]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/mtd/nand/raw/nandsim.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / nand / raw / nandsim.c
CommitLineData
1da177e4
LT
1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
61b03bd7 6 * Copyright (C) 2004 Nokia Corporation
1da177e4
LT
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
1da177e4
LT
24 */
25
63fa37f0
SP
26#define pr_fmt(fmt) "[nandsim]" fmt
27
1da177e4
LT
28#include <linux/init.h>
29#include <linux/types.h>
30#include <linux/module.h>
31#include <linux/moduleparam.h>
32#include <linux/vmalloc.h>
596fd462 33#include <linux/math64.h>
1da177e4
LT
34#include <linux/slab.h>
35#include <linux/errno.h>
36#include <linux/string.h>
37#include <linux/mtd/mtd.h>
d4092d76 38#include <linux/mtd/rawnand.h>
fc2ff592 39#include <linux/mtd/nand_bch.h>
1da177e4
LT
40#include <linux/mtd/partitions.h>
41#include <linux/delay.h>
2b77a0ed 42#include <linux/list.h>
514087e7 43#include <linux/random.h>
a5cce42f 44#include <linux/sched.h>
dcbe8214 45#include <linux/sched/mm.h>
a9fc8991
AH
46#include <linux/fs.h>
47#include <linux/pagemap.h>
5346c27c
EG
48#include <linux/seq_file.h>
49#include <linux/debugfs.h>
1da177e4
LT
50
51/* Default simulator parameters values */
52#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
53 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
54 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
55 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
56#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
57#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
58#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
59#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
60#endif
61
62#ifndef CONFIG_NANDSIM_ACCESS_DELAY
63#define CONFIG_NANDSIM_ACCESS_DELAY 25
64#endif
65#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
66#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
67#endif
68#ifndef CONFIG_NANDSIM_ERASE_DELAY
69#define CONFIG_NANDSIM_ERASE_DELAY 2
70#endif
71#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
72#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
73#endif
74#ifndef CONFIG_NANDSIM_INPUT_CYCLE
75#define CONFIG_NANDSIM_INPUT_CYCLE 50
76#endif
77#ifndef CONFIG_NANDSIM_BUS_WIDTH
78#define CONFIG_NANDSIM_BUS_WIDTH 8
79#endif
80#ifndef CONFIG_NANDSIM_DO_DELAYS
81#define CONFIG_NANDSIM_DO_DELAYS 0
82#endif
83#ifndef CONFIG_NANDSIM_LOG
84#define CONFIG_NANDSIM_LOG 0
85#endif
86#ifndef CONFIG_NANDSIM_DBG
87#define CONFIG_NANDSIM_DBG 0
88#endif
e99e90ae
BH
89#ifndef CONFIG_NANDSIM_MAX_PARTS
90#define CONFIG_NANDSIM_MAX_PARTS 32
91#endif
1da177e4 92
1da177e4
LT
93static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
94static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
95static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
96static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
97static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
98static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
99static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
100static uint log = CONFIG_NANDSIM_LOG;
101static uint dbg = CONFIG_NANDSIM_DBG;
e99e90ae 102static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
2b77a0ed 103static unsigned int parts_num;
514087e7
AH
104static char *badblocks = NULL;
105static char *weakblocks = NULL;
106static char *weakpages = NULL;
107static unsigned int bitflips = 0;
108static char *gravepages = NULL;
a5ac8aeb 109static unsigned int overridesize = 0;
a9fc8991 110static char *cache_file = NULL;
ce85b79f 111static unsigned int bbt;
fc2ff592 112static unsigned int bch;
b00358a5
AM
113static u_char id_bytes[8] = {
114 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
115 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
116 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
117 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
118 [4 ... 7] = 0xFF,
119};
1da177e4 120
b00358a5
AM
121module_param_array(id_bytes, byte, NULL, 0400);
122module_param_named(first_id_byte, id_bytes[0], byte, 0400);
123module_param_named(second_id_byte, id_bytes[1], byte, 0400);
124module_param_named(third_id_byte, id_bytes[2], byte, 0400);
125module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
1da177e4
LT
126module_param(access_delay, uint, 0400);
127module_param(programm_delay, uint, 0400);
128module_param(erase_delay, uint, 0400);
129module_param(output_cycle, uint, 0400);
130module_param(input_cycle, uint, 0400);
131module_param(bus_width, uint, 0400);
132module_param(do_delays, uint, 0400);
133module_param(log, uint, 0400);
134module_param(dbg, uint, 0400);
2b77a0ed 135module_param_array(parts, ulong, &parts_num, 0400);
514087e7
AH
136module_param(badblocks, charp, 0400);
137module_param(weakblocks, charp, 0400);
138module_param(weakpages, charp, 0400);
139module_param(bitflips, uint, 0400);
140module_param(gravepages, charp, 0400);
a5ac8aeb 141module_param(overridesize, uint, 0400);
a9fc8991 142module_param(cache_file, charp, 0400);
ce85b79f 143module_param(bbt, uint, 0400);
fc2ff592 144module_param(bch, uint, 0400);
1da177e4 145
b00358a5
AM
146MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command");
147MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
148MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
149MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
150MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
a9fc8991 151MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
1da177e4
LT
152MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
153MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
6029a3a4
AY
154MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
155MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
1da177e4
LT
156MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
157MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
158MODULE_PARM_DESC(log, "Perform logging if not zero");
159MODULE_PARM_DESC(dbg, "Output debug information if not zero");
2b77a0ed 160MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
514087e7
AH
161/* Page and erase block positions for the following parameters are independent of any partitions */
162MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
163MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
164 " separated by commas e.g. 113:2 means eb 113"
165 " can be erased only twice before failing");
166MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
167 " separated by commas e.g. 1401:2 means page 1401"
168 " can be written only twice before failing");
169MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
170MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
171 " separated by commas e.g. 1401:2 means page 1401"
172 " can be read only twice before failing");
a5ac8aeb
AH
173MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
174 "The size is specified in erase blocks and as the exponent of a power of two"
175 " e.g. 5 means a size of 32 erase blocks");
a9fc8991 176MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
ce85b79f 177MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
fc2ff592
ID
178MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
179 "be correctable in 512-byte blocks");
1da177e4
LT
180
181/* The largest possible page size */
75352662 182#define NS_LARGEST_PAGE_SIZE 4096
61b03bd7 183
1da177e4
LT
184/* Simulator's output macros (logging, debugging, warning, error) */
185#define NS_LOG(args...) \
63fa37f0 186 do { if (log) pr_debug(" log: " args); } while(0)
1da177e4 187#define NS_DBG(args...) \
63fa37f0 188 do { if (dbg) pr_debug(" debug: " args); } while(0)
1da177e4 189#define NS_WARN(args...) \
63fa37f0 190 do { pr_warn(" warning: " args); } while(0)
1da177e4 191#define NS_ERR(args...) \
63fa37f0 192 do { pr_err(" error: " args); } while(0)
57aa6b54 193#define NS_INFO(args...) \
63fa37f0 194 do { pr_info(" " args); } while(0)
1da177e4
LT
195
196/* Busy-wait delay macros (microseconds, milliseconds) */
197#define NS_UDELAY(us) \
198 do { if (do_delays) udelay(us); } while(0)
199#define NS_MDELAY(us) \
200 do { if (do_delays) mdelay(us); } while(0)
61b03bd7 201
1da177e4
LT
202/* Is the nandsim structure initialized ? */
203#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204
205/* Good operation completion status */
206#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207
208/* Operation failed completion status */
61b03bd7 209#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
1da177e4
LT
210
211/* Calculate the page offset in flash RAM image by (row, column) address */
212#define NS_RAW_OFFSET(ns) \
3b8b8fa1 213 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
61b03bd7 214
1da177e4
LT
215/* Calculate the OOB offset in flash RAM image by (row, column) address */
216#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217
218/* After a command is input, the simulator goes to one of the following states */
219#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
220#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
4a0c50c0 221#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
daf05ec0 222#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
1da177e4
LT
223#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
224#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
225#define STATE_CMD_STATUS 0x00000007 /* read status */
daf05ec0 226#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
1da177e4
LT
227#define STATE_CMD_READID 0x0000000A /* read ID */
228#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
229#define STATE_CMD_RESET 0x0000000C /* reset */
74216be4
AB
230#define STATE_CMD_RNDOUT 0x0000000D /* random output command */
231#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
1da177e4
LT
232#define STATE_CMD_MASK 0x0000000F /* command states mask */
233
8e87d782 234/* After an address is input, the simulator goes to one of these states */
1da177e4
LT
235#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
236#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
74216be4
AB
237#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
238#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
239#define STATE_ADDR_MASK 0x00000070 /* address states mask */
1da177e4 240
daf05ec0 241/* During data input/output the simulator is in these states */
1da177e4
LT
242#define STATE_DATAIN 0x00000100 /* waiting for data input */
243#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
244
245#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
246#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
247#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
1da177e4
LT
248#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
249
250/* Previous operation is done, ready to accept new requests */
251#define STATE_READY 0x00000000
252
253/* This state is used to mark that the next state isn't known yet */
254#define STATE_UNKNOWN 0x10000000
255
256/* Simulator's actions bit masks */
257#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
daf05ec0 258#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
1da177e4
LT
259#define ACTION_SECERASE 0x00300000 /* erase sector */
260#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
261#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
262#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
263#define ACTION_MASK 0x00700000 /* action mask */
264
74216be4 265#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
1da177e4
LT
266#define NS_OPER_STATES 6 /* Maximum number of states in operation */
267
268#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
1da177e4
LT
269#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
270#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
1da177e4 271#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
75352662
SAS
272#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
273#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
51148f1f 274#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
1da177e4 275
daf05ec0 276/* Remove action bits from state */
1da177e4 277#define NS_STATE(x) ((x) & ~ACTION_MASK)
61b03bd7
TG
278
279/*
1da177e4 280 * Maximum previous states which need to be saved. Currently saving is
daf05ec0 281 * only needed for page program operation with preceded read command
1da177e4
LT
282 * (which is only valid for 512-byte pages).
