340 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1341 * function nand_chip->data_interface is initialized with the best timing mode
1342 * available.
1343 *
1344 * Returns 0 for success or negative error code otherwise.
1345 */
1346static int nand_init_data_interface(struct nand_chip *chip)
1347{
1348 struct mtd_info *mtd = nand_to_mtd(chip);
1349 int modes, mode, ret;
1350
1351 if (!chip->setup_data_interface)
1352 return 0;
1353
1354 /*
1355 * First try to identify the best timings from ONFI parameters and
1356 * if the NAND does not support ONFI, fallback to the default ONFI
1357 * timing mode.
1358 */
1359 modes = onfi_get_async_timing_mode(chip);
1360 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1361 if (!chip->onfi_timing_mode_default)
1362 return 0;
1363
1364 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1365 }
1366
d8e725dd
BB
1367
1368 for (mode = fls(modes) - 1; mode >= 0; mode--) {
17fa8044 1369 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
d8e725dd
BB
1370 if (ret)
1371 continue;
1372
d787b8b3
MR
1373 /*
1374 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
1375 * controller supports the requested timings.
1376 */
104e442a
BB
1377 ret = chip->setup_data_interface(mtd,
1378 NAND_DATA_IFACE_CHECK_ONLY,
17fa8044 1379 &chip->data_interface);
d8e725dd
BB
1380 if (!ret) {
1381 chip->onfi_timing_mode_default = mode;
1382 break;
1383 }
1384 }
1385
1386 return 0;
1387}
1388
8878b126
MR
1389/**
1390 * nand_fill_column_cycles - fill the column cycles of an address
1391 * @chip: The NAND chip
1392 * @addrs: Array of address cycles to fill
1393 * @offset_in_page: The offset in the page
1394 *
1395 * Fills the first or the first two bytes of the @addrs field depending
1396 * on the NAND bus width and the page size.
1397 *
1398 * Returns the number of cycles needed to encode the column, or a negative
1399 * error code in case one of the arguments is invalid.
1400 */
1401static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1402 unsigned int offset_in_page)
1403{
1404 struct mtd_info *mtd = nand_to_mtd(chip);
1405
1406 /* Make sure the offset is less than the actual page size. */
1407 if (offset_in_page > mtd->writesize + mtd->oobsize)
1408 return -EINVAL;
1409
1410 /*
1411 * On small page NANDs, there's a dedicated command to access the OOB
1412 * area, and the column address is relative to the start of the OOB
1413 * area, not the start of the page. Asjust the address accordingly.
1414 */
1415 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1416 offset_in_page -= mtd->writesize;
1417
1418 /*
1419 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1420 * wide, then it must be divided by 2.
1421 */
1422 if (chip->options & NAND_BUSWIDTH_16) {
1423 if (WARN_ON(offset_in_page % 2))
1424 return -EINVAL;
1425
1426 offset_in_page /= 2;
1427 }
1428
1429 addrs[0] = offset_in_page;
1430
1431 /*
1432 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1433 * need 2
1434 */
1435 if (mtd->writesize <= 512)
1436 return 1;
1437
1438 addrs[1] = offset_in_page >> 8;
1439
1440 return 2;
1441}
1442
1443static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1444 unsigned int offset_in_page, void *buf,
1445 unsigned int len)
1446{
1447 struct mtd_info *mtd = nand_to_mtd(chip);
1448 const struct nand_sdr_timings *sdr =
1449 nand_get_sdr_timings(&chip->data_interface);
1450 u8 addrs[4];
1451 struct nand_op_instr instrs[] = {
1452 NAND_OP_CMD(NAND_CMD_READ0, 0),
1453 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1454 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1455 PSEC_TO_NSEC(sdr->tRR_min)),
1456 NAND_OP_DATA_IN(len, buf, 0),
1457 };
1458 struct nand_operation op = NAND_OPERATION(instrs);
1459 int ret;
1460
1461 /* Drop the DATA_IN instruction if len is set to 0. */
1462 if (!len)
1463 op.ninstrs--;
1464
1465 if (offset_in_page >= mtd->writesize)
1466 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1467 else if (offset_in_page >= 256 &&
1468 !(chip->options & NAND_BUSWIDTH_16))
1469 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1470
1471 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1472 if (ret < 0)
1473 return ret;
1474
1475 addrs[1] = page;
1476 addrs[2] = page >> 8;
1477
1478 if (chip->options & NAND_ROW_ADDR_3) {
1479 addrs[3] = page >> 16;
1480 instrs[1].ctx.addr.naddrs++;
1481 }
1482
1483 return nand_exec_op(chip, &op);
1484}
1485
1486static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1487 unsigned int offset_in_page, void *buf,
1488 unsigned int len)
1489{
1490 const struct nand_sdr_timings *sdr =
1491 nand_get_sdr_timings(&chip->data_interface);
1492 u8 addrs[5];
1493 struct nand_op_instr instrs[] = {
1494 NAND_OP_CMD(NAND_CMD_READ0, 0),
1495 NAND_OP_ADDR(4, addrs, 0),
1496 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1497 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1498 PSEC_TO_NSEC(sdr->tRR_min)),
1499 NAND_OP_DATA_IN(len, buf, 0),
1500 };
1501 struct nand_operation op = NAND_OPERATION(instrs);
1502 int ret;
1503
1504 /* Drop the DATA_IN instruction if len is set to 0. */
1505 if (!len)
1506 op.ninstrs--;
1507
1508 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1509 if (ret < 0)
1510 return ret;
1511
1512 addrs[2] = page;
1513 addrs[3] = page >> 8;
1514
1515 if (chip->options & NAND_ROW_ADDR_3) {
1516 addrs[4] = page >> 16;
1517 instrs[1].ctx.addr.naddrs++;
1518 }
1519
1520 return nand_exec_op(chip, &op);
1521}
1522
97d90da8
BB
1523/**
1524 * nand_read_page_op - Do a READ PAGE operation
1525 * @chip: The NAND chip
1526 * @page: page to read
1527 * @offset_in_page: offset within the page
1528 * @buf: buffer used to store the data
1529 * @len: length of the buffer
1530 *
1531 * This function issues a READ PAGE operation.
1532 * This function does not select/unselect the CS line.
1533 *
1534 * Returns 0 on success, a negative error code otherwise.
1535 */
1536int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1537 unsigned int offset_in_page, void *buf, unsigned int len)
1538{
1539 struct mtd_info *mtd = nand_to_mtd(chip);
1540
1541 if (len && !buf)
1542 return -EINVAL;
1543
1544 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1545 return -EINVAL;
1546
8878b126
MR
1547 if (chip->exec_op) {
1548 if (mtd->writesize > 512)
1549 return nand_lp_exec_read_page_op(chip, page,
1550 offset_in_page, buf,
1551 len);
1552
1553 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1554 buf, len);
1555 }
1556
97d90da8
BB
1557 chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
1558 if (len)
1559 chip->read_buf(mtd, buf, len);
1560
1561 return 0;
1562}
1563EXPORT_SYMBOL_GPL(nand_read_page_op);
1564
1565/**
1566 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1567 * @chip: The NAND chip
1568 * @page: parameter page to read
1569 * @buf: buffer used to store the data
1570 * @len: length of the buffer
1571 *
1572 * This function issues a READ PARAMETER PAGE operation.
1573 * This function does not select/unselect the CS line.
1574 *
1575 * Returns 0 on success, a negative error code otherwise.
1576 */
1577static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1578 unsigned int len)
1579{
1580 struct mtd_info *mtd = nand_to_mtd(chip);
1581 unsigned int i;
1582 u8 *p = buf;
1583
1584 if (len && !buf)
1585 return -EINVAL;
1586
8878b126
MR
1587 if (chip->exec_op) {
1588 const struct nand_sdr_timings *sdr =
1589 nand_get_sdr_timings(&chip->data_interface);
1590 struct nand_op_instr instrs[] = {
1591 NAND_OP_CMD(NAND_CMD_PARAM, 0),
1592 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1593 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1594 PSEC_TO_NSEC(sdr->tRR_min)),
1595 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1596 };
1597 struct nand_operation op = NAND_OPERATION(instrs);
1598
1599 /* Drop the DATA_IN instruction if len is set to 0. */
1600 if (!len)
1601 op.ninstrs--;
1602
1603 return nand_exec_op(chip, &op);
1604 }
1605
97d90da8
BB
1606 chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
1607 for (i = 0; i < len; i++)
1608 p[i] = chip->read_byte(mtd);
1609
1610 return 0;
1611}
1612
1613/**
1614 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1615 * @chip: The NAND chip
1616 * @offset_in_page: offset within the page
1617 * @buf: buffer used to store the data
1618 * @len: length of the buffer
1619 * @force_8bit: force 8-bit bus access
1620 *
1621 * This function issues a CHANGE READ COLUMN operation.
1622 * This function does not select/unselect the CS line.
1623 *
1624 * Returns 0 on success, a negative error code otherwise.
1625 */
1626int nand_change_read_column_op(struct nand_chip *chip,
1627 unsigned int offset_in_page, void *buf,
1628 unsigned int len, bool force_8bit)
1629{
1630 struct mtd_info *mtd = nand_to_mtd(chip);
1631
1632 if (len && !buf)
1633 return -EINVAL;
1634
1635 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1636 return -EINVAL;
1637
8878b126
MR
1638 /* Small page NANDs do not support column change. */
1639 if (mtd->writesize <= 512)
1640 return -ENOTSUPP;
1641
1642 if (chip->exec_op) {
1643 const struct nand_sdr_timings *sdr =
1644 nand_get_sdr_timings(&chip->data_interface);
1645 u8 addrs[2] = {};
1646 struct nand_op_instr instrs[] = {
1647 NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1648 NAND_OP_ADDR(2, addrs, 0),
1649 NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1650 PSEC_TO_NSEC(sdr->tCCS_min)),
1651 NAND_OP_DATA_IN(len, buf, 0),
1652 };
1653 struct nand_operation op = NAND_OPERATION(instrs);
1654 int ret;
1655
1656 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1657 if (ret < 0)
1658 return ret;
1659
1660 /* Drop the DATA_IN instruction if len is set to 0. */
1661 if (!len)
1662 op.ninstrs--;
1663
1664 instrs[3].ctx.data.force_8bit = force_8bit;
1665
1666 return nand_exec_op(chip, &op);
1667 }
1668
97d90da8
BB
1669 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
1670 if (len)
1671 chip->read_buf(mtd, buf, len);
1672
1673 return 0;
1674}
1675EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1676
1677/**
1678 * nand_read_oob_op - Do a READ OOB operation
1679 * @chip: The NAND chip
1680 * @page: page to read
1681 * @offset_in_oob: offset within the OOB area
1682 * @buf: buffer used to store the data
1683 * @len: length of the buffer
1684 *
1685 * This function issues a READ OOB operation.
1686 * This function does not select/unselect the CS line.
1687 *
1688 * Returns 0 on success, a negative error code otherwise.
1689 */
1690int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1691 unsigned int offset_in_oob, void *buf, unsigned int len)
1692{
1693 struct mtd_info *mtd = nand_to_mtd(chip);
1694
1695 if (len && !buf)
1696 return -EINVAL;
1697
1698 if (offset_in_oob + len > mtd->oobsize)
1699 return -EINVAL;
1700
8878b126
MR
1701 if (chip->exec_op)
1702 return nand_read_page_op(chip, page,
1703 mtd->writesize + offset_in_oob,
1704 buf, len);
1705
97d90da8
BB
1706 chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
1707 if (len)
1708 chip->read_buf(mtd, buf, len);
1709
1710 return 0;
1711}
1712EXPORT_SYMBOL_GPL(nand_read_oob_op);
1713
8878b126
MR
1714static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1715 unsigned int offset_in_page, const void *buf,
1716 unsigned int len, bool prog)
1717{
1718 struct mtd_info *mtd = nand_to_mtd(chip);
1719 const struct nand_sdr_timings *sdr =
1720 nand_get_sdr_timings(&chip->data_interface);
1721 u8 addrs[5] = {};
1722 struct nand_op_instr instrs[] = {
1723 /*
1724 * The first instruction will be dropped if we're dealing
1725 * with a large page NAND and adjusted if we're dealing
1726 * with a small page NAND and the page offset is > 255.
1727 */
1728 NAND_OP_CMD(NAND_CMD_READ0, 0),
1729 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1730 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1731 NAND_OP_DATA_OUT(len, buf, 0),
1732 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1733 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1734 };
1735 struct nand_operation op = NAND_OPERATION(instrs);
1736 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1737 int ret;
1738 u8 status;
1739
1740 if (naddrs < 0)
1741 return naddrs;
1742
1743 addrs[naddrs++] = page;
1744 addrs[naddrs++] = page >> 8;
1745 if (chip->options & NAND_ROW_ADDR_3)
1746 addrs[naddrs++] = page >> 16;
1747
1748 instrs[2].ctx.addr.naddrs = naddrs;
1749
1750 /* Drop the last two instructions if we're not programming the page. */
1751 if (!prog) {
1752 op.ninstrs -= 2;
1753 /* Also drop the DATA_OUT instruction if empty. */
1754 if (!len)
1755 op.ninstrs--;
1756 }
1757
1758 if (mtd->writesize <= 512) {
1759 /*
1760 * Small pages need some more tweaking: we have to adjust the
1761 * first instruction depending on the page offset we're trying
1762 * to access.
1763 */
1764 if (offset_in_page >= mtd->writesize)
1765 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1766 else if (offset_in_page >= 256 &&
1767 !(chip->options & NAND_BUSWIDTH_16))
1768 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1769 } else {
1770 /*
1771 * Drop the first command if we're dealing with a large page
1772 * NAND.
1773 */
1774 op.instrs++;
1775 op.ninstrs--;
1776 }
1777
1778 ret = nand_exec_op(chip, &op);
1779 if (!prog || ret)
1780 return ret;
1781
1782 ret = nand_status_op(chip, &status);
1783 if (ret)
1784 return ret;
1785
1786 return status;
1787}
1788
97d90da8
BB
1789/**
1790 * nand_prog_page_begin_op - starts a PROG PAGE operation
1791 * @chip: The NAND chip
1792 * @page: page to write
1793 * @offset_in_page: offset within the page
1794 * @buf: buffer containing the data to write to the page
1795 * @len: length of the buffer
1796 *
1797 * This function issues the first half of a PROG PAGE operation.
1798 * This function does not select/unselect the CS line.
1799 *
1800 * Returns 0 on success, a negative error code otherwise.
1801 */
1802int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1803 unsigned int offset_in_page, const void *buf,
1804 unsigned int len)
1805{
1806 struct mtd_info *mtd = nand_to_mtd(chip);
1807
1808 if (len && !buf)
1809 return -EINVAL;
1810
1811 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1812 return -EINVAL;
1813
8878b126
MR
1814 if (chip->exec_op)
1815 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1816 len, false);
1817
97d90da8
BB
1818 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1819
1820 if (buf)
1821 chip->write_buf(mtd, buf, len);
1822
1823 return 0;
1824}
1825EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1826
1827/**
1828 * nand_prog_page_end_op - ends a PROG PAGE operation
1829 * @chip: The NAND chip
1830 *
1831 * This function issues the second half of a PROG PAGE operation.
1832 * This function does not select/unselect the CS line.
1833 *
1834 * Returns 0 on success, a negative error code otherwise.
1835 */
1836int nand_prog_page_end_op(struct nand_chip *chip)
1837{
1838 struct mtd_info *mtd = nand_to_mtd(chip);
8878b126
MR
1839 int ret;
1840 u8 status;
1841
1842 if (chip->exec_op) {
1843 const struct nand_sdr_timings *sdr =
1844 nand_get_sdr_timings(&chip->data_interface);
1845 struct nand_op_instr instrs[] = {
1846 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1847 PSEC_TO_NSEC(sdr->tWB_max)),
1848 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1849 };
1850 struct nand_operation op = NAND_OPERATION(instrs);
1851
1852 ret = nand_exec_op(chip, &op);
1853 if (ret)
1854 return ret;
97d90da8 1855
8878b126
MR
1856 ret = nand_status_op(chip, &status);
1857 if (ret)
1858 return ret;
1859 } else {
1860 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1861 ret = chip->waitfunc(mtd, chip);
1862 if (ret < 0)
1863 return ret;
1864
1865 status = ret;
1866 }
97d90da8 1867
97d90da8
BB
1868 if (status & NAND_STATUS_FAIL)
1869 return -EIO;
1870
1871 return 0;
1872}
1873EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1874
1875/**
1876 * nand_prog_page_op - Do a full PROG PAGE operation
1877 * @chip: The NAND chip
1878 * @page: page to write
1879 * @offset_in_page: offset within the page
1880 * @buf: buffer containing the data to write to the page
1881 * @len: length of the buffer
1882 *
1883 * This function issues a full PROG PAGE operation.
1884 * This function does not select/unselect the CS line.
1885 *
1886 * Returns 0 on success, a negative error code otherwise.
1887 */
1888int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1889 unsigned int offset_in_page, const void *buf,
1890 unsigned int len)
1891{
1892 struct mtd_info *mtd = nand_to_mtd(chip);
1893 int status;
1894
1895 if (!len || !buf)
1896 return -EINVAL;
1897
1898 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1899 return -EINVAL;
1900
8878b126
MR
1901 if (chip->exec_op) {
1902 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1903 len, true);
1904 } else {
1905 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1906 chip->write_buf(mtd, buf, len);
1907 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1908 status = chip->waitfunc(mtd, chip);
1909 }
97d90da8 1910
97d90da8
BB
1911 if (status & NAND_STATUS_FAIL)
1912 return -EIO;
1913
1914 return 0;
1915}
1916EXPORT_SYMBOL_GPL(nand_prog_page_op);
1917
1918/**
1919 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1920 * @chip: The NAND chip
1921 * @offset_in_page: offset within the page
1922 * @buf: buffer containing the data to send to the NAND
1923 * @len: length of the buffer
1924 * @force_8bit: force 8-bit bus access
1925 *
1926 * This function issues a CHANGE WRITE COLUMN operation.
1927 * This function does not select/unselect the CS line.
1928 *
1929 * Returns 0 on success, a negative error code otherwise.
1930 */
1931int nand_change_write_column_op(struct nand_chip *chip,
1932 unsigned int offset_in_page,
1933 const void *buf, unsigned int len,
1934 bool force_8bit)
1935{
1936 struct mtd_info *mtd = nand_to_mtd(chip);
1937
1938 if (len && !buf)
1939 return -EINVAL;
1940
1941 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1942 return -EINVAL;
1943
8878b126
MR
1944 /* Small page NANDs do not support column change. */
1945 if (mtd->writesize <= 512)
1946 return -ENOTSUPP;
1947
1948 if (chip->exec_op) {
1949 const struct nand_sdr_timings *sdr =
1950 nand_get_sdr_timings(&chip->data_interface);
1951 u8 addrs[2];
1952 struct nand_op_instr instrs[] = {
1953 NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1954 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1955 NAND_OP_DATA_OUT(len, buf, 0),
1956 };
1957 struct nand_operation op = NAND_OPERATION(instrs);
1958 int ret;
1959
1960 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1961 if (ret < 0)
1962 return ret;
1963
1964 instrs[2].ctx.data.force_8bit = force_8bit;
1965
1966 /* Drop the DATA_OUT instruction if len is set to 0. */
1967 if (!len)
1968 op.ninstrs--;
1969
1970 return nand_exec_op(chip, &op);
1971 }
1972
97d90da8
BB
1973 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
1974 if (len)
1975 chip->write_buf(mtd, buf, len);
1976
1977 return 0;
1978}
1979EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1980
1981/**
1982 * nand_readid_op - Do a READID operation
1983 * @chip: The NAND chip
1984 * @addr: address cycle to pass after the READID command
1985 * @buf: buffer used to store the ID
1986 * @len: length of the buffer
1987 *
1988 * This function sends a READID command and reads back the ID returned by the
1989 * NAND.
1990 * This function does not select/unselect the CS line.
1991 *
1992 * Returns 0 on success, a negative error code otherwise.
1993 */
1994int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1995 unsigned int len)
1996{
1997 struct mtd_info *mtd = nand_to_mtd(chip);
1998 unsigned int i;
1999 u8 *id = buf;
2000
2001 if (len && !buf)
2002 return -EINVAL;
2003
8878b126
MR
2004 if (chip->exec_op) {
2005 const struct nand_sdr_timings *sdr =
2006 nand_get_sdr_timings(&chip->data_interface);
2007 struct nand_op_instr instrs[] = {
2008 NAND_OP_CMD(NAND_CMD_READID, 0),
2009 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
2010 NAND_OP_8BIT_DATA_IN(len, buf, 0),
2011 };
2012 struct nand_operation op = NAND_OPERATION(instrs);
2013
2014 /* Drop the DATA_IN instruction if len is set to 0. */
2015 if (!len)
2016 op.ninstrs--;
2017
2018 return nand_exec_op(chip, &op);
2019 }
2020
97d90da8
BB
2021 chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
2022
2023 for (i = 0; i < len; i++)
2024 id[i] = chip->read_byte(mtd);
2025
2026 return 0;
2027}
2028EXPORT_SYMBOL_GPL(nand_readid_op);
2029
2030/**
2031 * nand_status_op - Do a STATUS operation
2032 * @chip: The NAND chip
2033 * @status: out variable to store the NAND status
2034 *
2035 * This function sends a STATUS command and reads back the status returned by
2036 * the NAND.
2037 * This function does not select/unselect the CS line.
2038 *
2039 * Returns 0 on success, a negative error code otherwise.
2040 */
2041int nand_status_op(struct nand_chip *chip, u8 *status)
2042{
2043 struct mtd_info *mtd = nand_to_mtd(chip);
2044
8878b126
MR
2045 if (chip->exec_op) {
2046 const struct nand_sdr_timings *sdr =
2047 nand_get_sdr_timings(&chip->data_interface);
2048 struct nand_op_instr instrs[] = {
2049 NAND_OP_CMD(NAND_CMD_STATUS,
2050 PSEC_TO_NSEC(sdr->tADL_min)),
2051 NAND_OP_8BIT_DATA_IN(1, status, 0),
2052 };
2053 struct nand_operation op = NAND_OPERATION(instrs);
2054
2055 if (!status)
2056 op.ninstrs--;
2057
2058 return nand_exec_op(chip, &op);
2059 }
2060
97d90da8
BB
2061 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
2062 if (status)
2063 *status = chip->read_byte(mtd);
2064
2065 return 0;
2066}
2067EXPORT_SYMBOL_GPL(nand_status_op);
2068
2069/**
2070 * nand_exit_status_op - Exit a STATUS operation
2071 * @chip: The NAND chip
2072 *
2073 * This function sends a READ0 command to cancel the effect of the STATUS
2074 * command to avoid reading only the status until a new read command is sent.
2075 *
2076 * This function does not select/unselect the CS line.
2077 *
2078 * Returns 0 on success, a negative error code otherwise.
2079 */
2080int nand_exit_status_op(struct nand_chip *chip)
2081{
2082 struct mtd_info *mtd = nand_to_mtd(chip);
2083
8878b126
MR
2084 if (chip->exec_op) {
2085 struct nand_op_instr instrs[] = {
2086 NAND_OP_CMD(NAND_CMD_READ0, 0),
2087 };
2088 struct nand_operation op = NAND_OPERATION(instrs);
2089
2090 return nand_exec_op(chip, &op);
2091 }
2092
97d90da8
BB
2093 chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
2094
2095 return 0;
2096}
2097EXPORT_SYMBOL_GPL(nand_exit_status_op);
2098
2099/**
2100 * nand_erase_op - Do an erase operation
2101 * @chip: The NAND chip
2102 * @eraseblock: block to erase
2103 *
2104 * This function sends an ERASE command and waits for the NAND to be ready
2105 * before returning.
2106 * This function does not select/unselect the CS line.
2107 *
2108 * Returns 0 on success, a negative error code otherwise.
2109 */
2110int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
2111{
2112 struct mtd_info *mtd = nand_to_mtd(chip);
2113 unsigned int page = eraseblock <<
2114 (chip->phys_erase_shift - chip->page_shift);
8878b126
MR
2115 int ret;
2116 u8 status;
97d90da8 2117
8878b126
MR
2118 if (chip->exec_op) {
2119 const struct nand_sdr_timings *sdr =
2120 nand_get_sdr_timings(&chip->data_interface);
2121 u8 addrs[3] = { page, page >> 8, page >> 16 };
2122 struct nand_op_instr instrs[] = {
2123 NAND_OP_CMD(NAND_CMD_ERASE1, 0),
2124 NAND_OP_ADDR(2, addrs, 0),
2125 NAND_OP_CMD(NAND_CMD_ERASE2,
2126 PSEC_TO_MSEC(sdr->tWB_max)),
2127 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
2128 };
2129 struct nand_operation op = NAND_OPERATION(instrs);
97d90da8 2130
8878b126
MR
2131 if (chip->options & NAND_ROW_ADDR_3)
2132 instrs[1].ctx.addr.naddrs++;
2133
2134 ret = nand_exec_op(chip, &op);
2135 if (ret)
2136 return ret;
2137
2138 ret = nand_status_op(chip, &status);
2139 if (ret)
2140 return ret;
2141 } else {
2142 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2143 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2144
2145 ret = chip->waitfunc(mtd, chip);
2146 if (ret < 0)
2147 return ret;
2148
2149 status = ret;
2150 }
97d90da8
BB
2151
2152 if (status & NAND_STATUS_FAIL)
2153 return -EIO;
2154
2155 return 0;
2156}
2157EXPORT_SYMBOL_GPL(nand_erase_op);
2158
2159/**
2160 * nand_set_features_op - Do a SET FEATURES operation
2161 * @chip: The NAND chip
2162 * @feature: feature id
2163 * @data: 4 bytes of data
2164 *
2165 * This function sends a SET FEATURES command and waits for the NAND to be
2166 * ready before returning.
2167 * This function does not select/unselect the CS line.
2168 *
2169 * Returns 0 on success, a negative error code otherwise.
2170 */
2171static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2172 const void *data)
2173{
2174 struct mtd_info *mtd = nand_to_mtd(chip);
2175 const u8 *params = data;
8878b126
MR
2176 int i, ret;
2177 u8 status;
97d90da8 2178
8878b126
MR
2179 if (chip->exec_op) {
2180 const struct nand_sdr_timings *sdr =
2181 nand_get_sdr_timings(&chip->data_interface);
2182 struct nand_op_instr instrs[] = {
2183 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2184 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
2185 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2186 PSEC_TO_NSEC(sdr->tWB_max)),
2187 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
2188 };
2189 struct nand_operation op = NAND_OPERATION(instrs);
2190
2191 ret = nand_exec_op(chip, &op);
2192 if (ret)
2193 return ret;
2194
2195 ret = nand_status_op(chip, &status);
2196 if (ret)
2197 return ret;
2198 } else {
2199 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
2200 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2201 chip->write_byte(mtd, params[i]);
2202
2203 ret = chip->waitfunc(mtd, chip);
2204 if (ret < 0)
2205 return ret;
2206
2207 status = ret;
2208 }
97d90da8 2209
97d90da8
BB
2210 if (status & NAND_STATUS_FAIL)
2211 return -EIO;
2212
2213 return 0;
2214}
2215
2216/**
2217 * nand_get_features_op - Do a GET FEATURES operation
2218 * @chip: The NAND chip
2219 * @feature: feature id
2220 * @data: 4 bytes of data
2221 *
2222 * This function sends a GET FEATURES command and waits for the NAND to be
2223 * ready before returning.
2224 * This function does not select/unselect the CS line.
2225 *
2226 * Returns 0 on success, a negative error code otherwise.
2227 */
2228static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2229 void *data)
2230{
2231 struct mtd_info *mtd = nand_to_mtd(chip);
2232 u8 *params = data;
2233 int i;
2234
8878b126
MR
2235 if (chip->exec_op) {
2236 const struct nand_sdr_timings *sdr =
2237 nand_get_sdr_timings(&chip->data_interface);
2238 struct nand_op_instr instrs[] = {
2239 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2240 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
2241 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
2242 PSEC_TO_NSEC(sdr->tRR_min)),
2243 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2244 data, 0),
2245 };
2246 struct nand_operation op = NAND_OPERATION(instrs);
2247
2248 return nand_exec_op(chip, &op);
2249 }
2250
97d90da8
BB
2251 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
2252 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2253 params[i] = chip->read_byte(mtd);
2254
2255 return 0;
2256}
2257
2258/**
2259 * nand_reset_op - Do a reset operation
2260 * @chip: The NAND chip
2261 *
2262 * This function sends a RESET command and waits for the NAND to be ready
2263 * before returning.
2264 * This function does not select/unselect the CS line.
2265 *
2266 * Returns 0 on success, a negative error code otherwise.
2267 */
2268int nand_reset_op(struct nand_chip *chip)
2269{
2270 struct mtd_info *mtd = nand_to_mtd(chip);
2271
8878b126
MR
2272 if (chip->exec_op) {
2273 const struct nand_sdr_timings *sdr =
2274 nand_get_sdr_timings(&chip->data_interface);
2275 struct nand_op_instr instrs[] = {
2276 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
2277 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
2278 };
2279 struct nand_operation op = NAND_OPERATION(instrs);
2280
2281 return nand_exec_op(chip, &op);
2282 }
2283
97d90da8
BB
2284 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2285
2286 return 0;
2287}
2288EXPORT_SYMBOL_GPL(nand_reset_op);
2289
2290/**
2291 * nand_read_data_op - Read data from the NAND
2292 * @chip: The NAND chip
2293 * @buf: buffer used to store the data
2294 * @len: length of the buffer
2295 * @force_8bit: force 8-bit bus access
2296 *
2297 * This function does a raw data read on the bus. Usually used after launching
2298 * another NAND operation like nand_read_page_op().
2299 * This function does not select/unselect the CS line.
2300 *
2301 * Returns 0 on success, a negative error code otherwise.
2302 */
2303int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2304 bool force_8bit)
2305{
2306 struct mtd_info *mtd = nand_to_mtd(chip);
2307
2308 if (!len || !buf)
2309 return -EINVAL;
2310
8878b126
MR
2311 if (chip->exec_op) {
2312 struct nand_op_instr instrs[] = {
2313 NAND_OP_DATA_IN(len, buf, 0),
2314 };
2315 struct nand_operation op = NAND_OPERATION(instrs);
2316
2317 instrs[0].ctx.data.force_8bit = force_8bit;
2318
2319 return nand_exec_op(chip, &op);
2320 }
2321
97d90da8
BB
2322 if (force_8bit) {
2323 u8 *p = buf;
2324 unsigned int i;
2325
2326 for (i = 0; i < len; i++)
2327 p[i] = chip->read_byte(mtd);
2328 } else {
2329 chip->read_buf(mtd, buf, len);
2330 }
2331
2332 return 0;
2333}
2334EXPORT_SYMBOL_GPL(nand_read_data_op);
2335
2336/**
2337 * nand_write_data_op - Write data from the NAND
2338 * @chip: The NAND chip
2339 * @buf: buffer containing the data to send on the bus
2340 * @len: length of the buffer
2341 * @force_8bit: force 8-bit bus access
2342 *
2343 * This function does a raw data write on the bus. Usually used after launching
2344 * another NAND operation like nand_write_page_begin_op().
2345 * This function does not select/unselect the CS line.
2346 *
2347 * Returns 0 on success, a negative error code otherwise.
2348 */
2349int nand_write_data_op(struct nand_chip *chip, const void *buf,
2350 unsigned int len, bool force_8bit)
2351{
2352 struct mtd_info *mtd = nand_to_mtd(chip);
2353
2354 if (!len || !buf)
2355 return -EINVAL;
2356
8878b126
MR
2357 if (chip->exec_op) {
2358 struct nand_op_instr instrs[] = {
2359 NAND_OP_DATA_OUT(len, buf, 0),
2360 };
2361 struct nand_operation op = NAND_OPERATION(instrs);
2362
2363 instrs[0].ctx.data.force_8bit = force_8bit;
2364
2365 return nand_exec_op(chip, &op);
2366 }
2367
97d90da8
BB
2368 if (force_8bit) {
2369 const u8 *p = buf;
2370 unsigned int i;
2371
2372 for (i = 0; i < len; i++)
2373 chip->write_byte(mtd, p[i]);
2374 } else {
2375 chip->write_buf(mtd, buf, len);
2376 }
2377
2378 return 0;
2379}
2380EXPORT_SYMBOL_GPL(nand_write_data_op);
2381
8878b126
MR
2382/**
2383 * struct nand_op_parser_ctx - Context used by the parser
2384 * @instrs: array of all the instructions that must be addressed
2385 * @ninstrs: length of the @instrs array
2386 * @subop: Sub-operation to be passed to the NAND controller
2387 *
2388 * This structure is used by the core to split NAND operations into
2389 * sub-operations that can be handled by the NAND controller.
2390 */
2391struct nand_op_parser_ctx {
2392 const struct nand_op_instr *instrs;
2393 unsigned int ninstrs;
2394 struct nand_subop subop;
2395};
2396
2397/**
2398 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2399 * @pat: the parser pattern element that matches @instr
2400 * @instr: pointer to the instruction to check
2401 * @start_offset: this is an in/out parameter. If @instr has already been
2402 * split, then @start_offset is the offset from which to start
2403 * (either an address cycle or an offset in the data buffer).
2404 * Conversely, if the function returns true (ie. instr must be
2405 * split), this parameter is updated to point to the first
2406 * data/address cycle that has not been taken care of.
2407 *
2408 * Some NAND controllers are limited and cannot send X address cycles with a
2409 * unique operation, or cannot read/write more than Y bytes at the same time.
2410 * In this case, split the instruction that does not fit in a single
2411 * controller-operation into two or more chunks.
2412 *
2413 * Returns true if the instruction must be split, false otherwise.
2414 * The @start_offset parameter is also updated to the offset at which the next
2415 * bundle of instruction must start (if an address or a data instruction).
2416 */
2417static bool
2418nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2419 const struct nand_op_instr *instr,
2420 unsigned int *start_offset)
2421{
2422 switch (pat->type) {
2423 case NAND_OP_ADDR_INSTR:
c1a72e2d 2424 if (!pat->ctx.addr.maxcycles)
8878b126
MR
2425 break;
2426
2427 if (instr->ctx.addr.naddrs - *start_offset >
c1a72e2d
MR
2428 pat->ctx.addr.maxcycles) {
2429 *start_offset += pat->ctx.addr.maxcycles;
8878b126
MR
2430 return true;
2431 }
2432 break;
2433
2434 case NAND_OP_DATA_IN_INSTR:
2435 case NAND_OP_DATA_OUT_INSTR:
c1a72e2d 2436 if (!pat->ctx.data.maxlen)
8878b126
MR
2437 break;
2438
c1a72e2d
MR
2439 if (instr->ctx.data.len - *start_offset >
2440 pat->ctx.data.maxlen) {
2441 *start_offset += pat->ctx.data.maxlen;
8878b126
MR
2442 return true;
2443 }
2444 break;
2445
2446 default:
2447 break;
2448 }
2449
2450 return false;
2451}
2452
2453/**
2454 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2455 * remaining in the parser context
2456 * @pat: the pattern to test
2457 * @ctx: the parser context structure to match with the pattern @pat
2458 *
2459 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2460 * Returns true if this is the case, false ortherwise. When true is returned,
2461 * @ctx->subop is updated with the set of instructions to be passed to the
2462 * controller driver.
2463 */
2464static bool
2465nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2466 struct nand_op_parser_ctx *ctx)
2467{
2468 unsigned int instr_offset = ctx->subop.first_instr_start_off;
2469 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2470 const struct nand_op_instr *instr = ctx->subop.instrs;
2471 unsigned int i, ninstrs;
2472
2473 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2474 /*
2475 * The pattern instruction does not match the operation
2476 * instruction. If the instruction is marked optional in the
2477 * pattern definition, we skip the pattern element and continue
2478 * to the next one. If the element is mandatory, there's no
2479 * match and we can return false directly.
2480 */
2481 if (instr->type != pat->elems[i].type) {
2482 if (!pat->elems[i].optional)
2483 return false;
2484
2485 continue;
2486 }
2487
2488 /*
2489 * Now check the pattern element constraints. If the pattern is
2490 * not able to handle the whole instruction in a single step,
2491 * we have to split it.
2492 * The last_instr_end_off value comes back updated to point to
2493 * the position where we have to split the instruction (the
2494 * start of the next subop chunk).
2495 */
2496 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2497 &instr_offset)) {
2498 ninstrs++;
2499 i++;
2500 break;
2501 }
2502
2503 instr++;
2504 ninstrs++;
2505 instr_offset = 0;
2506 }
2507
2508 /*
2509 * This can happen if all instructions of a pattern are optional.
2510 * Still, if there's not at least one instruction handled by this
2511 * pattern, this is not a match, and we should try the next one (if
2512 * any).
2513 */
2514 if (!ninstrs)
2515 return false;
2516
2517 /*
2518 * We had a match on the pattern head, but the pattern may be longer
2519 * than the instructions we're asked to execute. We need to make sure
2520 * there's no mandatory elements in the pattern tail.
2521 */
2522 for (; i < pat->nelems; i++) {
2523 if (!pat->elems[i].optional)
2524 return false;
2525 }
2526
2527 /*
2528 * We have a match: update the subop structure accordingly and return
2529 * true.
2530 */
2531 ctx->subop.ninstrs = ninstrs;
2532 ctx->subop.last_instr_end_off = instr_offset;
2533
2534 return true;
2535}
2536
2537#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2538static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2539{
2540 const struct nand_op_instr *instr;
2541 char *prefix = " ";
2542 unsigned int i;
2543
2544 pr_debug("executing subop:\n");
2545
2546 for (i = 0; i < ctx->ninstrs; i++) {
2547 instr = &ctx->instrs[i];
2548
2549 if (instr == &ctx->subop.instrs[0])
2550 prefix = " ->";
2551
2552 switch (instr->type) {
2553 case NAND_OP_CMD_INSTR:
2554 pr_debug("%sCMD [0x%02x]\n", prefix,
2555 instr->ctx.cmd.opcode);
2556 break;
2557 case NAND_OP_ADDR_INSTR:
2558 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
2559 instr->ctx.addr.naddrs,
2560 instr->ctx.addr.naddrs < 64 ?
2561 instr->ctx.addr.naddrs : 64,
2562 instr->ctx.addr.addrs);
2563 break;
2564 case NAND_OP_DATA_IN_INSTR:
2565 pr_debug("%sDATA_IN [%d B%s]\n", prefix,
2566 instr->ctx.data.len,
2567 instr->ctx.data.force_8bit ?
2568 ", force 8-bit" : "");
2569 break;
2570 case NAND_OP_DATA_OUT_INSTR:
2571 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
2572 instr->ctx.data.len,
2573 instr->ctx.data.force_8bit ?
2574 ", force 8-bit" : "");
2575 break;
2576 case NAND_OP_WAITRDY_INSTR:
2577 pr_debug("%sWAITRDY [max %d ms]\n", prefix,
2578 instr->ctx.waitrdy.timeout_ms);
2579 break;
2580 }
2581
2582 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2583 prefix = " ";
2584 }
2585}
2586#else
2587static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2588{
2589 /* NOP */
2590}
2591#endif
2592
2593/**
2594 * nand_op_parser_exec_op - exec_op parser
2595 * @chip: the NAND chip
2596 * @parser: patterns description provided by the controller driver
2597 * @op: the NAND operation to address
2598 * @check_only: when true, the function only checks if @op can be handled but
2599 * does not execute the operation
2600 *
2601 * Helper function designed to ease integration of NAND controller drivers that
2602 * only support a limited set of instruction sequences. The supported sequences
2603 * are described in @parser, and the framework takes care of splitting @op into
2604 * multiple sub-operations (if required) and pass them back to the ->exec()
2605 * callback of the matching pattern if @check_only is set to false.
2606 *
2607 * NAND controller drivers should call this function from their own ->exec_op()
2608 * implementation.
2609 *
2610 * Returns 0 on success, a negative error code otherwise. A failure can be
2611 * caused by an unsupported operation (none of the supported patterns is able
2612 * to handle the requested operation), or an error returned by one of the
2613 * matching pattern->exec() hook.
2614 */
2615int nand_op_parser_exec_op(struct nand_chip *chip,
2616 const struct nand_op_parser *parser,
2617 const struct nand_operation *op, bool check_only)
2618{
2619 struct nand_op_parser_ctx ctx = {
2620 .subop.instrs = op->instrs,
2621 .instrs = op->instrs,
2622 .ninstrs = op->ninstrs,
2623 };
2624 unsigned int i;
2625
2626 while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2627 int ret;
2628
2629 for (i = 0; i < parser->npatterns; i++) {
2630 const struct nand_op_parser_pattern *pattern;
2631
2632 pattern = &parser->patterns[i];
2633 if (!nand_op_parser_match_pat(pattern, &ctx))
2634 continue;
2635
2636 nand_op_parser_trace(&ctx);
2637
2638 if (check_only)
2639 break;
2640
2641 ret = pattern->exec(chip, &ctx.subop);
2642 if (ret)
2643 return ret;
2644
2645 break;
2646 }
2647
2648 if (i == parser->npatterns) {
2649 pr_debug("->exec_op() parser: pattern not found!\n");
2650 return -ENOTSUPP;
2651 }
2652
2653 /*
2654 * Update the context structure by pointing to the start of the
2655 * next subop.
2656 */
2657 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2658 if (ctx.subop.last_instr_end_off)
2659 ctx.subop.instrs -= 1;
2660
2661 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2662 }
2663
2664 return 0;
2665}
2666EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2667
2668static bool nand_instr_is_data(const struct nand_op_instr *instr)
2669{
2670 return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2671 instr->type == NAND_OP_DATA_OUT_INSTR);
2672}
2673
2674static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2675 unsigned int instr_idx)
2676{
2677 return subop && instr_idx < subop->ninstrs;
2678}
2679
2680static int nand_subop_get_start_off(const struct nand_subop *subop,
2681 unsigned int instr_idx)
2682{
2683 if (instr_idx)
2684 return 0;
2685
2686 return subop->first_instr_start_off;
2687}
2688
2689/**
2690 * nand_subop_get_addr_start_off - Get the start offset in an address array
2691 * @subop: The entire sub-operation
2692 * @instr_idx: Index of the instruction inside the sub-operation
2693 *
2694 * During driver development, one could be tempted to directly use the
2695 * ->addr.addrs field of address instructions. This is wrong as address
2696 * instructions might be split.
2697 *
2698 * Given an address instruction, returns the offset of the first cycle to issue.
2699 */
2700int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2701 unsigned int instr_idx)
2702{
2703 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2704 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2705 return -EINVAL;
2706
2707 return nand_subop_get_start_off(subop, instr_idx);
2708}
2709EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2710
2711/**
2712 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2713 * @subop: The entire sub-operation
2714 * @instr_idx: Index of the instruction inside the sub-operation
2715 *
2716 * During driver development, one could be tempted to directly use the
2717 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2718 * might be split.
2719 *
2720 * Given an address instruction, returns the number of address cycle to issue.
2721 */
2722int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2723 unsigned int instr_idx)
2724{
2725 int start_off, end_off;
2726
2727 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2728 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
2729 return -EINVAL;
2730
2731 start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2732
2733 if (instr_idx == subop->ninstrs - 1 &&
2734 subop->last_instr_end_off)
2735 end_off = subop->last_instr_end_off;
2736 else
2737 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2738
2739 return end_off - start_off;
2740}
2741EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
d8e725dd 2742
8878b126
MR
2743/**
2744 * nand_subop_get_data_start_off - Get the start offset in a data array
2745 * @subop: The entire sub-operation
2746 * @instr_idx: Index of the instruction inside the sub-operation
2747 *
2748 * During driver development, one could be tempted to directly use the
2749 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2750 * instructions might be split.
2751 *
2752 * Given a data instruction, returns the offset to start from.
2753 */
2754int nand_subop_get_data_start_off(const struct nand_subop *subop,
2755 unsigned int instr_idx)
2756{
2757 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2758 !nand_instr_is_data(&subop->instrs[instr_idx]))
2759 return -EINVAL;
d8e725dd 2760
8878b126 2761 return nand_subop_get_start_off(subop, instr_idx);
d8e725dd 2762}
8878b126 2763EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
d8e725dd 2764
8878b126
MR
2765/**
2766 * nand_subop_get_data_len - Get the number of bytes to retrieve
2767 * @subop: The entire sub-operation
2768 * @instr_idx: Index of the instruction inside the sub-operation
2769 *
2770 * During driver development, one could be tempted to directly use the
2771 * ->data->len field of a data instruction. This is wrong as data instructions
2772 * might be split.
2773 *
2774 * Returns the length of the chunk of data to send/receive.
2775 */
2776int nand_subop_get_data_len(const struct nand_subop *subop,
2777 unsigned int instr_idx)
d8e725dd 2778{
8878b126
MR
2779 int start_off = 0, end_off;
2780
2781 if (!nand_subop_instr_is_valid(subop, instr_idx) ||
2782 !nand_instr_is_data(&subop->instrs[instr_idx]))
2783 return -EINVAL;
2784
2785 start_off = nand_subop_get_data_start_off(subop, instr_idx);
2786
2787 if (instr_idx == subop->ninstrs - 1 &&
2788 subop->last_instr_end_off)
2789 end_off = subop->last_instr_end_off;
2790 else
2791 end_off = subop->instrs[instr_idx].ctx.data.len;
2792
2793 return end_off - start_off;
d8e725dd 2794}
8878b126 2795EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
d8e725dd 2796
2f94abfe
SH
2797/**
2798 * nand_reset - Reset and initialize a NAND device
2799 * @chip: The NAND chip
73f907fd 2800 * @chipnr: Internal die id
2f94abfe 2801 *
17fa8044
MR
2802 * Save the timings data structure, then apply SDR timings mode 0 (see
2803 * nand_reset_data_interface for details), do the reset operation, and
2804 * apply back the previous timings.
2805 *
2806 * Returns 0 on success, a negative error code otherwise.
2f94abfe 2807 */
73f907fd 2808int nand_reset(struct nand_chip *chip, int chipnr)
2f94abfe
SH
2809{
2810 struct mtd_info *mtd = nand_to_mtd(chip);
17fa8044 2811 struct nand_data_interface saved_data_intf = chip->data_interface;
d8e725dd
BB
2812 int ret;
2813
104e442a 2814 ret = nand_reset_data_interface(chip, chipnr);
d8e725dd
BB
2815 if (ret)
2816 return ret;
2f94abfe 2817
73f907fd
BB
2818 /*
2819 * The CS line has to be released before we can apply the new NAND
2820 * interface settings, hence this weird ->select_chip() dance.
2821 */
2822 chip->select_chip(mtd, chipnr);
97d90da8 2823 ret = nand_reset_op(chip);
73f907fd 2824 chip->select_chip(mtd, -1);
97d90da8
BB
2825 if (ret)
2826 return ret;
2f94abfe 2827
107b7d6a
MR
2828 /*
2829 * A nand_reset_data_interface() put both the NAND chip and the NAND
2830 * controller in timings mode 0. If the default mode for this chip is
2831 * also 0, no need to proceed to the change again. Plus, at probe time,
2832 * nand_setup_data_interface() uses ->set/get_features() which would
2833 * fail anyway as the parameter page is not available yet.
2834 */
2835 if (!chip->onfi_timing_mode_default)
2836 return 0;
2837
17fa8044 2838 chip->data_interface = saved_data_intf;
104e442a 2839 ret = nand_setup_data_interface(chip, chipnr);
d8e725dd
BB
2840 if (ret)
2841 return ret;
2842
2f94abfe
SH
2843 return 0;
2844}
b9bb9842 2845EXPORT_SYMBOL_GPL(nand_reset);
2f94abfe 2846
730a43fb
BB
2847/**
2848 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2849 * @buf: buffer to test
2850 * @len: buffer length
2851 * @bitflips_threshold: maximum number of bitflips
2852 *
2853 * Check if a buffer contains only 0xff, which means the underlying region
2854 * has been erased and is ready to be programmed.
2855 * The bitflips_threshold specify the maximum number of bitflips before
2856 * considering the region is not erased.
2857 * Note: The logic of this function has been extracted from the memweight
2858 * implementation, except that nand_check_erased_buf function exit before
2859 * testing the whole buffer if the number of bitflips exceed the
2860 * bitflips_threshold value.
2861 *
2862 * Returns a positive number of bitflips less than or equal to
2863 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2864 * threshold.
2865 */
2866static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2867{
2868 const unsigned char *bitmap = buf;
2869 int bitflips = 0;
2870 int weight;
2871
2872 for (; len && ((uintptr_t)bitmap) % sizeof(long);
2873 len--, bitmap++) {
2874 weight = hweight8(*bitmap);
2875 bitflips += BITS_PER_BYTE - weight;
2876 if (unlikely(bitflips > bitflips_threshold))
2877 return -EBADMSG;
2878 }
2879
2880 for (; len >= sizeof(long);
2881 len -= sizeof(long), bitmap += sizeof(long)) {
086567f1
PM
2882 unsigned long d = *((unsigned long *)bitmap);
2883 if (d == ~0UL)
2884 continue;
2885 weight = hweight_long(d);
730a43fb
BB
2886 bitflips += BITS_PER_LONG - weight;
2887 if (unlikely(bitflips > bitflips_threshold))
2888 return -EBADMSG;
2889 }
2890
2891 for (; len > 0; len--, bitmap++) {
2892 weight = hweight8(*bitmap);
2893 bitflips += BITS_PER_BYTE - weight;
2894 if (unlikely(bitflips > bitflips_threshold))
2895 return -EBADMSG;
2896 }
2897
2898 return bitflips;
2899}
2900
2901/**
2902 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2903 * 0xff data
2904 * @data: data buffer to test
2905 * @datalen: data length
2906 * @ecc: ECC buffer
2907 * @ecclen: ECC length
2908 * @extraoob: extra OOB buffer
2909 * @extraooblen: extra OOB length
2910 * @bitflips_threshold: maximum number of bitflips
2911 *
2912 * Check if a data buffer and its associated ECC and OOB data contains only
2913 * 0xff pattern, which means the underlying region has been erased and is
2914 * ready to be programmed.
2915 * The bitflips_threshold specify the maximum number of bitflips before
2916 * considering the region as not erased.
2917 *
2918 * Note:
2919 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2920 * different from the NAND page size. When fixing bitflips, ECC engines will
2921 * report the number of errors per chunk, and the NAND core infrastructure
2922 * expect you to return the maximum number of bitflips for the whole page.
2923 * This is why you should always use this function on a single chunk and
2924 * not on the whole page. After checking each chunk you should update your
2925 * max_bitflips value accordingly.
2926 * 2/ When checking for bitflips in erased pages you should not only check
2927 * the payload data but also their associated ECC data, because a user might
2928 * have programmed almost all bits to 1 but a few. In this case, we
2929 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
2930 * this case.
2931 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2932 * data are protected by the ECC engine.
2933 * It could also be used if you support subpages and want to attach some
2934 * extra OOB data to an ECC chunk.
2935 *
2936 * Returns a positive number of bitflips less than or equal to
2937 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2938 * threshold. In case of success, the passed buffers are filled with 0xff.
2939 */
2940int nand_check_erased_ecc_chunk(void *data, int datalen,
2941 void *ecc, int ecclen,
2942 void *extraoob, int extraooblen,
2943 int bitflips_threshold)
2944{
2945 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2946
2947 data_bitflips = nand_check_erased_buf(data, datalen,
2948 bitflips_threshold);
2949 if (data_bitflips < 0)
2950 return data_bitflips;
2951
2952 bitflips_threshold -= data_bitflips;
2953
2954 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2955 if (ecc_bitflips < 0)
2956 return ecc_bitflips;
2957
2958 bitflips_threshold -= ecc_bitflips;
2959
2960 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2961 bitflips_threshold);
2962 if (extraoob_bitflips < 0)
2963 return extraoob_bitflips;
2964
2965 if (data_bitflips)
2966 memset(data, 0xff, datalen);
2967
2968 if (ecc_bitflips)
2969 memset(ecc, 0xff, ecclen);
2970
2971 if (extraoob_bitflips)
2972 memset(extraoob, 0xff, extraooblen);
2973
2974 return data_bitflips + ecc_bitflips + extraoob_bitflips;
2975}
2976EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2977
8593fbc6 2978/**
7854d3f7 2979 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
2980 * @mtd: mtd info structure
2981 * @chip: nand chip info structure
2982 * @buf: buffer to store read data
1fbb938d 2983 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 2984 * @page: page number to read
52ff49df 2985 *
7854d3f7 2986 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2987 */
cc0f51ec
TP
2988int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2989 uint8_t *buf, int oob_required, int page)
8593fbc6 2990{
97d90da8
BB
2991 int ret;
2992
25f815f6 2993 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
97d90da8
BB
2994 if (ret)
2995 return ret;
2996
2997 if (oob_required) {
2998 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2999 false);
3000 if (ret)
3001 return ret;
3002 }
3003
8593fbc6
TG
3004 return 0;
3005}
cc0f51ec 3006EXPORT_SYMBOL(nand_read_page_raw);
8593fbc6 3007
52ff49df 3008/**
7854d3f7 3009 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
3010 * @mtd: mtd info structure
3011 * @chip: nand chip info structure
3012 * @buf: buffer to store read data
1fbb938d 3013 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3014 * @page: page number to read
52ff49df
DB
3015 *
3016 * We need a special oob layout and handling even when OOB isn't used.
3017 */
7351d3a5 3018static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
3019 struct nand_chip *chip, uint8_t *buf,
3020 int oob_required, int page)
52ff49df
DB
3021{
3022 int eccsize = chip->ecc.size;
3023 int eccbytes = chip->ecc.bytes;
3024 uint8_t *oob = chip->oob_poi;
97d90da8 3025 int steps, size, ret;
52ff49df 3026
25f815f6
BB
3027 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3028 if (ret)
3029 return ret;
52ff49df
DB
3030
3031 for (steps = chip->ecc.steps; steps > 0; steps--) {
97d90da8
BB
3032 ret = nand_read_data_op(chip, buf, eccsize, false);
3033 if (ret)
3034 return ret;
3035
52ff49df
DB
3036 buf += eccsize;
3037
3038 if (chip->ecc.prepad) {
97d90da8
BB
3039 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3040 false);
3041 if (ret)
3042 return ret;
3043
52ff49df
DB
3044 oob += chip->ecc.prepad;
3045 }
3046
97d90da8
BB
3047 ret = nand_read_data_op(chip, oob, eccbytes, false);
3048 if (ret)
3049 return ret;
3050
52ff49df
DB
3051 oob += eccbytes;
3052
3053 if (chip->ecc.postpad) {
97d90da8
BB
3054 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3055 false);
3056 if (ret)
3057 return ret;
3058
52ff49df
DB
3059 oob += chip->ecc.postpad;
3060 }
3061 }
3062
3063 size = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
3064 if (size) {
3065 ret = nand_read_data_op(chip, oob, size, false);
3066 if (ret)
3067 return ret;
3068 }
52ff49df
DB
3069
3070 return 0;
3071}
3072
1da177e4 3073/**
7854d3f7 3074 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
3075 * @mtd: mtd info structure
3076 * @chip: nand chip info structure
3077 * @buf: buffer to store read data
1fbb938d 3078 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3079 * @page: page number to read
068e3c0a 3080 */
f5bbdacc 3081static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 3082 uint8_t *buf, int oob_required, int page)
1da177e4 3083{
846031d3 3084 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
3085 int eccbytes = chip->ecc.bytes;
3086 int eccsteps = chip->ecc.steps;
3087 uint8_t *p = buf;
c0313b96
MY
3088 uint8_t *ecc_calc = chip->ecc.calc_buf;
3089 uint8_t *ecc_code = chip->ecc.code_buf;
3f91e94f 3090 unsigned int max_bitflips = 0;
f5bbdacc 3091
1fbb938d 3092 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
3093
3094 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3095 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3096
846031d3
BB
3097 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3098 chip->ecc.total);
3099 if (ret)
3100 return ret;
f5bbdacc
TG
3101
3102 eccsteps = chip->ecc.steps;
3103 p = buf;
3104
3105 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3106 int stat;
3107
3108 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 3109 if (stat < 0) {
f5bbdacc 3110 mtd->ecc_stats.failed++;
3f91e94f 3111 } else {
f5bbdacc 3112 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3113 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3114 }
f5bbdacc 3115 }
3f91e94f 3116 return max_bitflips;
22c60f5f 3117}
1da177e4 3118
3d459559 3119/**
837a6ba4 3120 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
3121 * @mtd: mtd info structure
3122 * @chip: nand chip info structure
3123 * @data_offs: offset of requested data within the page
3124 * @readlen: data length
3125 * @bufpoi: buffer to store read data
e004debd 3126 * @page: page number to read
3d459559 3127 */
7351d3a5 3128static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
3129 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
3130 int page)
3d459559 3131{
846031d3 3132 int start_step, end_step, num_steps, ret;
3d459559
AK
3133 uint8_t *p;
3134 int data_col_addr, i, gaps = 0;
3135 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3136 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
846031d3 3137 int index, section = 0;
3f91e94f 3138 unsigned int max_bitflips = 0;
846031d3 3139 struct mtd_oob_region oobregion = { };
3d459559 3140
7854d3f7 3141 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
3142 start_step = data_offs / chip->ecc.size;
3143 end_step = (data_offs + readlen - 1) / chip->ecc.size;
3144 num_steps = end_step - start_step + 1;
4a4163ca 3145 index = start_step * chip->ecc.bytes;
3d459559 3146
8b6e50c9 3147 /* Data size aligned to ECC ecc.size */
3d459559
AK
3148 datafrag_len = num_steps * chip->ecc.size;
3149 eccfrag_len = num_steps * chip->ecc.bytes;
3150
3151 data_col_addr = start_step * chip->ecc.size;
3152 /* If we read not a page aligned data */
3d459559 3153 p = bufpoi + data_col_addr;
25f815f6 3154 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
97d90da8
BB
3155 if (ret)
3156 return ret;
3d459559 3157
8b6e50c9 3158 /* Calculate ECC */
3d459559 3159 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
c0313b96 3160 chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
3d459559 3161
8b6e50c9
BN
3162 /*
3163 * The performance is faster if we position offsets according to
7854d3f7 3164 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 3165 */
846031d3
BB
3166 ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3167 if (ret)
3168 return ret;
3169
3170 if (oobregion.length < eccfrag_len)
3171 gaps = 1;
3172
3d459559 3173 if (gaps) {
97d90da8
BB
3174 ret = nand_change_read_column_op(chip, mtd->writesize,
3175 chip->oob_poi, mtd->oobsize,
3176 false);
3177 if (ret)
3178 return ret;
3d459559 3179 } else {
8b6e50c9 3180 /*
7854d3f7 3181 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
3182 * about buswidth alignment in read_buf.
3183 */
846031d3 3184 aligned_pos = oobregion.offset & ~(busw - 1);
3d459559 3185 aligned_len = eccfrag_len;
846031d3 3186 if (oobregion.offset & (busw - 1))
3d459559 3187 aligned_len++;
846031d3
BB
3188 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3189 (busw - 1))
3d459559
AK
3190 aligned_len++;
3191
97d90da8
BB
3192 ret = nand_change_read_column_op(chip,
3193 mtd->writesize + aligned_pos,
3194 &chip->oob_poi[aligned_pos],
3195 aligned_len, false);
3196 if (ret)
3197 return ret;
3d459559
AK
3198 }
3199
c0313b96 3200 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
846031d3
BB
3201 chip->oob_poi, index, eccfrag_len);
3202 if (ret)
3203 return ret;
3d459559
AK
3204
3205 p = bufpoi + data_col_addr;
3206 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3207 int stat;
3208
c0313b96
MY
3209 stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
3210 &chip->ecc.calc_buf[i]);
40cbe6ee
BB
3211 if (stat == -EBADMSG &&
3212 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3213 /* check for empty pages with bitflips */
3214 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
c0313b96 3215 &chip->ecc.code_buf[i],
40cbe6ee
BB
3216 chip->ecc.bytes,
3217 NULL, 0,
3218 chip->ecc.strength);
3219 }
3220
3f91e94f 3221 if (stat < 0) {
3d459559 3222 mtd->ecc_stats.failed++;
3f91e94f 3223 } else {
3d459559 3224 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3225 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3226 }
3d459559 3227 }
3f91e94f 3228 return max_bitflips;
3d459559
AK
3229}
3230
068e3c0a 3231/**
7854d3f7 3232 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
3233 * @mtd: mtd info structure
3234 * @chip: nand chip info structure
3235 * @buf: buffer to store read data
1fbb938d 3236 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3237 * @page: page number to read
068e3c0a 3238 *
7854d3f7 3239 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 3240 */
f5bbdacc 3241static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 3242 uint8_t *buf, int oob_required, int page)
1da177e4 3243{
846031d3 3244 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
3245 int eccbytes = chip->ecc.bytes;
3246 int eccsteps = chip->ecc.steps;
3247 uint8_t *p = buf;
c0313b96
MY
3248 uint8_t *ecc_calc = chip->ecc.calc_buf;
3249 uint8_t *ecc_code = chip->ecc.code_buf;
3f91e94f 3250 unsigned int max_bitflips = 0;
f5bbdacc 3251
25f815f6
BB
3252 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3253 if (ret)
3254 return ret;
3255
f5bbdacc
TG
3256 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3257 chip->ecc.hwctl(mtd, NAND_ECC_READ);
97d90da8
BB
3258
3259 ret = nand_read_data_op(chip, p, eccsize, false);
3260 if (ret)
3261 return ret;
3262
f5bbdacc 3263 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 3264 }
97d90da8
BB
3265
3266 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3267 if (ret)
3268 return ret;
1da177e4 3269
846031d3
BB
3270 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3271 chip->ecc.total);
3272 if (ret)
3273 return ret;
1da177e4 3274
f5bbdacc
TG
3275 eccsteps = chip->ecc.steps;
3276 p = buf;
61b03bd7 3277
f5bbdacc
TG
3278 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3279 int stat;
1da177e4 3280
f5bbdacc 3281 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
40cbe6ee
BB
3282 if (stat == -EBADMSG &&
3283 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3284 /* check for empty pages with bitflips */
3285 stat = nand_check_erased_ecc_chunk(p, eccsize,
3286 &ecc_code[i], eccbytes,
3287 NULL, 0,
3288 chip->ecc.strength);
3289 }
3290
3f91e94f 3291 if (stat < 0) {
f5bbdacc 3292 mtd->ecc_stats.failed++;
3f91e94f 3293 } else {
f5bbdacc 3294 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3295 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3296 }
f5bbdacc 3297 }
3f91e94f 3298 return max_bitflips;
f5bbdacc 3299}
1da177e4 3300
6e0cb135 3301/**
7854d3f7 3302 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
3303 * @mtd: mtd info structure
3304 * @chip: nand chip info structure
3305 * @buf: buffer to store read data
1fbb938d 3306 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3307 * @page: page number to read
6e0cb135 3308 *
8b6e50c9
BN
3309 * Hardware ECC for large page chips, require OOB to be read first. For this
3310 * ECC mode, the write_page method is re-used from ECC_HW. These methods
3311 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
3312 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
3313 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
3314 */
3315static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 3316 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135 3317{
846031d3 3318 int i, eccsize = chip->ecc.size, ret;
6e0cb135
SN
3319 int eccbytes = chip->ecc.bytes;
3320 int eccsteps = chip->ecc.steps;
3321 uint8_t *p = buf;
c0313b96
MY
3322 uint8_t *ecc_code = chip->ecc.code_buf;
3323 uint8_t *ecc_calc = chip->ecc.calc_buf;
3f91e94f 3324 unsigned int max_bitflips = 0;
6e0cb135
SN
3325
3326 /* Read the OOB area first */
97d90da8
BB
3327 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3328 if (ret)
3329 return ret;
3330
3331 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3332 if (ret)
3333 return ret;
6e0cb135 3334
846031d3
BB
3335 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3336 chip->ecc.total);
3337 if (ret)
3338 return ret;
6e0cb135
SN
3339
3340 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3341 int stat;
3342
3343 chip->ecc.hwctl(mtd, NAND_ECC_READ);
97d90da8
BB
3344
3345 ret = nand_read_data_op(chip, p, eccsize, false);
3346 if (ret)
3347 return ret;
3348
6e0cb135
SN
3349 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3350
3351 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
40cbe6ee
BB
3352 if (stat == -EBADMSG &&
3353 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3354 /* check for empty pages with bitflips */
3355 stat = nand_check_erased_ecc_chunk(p, eccsize,
3356 &ecc_code[i], eccbytes,
3357 NULL, 0,
3358 chip->ecc.strength);
3359 }
3360
3f91e94f 3361 if (stat < 0) {
6e0cb135 3362 mtd->ecc_stats.failed++;
3f91e94f 3363 } else {
6e0cb135 3364 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
3365 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3366 }
6e0cb135 3367 }
3f91e94f 3368 return max_bitflips;
6e0cb135
SN
3369}
3370
f5bbdacc 3371/**
7854d3f7 3372 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
3373 * @mtd: mtd info structure
3374 * @chip: nand chip info structure
3375 * @buf: buffer to store read data
1fbb938d 3376 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 3377 * @page: page number to read
f5bbdacc 3378 *
8b6e50c9
BN
3379 * The hw generator calculates the error syndrome automatically. Therefore we
3380 * need a special oob layout and handling.
f5bbdacc
TG
3381 */
3382static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 3383 uint8_t *buf, int oob_required, int page)
f5bbdacc 3384{
97d90da8 3385 int ret, i, eccsize = chip->ecc.size;
f5bbdacc
TG
3386 int eccbytes = chip->ecc.bytes;
3387 int eccsteps = chip->ecc.steps;
40cbe6ee 3388 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
f5bbdacc 3389 uint8_t *p = buf;
f75e5097 3390 uint8_t *oob = chip->oob_poi;
3f91e94f 3391 unsigned int max_bitflips = 0;
1da177e4 3392
25f815f6
BB
3393 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3394 if (ret)
3395 return ret;
3396
f5bbdacc
TG
3397 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3398 int stat;
61b03bd7 3399
f5bbdacc 3400 chip->ecc.hwctl(mtd, NAND_ECC_READ);
97d90da8
BB
3401
3402 ret = nand_read_data_op(chip, p, eccsize, false);
3403 if (ret)
3404 return ret;
1da177e4 3405
f5bbdacc 3406 if (chip->ecc.prepad) {
97d90da8
BB
3407 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3408 false);
3409 if (ret)
3410 return ret;
3411
f5bbdacc
TG
3412 oob += chip->ecc.prepad;
3413 }
1da177e4 3414
f5bbdacc 3415 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
97d90da8
BB
3416
3417 ret = nand_read_data_op(chip, oob, eccbytes, false);
3418 if (ret)
3419 return ret;
3420
f5bbdacc 3421 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 3422
f5bbdacc 3423 oob += eccbytes;
1da177e4 3424
f5bbdacc 3425 if (chip->ecc.postpad) {
97d90da8
BB
3426 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3427 false);
3428 if (ret)
3429 return ret;
3430
f5bbdacc 3431 oob += chip->ecc.postpad;
61b03bd7 3432 }
40cbe6ee
BB
3433
3434 if (stat == -EBADMSG &&
3435 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3436 /* check for empty pages with bitflips */
3437 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3438 oob - eccpadbytes,
3439 eccpadbytes,
3440 NULL, 0,
3441 chip->ecc.strength);
3442 }
3443
3444 if (stat < 0) {
3445 mtd->ecc_stats.failed++;
3446 } else {
3447 mtd->ecc_stats.corrected += stat;
3448 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3449 }
f5bbdacc 3450 }
1da177e4 3451
f5bbdacc 3452 /* Calculate remaining oob bytes */
7e4178f9 3453 i = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
3454 if (i) {
3455 ret = nand_read_data_op(chip, oob, i, false);
3456 if (ret)
3457 return ret;
3458 }
61b03bd7 3459
3f91e94f 3460 return max_bitflips;
f5bbdacc 3461}
1da177e4 3462
f5bbdacc 3463/**
7854d3f7 3464 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
846031d3 3465 * @mtd: mtd info structure
8b6e50c9
BN
3466 * @oob: oob destination address
3467 * @ops: oob ops structure
3468 * @len: size of oob to transfer
8593fbc6 3469 */
846031d3 3470static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
7014568b 3471 struct mtd_oob_ops *ops, size_t len)
8593fbc6 3472{
846031d3
BB
3473 struct nand_chip *chip = mtd_to_nand(mtd);
3474 int ret;
3475
f8ac0414 3476 switch (ops->mode) {
8593fbc6 3477
0612b9dd
BN
3478 case MTD_OPS_PLACE_OOB:
3479 case MTD_OPS_RAW:
8593fbc6
TG
3480 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3481 return oob + len;
3482
846031d3
BB
3483 case MTD_OPS_AUTO_OOB:
3484 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3485 ops->ooboffs, len);
3486 BUG_ON(ret);
3487 return oob + len;
3488
8593fbc6
TG
3489 default:
3490 BUG();
3491 }
3492 return NULL;
3493}
3494
ba84fb59
BN
3495/**
3496 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3497 * @mtd: MTD device structure
3498 * @retry_mode: the retry mode to use
3499 *
3500 * Some vendors supply a special command to shift the Vt threshold, to be used
3501 * when there are too many bitflips in a page (i.e., ECC error). After setting
3502 * a new threshold, the host should retry reading the page.
3503 */
3504static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
3505{
862eba51 3506 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
3507
3508 pr_debug("setting READ RETRY mode %d\n", retry_mode);
3509
3510 if (retry_mode >= chip->read_retries)
3511 return -EINVAL;
3512
3513 if (!chip->setup_read_retry)
3514 return -EOPNOTSUPP;
3515
3516 return chip->setup_read_retry(mtd, retry_mode);
3517}
3518
8593fbc6 3519/**
7854d3f7 3520 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
3521 * @mtd: MTD device structure
3522 * @from: offset to read from
3523 * @ops: oob ops structure
f5bbdacc
TG
3524 *
3525 * Internal function. Called with chip held.
3526 */
8593fbc6
TG
3527static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
3528 struct mtd_oob_ops *ops)
f5bbdacc 3529{
e47f3db4 3530 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 3531 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 3532 int ret = 0;
8593fbc6 3533 uint32_t readlen = ops->len;
7014568b 3534 uint32_t oobreadlen = ops->ooblen;
29f1058a 3535 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
9aca334e 3536
8593fbc6 3537 uint8_t *bufpoi, *oob, *buf;
66507c7b 3538 int use_bufpoi;
edbc4540 3539 unsigned int max_bitflips = 0;
ba84fb59 3540 int retry_mode = 0;
b72f3dfb 3541 bool ecc_fail = false;
1da177e4 3542
f5bbdacc
TG
3543 chipnr = (int)(from >> chip->chip_shift);
3544 chip->select_chip(mtd, chipnr);
61b03bd7 3545
f5bbdacc
TG
3546 realpage = (int)(from >> chip->page_shift);
3547 page = realpage & chip->pagemask;
1da177e4 3548
f5bbdacc 3549 col = (int)(from & (mtd->writesize - 1));
61b03bd7 3550
8593fbc6
TG
3551 buf = ops->datbuf;
3552 oob = ops->oobbuf;
e47f3db4 3553 oob_required = oob ? 1 : 0;
8593fbc6 3554
f8ac0414 3555 while (1) {
b72f3dfb
BN
3556 unsigned int ecc_failures = mtd->ecc_stats.failed;
3557
f5bbdacc
TG
3558 bytes = min(mtd->writesize - col, readlen);
3559 aligned = (bytes == mtd->writesize);
61b03bd7 3560
66507c7b
KD
3561 if (!aligned)
3562 use_bufpoi = 1;
3563 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
3564 use_bufpoi = !virt_addr_valid(buf) ||
3565 !IS_ALIGNED((unsigned long)buf,
3566 chip->buf_align);
66507c7b
KD
3567 else
3568 use_bufpoi = 0;
3569
8b6e50c9 3570 /* Is the current page in the buffer? */
8593fbc6 3571 if (realpage != chip->pagebuf || oob) {
c0313b96 3572 bufpoi = use_bufpoi ? chip->data_buf : buf;
66507c7b
KD
3573
3574 if (use_bufpoi && aligned)
3575 pr_debug("%s: using read bounce buffer for buf@%p\n",
3576 __func__, buf);
61b03bd7 3577
ba84fb59 3578read_retry:
edbc4540
MD
3579 /*
3580 * Now read the page into the buffer. Absent an error,
3581 * the read methods return max bitflips per ecc step.
3582 */
0612b9dd 3583 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 3584 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
3585 oob_required,
3586 page);
a5ff4f10
JW
3587 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3588 !oob)
7351d3a5 3589 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
3590 col, bytes, bufpoi,
3591 page);
956e944c 3592 else
46a8cf2d 3593 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 3594 oob_required, page);
6d77b9d0 3595 if (ret < 0) {
66507c7b 3596 if (use_bufpoi)
6d77b9d0
BN
3597 /* Invalidate page cache */
3598 chip->pagebuf = -1;
1da177e4 3599 break;
6d77b9d0 3600 }
f5bbdacc
TG
3601
3602 /* Transfer not aligned data */
66507c7b 3603 if (use_bufpoi) {
a5ff4f10 3604 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 3605 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 3606 (ops->mode != MTD_OPS_RAW)) {
3d459559 3607 chip->pagebuf = realpage;
edbc4540
MD
3608 chip->pagebuf_bitflips = ret;
3609 } else {
6d77b9d0
BN
3610 /* Invalidate page cache */
3611 chip->pagebuf = -1;
edbc4540 3612 }
c0313b96 3613 memcpy(buf, chip->data_buf + col, bytes);
f5bbdacc
TG
3614 }
3615
8593fbc6 3616 if (unlikely(oob)) {
b64d39d8
ML
3617 int toread = min(oobreadlen, max_oobsize);
3618
3619 if (toread) {
846031d3 3620 oob = nand_transfer_oob(mtd,
b64d39d8
ML
3621 oob, ops, toread);
3622 oobreadlen -= toread;
3623 }
8593fbc6 3624 }
5bc7c33c
BN
3625
3626 if (chip->options & NAND_NEED_READRDY) {
3627 /* Apply delay or wait for ready/busy pin */
3628 if (!chip->dev_ready)
3629 udelay(chip->chip_delay);
3630 else
3631 nand_wait_ready(mtd);
3632 }
b72f3dfb 3633
ba84fb59 3634 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 3635 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
3636 retry_mode++;
3637 ret = nand_setup_read_retry(mtd,
3638 retry_mode);
3639 if (ret < 0)
3640 break;
3641
3642 /* Reset failures; retry */
3643 mtd->ecc_stats.failed = ecc_failures;
3644 goto read_retry;
3645 } else {
3646 /* No more retry modes; real failure */
3647 ecc_fail = true;
3648 }
3649 }
3650
3651 buf += bytes;
07604686 3652 max_bitflips = max_t(unsigned int, max_bitflips, ret);
8593fbc6 3653 } else {
c0313b96 3654 memcpy(buf, chip->data_buf + col, bytes);
8593fbc6 3655 buf += bytes;
edbc4540
MD
3656 max_bitflips = max_t(unsigned int, max_bitflips,
3657 chip->pagebuf_bitflips);
8593fbc6 3658 }
1da177e4 3659
f5bbdacc 3660 readlen -= bytes;
61b03bd7 3661
ba84fb59
BN
3662 /* Reset to retry mode 0 */
3663 if (retry_mode) {
3664 ret = nand_setup_read_retry(mtd, 0);
3665 if (ret < 0)
3666 break;
3667 retry_mode = 0;
3668 }
3669
f5bbdacc 3670 if (!readlen)
61b03bd7 3671 break;
1da177e4 3672
8b6e50c9 3673 /* For subsequent reads align to page boundary */
1da177e4
LT
3674 col = 0;
3675 /* Increment page address */
3676 realpage++;
3677
ace4dfee 3678 page = realpage & chip->pagemask;
1da177e4
LT
3679 /* Check, if we cross a chip boundary */
3680 if (!page) {
3681 chipnr++;
ace4dfee
TG
3682 chip->select_chip(mtd, -1);
3683 chip->select_chip(mtd, chipnr);
1da177e4 3684 }
1da177e4 3685 }
b0bb6903 3686 chip->select_chip(mtd, -1);
1da177e4 3687
8593fbc6 3688 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
3689 if (oob)
3690 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 3691
3f91e94f 3692 if (ret < 0)
f5bbdacc
TG
3693 return ret;
3694
b72f3dfb 3695 if (ecc_fail)
9a1fcdfd
TG
3696 return -EBADMSG;
3697
edbc4540 3698 return max_bitflips;
f5bbdacc
TG
3699}
3700
7bc3312b 3701/**
7854d3f7 3702 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
3703 * @mtd: mtd info structure
3704 * @chip: nand chip info structure
3705 * @page: page number to read
7bc3312b 3706 */
9d02fc2a 3707int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b 3708{
97d90da8 3709 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
7bc3312b 3710}
9d02fc2a 3711EXPORT_SYMBOL(nand_read_oob_std);
7bc3312b
TG
3712
3713/**
7854d3f7 3714 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 3715 * with syndromes
8b6e50c9
BN
3716 * @mtd: mtd info structure
3717 * @chip: nand chip info structure
3718 * @page: page number to read
7bc3312b 3719 */
9d02fc2a
BB
3720int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3721 int page)
7bc3312b 3722{
7bc3312b
TG
3723 int length = mtd->oobsize;
3724 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3725 int eccsize = chip->ecc.size;
2ea69d21 3726 uint8_t *bufpoi = chip->oob_poi;
97d90da8
BB
3727 int i, toread, sndrnd = 0, pos, ret;
3728
3729 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3730 if (ret)
3731 return ret;
7bc3312b 3732
7bc3312b
TG
3733 for (i = 0; i < chip->ecc.steps; i++) {
3734 if (sndrnd) {
97d90da8
BB
3735 int ret;
3736
7bc3312b
TG
3737 pos = eccsize + i * (eccsize + chunk);
3738 if (mtd->writesize > 512)
97d90da8
BB
3739 ret = nand_change_read_column_op(chip, pos,
3740 NULL, 0,
3741 false);
7bc3312b 3742 else
97d90da8
BB
3743 ret = nand_read_page_op(chip, page, pos, NULL,
3744 0);
3745
3746 if (ret)
3747 return ret;
7bc3312b
TG
3748 } else
3749 sndrnd = 1;
3750 toread = min_t(int, length, chunk);
97d90da8
BB
3751
3752 ret = nand_read_data_op(chip, bufpoi, toread, false);
3753 if (ret)
3754 return ret;
3755
7bc3312b
TG
3756 bufpoi += toread;
3757 length -= toread;
3758 }
97d90da8
BB
3759 if (length > 0) {
3760 ret = nand_read_data_op(chip, bufpoi, length, false);
3761 if (ret)
3762 return ret;
3763 }
7bc3312b 3764
5c2ffb11 3765 return 0;
7bc3312b 3766}
9d02fc2a 3767EXPORT_SYMBOL(nand_read_oob_syndrome);
7bc3312b
TG
3768
3769/**
7854d3f7 3770 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
3771 * @mtd: mtd info structure
3772 * @chip: nand chip info structure
3773 * @page: page number to write
7bc3312b 3774 */
9d02fc2a 3775int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b 3776{
97d90da8
BB
3777 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3778 mtd->oobsize);
7bc3312b 3779}
9d02fc2a 3780EXPORT_SYMBOL(nand_write_oob_std);
7bc3312b
TG
3781
3782/**
7854d3f7 3783 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
3784 * with syndrome - only for large page flash
3785 * @mtd: mtd info structure
3786 * @chip: nand chip info structure
3787 * @page: page number to write
7bc3312b 3788 */
9d02fc2a
BB
3789int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3790 int page)
7bc3312b
TG
3791{
3792 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3793 int eccsize = chip->ecc.size, length = mtd->oobsize;
97d90da8 3794 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
7bc3312b
TG
3795 const uint8_t *bufpoi = chip->oob_poi;
3796
3797 /*
3798 * data-ecc-data-ecc ... ecc-oob
3799 * or
3800 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3801 */
3802 if (!chip->ecc.prepad && !chip->ecc.postpad) {
3803 pos = steps * (eccsize + chunk);
3804 steps = 0;
3805 } else
8b0036ee 3806 pos = eccsize;
7bc3312b 3807
97d90da8
BB
3808 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3809 if (ret)
3810 return ret;
3811
7bc3312b
TG
3812 for (i = 0; i < steps; i++) {
3813 if (sndcmd) {
3814 if (mtd->writesize <= 512) {
3815 uint32_t fill = 0xFFFFFFFF;
3816
3817 len = eccsize;
3818 while (len > 0) {
3819 int num = min_t(int, len, 4);
97d90da8
BB
3820
3821 ret = nand_write_data_op(chip, &fill,
3822 num, false);
3823 if (ret)
3824 return ret;
3825
7bc3312b
TG
3826 len -= num;
3827 }
3828 } else {
3829 pos = eccsize + i * (eccsize + chunk);
97d90da8
BB
3830 ret = nand_change_write_column_op(chip, pos,
3831 NULL, 0,
3832 false);
3833 if (ret)
3834 return ret;
7bc3312b
TG
3835 }
3836 } else
3837 sndcmd = 1;
3838 len = min_t(int, length, chunk);
97d90da8
BB
3839
3840 ret = nand_write_data_op(chip, bufpoi, len, false);
3841 if (ret)
3842 return ret;
3843
7bc3312b
TG
3844 bufpoi += len;
3845 length -= len;
3846 }
97d90da8
BB
3847 if (length > 0) {
3848 ret = nand_write_data_op(chip, bufpoi, length, false);
3849 if (ret)
3850 return ret;
3851 }
7bc3312b 3852
97d90da8 3853 return nand_prog_page_end_op(chip);
7bc3312b 3854}
9d02fc2a 3855EXPORT_SYMBOL(nand_write_oob_syndrome);
7bc3312b 3856
1da177e4 3857/**
7854d3f7 3858 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
3859 * @mtd: MTD device structure
3860 * @from: offset to read from
3861 * @ops: oob operations description structure
1da177e4 3862 *
8b6e50c9 3863 * NAND read out-of-band data from the spare area.
1da177e4 3864 */
8593fbc6
TG
3865static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
3866 struct mtd_oob_ops *ops)
1da177e4 3867{
87e89ce8 3868 unsigned int max_bitflips = 0;
c00a0991 3869 int page, realpage, chipnr;
862eba51 3870 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 3871 struct mtd_ecc_stats stats;
7014568b
VW
3872 int readlen = ops->ooblen;
3873 int len;
7bc3312b 3874 uint8_t *buf = ops->oobbuf;
1951f2f7 3875 int ret = 0;
61b03bd7 3876
289c0522 3877 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 3878 __func__, (unsigned long long)from, readlen);
1da177e4 3879
041e4575
BN
3880 stats = mtd->ecc_stats;
3881
29f1058a 3882 len = mtd_oobavail(mtd, ops);
03736155 3883
7314e9e7 3884 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 3885 chip->select_chip(mtd, chipnr);
1da177e4 3886
7314e9e7
TG
3887 /* Shift to get page */
3888 realpage = (int)(from >> chip->page_shift);
3889 page = realpage & chip->pagemask;
1da177e4 3890
f8ac0414 3891 while (1) {
0612b9dd 3892 if (ops->mode == MTD_OPS_RAW)
1951f2f7 3893 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 3894 else
1951f2f7
SL
3895 ret = chip->ecc.read_oob(mtd, chip, page);
3896
3897 if (ret < 0)
3898 break;
7014568b
VW
3899
3900 len = min(len, readlen);
846031d3 3901 buf = nand_transfer_oob(mtd, buf, ops, len);
8593fbc6 3902
5bc7c33c
BN
3903 if (chip->options & NAND_NEED_READRDY) {
3904 /* Apply delay or wait for ready/busy pin */
3905 if (!chip->dev_ready)
3906 udelay(chip->chip_delay);
3907 else
3908 nand_wait_ready(mtd);
3909 }
3910
87e89ce8
MR
3911 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3912
7014568b 3913 readlen -= len;
0d420f9d
SZ
3914 if (!readlen)
3915 break;
3916
7314e9e7
TG
3917 /* Increment page address */
3918 realpage++;
3919
3920 page = realpage & chip->pagemask;
3921 /* Check, if we cross a chip boundary */
3922 if (!page) {
3923 chipnr++;
3924 chip->select_chip(mtd, -1);
3925 chip->select_chip(mtd, chipnr);
1da177e4
LT
3926 }
3927 }
b0bb6903 3928 chip->select_chip(mtd, -1);
1da177e4 3929
1951f2f7
SL
3930 ops->oobretlen = ops->ooblen - readlen;
3931
3932 if (ret < 0)
3933 return ret;
041e4575
BN
3934
3935 if (mtd->ecc_stats.failed - stats.failed)
3936 return -EBADMSG;
3937
87e89ce8 3938 return max_bitflips;
1da177e4
LT
3939}
3940
3941/**
8593fbc6 3942 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
3943 * @mtd: MTD device structure
3944 * @from: offset to read from
3945 * @ops: oob operation description structure
1da177e4 3946 *
8b6e50c9 3947 * NAND read data and/or out-of-band data.
1da177e4 3948 */
8593fbc6
TG
3949static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3950 struct mtd_oob_ops *ops)
1da177e4 3951{
fc6b4d12 3952 int ret;
8593fbc6
TG
3953
3954 ops->retlen = 0;
1da177e4 3955
fc6b4d12
AS
3956 if (ops->mode != MTD_OPS_PLACE_OOB &&
3957 ops->mode != MTD_OPS_AUTO_OOB &&
3958 ops->mode != MTD_OPS_RAW)
3959 return -ENOTSUPP;
1da177e4 3960
fc6b4d12 3961 nand_get_device(mtd, FL_READING);
1da177e4 3962
8593fbc6
TG
3963 if (!ops->datbuf)
3964 ret = nand_do_read_oob(mtd, from, ops);
3965 else
3966 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 3967
8593fbc6
TG
3968 nand_release_device(mtd);
3969 return ret;
3970}
61b03bd7 3971
1da177e4 3972
8593fbc6 3973/**
7854d3f7 3974 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
3975 * @mtd: mtd info structure
3976 * @chip: nand chip info structure
3977 * @buf: data buffer
1fbb938d 3978 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 3979 * @page: page number to write
52ff49df 3980 *
7854d3f7 3981 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 3982 */
cc0f51ec
TP
3983int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
3984 const uint8_t *buf, int oob_required, int page)
8593fbc6 3985{
97d90da8 3986 int ret;
fdbad98d 3987
25f815f6 3988 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
97d90da8
BB
3989 if (ret)
3990 return ret;
3991
3992 if (oob_required) {
3993 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3994 false);
3995 if (ret)
3996 return ret;
3997 }
fdbad98d 3998
25f815f6 3999 return nand_prog_page_end_op(chip);
1da177e4 4000}
cc0f51ec 4001EXPORT_SYMBOL(nand_write_page_raw);
1da177e4 4002
52ff49df 4003/**
7854d3f7 4004 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
4005 * @mtd: mtd info structure
4006 * @chip: nand chip info structure
4007 * @buf: data buffer
1fbb938d 4008 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4009 * @page: page number to write
52ff49df
DB
4010 *
4011 * We need a special oob layout and handling even when ECC isn't checked.
4012 */
fdbad98d 4013static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 4014 struct nand_chip *chip,
45aaeff9
BB
4015 const uint8_t *buf, int oob_required,
4016 int page)
52ff49df
DB
4017{
4018 int eccsize = chip->ecc.size;
4019 int eccbytes = chip->ecc.bytes;
4020 uint8_t *oob = chip->oob_poi;
97d90da8 4021 int steps, size, ret;
52ff49df 4022
25f815f6
BB
4023 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4024 if (ret)
4025 return ret;
52ff49df
DB
4026
4027 for (steps = chip->ecc.steps; steps > 0; steps--) {
97d90da8
BB
4028 ret = nand_write_data_op(chip, buf, eccsize, false);
4029 if (ret)
4030 return ret;
4031
52ff49df
DB
4032 buf += eccsize;
4033
4034 if (chip->ecc.prepad) {
97d90da8
BB
4035 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4036 false);
4037 if (ret)
4038 return ret;
4039
52ff49df
DB
4040 oob += chip->ecc.prepad;
4041 }
4042
97d90da8
BB
4043 ret = nand_write_data_op(chip, oob, eccbytes, false);
4044 if (ret)
4045 return ret;
4046
52ff49df
DB
4047 oob += eccbytes;
4048
4049 if (chip->ecc.postpad) {
97d90da8
BB
4050 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4051 false);
4052 if (ret)
4053 return ret;
4054
52ff49df
DB
4055 oob += chip->ecc.postpad;
4056 }
4057 }
4058
4059 size = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
4060 if (size) {
4061 ret = nand_write_data_op(chip, oob, size, false);
4062 if (ret)
4063 return ret;
4064 }
fdbad98d 4065
25f815f6 4066 return nand_prog_page_end_op(chip);
52ff49df 4067}
9223a456 4068/**
7854d3f7 4069 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
4070 * @mtd: mtd info structure
4071 * @chip: nand chip info structure
4072 * @buf: data buffer
1fbb938d 4073 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4074 * @page: page number to write
9223a456 4075 */
fdbad98d 4076static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
4077 const uint8_t *buf, int oob_required,
4078 int page)
9223a456 4079{
846031d3 4080 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
4081 int eccbytes = chip->ecc.bytes;
4082 int eccsteps = chip->ecc.steps;
c0313b96 4083 uint8_t *ecc_calc = chip->ecc.calc_buf;
f75e5097 4084 const uint8_t *p = buf;
9223a456 4085
7854d3f7 4086 /* Software ECC calculation */
8593fbc6
TG
4087 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4088 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 4089
846031d3
BB
4090 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4091 chip->ecc.total);
4092 if (ret)
4093 return ret;
9223a456 4094
45aaeff9 4095 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 4096}
9223a456 4097
f75e5097 4098/**
7854d3f7 4099 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
4100 * @mtd: mtd info structure
4101 * @chip: nand chip info structure
4102 * @buf: data buffer
1fbb938d 4103 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4104 * @page: page number to write
f75e5097 4105 */
fdbad98d 4106static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
4107 const uint8_t *buf, int oob_required,
4108 int page)
f75e5097 4109{
846031d3 4110 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
4111 int eccbytes = chip->ecc.bytes;
4112 int eccsteps = chip->ecc.steps;
c0313b96 4113 uint8_t *ecc_calc = chip->ecc.calc_buf;
f75e5097 4114 const uint8_t *p = buf;
9223a456 4115
25f815f6
BB
4116 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4117 if (ret)
4118 return ret;
4119
f75e5097
TG
4120 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4121 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
97d90da8
BB
4122
4123 ret = nand_write_data_op(chip, p, eccsize, false);
4124 if (ret)
4125 return ret;
4126
f75e5097 4127 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
4128 }
4129
846031d3
BB
4130 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4131 chip->ecc.total);
4132 if (ret)
4133 return ret;
f75e5097 4134
97d90da8
BB
4135 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4136 if (ret)
4137 return ret;
fdbad98d 4138
25f815f6 4139 return nand_prog_page_end_op(chip);
9223a456
TG
4140}
4141
837a6ba4
GP
4142
4143/**
73c8aaf4 4144 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
4145 * @mtd: mtd info structure
4146 * @chip: nand chip info structure
d6a95080 4147 * @offset: column address of subpage within the page
837a6ba4 4148 * @data_len: data length
d6a95080 4149 * @buf: data buffer
837a6ba4 4150 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4151 * @page: page number to write
837a6ba4
GP
4152 */
4153static int nand_write_subpage_hwecc(struct mtd_info *mtd,
4154 struct nand_chip *chip, uint32_t offset,
d6a95080 4155 uint32_t data_len, const uint8_t *buf,
45aaeff9 4156 int oob_required, int page)
837a6ba4
GP
4157{
4158 uint8_t *oob_buf = chip->oob_poi;
c0313b96 4159 uint8_t *ecc_calc = chip->ecc.calc_buf;
837a6ba4
GP
4160 int ecc_size = chip->ecc.size;
4161 int ecc_bytes = chip->ecc.bytes;
4162 int ecc_steps = chip->ecc.steps;
837a6ba4
GP
4163 uint32_t start_step = offset / ecc_size;
4164 uint32_t end_step = (offset + data_len - 1) / ecc_size;
4165 int oob_bytes = mtd->oobsize / ecc_steps;
846031d3 4166 int step, ret;
837a6ba4 4167
25f815f6
BB
4168 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4169 if (ret)
4170 return ret;
4171
837a6ba4
GP
4172 for (step = 0; step < ecc_steps; step++) {
4173 /* configure controller for WRITE access */
4174 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4175
4176 /* write data (untouched subpages already masked by 0xFF) */
97d90da8
BB
4177 ret = nand_write_data_op(chip, buf, ecc_size, false);
4178 if (ret)
4179 return ret;
837a6ba4
GP
4180
4181 /* mask ECC of un-touched subpages by padding 0xFF */
4182 if ((step < start_step) || (step > end_step))
4183 memset(ecc_calc, 0xff, ecc_bytes);
4184 else
d6a95080 4185 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
4186
4187 /* mask OOB of un-touched subpages by padding 0xFF */
4188 /* if oob_required, preserve OOB metadata of written subpage */
4189 if (!oob_required || (step < start_step) || (step > end_step))
4190 memset(oob_buf, 0xff, oob_bytes);
4191
d6a95080 4192 buf += ecc_size;
837a6ba4
GP
4193 ecc_calc += ecc_bytes;
4194 oob_buf += oob_bytes;
4195 }
4196
4197 /* copy calculated ECC for whole page to chip->buffer->oob */
4198 /* this include masked-value(0xFF) for unwritten subpages */
c0313b96 4199 ecc_calc = chip->ecc.calc_buf;
846031d3
BB
4200 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4201 chip->ecc.total);
4202 if (ret)
4203 return ret;
837a6ba4
GP
4204
4205 /* write OOB buffer to NAND device */
97d90da8
BB
4206 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4207 if (ret)
4208 return ret;
837a6ba4 4209
25f815f6 4210 return nand_prog_page_end_op(chip);
837a6ba4
GP
4211}
4212
4213
61b03bd7 4214/**
7854d3f7 4215 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
4216 * @mtd: mtd info structure
4217 * @chip: nand chip info structure
4218 * @buf: data buffer
1fbb938d 4219 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 4220 * @page: page number to write
1da177e4 4221 *
8b6e50c9
BN
4222 * The hw generator calculates the error syndrome automatically. Therefore we
4223 * need a special oob layout and handling.
f75e5097 4224 */
fdbad98d 4225static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 4226 struct nand_chip *chip,
45aaeff9
BB
4227 const uint8_t *buf, int oob_required,
4228 int page)
1da177e4 4229{
f75e5097
TG
4230 int i, eccsize = chip->ecc.size;
4231 int eccbytes = chip->ecc.bytes;
4232 int eccsteps = chip->ecc.steps;
4233 const uint8_t *p = buf;
4234 uint8_t *oob = chip->oob_poi;
97d90da8 4235 int ret;
1da177e4 4236
25f815f6
BB
4237 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4238 if (ret)
4239 return ret;
1da177e4 4240
f75e5097 4241 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
f75e5097 4242 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
97d90da8
BB
4243
4244 ret = nand_write_data_op(chip, p, eccsize, false);
4245 if (ret)
4246 return ret;
61b03bd7 4247
f75e5097 4248 if (chip->ecc.prepad) {
97d90da8
BB
4249 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4250 false);
4251 if (ret)
4252 return ret;
4253
f75e5097
TG
4254 oob += chip->ecc.prepad;
4255 }
4256
4257 chip->ecc.calculate(mtd, p, oob);
97d90da8
BB
4258
4259 ret = nand_write_data_op(chip, oob, eccbytes, false);
4260 if (ret)
4261 return ret;
4262
f75e5097
TG
4263 oob += eccbytes;
4264
4265 if (chip->ecc.postpad) {
97d90da8
BB
4266 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4267 false);
4268 if (ret)
4269 return ret;
4270
f75e5097 4271 oob += chip->ecc.postpad;
1da177e4 4272 }
1da177e4 4273 }
f75e5097
TG
4274
4275 /* Calculate remaining oob bytes */
7e4178f9 4276 i = mtd->oobsize - (oob - chip->oob_poi);
97d90da8
BB
4277 if (i) {
4278 ret = nand_write_data_op(chip, oob, i, false);
4279 if (ret)
4280 return ret;
4281 }
fdbad98d 4282
25f815f6 4283 return nand_prog_page_end_op(chip);
f75e5097
TG
4284}
4285
4286/**
f107d7a4 4287 * nand_write_page - write one page
8b6e50c9
BN
4288 * @mtd: MTD device structure
4289 * @chip: NAND chip descriptor
837a6ba4
GP
4290 * @offset: address offset within the page
4291 * @data_len: length of actual data to be written
8b6e50c9 4292 * @buf: the data to write
1fbb938d 4293 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9 4294 * @page: page number to write
8b6e50c9 4295 * @raw: use _raw version of write_page
f75e5097
TG
4296 */
4297static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4 4298 uint32_t offset, int data_len, const uint8_t *buf,
0b4773fd 4299 int oob_required, int page, int raw)
f75e5097 4300{
837a6ba4
GP
4301 int status, subpage;
4302
4303 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4304 chip->ecc.write_subpage)
4305 subpage = offset || (data_len < mtd->writesize);
4306 else
4307 subpage = 0;
f75e5097 4308
956e944c 4309 if (unlikely(raw))
837a6ba4 4310 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 4311 oob_required, page);
837a6ba4
GP
4312 else if (subpage)
4313 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 4314 buf, oob_required, page);
956e944c 4315 else
45aaeff9
BB
4316 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
4317 page);
fdbad98d
JW
4318
4319 if (status < 0)
4320 return status;
f75e5097 4321
f75e5097 4322 return 0;
1da177e4
LT
4323}
4324
8593fbc6 4325/**
7854d3f7 4326 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 4327 * @mtd: MTD device structure
8b6e50c9
BN
4328 * @oob: oob data buffer
4329 * @len: oob data write length
4330 * @ops: oob ops structure
8593fbc6 4331 */
f722013e
TAA
4332static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
4333 struct mtd_oob_ops *ops)
8593fbc6 4334{
862eba51 4335 struct nand_chip *chip = mtd_to_nand(mtd);
846031d3 4336 int ret;
f722013e
TAA
4337
4338 /*
4339 * Initialise to all 0xFF, to avoid the possibility of left over OOB
4340 * data from a previous OOB read.
4341 */
4342 memset(chip->oob_poi, 0xff, mtd->oobsize);
4343
f8ac0414 4344 switch (ops->mode) {
8593fbc6 4345
0612b9dd
BN
4346 case MTD_OPS_PLACE_OOB:
4347 case MTD_OPS_RAW:
8593fbc6
TG
4348 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
4349 return oob + len;
4350
846031d3
BB
4351 case MTD_OPS_AUTO_OOB:
4352 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
4353 ops->ooboffs, len);
4354 BUG_ON(ret);
4355 return oob + len;
4356
8593fbc6
TG
4357 default:
4358 BUG();
4359 }
4360 return NULL;
4361}
4362
f8ac0414 4363#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
4364
4365/**
7854d3f7 4366 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
4367 * @mtd: MTD device structure
4368 * @to: offset to write to
4369 * @ops: oob operations description structure
1da177e4 4370 *
8b6e50c9 4371 * NAND write with ECC.
1da177e4 4372 */
8593fbc6
TG
4373static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
4374 struct mtd_oob_ops *ops)
1da177e4 4375{
73600b61 4376 int chipnr, realpage, page, column;
862eba51 4377 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 4378 uint32_t writelen = ops->len;
782ce79a
ML
4379
4380 uint32_t oobwritelen = ops->ooblen;
29f1058a 4381 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
782ce79a 4382
8593fbc6
TG
4383 uint8_t *oob = ops->oobbuf;
4384 uint8_t *buf = ops->datbuf;
837a6ba4 4385 int ret;
e47f3db4 4386 int oob_required = oob ? 1 : 0;
1da177e4 4387
8593fbc6 4388 ops->retlen = 0;
29072b96
TG
4389 if (!writelen)
4390 return 0;
1da177e4 4391
8b6e50c9 4392 /* Reject writes, which are not page aligned */
8593fbc6 4393 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
4394 pr_notice("%s: attempt to write non page aligned data\n",
4395 __func__);
1da177e4
LT
4396 return -EINVAL;
4397 }
4398
29072b96 4399 column = to & (mtd->writesize - 1);
1da177e4 4400
6a930961
TG
4401 chipnr = (int)(to >> chip->chip_shift);
4402 chip->select_chip(mtd, chipnr);
4403
1da177e4 4404 /* Check, if it is write protected */
b0bb6903
HS
4405 if (nand_check_wp(mtd)) {
4406 ret = -EIO;
4407 goto err_out;
4408 }
1da177e4 4409
f75e5097
TG
4410 realpage = (int)(to >> chip->page_shift);
4411 page = realpage & chip->pagemask;
f75e5097
TG
4412
4413 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
4414 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
4415 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 4416 chip->pagebuf = -1;
61b03bd7 4417
782ce79a 4418 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
4419 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4420 ret = -EINVAL;
4421 goto err_out;
4422 }
782ce79a 4423
f8ac0414 4424 while (1) {
29072b96 4425 int bytes = mtd->writesize;
29072b96 4426 uint8_t *wbuf = buf;
66507c7b 4427 int use_bufpoi;
144f4c98 4428 int part_pagewr = (column || writelen < mtd->writesize);
66507c7b
KD
4429
4430 if (part_pagewr)
4431 use_bufpoi = 1;
4432 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
477544c6
MY
4433 use_bufpoi = !virt_addr_valid(buf) ||
4434 !IS_ALIGNED((unsigned long)buf,
4435 chip->buf_align);
66507c7b
KD
4436 else
4437 use_bufpoi = 0;
29072b96 4438
66507c7b
KD
4439 /* Partial page write?, or need to use bounce buffer */
4440 if (use_bufpoi) {
4441 pr_debug("%s: using write bounce buffer for buf@%p\n",
4442 __func__, buf);
66507c7b
KD
4443 if (part_pagewr)
4444 bytes = min_t(int, bytes - column, writelen);
29072b96 4445 chip->pagebuf = -1;
c0313b96
MY
4446 memset(chip->data_buf, 0xff, mtd->writesize);
4447 memcpy(&chip->data_buf[column], buf, bytes);
4448 wbuf = chip->data_buf;
29072b96 4449 }
1da177e4 4450
782ce79a
ML
4451 if (unlikely(oob)) {
4452 size_t len = min(oobwritelen, oobmaxlen);
f722013e 4453 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 4454 oobwritelen -= len;
f722013e
TAA
4455 } else {
4456 /* We still need to erase leftover OOB data */
4457 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 4458 }
f107d7a4
BB
4459
4460 ret = nand_write_page(mtd, chip, column, bytes, wbuf,
0b4773fd 4461 oob_required, page,
f107d7a4 4462 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
4463 if (ret)
4464 break;
4465
4466 writelen -= bytes;
4467 if (!writelen)
4468 break;
4469
29072b96 4470 column = 0;
f75e5097
TG
4471 buf += bytes;
4472 realpage++;
4473
4474 page = realpage & chip->pagemask;
4475 /* Check, if we cross a chip boundary */
4476 if (!page) {
4477 chipnr++;
4478 chip->select_chip(mtd, -1);
4479 chip->select_chip(mtd, chipnr);
1da177e4
LT
4480 }
4481 }
8593fbc6 4482
8593fbc6 4483 ops->retlen = ops->len - writelen;
7014568b
VW
4484 if (unlikely(oob))
4485 ops->oobretlen = ops->ooblen;
b0bb6903
HS
4486
4487err_out:
4488 chip->select_chip(mtd, -1);
1da177e4
LT
4489 return ret;
4490}
4491
2af7c653
SK
4492/**
4493 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
4494 * @mtd: MTD device structure
4495 * @to: offset to write to
4496 * @len: number of bytes to write
4497 * @retlen: pointer to variable to store the number of written bytes
4498 * @buf: the data to write
2af7c653
SK
4499 *
4500 * NAND write with ECC. Used when performing writes in interrupt context, this
4501 * may for example be called by mtdoops when writing an oops while in panic.
4502 */
4503static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4504 size_t *retlen, const uint8_t *buf)
4505{
862eba51 4506 struct nand_chip *chip = mtd_to_nand(mtd);
30863e38 4507 int chipnr = (int)(to >> chip->chip_shift);
4a89ff88 4508 struct mtd_oob_ops ops;
2af7c653
SK
4509 int ret;
4510
8b6e50c9 4511 /* Grab the device */
2af7c653
SK
4512 panic_nand_get_device(chip, mtd, FL_WRITING);
4513
30863e38
BT
4514 chip->select_chip(mtd, chipnr);
4515
4516 /* Wait for the device to get ready */
4517 panic_nand_wait(mtd, chip, 400);
4518
0ec56dc4 4519 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
4520 ops.len = len;
4521 ops.datbuf = (uint8_t *)buf;
11041ae6 4522 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 4523
4a89ff88 4524 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 4525
4a89ff88 4526 *retlen = ops.retlen;
2af7c653
SK
4527 return ret;
4528}
4529
1da177e4 4530/**
8593fbc6 4531 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
4532 * @mtd: MTD device structure
4533 * @to: offset to write to
4534 * @ops: oob operation description structure
1da177e4 4535 *
8b6e50c9 4536 * NAND write out-of-band.
1da177e4 4537 */
8593fbc6
TG
4538static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
4539 struct mtd_oob_ops *ops)
1da177e4 4540{
03736155 4541 int chipnr, page, status, len;
862eba51 4542 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 4543
289c0522 4544 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 4545 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 4546
29f1058a 4547 len = mtd_oobavail(mtd, ops);
03736155 4548
1da177e4 4549 /* Do not allow write past end of page */
03736155 4550 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
4551 pr_debug("%s: attempt to write past end of page\n",
4552 __func__);
1da177e4
LT
4553 return -EINVAL;
4554 }
4555
7314e9e7 4556 chipnr = (int)(to >> chip->chip_shift);
7314e9e7
TG
4557
4558 /*
4559 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
4560 * of my DiskOnChip 2000 test units) will clear the whole data page too
4561 * if we don't do this. I have no clue why, but I seem to have 'fixed'
4562 * it in the doc2000 driver in August 1999. dwmw2.
4563 */
73f907fd
BB
4564 nand_reset(chip, chipnr);
4565
4566 chip->select_chip(mtd, chipnr);
4567
4568 /* Shift to get page */
4569 page = (int)(to >> chip->page_shift);
1da177e4
LT
4570
4571 /* Check, if it is write protected */
b0bb6903
HS
4572 if (nand_check_wp(mtd)) {
4573 chip->select_chip(mtd, -1);
8593fbc6 4574 return -EROFS;
b0bb6903 4575 }
61b03bd7 4576
1da177e4 4577 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
4578 if (page == chip->pagebuf)
4579 chip->pagebuf = -1;
1da177e4 4580
f722013e 4581 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 4582
0612b9dd 4583 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
4584 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
4585 else
4586 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 4587
b0bb6903
HS
4588 chip->select_chip(mtd, -1);
4589
7bc3312b
TG
4590 if (status)
4591 return status;
1da177e4 4592
7014568b 4593 ops->oobretlen = ops->ooblen;
1da177e4 4594
7bc3312b 4595 return 0;
8593fbc6
TG
4596}
4597
4598/**
4599 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
4600 * @mtd: MTD device structure
4601 * @to: offset to write to
4602 * @ops: oob operation description structure
8593fbc6
TG
4603 */
4604static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4605 struct mtd_oob_ops *ops)
4606{
8593fbc6
TG
4607 int ret = -ENOTSUPP;
4608
4609 ops->retlen = 0;
4610
6a8214aa 4611 nand_get_device(mtd, FL_WRITING);
8593fbc6 4612
f8ac0414 4613 switch (ops->mode) {
0612b9dd
BN
4614 case MTD_OPS_PLACE_OOB:
4615 case MTD_OPS_AUTO_OOB:
4616 case MTD_OPS_RAW:
8593fbc6
TG
4617 break;
4618
4619 default:
4620 goto out;
4621 }
4622
4623 if (!ops->datbuf)
4624 ret = nand_do_write_oob(mtd, to, ops);
4625 else
4626 ret = nand_do_write_ops(mtd, to, ops);
4627
7351d3a5 4628out:
1da177e4 4629 nand_release_device(mtd);
1da177e4
LT
4630 return ret;
4631}
4632
1da177e4 4633/**
49c50b97 4634 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
4635 * @mtd: MTD device structure
4636 * @page: the page address of the block which will be erased
1da177e4 4637 *
49c50b97 4638 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 4639 */
49c50b97 4640static int single_erase(struct mtd_info *mtd, int page)
1da177e4 4641{
862eba51 4642 struct nand_chip *chip = mtd_to_nand(mtd);
97d90da8 4643 unsigned int eraseblock;
eb94555e 4644
1da177e4 4645 /* Send commands to erase a block */
97d90da8 4646 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
49c50b97 4647
97d90da8 4648 return nand_erase_op(chip, eraseblock);
1da177e4
LT
4649}
4650
1da177e4
LT
4651/**
4652 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
4653 * @mtd: MTD device structure
4654 * @instr: erase instruction
1da177e4 4655 *
8b6e50c9 4656 * Erase one ore more blocks.
1da177e4 4657 */
e0c7d767 4658static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 4659{
e0c7d767 4660 return nand_erase_nand(mtd, instr, 0);
1da177e4 4661}
61b03bd7 4662
1da177e4 4663/**
7854d3f7 4664 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
4665 * @mtd: MTD device structure
4666 * @instr: erase instruction
4667 * @allowbbt: allow erasing the bbt area
1da177e4 4668 *
8b6e50c9 4669 * Erase one ore more blocks.
1da177e4 4670 */
ace4dfee
TG
4671int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
4672 int allowbbt)
1da177e4 4673{
69423d99 4674 int page, status, pages_per_block, ret, chipnr;
862eba51 4675 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 4676 loff_t len;
1da177e4 4677
289c0522
BN
4678 pr_debug("%s: start = 0x%012llx, len = %llu\n",
4679 __func__, (unsigned long long)instr->addr,
4680 (unsigned long long)instr->len);
1da177e4 4681
6fe5a6ac 4682 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 4683 return -EINVAL;
1da177e4 4684
1da177e4 4685 /* Grab the lock and see if the device is available */
6a8214aa 4686 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
4687
4688 /* Shift to get first page */
ace4dfee
TG
4689 page = (int)(instr->addr >> chip->page_shift);
4690 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
4691
4692 /* Calculate pages in each block */
ace4dfee 4693 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
4694
4695 /* Select the NAND device */
ace4dfee 4696 chip->select_chip(mtd, chipnr);
1da177e4 4697
1da177e4
LT
4698 /* Check, if it is write protected */
4699 if (nand_check_wp(mtd)) {
289c0522
BN
4700 pr_debug("%s: device is write protected!\n",
4701 __func__);
e7bfb3fd 4702 ret = -EIO;
1da177e4
LT
4703 goto erase_exit;
4704 }
4705
4706 /* Loop through the pages */
4707 len = instr->len;
4708
1da177e4 4709 while (len) {
12183a20 4710 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee 4711 if (nand_block_checkbad(mtd, ((loff_t) page) <<
9f3e0429 4712 chip->page_shift, allowbbt)) {
d0370219
BN
4713 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4714 __func__, page);
e7bfb3fd 4715 ret = -EIO;
1da177e4
LT
4716 goto erase_exit;
4717 }
61b03bd7 4718
ace4dfee
TG
4719 /*
4720 * Invalidate the page cache, if we erase the block which
8b6e50c9 4721 * contains the current cached page.
ace4dfee
TG
4722 */
4723 if (page <= chip->pagebuf && chip->pagebuf <
4724 (page + pages_per_block))
4725 chip->pagebuf = -1;
1da177e4 4726
49c50b97 4727 status = chip->erase(mtd, page & chip->pagemask);
1da177e4
LT
4728
4729 /* See if block erase succeeded */
eb94555e 4730 if (status) {
289c0522
BN
4731 pr_debug("%s: failed erase, page 0x%08x\n",
4732 __func__, page);
e7bfb3fd 4733 ret = -EIO;
69423d99
AH
4734 instr->fail_addr =
4735 ((loff_t)page << chip->page_shift);
1da177e4
LT
4736 goto erase_exit;
4737 }
30f464b7 4738
1da177e4 4739 /* Increment page address and decrement length */
daae74ca 4740 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
4741 page += pages_per_block;
4742
4743 /* Check, if we cross a chip boundary */
ace4dfee 4744 if (len && !(page & chip->pagemask)) {
1da177e4 4745 chipnr++;
ace4dfee
TG
4746 chip->select_chip(mtd, -1);
4747 chip->select_chip(mtd, chipnr);
1da177e4
LT
4748 }
4749 }
1da177e4 4750
e7bfb3fd 4751 ret = 0;
7351d3a5 4752erase_exit:
1da177e4 4753
1da177e4 4754 /* Deselect and wake up anyone waiting on the device */
b0bb6903 4755 chip->select_chip(mtd, -1);
1da177e4
LT
4756 nand_release_device(mtd);
4757
4758 /* Return more or less happy */
4759 return ret;
4760}
4761
4762/**
4763 * nand_sync - [MTD Interface] sync
8b6e50c9 4764 * @mtd: MTD device structure
1da177e4 4765 *
8b6e50c9 4766 * Sync is actually a wait for chip ready function.
1da177e4 4767 */
e0c7d767 4768static void nand_sync(struct mtd_info *mtd)
1da177e4 4769{
289c0522 4770 pr_debug("%s: called\n", __func__);
1da177e4
LT
4771
4772 /* Grab the lock and see if the device is available */
6a8214aa 4773 nand_get_device(mtd, FL_SYNCING);
1da177e4 4774 /* Release it and go back */
e0c7d767 4775 nand_release_device(mtd);
1da177e4
LT
4776}
4777
1da177e4 4778/**
ace4dfee 4779 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
4780 * @mtd: MTD device structure
4781 * @offs: offset relative to mtd start
1da177e4 4782 */
ace4dfee 4783static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 4784{
9f3e0429
AT
4785 struct nand_chip *chip = mtd_to_nand(mtd);
4786 int chipnr = (int)(offs >> chip->chip_shift);
4787 int ret;
4788
4789 /* Select the NAND device */
4790 nand_get_device(mtd, FL_READING);
4791 chip->select_chip(mtd, chipnr);
4792
4793 ret = nand_block_checkbad(mtd, offs, 0);
4794
4795 chip->select_chip(mtd, -1);
4796 nand_release_device(mtd);
4797
4798 return ret;
1da177e4
LT
4799}
4800
4801/**
ace4dfee 4802 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
4803 * @mtd: MTD device structure
4804 * @ofs: offset relative to mtd start
1da177e4 4805 */
e0c7d767 4806static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 4807{
1da177e4
LT
4808 int ret;
4809
f8ac0414
FF
4810 ret = nand_block_isbad(mtd, ofs);
4811 if (ret) {
8b6e50c9 4812 /* If it was bad already, return success and do nothing */
1da177e4
LT
4813 if (ret > 0)
4814 return 0;
e0c7d767
DW
4815 return ret;
4816 }
1da177e4 4817
5a0edb25 4818 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
4819}
4820
5671842f
ZB
4821/**
4822 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
4823 * @mtd: MTD device structure
4824 * @ofs: offset relative to mtd start
4825 * @len: length of mtd
4826 */
4827static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
4828{
4829 struct nand_chip *chip = mtd_to_nand(mtd);
4830 u32 part_start_block;
4831 u32 part_end_block;
4832 u32 part_start_die;
4833 u32 part_end_die;
4834
4835 /*
4836 * max_bb_per_die and blocks_per_die used to determine
4837 * the maximum bad block count.
4838 */
4839 if (!chip->max_bb_per_die || !chip->blocks_per_die)
4840 return -ENOTSUPP;
4841
4842 /* Get the start and end of the partition in erase blocks. */
4843 part_start_block = mtd_div_by_eb(ofs, mtd);
4844 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
4845
4846 /* Get the start and end LUNs of the partition. */
4847 part_start_die = part_start_block / chip->blocks_per_die;
4848 part_end_die = part_end_block / chip->blocks_per_die;
4849
4850 /*
4851 * Look up the bad blocks per unit and multiply by the number of units
4852 * that the partition spans.
4853 */
4854 return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
4855}
4856
7db03ecc 4857/**
b958758e 4858 * nand_default_set_features- [REPLACEABLE] set NAND chip features
7db03ecc
HS
4859 * @mtd: MTD device structure
4860 * @chip: nand chip info structure
4861 * @addr: feature address.
4862 * @subfeature_param: the subfeature parameters, a four bytes array.
4863 */
b958758e
MR
4864static int nand_default_set_features(struct mtd_info *mtd,
4865 struct nand_chip *chip, int addr,
4866 uint8_t *subfeature_param)
7db03ecc 4867{
97d90da8 4868 return nand_set_features_op(chip, addr, subfeature_param);
7db03ecc
HS
4869}
4870
4871/**
b958758e 4872 * nand_default_get_features- [REPLACEABLE] get NAND chip features
7db03ecc
HS
4873 * @mtd: MTD device structure
4874 * @chip: nand chip info structure
4875 * @addr: feature address.
4876 * @subfeature_param: the subfeature parameters, a four bytes array.
4877 */
b958758e
MR
4878static int nand_default_get_features(struct mtd_info *mtd,
4879 struct nand_chip *chip, int addr,
4880 uint8_t *subfeature_param)
7db03ecc 4881{
97d90da8 4882 return nand_get_features_op(chip, addr, subfeature_param);
7db03ecc
HS
4883}
4884
4a78cc64 4885/**
b958758e 4886 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
4a78cc64
BB
4887 * @mtd: MTD device structure
4888 * @chip: nand chip info structure
4889 * @addr: feature address.
4890 * @subfeature_param: the subfeature parameters, a four bytes array.
4891 *
4892 * Should be used by NAND controller drivers that do not support the SET/GET
4893 * FEATURES operations.
4894 */
b958758e
MR
4895int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
4896 int addr, u8 *subfeature_param)
4a78cc64
BB
4897{
4898 return -ENOTSUPP;
4899}
b958758e 4900EXPORT_SYMBOL(nand_get_set_features_notsupp);
4a78cc64 4901
962034f4
VW
4902/**
4903 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 4904 * @mtd: MTD device structure
962034f4
VW
4905 */
4906static int nand_suspend(struct mtd_info *mtd)
4907{
6a8214aa 4908 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
4909}
4910
4911/**
4912 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 4913 * @mtd: MTD device structure
962034f4
VW
4914 */
4915static void nand_resume(struct mtd_info *mtd)
4916{
862eba51 4917 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 4918
ace4dfee 4919 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
4920 nand_release_device(mtd);
4921 else
d0370219
BN
4922 pr_err("%s called for a chip which is not in suspended state\n",
4923 __func__);
962034f4
VW
4924}
4925
72ea4036
SB
4926/**
4927 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4928 * prevent further operations
4929 * @mtd: MTD device structure
4930 */
4931static void nand_shutdown(struct mtd_info *mtd)
4932{
9ca641b0 4933 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
4934}
4935
8b6e50c9 4936/* Set default functions */
29a198a1 4937static void nand_set_defaults(struct nand_chip *chip)
7aa65bfd 4938{
29a198a1
BB
4939 unsigned int busw = chip->options & NAND_BUSWIDTH_16;
4940
1da177e4 4941 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
4942 if (!chip->chip_delay)
4943 chip->chip_delay = 20;
1da177e4
LT
4944
4945 /* check, if a user supplied command function given */
8878b126 4946 if (!chip->cmdfunc && !chip->exec_op)
ace4dfee 4947 chip->cmdfunc = nand_command;
1da177e4
LT
4948
4949 /* check, if a user supplied wait function given */
ace4dfee
TG
4950 if (chip->waitfunc == NULL)
4951 chip->waitfunc = nand_wait;
4952
4953 if (!chip->select_chip)
4954 chip->select_chip = nand_select_chip;
68e80780 4955
4204cccd 4956 /* set for ONFI nand */
b958758e
MR
4957 if (!chip->set_features)
4958 chip->set_features = nand_default_set_features;
4959 if (!chip->get_features)
4960 chip->get_features = nand_default_get_features;
4204cccd 4961
68e80780
BN
4962 /* If called twice, pointers that depend on busw may need to be reset */
4963 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
4964 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
4965 if (!chip->read_word)
4966 chip->read_word = nand_read_word;
4967 if (!chip->block_bad)
4968 chip->block_bad = nand_block_bad;
4969 if (!chip->block_markbad)
4970 chip->block_markbad = nand_default_block_markbad;
68e80780 4971 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 4972 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
4973 if (!chip->write_byte || chip->write_byte == nand_write_byte)
4974 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 4975 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 4976 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
4977 if (!chip->scan_bbt)
4978 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
4979
4980 if (!chip->controller) {
4981 chip->controller = &chip->hwcontrol;
d45bc58d 4982 nand_hw_control_init(chip->controller);
f75e5097
TG
4983 }
4984
477544c6
MY
4985 if (!chip->buf_align)
4986 chip->buf_align = 1;
7aa65bfd
TG
4987}
4988
8b6e50c9 4989/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
4990static void sanitize_string(uint8_t *s, size_t len)
4991{
4992 ssize_t i;
4993
8b6e50c9 4994 /* Null terminate */
d1e1f4e4
FF
4995 s[len - 1] = 0;
4996
8b6e50c9 4997 /* Remove non printable chars */
d1e1f4e4
FF
4998 for (i = 0; i < len - 1; i++) {
4999 if (s[i] < ' ' || s[i] > 127)
5000 s[i] = '?';
5001 }
5002
8b6e50c9 5003 /* Remove trailing spaces */
d1e1f4e4
FF
5004 strim(s);
5005}
5006
5007static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
5008{
5009 int i;
5010 while (len--) {
5011 crc ^= *p++ << 8;
5012 for (i = 0; i < 8; i++)
5013 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
5014 }
5015
5016 return crc;
5017}
5018
6dcbe0cd 5019/* Parse the Extended Parameter Page. */
cbe435a1
BB
5020static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
5021 struct nand_onfi_params *p)
6dcbe0cd
HS
5022{
5023 struct onfi_ext_param_page *ep;
5024 struct onfi_ext_section *s;
5025 struct onfi_ext_ecc_info *ecc;
5026 uint8_t *cursor;
97d90da8 5027 int ret;
6dcbe0cd
HS
5028 int len;
5029 int i;
5030
5031 len = le16_to_cpu(p->ext_param_page_length) * 16;
5032 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
5033 if (!ep)
5034 return -ENOMEM;
6dcbe0cd
HS
5035
5036 /* Send our own NAND_CMD_PARAM. */
97d90da8
BB
5037 ret = nand_read_param_page_op(chip, 0, NULL, 0);
5038 if (ret)
5039 goto ext_out;
6dcbe0cd
HS
5040
5041 /* Use the Change Read Column command to skip the ONFI param pages. */
97d90da8
BB
5042 ret = nand_change_read_column_op(chip,
5043 sizeof(*p) * p->num_of_param_pages,
5044 ep, len, true);
5045 if (ret)
5046 goto ext_out;
6dcbe0cd 5047
97d90da8 5048 ret = -EINVAL;
6dcbe0cd
HS
5049 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
5050 != le16_to_cpu(ep->crc))) {
5051 pr_debug("fail in the CRC.\n");
5052 goto ext_out;
5053 }
5054
5055 /*
5056 * Check the signature.
5057 * Do not strictly follow the ONFI spec, maybe changed in future.
5058 */
5059 if (strncmp(ep->sig, "EPPS", 4)) {
5060 pr_debug("The signature is invalid.\n");
5061 goto ext_out;
5062 }
5063
5064 /* find the ECC section. */
5065 cursor = (uint8_t *)(ep + 1);
5066 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
5067 s = ep->sections + i;
5068 if (s->type == ONFI_SECTION_TYPE_2)
5069 break;
5070 cursor += s->length * 16;
5071 }
5072 if (i == ONFI_EXT_SECTION_MAX) {
5073 pr_debug("We can not find the ECC section.\n");
5074 goto ext_out;
5075 }
5076
5077 /* get the info we want. */
5078 ecc = (struct onfi_ext_ecc_info *)cursor;
5079
4ae7d228
BN
5080 if (!ecc->codeword_size) {
5081 pr_debug("Invalid codeword size\n");
5082 goto ext_out;
6dcbe0cd
HS
5083 }
5084
4ae7d228
BN
5085 chip->ecc_strength_ds = ecc->ecc_bits;
5086 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 5087 ret = 0;
6dcbe0cd
HS
5088
5089ext_out:
5090 kfree(ep);
5091 return ret;
5092}
5093
6fb277ba 5094/*
8b6e50c9 5095 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba 5096 */
29a198a1 5097static int nand_flash_detect_onfi(struct nand_chip *chip)
6fb277ba 5098{
cbe435a1 5099 struct mtd_info *mtd = nand_to_mtd(chip);
bd0b6434 5100 struct nand_onfi_params *p;
97d90da8
BB
5101 char id[4];
5102 int i, ret, val;
6fb277ba 5103
7854d3f7 5104 /* Try ONFI for unknown chip or LP */
97d90da8
BB
5105 ret = nand_readid_op(chip, 0x20, id, sizeof(id));
5106 if (ret || strncmp(id, "ONFI", 4))
5107 return 0;
5108
bd0b6434
MR
5109 /* ONFI chip: allocate a buffer to hold its parameter page */
5110 p = kzalloc(sizeof(*p), GFP_KERNEL);
5111 if (!p)
5112 return -ENOMEM;
5113
97d90da8 5114 ret = nand_read_param_page_op(chip, 0, NULL, 0);
bd0b6434
MR
5115 if (ret) {
5116 ret = 0;
5117 goto free_onfi_param_page;
5118 }
6fb277ba 5119
6fb277ba 5120 for (i = 0; i < 3; i++) {
97d90da8 5121 ret = nand_read_data_op(chip, p, sizeof(*p), true);
bd0b6434
MR
5122 if (ret) {
5123 ret = 0;
5124 goto free_onfi_param_page;
5125 }
97d90da8 5126
6fb277ba
FF
5127 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
5128 le16_to_cpu(p->crc)) {
6fb277ba
FF
5129 break;
5130 }
5131 }
5132
c7f23a70
BN
5133 if (i == 3) {
5134 pr_err("Could not find valid ONFI parameter page; aborting\n");
bd0b6434 5135 goto free_onfi_param_page;
c7f23a70 5136 }
6fb277ba 5137
8b6e50c9 5138 /* Check version */
6fb277ba 5139 val = le16_to_cpu(p->revision);
b7b1a29d 5140 if (val & (1 << 5))
a97421c7 5141 chip->parameters.onfi.version = 23;
b7b1a29d 5142 else if (val & (1 << 4))
a97421c7 5143 chip->parameters.onfi.version = 22;
6fb277ba 5144 else if (val & (1 << 3))
a97421c7 5145 chip->parameters.onfi.version = 21;
6fb277ba 5146 else if (val & (1 << 2))
a97421c7 5147 chip->parameters.onfi.version = 20;
b7b1a29d 5148 else if (val & (1 << 1))
a97421c7 5149 chip->parameters.onfi.version = 10;
b7b1a29d 5150
a97421c7 5151 if (!chip->parameters.onfi.version) {
20171642 5152 pr_info("unsupported ONFI version: %d\n", val);
bd0b6434
MR
5153 goto free_onfi_param_page;
5154 } else {
5155 ret = 1;
b7b1a29d 5156 }
6fb277ba
FF
5157
5158 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5159 sanitize_string(p->model, sizeof(p->model));
f4531b2b
MR
5160 strncpy(chip->parameters.model, p->model,
5161 sizeof(chip->parameters.model) - 1);
4355b70c 5162
6fb277ba 5163 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
5164
5165 /*
5166 * pages_per_block and blocks_per_lun may not be a power-of-2 size
5167 * (don't ask me who thought of this...). MTD assumes that these
5168 * dimensions will be power-of-2, so just truncate the remaining area.
5169 */
5170 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5171 mtd->erasesize *= mtd->writesize;
5172
6fb277ba 5173 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
5174
5175 /* See erasesize comment */
5176 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 5177 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 5178 chip->bits_per_cell = p->bits_per_cell;
e2985fc1 5179
34da5f5f
ZB
5180 chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
5181 chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
5182
a97421c7 5183 if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
29a198a1 5184 chip->options |= NAND_BUSWIDTH_16;
6fb277ba 5185
10c86bab
HS
5186 if (p->ecc_bits != 0xff) {
5187 chip->ecc_strength_ds = p->ecc_bits;
5188 chip->ecc_step_ds = 512;
a97421c7
MR
5189 } else if (chip->parameters.onfi.version >= 21 &&
5190 (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
6dcbe0cd
HS
5191
5192 /*
5193 * The nand_flash_detect_ext_param_page() uses the
5194 * Change Read Column command which maybe not supported
5195 * by the chip->cmdfunc. So try to update the chip->cmdfunc
5196 * now. We do not replace user supplied command function.
5197 */
5198 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5199 chip->cmdfunc = nand_command_lp;
5200
5201 /* The Extended Parameter Page is supported since ONFI 2.1. */
cbe435a1 5202 if (nand_flash_detect_ext_param_page(chip, p))
c7f23a70
BN
5203 pr_warn("Failed to detect ONFI extended param page\n");
5204 } else {
5205 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
5206 }
5207
f4531b2b 5208 /* Save some parameters from the parameter page for future use */
789157e4 5209 if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
f4531b2b 5210 chip->parameters.supports_set_get_features = true;
789157e4
MR
5211 bitmap_set(chip->parameters.get_feature_list,
5212 ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5213 bitmap_set(chip->parameters.set_feature_list,
5214 ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5215 }
a97421c7
MR
5216 chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog);
5217 chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers);
5218 chip->parameters.onfi.tR = le16_to_cpu(p->t_r);
5219 chip->parameters.onfi.tCCS = le16_to_cpu(p->t_ccs);
5220 chip->parameters.onfi.async_timing_mode =
5221 le16_to_cpu(p->async_timing_mode);
5222 chip->parameters.onfi.vendor_revision =
5223 le16_to_cpu(p->vendor_revision);
5224 memcpy(chip->parameters.onfi.vendor, p->vendor,
5225 sizeof(p->vendor));
f4531b2b 5226
bd0b6434
MR
5227free_onfi_param_page:
5228 kfree(p);
5229 return ret;
6fb277ba
FF
5230}
5231
91361818
HS
5232/*
5233 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
5234 */
29a198a1 5235static int nand_flash_detect_jedec(struct nand_chip *chip)
91361818 5236{
cbe435a1 5237 struct mtd_info *mtd = nand_to_mtd(chip);
480139d9 5238 struct nand_jedec_params *p;
91361818 5239 struct jedec_ecc_info *ecc;
480139d9 5240 int jedec_version = 0;
97d90da8
BB
5241 char id[5];
5242 int i, val, ret;
91361818
HS
5243
5244 /* Try JEDEC for unknown chip or LP */
97d90da8
BB
5245 ret = nand_readid_op(chip, 0x40, id, sizeof(id));
5246 if (ret || strncmp(id, "JEDEC", sizeof(id)))
5247 return 0;
5248
480139d9
MR
5249 /* JEDEC chip: allocate a buffer to hold its parameter page */
5250 p = kzalloc(sizeof(*p), GFP_KERNEL);
5251 if (!p)
5252 return -ENOMEM;
5253
97d90da8 5254 ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
480139d9
MR
5255 if (ret) {
5256 ret = 0;
5257 goto free_jedec_param_page;
5258 }
91361818 5259
91361818 5260 for (i = 0; i < 3; i++) {
97d90da8 5261 ret = nand_read_data_op(chip, p, sizeof(*p), true);
480139d9
MR
5262 if (ret) {
5263 ret = 0;
5264 goto free_jedec_param_page;
5265 }
91361818
HS
5266
5267 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
5268 le16_to_cpu(p->crc))
5269 break;
5270 }
5271
5272 if (i == 3) {
5273 pr_err("Could not find valid JEDEC parameter page; aborting\n");
480139d9 5274 goto free_jedec_param_page;
91361818
HS
5275 }
5276
5277 /* Check version */
5278 val = le16_to_cpu(p->revision);
5279 if (val & (1 << 2))
480139d9 5280 jedec_version = 10;
91361818 5281 else if (val & (1 << 1))
480139d9 5282 jedec_version = 1; /* vendor specific version */
91361818 5283
480139d9 5284 if (!jedec_version) {
91361818 5285 pr_info("unsupported JEDEC version: %d\n", val);
480139d9 5286 goto free_jedec_param_page;
91361818
HS
5287 }
5288
5289 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5290 sanitize_string(p->model, sizeof(p->model));
f4531b2b
MR
5291 strncpy(chip->parameters.model, p->model,
5292 sizeof(chip->parameters.model) - 1);
91361818
HS
5293
5294 mtd->writesize = le32_to_cpu(p->byte_per_page);
5295
5296 /* Please reference to the comment for nand_flash_detect_onfi. */
5297 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5298 mtd->erasesize *= mtd->writesize;
5299
5300 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5301
5302 /* Please reference to the comment for nand_flash_detect_onfi. */
5303 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5304 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5305 chip->bits_per_cell = p->bits_per_cell;
5306
480139d9 5307 if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
29a198a1 5308 chip->options |= NAND_BUSWIDTH_16;
91361818
HS
5309
5310 /* ECC info */
5311 ecc = &p->ecc_info[0];
5312
5313 if (ecc->codeword_size >= 9) {
5314 chip->ecc_strength_ds = ecc->ecc_bits;
5315 chip->ecc_step_ds = 1 << ecc->codeword_size;
5316 } else {
5317 pr_warn("Invalid codeword size\n");
5318 }
5319
480139d9
MR
5320free_jedec_param_page:
5321 kfree(p);
5322 return ret;
91361818
HS
5323}
5324
e3b88bd6
BN
5325/*
5326 * nand_id_has_period - Check if an ID string has a given wraparound period
5327 * @id_data: the ID string
5328 * @arrlen: the length of the @id_data array
5329 * @period: the period of repitition
5330 *
5331 * Check if an ID string is repeated within a given sequence of bytes at
5332 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 5333 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
5334 * if the repetition has a period of @period; otherwise, returns zero.
5335 */
5336static int nand_id_has_period(u8 *id_data, int arrlen, int period)
5337{
5338 int i, j;
5339 for (i = 0; i < period; i++)
5340 for (j = i + period; j < arrlen; j += period)
5341 if (id_data[i] != id_data[j])
5342 return 0;
5343 return 1;
5344}
5345
5346/*
5347 * nand_id_len - Get the length of an ID string returned by CMD_READID
5348 * @id_data: the ID string
5349 * @arrlen: the length of the @id_data array
5350
5351 * Returns the length of the ID string, according to known wraparound/trailing
5352 * zero patterns. If no pattern exists, returns the length of the array.
5353 */
5354static int nand_id_len(u8 *id_data, int arrlen)
5355{
5356 int last_nonzero, period;
5357
5358 /* Find last non-zero byte */
5359 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
5360 if (id_data[last_nonzero])
5361 break;
5362
5363 /* All zeros */
5364 if (last_nonzero < 0)
5365 return 0;
5366
5367 /* Calculate wraparound period */
5368 for (period = 1; period < arrlen; period++)
5369 if (nand_id_has_period(id_data, arrlen, period))
5370 break;
5371
5372 /* There's a repeated pattern */
5373 if (period < arrlen)
5374 return period;
5375
5376 /* There are trailing zeros */
5377 if (last_nonzero < arrlen - 1)
5378 return last_nonzero + 1;
5379
5380 /* No pattern detected */
5381 return arrlen;
5382}
5383
7db906b7
HS
5384/* Extract the bits of per cell from the 3rd byte of the extended ID */
5385static int nand_get_bits_per_cell(u8 cellinfo)
5386{
5387 int bits;
5388
5389 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
5390 bits >>= NAND_CI_CELLTYPE_SHIFT;
5391 return bits + 1;
5392}
5393
fc09bbc0
BN
5394/*
5395 * Many new NAND share similar device ID codes, which represent the size of the
5396 * chip. The rest of the parameters must be decoded according to generic or
5397 * manufacturer-specific "extended ID" decoding patterns.
5398 */
abbe26d1 5399void nand_decode_ext_id(struct nand_chip *chip)
fc09bbc0 5400{
cbe435a1 5401 struct mtd_info *mtd = nand_to_mtd(chip);
9b2d61f8 5402 int extid;
7f501f0a 5403 u8 *id_data = chip->id.data;
fc09bbc0 5404 /* The 3rd id byte holds MLC / multichip data */
7db906b7 5405 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
5406 /* The 4th id byte is the important one */
5407 extid = id_data[3];
5408
01389b6b
BB
5409 /* Calc pagesize */
5410 mtd->writesize = 1024 << (extid & 0x03);
5411 extid >>= 2;
5412 /* Calc oobsize */
5413 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5414 extid >>= 2;
5415 /* Calc blocksize. Blocksize is multiples of 64KiB */
5416 mtd->erasesize = (64 * 1024) << (extid & 0x03);
5417 extid >>= 2;
5418 /* Get buswidth information */
5419 if (extid & 0x1)
5420 chip->options |= NAND_BUSWIDTH_16;
fc09bbc0 5421}
abbe26d1 5422EXPORT_SYMBOL_GPL(nand_decode_ext_id);
fc09bbc0 5423
f23a481c
BN
5424/*
5425 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5426 * decodes a matching ID table entry and assigns the MTD size parameters for
5427 * the chip.
5428 */
29a198a1 5429static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
f23a481c 5430{
cbe435a1 5431 struct mtd_info *mtd = nand_to_mtd(chip);
f23a481c
BN
5432
5433 mtd->erasesize = type->erasesize;
5434 mtd->writesize = type->pagesize;
5435 mtd->oobsize = mtd->writesize / 32;
f23a481c 5436
1c195e90
HS
5437 /* All legacy ID NAND are small-page, SLC */
5438 chip->bits_per_cell = 1;
f23a481c
BN
5439}
5440
7e74c2d7
BN
5441/*
5442 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5443 * heuristic patterns using various detected parameters (e.g., manufacturer,
5444 * page size, cell-type information).
5445 */
7f501f0a 5446static void nand_decode_bbm_options(struct nand_chip *chip)
7e74c2d7 5447{
cbe435a1 5448 struct mtd_info *mtd = nand_to_mtd(chip);
7e74c2d7
BN
5449
5450 /* Set the bad block position */
5451 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5452 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
5453 else
5454 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
7e74c2d7
BN
5455}
5456
ec6e87e3
HS
5457static inline bool is_full_id_nand(struct nand_flash_dev *type)
5458{
5459 return type->id_len;
5460}
5461
cbe435a1 5462static bool find_full_id_nand(struct nand_chip *chip,
29a198a1 5463 struct nand_flash_dev *type)
ec6e87e3 5464{
cbe435a1 5465 struct mtd_info *mtd = nand_to_mtd(chip);
7f501f0a 5466 u8 *id_data = chip->id.data;
cbe435a1 5467
ec6e87e3
HS
5468 if (!strncmp(type->id, id_data, type->id_len)) {
5469 mtd->writesize = type->pagesize;
5470 mtd->erasesize = type->erasesize;
5471 mtd->oobsize = type->oobsize;
5472
7db906b7 5473 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
5474 chip->chipsize = (uint64_t)type->chipsize << 20;
5475 chip->options |= type->options;
57219342
HS
5476 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
5477 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
5478 chip->onfi_timing_mode_default =
5479 type->onfi_timing_mode_default;
ec6e87e3 5480
f4531b2b
MR
5481 strncpy(chip->parameters.model, type->name,
5482 sizeof(chip->parameters.model) - 1);
092b6a1d 5483
ec6e87e3
HS
5484 return true;
5485 }
5486 return false;
5487}
5488
abbe26d1
BB
5489/*
5490 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5491 * compliant and does not have a full-id or legacy-id entry in the nand_ids
5492 * table.
5493 */
5494static void nand_manufacturer_detect(struct nand_chip *chip)
5495{
5496 /*
5497 * Try manufacturer detection if available and use
5498 * nand_decode_ext_id() otherwise.
5499 */
5500 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
69fc0129
LW
5501 chip->manufacturer.desc->ops->detect) {
5502 /* The 3rd id byte holds MLC / multichip data */
5503 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
abbe26d1 5504 chip->manufacturer.desc->ops->detect(chip);
69fc0129 5505 } else {
abbe26d1 5506 nand_decode_ext_id(chip);
69fc0129 5507 }
abbe26d1
BB
5508}
5509
5510/*
5511 * Manufacturer initialization. This function is called for all NANDs including
5512 * ONFI and JEDEC compliant ones.
5513 * Manufacturer drivers should put all their specific initialization code in
5514 * their ->init() hook.
5515 */
5516static int nand_manufacturer_init(struct nand_chip *chip)
5517{
5518 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5519 !chip->manufacturer.desc->ops->init)
5520 return 0;
5521
5522 return chip->manufacturer.desc->ops->init(chip);
5523}
5524
5525/*
5526 * Manufacturer cleanup. This function is called for all NANDs including
5527 * ONFI and JEDEC compliant ones.
5528 * Manufacturer drivers should put all their specific cleanup code in their
5529 * ->cleanup() hook.
5530 */
5531static void nand_manufacturer_cleanup(struct nand_chip *chip)
5532{
5533 /* Release manufacturer private data */
5534 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5535 chip->manufacturer.desc->ops->cleanup)
5536 chip->manufacturer.desc->ops->cleanup(chip);
5537}
5538
7aa65bfd 5539/*
8b6e50c9 5540 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd 5541 */
7bb42799 5542static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
7aa65bfd 5543{
bcc678c2 5544 const struct nand_manufacturer *manufacturer;
cbe435a1 5545 struct mtd_info *mtd = nand_to_mtd(chip);
97d90da8 5546 int busw, ret;
7f501f0a
BB
5547 u8 *id_data = chip->id.data;
5548 u8 maf_id, dev_id;
1da177e4 5549
ef89a880
KB
5550 /*
5551 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 5552 * after power-up.
ef89a880 5553 */
97d90da8
BB
5554 ret = nand_reset(chip, 0);
5555 if (ret)
5556 return ret;
73f907fd
BB
5557
5558 /* Select the device */
5559 chip->select_chip(mtd, 0);
ef89a880 5560
1da177e4 5561 /* Send the command for reading device ID */
97d90da8
BB
5562 ret = nand_readid_op(chip, 0, id_data, 2);
5563 if (ret)
5564 return ret;
1da177e4
LT
5565
5566 /* Read manufacturer and device IDs */
97d90da8
BB
5567 maf_id = id_data[0];
5568 dev_id = id_data[1];
1da177e4 5569
8b6e50c9
BN
5570 /*
5571 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
5572 * interface concerns can cause random data which looks like a
5573 * possibly credible NAND flash to appear. If the two results do
5574 * not match, ignore the device completely.
5575 */
5576
4aef9b78 5577 /* Read entire ID string */
97d90da8
BB
5578 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5579 if (ret)
5580 return ret;
ed8165c7 5581
7f501f0a 5582 if (id_data[0] != maf_id || id_data[1] != dev_id) {
20171642 5583 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
7f501f0a 5584 maf_id, dev_id, id_data[0], id_data[1]);
4722c0e9 5585 return -ENODEV;
ed8165c7
BD
5586 }
5587
5158bd55 5588 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
7f501f0a 5589
abbe26d1
BB
5590 /* Try to identify manufacturer */
5591 manufacturer = nand_get_manufacturer(maf_id);
5592 chip->manufacturer.desc = manufacturer;
5593
7aa65bfd 5594 if (!type)
5e81e88a
DW
5595 type = nand_flash_ids;
5596
29a198a1
BB
5597 /*
5598 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5599 * override it.
5600 * This is required to make sure initial NAND bus width set by the
5601 * NAND controller driver is coherent with the real NAND bus width
5602 * (extracted by auto-detection code).
5603 */
5604 busw = chip->options & NAND_BUSWIDTH_16;
5605
5606 /*
5607 * The flag is only set (never cleared), reset it to its default value
5608 * before starting auto-detection.
5609 */
5610 chip->options &= ~NAND_BUSWIDTH_16;
5611
ec6e87e3
HS
5612 for (; type->name != NULL; type++) {
5613 if (is_full_id_nand(type)) {
29a198a1 5614 if (find_full_id_nand(chip, type))
ec6e87e3 5615 goto ident_done;
7f501f0a 5616 } else if (dev_id == type->dev_id) {
db5b09f6 5617 break;
ec6e87e3
HS
5618 }
5619 }
5e81e88a 5620
a97421c7 5621 chip->parameters.onfi.version = 0;
d1e1f4e4 5622 if (!type->name || !type->pagesize) {
35fc5195 5623 /* Check if the chip is ONFI compliant */
bd0b6434
MR
5624 ret = nand_flash_detect_onfi(chip);
5625 if (ret < 0)
5626 return ret;
5627 else if (ret)
6fb277ba 5628 goto ident_done;
91361818
HS
5629
5630 /* Check if the chip is JEDEC compliant */
480139d9
MR
5631 ret = nand_flash_detect_jedec(chip);
5632 if (ret < 0)
5633 return ret;
5634 else if (ret)
91361818 5635 goto ident_done;
d1e1f4e4
FF
5636 }
5637
5e81e88a 5638 if (!type->name)
4722c0e9 5639 return -ENODEV;
7aa65bfd 5640
f4531b2b
MR
5641 strncpy(chip->parameters.model, type->name,
5642 sizeof(chip->parameters.model) - 1);
ba0251fe 5643
69423d99 5644 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 5645
abbe26d1
BB
5646 if (!type->pagesize)
5647 nand_manufacturer_detect(chip);
5648 else
29a198a1 5649 nand_decode_id(chip, type);
abbe26d1 5650
bf7a01bf
BN
5651 /* Get chip options */
5652 chip->options |= type->options;
d1e1f4e4 5653
d1e1f4e4 5654ident_done:
f4531b2b
MR
5655 if (!mtd->name)
5656 mtd->name = chip->parameters.model;
d1e1f4e4 5657
64b37b2a 5658 if (chip->options & NAND_BUSWIDTH_AUTO) {
29a198a1
BB
5659 WARN_ON(busw & NAND_BUSWIDTH_16);
5660 nand_set_defaults(chip);
64b37b2a
MC
5661 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5662 /*
5663 * Check, if buswidth is correct. Hardware drivers should set
5664 * chip correct!
5665 */
20171642 5666 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 5667 maf_id, dev_id);
bcc678c2
BB
5668 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5669 mtd->name);
29a198a1
BB
5670 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5671 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4722c0e9 5672 return -EINVAL;
7aa65bfd 5673 }
61b03bd7 5674
7f501f0a 5675 nand_decode_bbm_options(chip);
7e74c2d7 5676
7aa65bfd 5677 /* Calculate the address shift from the page size */
ace4dfee 5678 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 5679 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 5680 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 5681
ace4dfee 5682 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 5683 ffs(mtd->erasesize) - 1;
69423d99
AH
5684 if (chip->chipsize & 0xffffffff)
5685 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
5686 else {
5687 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
5688 chip->chip_shift += 32 - 1;
5689 }
1da177e4 5690
14157f86
MY
5691 if (chip->chip_shift - chip->page_shift > 16)
5692 chip->options |= NAND_ROW_ADDR_3;
5693
26d9be11 5694 chip->badblockbits = 8;
49c50b97 5695 chip->erase = single_erase;
7aa65bfd 5696
8b6e50c9 5697 /* Do not replace user supplied command function! */
ace4dfee
TG
5698 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5699 chip->cmdfunc = nand_command_lp;
7aa65bfd 5700
20171642 5701 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
7f501f0a 5702 maf_id, dev_id);
f4531b2b
MR
5703 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5704 chip->parameters.model);
3755a991 5705 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 5706 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 5707 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4722c0e9 5708 return 0;
7aa65bfd
TG
5709}
5710
d48f62b9
BB
5711static const char * const nand_ecc_modes[] = {
5712 [NAND_ECC_NONE] = "none",
5713 [NAND_ECC_SOFT] = "soft",
5714 [NAND_ECC_HW] = "hw",
5715 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
5716 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
785818fa 5717 [NAND_ECC_ON_DIE] = "on-die",
d48f62b9
BB
5718};
5719
5720static int of_get_nand_ecc_mode(struct device_node *np)
5721{
5722 const char *pm;
5723 int err, i;
5724
5725 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5726 if (err < 0)
5727 return err;
5728
5729 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
5730 if (!strcasecmp(pm, nand_ecc_modes[i]))
5731 return i;
5732
ae211bcf
RM
5733 /*
5734 * For backward compatibility we support few obsoleted values that don't
5735 * have their mappings into nand_ecc_modes_t anymore (they were merged
5736 * with other enums).
5737 */
5738 if (!strcasecmp(pm, "soft_bch"))
5739 return NAND_ECC_SOFT;
5740
d48f62b9
BB
5741 return -ENODEV;
5742}
5743
ba4f46b2
RM
5744static const char * const nand_ecc_algos[] = {
5745 [NAND_ECC_HAMMING] = "hamming",
5746 [NAND_ECC_BCH] = "bch",
5747};
5748
d48f62b9
BB
5749static int of_get_nand_ecc_algo(struct device_node *np)
5750{
5751 const char *pm;
ba4f46b2 5752 int err, i;
d48f62b9 5753
ba4f46b2
RM
5754 err = of_property_read_string(np, "nand-ecc-algo", &pm);
5755 if (!err) {
5756 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
5757 if (!strcasecmp(pm, nand_ecc_algos[i]))
5758 return i;
5759 return -ENODEV;
5760 }
d48f62b9
BB
5761
5762 /*
5763 * For backward compatibility we also read "nand-ecc-mode" checking
5764 * for some obsoleted values that were specifying ECC algorithm.
5765 */
5766 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5767 if (err < 0)
5768 return err;
5769
5770 if (!strcasecmp(pm, "soft"))
5771 return NAND_ECC_HAMMING;
5772 else if (!strcasecmp(pm, "soft_bch"))
5773 return NAND_ECC_BCH;
5774
5775 return -ENODEV;
5776}
5777
5778static int of_get_nand_ecc_step_size(struct device_node *np)
5779{
5780 int ret;
5781 u32 val;
5782
5783 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5784 return ret ? ret : val;
5785}
5786
5787static int of_get_nand_ecc_strength(struct device_node *np)
5788{
5789 int ret;
5790 u32 val;
5791
5792 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5793 return ret ? ret : val;
5794}
5795
5796static int of_get_nand_bus_width(struct device_node *np)
5797{
5798 u32 val;
5799
5800 if (of_property_read_u32(np, "nand-bus-width", &val))
5801 return 8;
5802
5803 switch (val) {
5804 case 8:
5805 case 16:
5806 return val;
5807 default:
5808 return -EIO;
5809 }
5810}
5811
5812static bool of_get_nand_on_flash_bbt(struct device_node *np)
5813{
5814 return of_property_read_bool(np, "nand-on-flash-bbt");
5815}
5816
7194a29a 5817static int nand_dt_init(struct nand_chip *chip)
5844feea 5818{
7194a29a 5819 struct device_node *dn = nand_get_flash_node(chip);
79082457 5820 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5844feea 5821
7194a29a
BB
5822 if (!dn)
5823 return 0;
5824
5844feea
BN
5825 if (of_get_nand_bus_width(dn) == 16)
5826 chip->options |= NAND_BUSWIDTH_16;
5827
5828 if (of_get_nand_on_flash_bbt(dn))
5829 chip->bbt_options |= NAND_BBT_USE_FLASH;
5830
5831 ecc_mode = of_get_nand_ecc_mode(dn);
79082457 5832 ecc_algo = of_get_nand_ecc_algo(dn);
5844feea
BN
5833 ecc_strength = of_get_nand_ecc_strength(dn);
5834 ecc_step = of_get_nand_ecc_step_size(dn);
5835
5844feea
BN
5836 if (ecc_mode >= 0)
5837 chip->ecc.mode = ecc_mode;
5838
79082457
RM
5839 if (ecc_algo >= 0)
5840 chip->ecc.algo = ecc_algo;
5841
5844feea
BN
5842 if (ecc_strength >= 0)
5843 chip->ecc.strength = ecc_strength;
5844
5845 if (ecc_step > 0)
5846 chip->ecc.size = ecc_step;
5847
ba78ee00
BB
5848 if (of_property_read_bool(dn, "nand-ecc-maximize"))
5849 chip->ecc.options |= NAND_ECC_MAXIMIZE;
5850
5844feea
BN
5851 return 0;
5852}
5853
7aa65bfd 5854/**
3b85c321 5855 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
5856 * @mtd: MTD device structure
5857 * @maxchips: number of chips to scan for
5858 * @table: alternative NAND ID table
7aa65bfd 5859 *
8b6e50c9
BN
5860 * This is the first phase of the normal nand_scan() function. It reads the
5861 * flash ID and sets up MTD fields accordingly.
7aa65bfd
TG
5862 *
5863 */
5e81e88a
DW
5864int nand_scan_ident(struct mtd_info *mtd, int maxchips,
5865 struct nand_flash_dev *table)
7aa65bfd 5866{
bb77082f 5867 int i, nand_maf_id, nand_dev_id;
862eba51 5868 struct nand_chip *chip = mtd_to_nand(mtd);
5844feea
BN
5869 int ret;
5870
17fa8044
MR
5871 /* Enforce the right timings for reset/detection */
5872 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5873
7194a29a
BB
5874 ret = nand_dt_init(chip);
5875 if (ret)
5876 return ret;
7aa65bfd 5877
f7a8e38f
BN
5878 if (!mtd->name && mtd->dev.parent)
5879 mtd->name = dev_name(mtd->dev.parent);
5880
8878b126
MR
5881 /*
5882 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
5883 * populated.
5884 */
5885 if (!chip->exec_op) {
76fe334f 5886 /*
8878b126
MR
5887 * Default functions assigned for ->cmdfunc() and
5888 * ->select_chip() both expect ->cmd_ctrl() to be populated.
76fe334f 5889 */
8878b126
MR
5890 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
5891 pr_err("->cmd_ctrl() should be provided\n");
5892 return -EINVAL;
5893 }
76fe334f 5894 }
8878b126 5895
7aa65bfd 5896 /* Set the default functions */
29a198a1 5897 nand_set_defaults(chip);
7aa65bfd
TG
5898
5899 /* Read the flash type */
7bb42799 5900 ret = nand_detect(chip, table);
4722c0e9 5901 if (ret) {
b1c6e6db 5902 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 5903 pr_warn("No NAND device found\n");
ace4dfee 5904 chip->select_chip(mtd, -1);
4722c0e9 5905 return ret;
1da177e4
LT
5906 }
5907
7f501f0a
BB
5908 nand_maf_id = chip->id.data[0];
5909 nand_dev_id = chip->id.data[1];
5910
07300164
HS
5911 chip->select_chip(mtd, -1);
5912
7aa65bfd 5913 /* Check for a chip array */
e0c7d767 5914 for (i = 1; i < maxchips; i++) {
97d90da8
BB
5915 u8 id[2];
5916
ef89a880 5917 /* See comment in nand_get_flash_type for reset */
73f907fd
BB
5918 nand_reset(chip, i);
5919
5920 chip->select_chip(mtd, i);
1da177e4 5921 /* Send the command for reading device ID */
97d90da8 5922 nand_readid_op(chip, 0, id, sizeof(id));
1da177e4 5923 /* Read manufacturer and device IDs */
97d90da8 5924 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
07300164 5925 chip->select_chip(mtd, -1);
1da177e4 5926 break;
07300164
HS
5927 }
5928 chip->select_chip(mtd, -1);
1da177e4
LT
5929 }
5930 if (i > 1)
20171642 5931 pr_info("%d chips detected\n", i);
61b03bd7 5932
1da177e4 5933 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
5934 chip->numchips = i;
5935 mtd->size = i * chip->chipsize;
7aa65bfd 5936
3b85c321
DW
5937 return 0;
5938}
7351d3a5 5939EXPORT_SYMBOL(nand_scan_ident);
3b85c321 5940
06f384c9
RM
5941static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
5942{
5943 struct nand_chip *chip = mtd_to_nand(mtd);
5944 struct nand_ecc_ctrl *ecc = &chip->ecc;
5945
e4225ae8 5946 if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
06f384c9
RM
5947 return -EINVAL;
5948
5949 switch (ecc->algo) {
5950 case NAND_ECC_HAMMING:
5951 ecc->calculate = nand_calculate_ecc;
5952 ecc->correct = nand_correct_data;
5953 ecc->read_page = nand_read_page_swecc;
5954 ecc->read_subpage = nand_read_subpage;
5955 ecc->write_page = nand_write_page_swecc;
5956 ecc->read_page_raw = nand_read_page_raw;
5957 ecc->write_page_raw = nand_write_page_raw;
5958 ecc->read_oob = nand_read_oob_std;
5959 ecc->write_oob = nand_write_oob_std;
5960 if (!ecc->size)
5961 ecc->size = 256;
5962 ecc->bytes = 3;
5963 ecc->strength = 1;
5964 return 0;
5965 case NAND_ECC_BCH:
5966 if (!mtd_nand_has_bch()) {
5967 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
5968 return -EINVAL;
5969 }
5970 ecc->calculate = nand_bch_calculate_ecc;
5971 ecc->correct = nand_bch_correct_data;
5972 ecc->read_page = nand_read_page_swecc;
5973 ecc->read_subpage = nand_read_subpage;
5974 ecc->write_page = nand_write_page_swecc;
5975 ecc->read_page_raw = nand_read_page_raw;
5976 ecc->write_page_raw = nand_write_page_raw;
5977 ecc->read_oob = nand_read_oob_std;
5978 ecc->write_oob = nand_write_oob_std;
8bbba481 5979
06f384c9
RM
5980 /*
5981 * Board driver should supply ecc.size and ecc.strength
5982 * values to select how many bits are correctable.
5983 * Otherwise, default to 4 bits for large page devices.
5984 */
5985 if (!ecc->size && (mtd->oobsize >= 64)) {
5986 ecc->size = 512;
5987 ecc->strength = 4;
5988 }
5989
5990 /*
5991 * if no ecc placement scheme was provided pickup the default
5992 * large page one.
5993 */
5994 if (!mtd->ooblayout) {
5995 /* handle large page devices only */
5996 if (mtd->oobsize < 64) {
5997 WARN(1, "OOB layout is required when using software BCH on small pages\n");
5998 return -EINVAL;
5999 }
6000
6001 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
8bbba481
BB
6002
6003 }
6004
6005 /*
6006 * We can only maximize ECC config when the default layout is
6007 * used, otherwise we don't know how many bytes can really be
6008 * used.
6009 */
6010 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
6011 ecc->options & NAND_ECC_MAXIMIZE) {
6012 int steps, bytes;
6013
6014 /* Always prefer 1k blocks over 512bytes ones */
6015 ecc->size = 1024;
6016 steps = mtd->writesize / ecc->size;
6017
6018 /* Reserve 2 bytes for the BBM */
6019 bytes = (mtd->oobsize - 2) / steps;
6020 ecc->strength = bytes * 8 / fls(8 * ecc->size);
06f384c9
RM
6021 }
6022
6023 /* See nand_bch_init() for details. */
6024 ecc->bytes = 0;
6025 ecc->priv = nand_bch_init(mtd);
6026 if (!ecc->priv) {
6027 WARN(1, "BCH ECC initialization failed!\n");
6028 return -EINVAL;
6029 }
6030 return 0;
6031 default:
6032 WARN(1, "Unsupported ECC algorithm!\n");
6033 return -EINVAL;
6034 }
6035}
6036
2c8f8afa
MY
6037/**
6038 * nand_check_ecc_caps - check the sanity of preset ECC settings
6039 * @chip: nand chip info structure
6040 * @caps: ECC caps info structure
6041 * @oobavail: OOB size that the ECC engine can use
6042 *
6043 * When ECC step size and strength are already set, check if they are supported
6044 * by the controller and the calculated ECC bytes fit within the chip's OOB.
6045 * On success, the calculated ECC bytes is set.
6046 */
6047int nand_check_ecc_caps(struct nand_chip *chip,
6048 const struct nand_ecc_caps *caps, int oobavail)
6049{
6050 struct mtd_info *mtd = nand_to_mtd(chip);
6051 const struct nand_ecc_step_info *stepinfo;
6052 int preset_step = chip->ecc.size;
6053 int preset_strength = chip->ecc.strength;
6054 int nsteps, ecc_bytes;
6055 int i, j;
6056
6057 if (WARN_ON(oobavail < 0))
6058 return -EINVAL;
6059
6060 if (!preset_step || !preset_strength)
6061 return -ENODATA;
6062
6063 nsteps = mtd->writesize / preset_step;
6064
6065 for (i = 0; i < caps->nstepinfos; i++) {
6066 stepinfo = &caps->stepinfos[i];
6067
6068 if (stepinfo->stepsize != preset_step)
6069 continue;
6070
6071 for (j = 0; j < stepinfo->nstrengths; j++) {
6072 if (stepinfo->strengths[j] != preset_strength)
6073 continue;
6074
6075 ecc_bytes = caps->calc_ecc_bytes(preset_step,
6076 preset_strength);
6077 if (WARN_ON_ONCE(ecc_bytes < 0))
6078 return ecc_bytes;
6079
6080 if (ecc_bytes * nsteps > oobavail) {
6081 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6082 preset_step, preset_strength);
6083 return -ENOSPC;
6084 }
6085
6086 chip->ecc.bytes = ecc_bytes;
6087
6088 return 0;
6089 }
6090 }
6091
6092 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6093 preset_step, preset_strength);
6094
6095 return -ENOTSUPP;
6096}
6097EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
6098
6099/**
6100 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6101 * @chip: nand chip info structure
6102 * @caps: ECC engine caps info structure
6103 * @oobavail: OOB size that the ECC engine can use
6104 *
6105 * If a chip's ECC requirement is provided, try to meet it with the least
6106 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6107 * On success, the chosen ECC settings are set.
6108 */
6109int nand_match_ecc_req(struct nand_chip *chip,
6110 const struct nand_ecc_caps *caps, int oobavail)
6111{
6112 struct mtd_info *mtd = nand_to_mtd(chip);
6113 const struct nand_ecc_step_info *stepinfo;
6114 int req_step = chip->ecc_step_ds;
6115 int req_strength = chip->ecc_strength_ds;
6116 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6117 int best_step, best_strength, best_ecc_bytes;
6118 int best_ecc_bytes_total = INT_MAX;
6119 int i, j;
6120
6121 if (WARN_ON(oobavail < 0))
6122 return -EINVAL;
6123
6124 /* No information provided by the NAND chip */
6125 if (!req_step || !req_strength)
6126 return -ENOTSUPP;
6127
6128 /* number of correctable bits the chip requires in a page */
6129 req_corr = mtd->writesize / req_step * req_strength;
6130
6131 for (i = 0; i < caps->nstepinfos; i++) {
6132 stepinfo = &caps->stepinfos[i];
6133 step_size = stepinfo->stepsize;
6134
6135 for (j = 0; j < stepinfo->nstrengths; j++) {
6136 strength = stepinfo->strengths[j];
6137
6138 /*
6139 * If both step size and strength are smaller than the
6140 * chip's requirement, it is not easy to compare the
6141 * resulted reliability.
6142 */
6143 if (step_size < req_step && strength < req_strength)
6144 continue;
6145
6146 if (mtd->writesize % step_size)
6147 continue;
6148
6149 nsteps = mtd->writesize / step_size;
6150
6151 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6152 if (WARN_ON_ONCE(ecc_bytes < 0))
6153 continue;
6154 ecc_bytes_total = ecc_bytes * nsteps;
6155
6156 if (ecc_bytes_total > oobavail ||
6157 strength * nsteps < req_corr)
6158 continue;
6159
6160 /*
6161 * We assume the best is to meet the chip's requrement
6162 * with the least number of ECC bytes.
6163 */
6164 if (ecc_bytes_total < best_ecc_bytes_total) {
6165 best_ecc_bytes_total = ecc_bytes_total;
6166 best_step = step_size;
6167 best_strength = strength;
6168 best_ecc_bytes = ecc_bytes;
6169 }
6170 }
6171 }
6172
6173 if (best_ecc_bytes_total == INT_MAX)
6174 return -ENOTSUPP;
6175
6176 chip->ecc.size = best_step;
6177 chip->ecc.strength = best_strength;
6178 chip->ecc.bytes = best_ecc_bytes;
6179
6180 return 0;
6181}
6182EXPORT_SYMBOL_GPL(nand_match_ecc_req);
6183
6184/**
6185 * nand_maximize_ecc - choose the max ECC strength available
6186 * @chip: nand chip info structure
6187 * @caps: ECC engine caps info structure
6188 * @oobavail: OOB size that the ECC engine can use
6189 *
6190 * Choose the max ECC strength that is supported on the controller, and can fit
6191 * within the chip's OOB. On success, the chosen ECC settings are set.
6192 */
6193int nand_maximize_ecc(struct nand_chip *chip,
6194 const struct nand_ecc_caps *caps, int oobavail)
6195{
6196 struct mtd_info *mtd = nand_to_mtd(chip);
6197 const struct nand_ecc_step_info *stepinfo;
6198 int step_size, strength, nsteps, ecc_bytes, corr;
6199 int best_corr = 0;
6200 int best_step = 0;
6201 int best_strength, best_ecc_bytes;
6202 int i, j;
6203
6204 if (WARN_ON(oobavail < 0))
6205 return -EINVAL;
6206
6207 for (i = 0; i < caps->nstepinfos; i++) {
6208 stepinfo = &caps->stepinfos[i];
6209 step_size = stepinfo->stepsize;
6210
6211 /* If chip->ecc.size is already set, respect it */
6212 if (chip->ecc.size && step_size != chip->ecc.size)
6213 continue;
6214
6215 for (j = 0; j < stepinfo->nstrengths; j++) {
6216 strength = stepinfo->strengths[j];
6217
6218 if (mtd->writesize % step_size)
6219 continue;
6220
6221 nsteps = mtd->writesize / step_size;
6222
6223 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6224 if (WARN_ON_ONCE(ecc_bytes < 0))
6225 continue;
6226
6227 if (ecc_bytes * nsteps > oobavail)
6228 continue;
6229
6230 corr = strength * nsteps;
6231
6232 /*
6233 * If the number of correctable bits is the same,
6234 * bigger step_size has more reliability.
6235 */
6236 if (corr > best_corr ||
6237 (corr == best_corr && step_size > best_step)) {
6238 best_corr = corr;
6239 best_step = step_size;
6240 best_strength = strength;
6241 best_ecc_bytes = ecc_bytes;
6242 }
6243 }
6244 }
6245
6246 if (!best_corr)
6247 return -ENOTSUPP;
6248
6249 chip->ecc.size = best_step;
6250 chip->ecc.strength = best_strength;
6251 chip->ecc.bytes = best_ecc_bytes;
6252
6253 return 0;
6254}
6255EXPORT_SYMBOL_GPL(nand_maximize_ecc);
6256
67a9ad9b
EG
6257/*
6258 * Check if the chip configuration meet the datasheet requirements.
6259
6260 * If our configuration corrects A bits per B bytes and the minimum
6261 * required correction level is X bits per Y bytes, then we must ensure
6262 * both of the following are true:
6263 *
6264 * (1) A / B >= X / Y
6265 * (2) A >= X
6266 *
6267 * Requirement (1) ensures we can correct for the required bitflip density.
6268 * Requirement (2) ensures we can correct even when all bitflips are clumped
6269 * in the same sector.
6270 */
6271static bool nand_ecc_strength_good(struct mtd_info *mtd)
6272{
862eba51 6273 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
6274 struct nand_ecc_ctrl *ecc = &chip->ecc;
6275 int corr, ds_corr;
6276
6277 if (ecc->size == 0 || chip->ecc_step_ds == 0)
6278 /* Not enough information */
6279 return true;
6280
6281 /*
6282 * We get the number of corrected bits per page to compare
6283 * the correction density.
6284 */
6285 corr = (mtd->writesize * ecc->strength) / ecc->size;
6286 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
6287
6288 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
6289}
3b85c321
DW
6290
6291/**
6292 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 6293 * @mtd: MTD device structure
3b85c321 6294 *
8b6e50c9
BN
6295 * This is the second phase of the normal nand_scan() function. It fills out
6296 * all the uninitialized function pointers with the defaults and scans for a
6297 * bad block table if appropriate.
3b85c321
DW
6298 */
6299int nand_scan_tail(struct mtd_info *mtd)
6300{
862eba51 6301 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 6302 struct nand_ecc_ctrl *ecc = &chip->ecc;
f84674b8 6303 int ret, i;
3b85c321 6304
e2414f4c 6305 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
11eaf6df 6306 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
78771049 6307 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
f84674b8 6308 return -EINVAL;
78771049 6309 }
e2414f4c 6310
c0313b96 6311 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
aeb93af9 6312 if (!chip->data_buf)
f84674b8 6313 return -ENOMEM;
4bf63fcb 6314
f84674b8
BB
6315 /*
6316 * FIXME: some NAND manufacturer drivers expect the first die to be
6317 * selected when manufacturer->init() is called. They should be fixed
6318 * to explictly select the relevant die when interacting with the NAND
6319 * chip.
6320 */
6321 chip->select_chip(mtd, 0);
6322 ret = nand_manufacturer_init(chip);
6323 chip->select_chip(mtd, -1);
6324 if (ret)
c0313b96 6325 goto err_free_buf;
f84674b8 6326
7dcdcbef 6327 /* Set the internal oob buffer location, just after the page data */
c0313b96 6328 chip->oob_poi = chip->data_buf + mtd->writesize;
1da177e4 6329
7aa65bfd 6330 /*
8b6e50c9 6331 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 6332 */
06f384c9 6333 if (!mtd->ooblayout &&
e4225ae8 6334 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
61b03bd7 6335 switch (mtd->oobsize) {
1da177e4 6336 case 8:
1da177e4 6337 case 16:
41b207a7 6338 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
1da177e4
LT
6339 break;
6340 case 64:
81ec5364 6341 case 128:
6a623e07 6342 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
81ec5364 6343 break;
1da177e4 6344 default:
882fd157
MR
6345 /*
6346 * Expose the whole OOB area to users if ECC_NONE
6347 * is passed. We could do that for all kind of
6348 * ->oobsize, but we must keep the old large/small
6349 * page with ECC layout when ->oobsize <= 128 for
6350 * compatibility reasons.
6351 */
6352 if (ecc->mode == NAND_ECC_NONE) {
6353 mtd_set_ooblayout(mtd,
6354 &nand_ooblayout_lp_ops);
6355 break;
6356 }
6357
11eaf6df
EG
6358 WARN(1, "No oob scheme defined for oobsize %d\n",
6359 mtd->oobsize);
6360 ret = -EINVAL;
f84674b8 6361 goto err_nand_manuf_cleanup;
1da177e4
LT
6362 }
6363 }
61b03bd7 6364
61b03bd7 6365 /*
8b6e50c9 6366 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 6367 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 6368 */
956e944c 6369
97de79e0 6370 switch (ecc->mode) {
6e0cb135
SN
6371 case NAND_ECC_HW_OOB_FIRST:
6372 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 6373 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
11eaf6df
EG
6374 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6375 ret = -EINVAL;
f84674b8 6376 goto err_nand_manuf_cleanup;
6e0cb135 6377 }
97de79e0
HS
6378 if (!ecc->read_page)
6379 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 6380
6dfc6d25 6381 case NAND_ECC_HW:
8b6e50c9 6382 /* Use standard hwecc read page function? */
97de79e0
HS
6383 if (!ecc->read_page)
6384 ecc->read_page = nand_read_page_hwecc;
6385 if (!ecc->write_page)
6386 ecc->write_page = nand_write_page_hwecc;
6387 if (!ecc->read_page_raw)
6388 ecc->read_page_raw = nand_read_page_raw;
6389 if (!ecc->write_page_raw)
6390 ecc->write_page_raw = nand_write_page_raw;
6391 if (!ecc->read_oob)
6392 ecc->read_oob = nand_read_oob_std;
6393 if (!ecc->write_oob)
6394 ecc->write_oob = nand_write_oob_std;
6395 if (!ecc->read_subpage)
6396 ecc->read_subpage = nand_read_subpage;
44991b3d 6397 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
97de79e0 6398 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 6399
6dfc6d25 6400 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
6401 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
6402 (!ecc->read_page ||
6403 ecc->read_page == nand_read_page_hwecc ||
6404 !ecc->write_page ||
6405 ecc->write_page == nand_write_page_hwecc)) {
11eaf6df
EG
6406 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6407 ret = -EINVAL;
f84674b8 6408 goto err_nand_manuf_cleanup;
6dfc6d25 6409 }
8b6e50c9 6410 /* Use standard syndrome read/write page function? */
97de79e0
HS
6411 if (!ecc->read_page)
6412 ecc->read_page = nand_read_page_syndrome;
6413 if (!ecc->write_page)
6414 ecc->write_page = nand_write_page_syndrome;
6415 if (!ecc->read_page_raw)
6416 ecc->read_page_raw = nand_read_page_raw_syndrome;
6417 if (!ecc->write_page_raw)
6418 ecc->write_page_raw = nand_write_page_raw_syndrome;
6419 if (!ecc->read_oob)
6420 ecc->read_oob = nand_read_oob_syndrome;
6421 if (!ecc->write_oob)
6422 ecc->write_oob = nand_write_oob_syndrome;
6423
6424 if (mtd->writesize >= ecc->size) {
6425 if (!ecc->strength) {
11eaf6df
EG
6426 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6427 ret = -EINVAL;
f84674b8 6428 goto err_nand_manuf_cleanup;
e2788c98 6429 }
6dfc6d25 6430 break;
e2788c98 6431 }
2ac63d90
RM
6432 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6433 ecc->size, mtd->writesize);
97de79e0 6434 ecc->mode = NAND_ECC_SOFT;
e9d4faed 6435 ecc->algo = NAND_ECC_HAMMING;
61b03bd7 6436
6dfc6d25 6437 case NAND_ECC_SOFT:
06f384c9
RM
6438 ret = nand_set_ecc_soft_ops(mtd);
6439 if (ret) {
11eaf6df 6440 ret = -EINVAL;
f84674b8 6441 goto err_nand_manuf_cleanup;
193bd400
ID
6442 }
6443 break;
6444
785818fa
TP
6445 case NAND_ECC_ON_DIE:
6446 if (!ecc->read_page || !ecc->write_page) {
6447 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6448 ret = -EINVAL;
f84674b8 6449 goto err_nand_manuf_cleanup;
785818fa
TP
6450 }
6451 if (!ecc->read_oob)
6452 ecc->read_oob = nand_read_oob_std;
6453 if (!ecc->write_oob)
6454 ecc->write_oob = nand_write_oob_std;
6455 break;
6456
61b03bd7 6457 case NAND_ECC_NONE:
2ac63d90 6458 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
6459 ecc->read_page = nand_read_page_raw;
6460 ecc->write_page = nand_write_page_raw;
6461 ecc->read_oob = nand_read_oob_std;
6462 ecc->read_page_raw = nand_read_page_raw;
6463 ecc->write_page_raw = nand_write_page_raw;
6464 ecc->write_oob = nand_write_oob_std;
6465 ecc->size = mtd->writesize;
6466 ecc->bytes = 0;
6467 ecc->strength = 0;
1da177e4 6468 break;
956e944c 6469
1da177e4 6470 default:
11eaf6df
EG
6471 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
6472 ret = -EINVAL;
f84674b8 6473 goto err_nand_manuf_cleanup;
1da177e4 6474 }
61b03bd7 6475
aeb93af9
BB
6476 if (ecc->correct || ecc->calculate) {
6477 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6478 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6479 if (!ecc->calc_buf || !ecc->code_buf) {
6480 ret = -ENOMEM;
6481 goto err_nand_manuf_cleanup;
6482 }
6483 }
6484
9ce244b3 6485 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
6486 if (!ecc->read_oob_raw)
6487 ecc->read_oob_raw = ecc->read_oob;
6488 if (!ecc->write_oob_raw)
6489 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 6490
846031d3 6491 /* propagate ecc info to mtd_info */
846031d3
BB
6492 mtd->ecc_strength = ecc->strength;
6493 mtd->ecc_step_size = ecc->size;
67a9ad9b 6494
7aa65bfd
TG
6495 /*
6496 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 6497 * mode.
7aa65bfd 6498 */
97de79e0
HS
6499 ecc->steps = mtd->writesize / ecc->size;
6500 if (ecc->steps * ecc->size != mtd->writesize) {
11eaf6df
EG
6501 WARN(1, "Invalid ECC parameters\n");
6502 ret = -EINVAL;
f84674b8 6503 goto err_nand_manuf_cleanup;
1da177e4 6504 }
97de79e0 6505 ecc->total = ecc->steps * ecc->bytes;
79e0348c
MY
6506 if (ecc->total > mtd->oobsize) {
6507 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6508 ret = -EINVAL;
f84674b8 6509 goto err_nand_manuf_cleanup;
79e0348c 6510 }
61b03bd7 6511
846031d3
BB
6512 /*
6513 * The number of bytes available for a client to place data into
6514 * the out of band area.
6515 */
6516 ret = mtd_ooblayout_count_freebytes(mtd);
6517 if (ret < 0)
6518 ret = 0;
6519
6520 mtd->oobavail = ret;
6521
6522 /* ECC sanity check: warn if it's too weak */
6523 if (!nand_ecc_strength_good(mtd))
6524 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
6525 mtd->name);
6526
8b6e50c9 6527 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 6528 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 6529 switch (ecc->steps) {
29072b96
TG
6530 case 2:
6531 mtd->subpage_sft = 1;
6532 break;
6533 case 4:
6534 case 8:
81ec5364 6535 case 16:
29072b96
TG
6536 mtd->subpage_sft = 2;
6537 break;
6538 }
6539 }
6540 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6541
04bbd0ea 6542 /* Initialize state */
ace4dfee 6543 chip->state = FL_READY;
1da177e4 6544
1da177e4 6545 /* Invalidate the pagebuffer reference */
ace4dfee 6546 chip->pagebuf = -1;
1da177e4 6547
a5ff4f10 6548 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
6549 switch (ecc->mode) {
6550 case NAND_ECC_SOFT:
4007e2d1
RL
6551 if (chip->page_shift > 9)
6552 chip->options |= NAND_SUBPAGE_READ;
6553 break;
6554
6555 default:
6556 break;
6557 }
a5ff4f10 6558
1da177e4 6559 /* Fill in remaining MTD driver data */
963d1c28 6560 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
6561 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
6562 MTD_CAP_NANDFLASH;
3c3c10bb
AB
6563 mtd->_erase = nand_erase;
6564 mtd->_point = NULL;
6565 mtd->_unpoint = NULL;
3c3c10bb
AB
6566 mtd->_panic_write = panic_nand_write;
6567 mtd->_read_oob = nand_read_oob;
6568 mtd->_write_oob = nand_write_oob;
6569 mtd->_sync = nand_sync;
6570 mtd->_lock = NULL;
6571 mtd->_unlock = NULL;
6572 mtd->_suspend = nand_suspend;
6573 mtd->_resume = nand_resume;
72ea4036 6574 mtd->_reboot = nand_shutdown;
8471bb73 6575 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
6576 mtd->_block_isbad = nand_block_isbad;
6577 mtd->_block_markbad = nand_block_markbad;
5671842f 6578 mtd->_max_bad_blocks = nand_max_bad_blocks;
cbcab65a 6579 mtd->writebufsize = mtd->writesize;
1da177e4 6580
ea3b2ea2
SL
6581 /*
6582 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6583 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6584 * properly set.
6585 */
6586 if (!mtd->bitflip_threshold)
240181fd 6587 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 6588
f84674b8
BB
6589 /* Initialize the ->data_interface field. */
6590 ret = nand_init_data_interface(chip);
6591 if (ret)
6592 goto err_nand_manuf_cleanup;
6593
6594 /* Enter fastest possible mode on all dies. */
6595 for (i = 0; i < chip->numchips; i++) {
f84674b8 6596 ret = nand_setup_data_interface(chip, i);
f84674b8 6597 if (ret)
17fa8044 6598 goto err_nand_manuf_cleanup;
f84674b8
BB
6599 }
6600
0040bf38 6601 /* Check, if we should skip the bad block table scan */
ace4dfee 6602 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 6603 return 0;
1da177e4
LT
6604
6605 /* Build bad block table */
44d4182e
BN
6606 ret = chip->scan_bbt(mtd);
6607 if (ret)
17fa8044 6608 goto err_nand_manuf_cleanup;
f84674b8 6609
44d4182e
BN
6610 return 0;
6611
f84674b8
BB
6612
6613err_nand_manuf_cleanup:
6614 nand_manufacturer_cleanup(chip);
6615
c0313b96
MY
6616err_free_buf:
6617 kfree(chip->data_buf);
6618 kfree(ecc->code_buf);
6619 kfree(ecc->calc_buf);
78771049 6620
11eaf6df 6621 return ret;
1da177e4 6622}
7351d3a5 6623EXPORT_SYMBOL(nand_scan_tail);
1da177e4 6624
8b6e50c9
BN
6625/*
6626 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 6627 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
6628 * to call us from in-kernel code if the core NAND support is modular.
6629 */
3b85c321
DW
6630#ifdef MODULE
6631#define caller_is_module() (1)
6632#else
6633#define caller_is_module() \
a6e6abd5 6634 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
6635#endif
6636
6637/**
6638 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
6639 * @mtd: MTD device structure
6640 * @maxchips: number of chips to scan for
3b85c321 6641 *
8b6e50c9
BN
6642 * This fills out all the uninitialized function pointers with the defaults.
6643 * The flash ID is read and the mtd/chip structures are filled with the
20c07a5b 6644 * appropriate values.
3b85c321
DW
6645 */
6646int nand_scan(struct mtd_info *mtd, int maxchips)
6647{
6648 int ret;
6649
5e81e88a 6650 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
6651 if (!ret)
6652 ret = nand_scan_tail(mtd);
6653 return ret;
6654}
7351d3a5 6655EXPORT_SYMBOL(nand_scan);
3b85c321 6656
1da177e4 6657/**
d44154f9
RW
6658 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6659 * @chip: NAND chip object
8b6e50c9 6660 */
d44154f9 6661void nand_cleanup(struct nand_chip *chip)
1da177e4 6662{
e4225ae8 6663 if (chip->ecc.mode == NAND_ECC_SOFT &&
06f384c9 6664 chip->ecc.algo == NAND_ECC_BCH)
193bd400
ID
6665 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6666
fa671646 6667 /* Free bad block table memory */
ace4dfee 6668 kfree(chip->bbt);
c0313b96
MY
6669 kfree(chip->data_buf);
6670 kfree(chip->ecc.code_buf);
6671 kfree(chip->ecc.calc_buf);
58373ff0
BN
6672
6673 /* Free bad block descriptor memory */
6674 if (chip->badblock_pattern && chip->badblock_pattern->options
6675 & NAND_BBT_DYNAMICSTRUCT)
6676 kfree(chip->badblock_pattern);
abbe26d1
BB
6677
6678 /* Free manufacturer priv data. */
6679 nand_manufacturer_cleanup(chip);
1da177e4 6680}
d44154f9
RW
6681EXPORT_SYMBOL_GPL(nand_cleanup);
6682
6683/**
6684 * nand_release - [NAND Interface] Unregister the MTD device and free resources
6685 * held by the NAND device
6686 * @mtd: MTD device structure
6687 */
6688void nand_release(struct mtd_info *mtd)
6689{
6690 mtd_device_unregister(mtd);
6691 nand_cleanup(mtd_to_nand(mtd));
6692}
e0c7d767 6693EXPORT_SYMBOL_GPL(nand_release);
8fe833c1 6694
e0c7d767 6695MODULE_LICENSE("GPL");
7351d3a5
FF
6696MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6697MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 6698MODULE_DESCRIPTION("Generic NAND flash driver code");