283 */
284#define NS_MAX_PREVSTATES 1
285
a9fc8991
AH
286/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287#define NS_MAX_HELD_PAGES 16
288
d086d436
VK
289/*
290 * A union to represent flash memory contents and flash buffer.
291 */
292union ns_mem {
293 u_char *byte; /* for byte access */
294 uint16_t *word; /* for 16-bit word access */
295};
296
61b03bd7 297/*
1da177e4
LT
298 * The structure which describes all the internal simulator data.
299 */
300struct nandsim {
74aee14c 301 struct nand_chip chip;
1c14fe21 302 struct nand_controller base;
e99e90ae 303 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
2b77a0ed 304 unsigned int nbparts;
1da177e4
LT
305
306 uint busw; /* flash chip bus width (8 or 16) */
b00358a5 307 u_char ids[8]; /* chip's ID bytes */
1da177e4
LT
308 uint32_t options; /* chip's characteristic bits */
309 uint32_t state; /* current chip state */
310 uint32_t nxstate; /* next expected state */
61b03bd7 311
1da177e4
LT
312 uint32_t *op; /* current operation, NULL operations isn't known yet */
313 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
314 uint16_t npstates; /* number of previous states saved */
315 uint16_t stateidx; /* current state index */
316
d086d436
VK
317 /* The simulated NAND flash pages array */
318 union ns_mem *pages;
1da177e4 319
8a4c2495
AK
320 /* Slab allocator for nand pages */
321 struct kmem_cache *nand_pages_slab;
322
1da177e4 323 /* Internal buffer of page + OOB size bytes */
d086d436 324 union ns_mem buf;
1da177e4
LT
325
326 /* NAND flash "geometry" */
0bfa4df2 327 struct {
6eda7a55 328 uint64_t totsz; /* total flash size, bytes */
1da177e4
LT
329 uint32_t secsz; /* flash sector (erase block) size, bytes */
330 uint pgsz; /* NAND flash page size, bytes */
331 uint oobsz; /* page OOB area size, bytes */
6eda7a55 332 uint64_t totszoob; /* total flash size including OOB, bytes */
1da177e4
LT
333 uint pgszoob; /* page size including OOB , bytes*/
334 uint secszoob; /* sector size including OOB, bytes */
335 uint pgnum; /* total number of pages */
336 uint pgsec; /* number of pages per sector */
337 uint secshift; /* bits number in sector size */
338 uint pgshift; /* bits number in page size */
1da177e4
LT
339 uint pgaddrbytes; /* bytes per page address */
340 uint secaddrbytes; /* bytes per sector address */
341 uint idbytes; /* the number ID bytes that this chip outputs */
342 } geom;
343
344 /* NAND flash internal registers */
0bfa4df2 345 struct {
1da177e4
LT
346 unsigned command; /* the command register */
347 u_char status; /* the status register */
348 uint row; /* the page number */
349 uint column; /* the offset within page */
350 uint count; /* internal counter */
351 uint num; /* number of bytes which must be processed */
352 uint off; /* fixed page offset */
353 } regs;
354
355 /* NAND flash lines state */
0bfa4df2 356 struct {
1da177e4
LT
357 int ce; /* chip Enable */
358 int cle; /* command Latch Enable */
359 int ale; /* address Latch Enable */
360 int wp; /* write Protect */
361 } lines;
a9fc8991
AH
362
363 /* Fields needed when using a cache file */
364 struct file *cfile; /* Open file */
08efe91a 365 unsigned long *pages_written; /* Which pages have been written */
a9fc8991
AH
366 void *file_buf;
367 struct page *held_pages[NS_MAX_HELD_PAGES];
368 int held_cnt;
1da177e4
LT
369};
370
371/*
372 * Operations array. To perform any operation the simulator must pass
373 * through the correspondent states chain.
374 */
375static struct nandsim_operations {
376 uint32_t reqopts; /* options which are required to perform the operation */
377 uint32_t states[NS_OPER_STATES]; /* operation's states */
378} ops[NS_OPER_NUM] = {
379 /* Read page + OOB from the beginning */
380 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
381 STATE_DATAOUT, STATE_READY}},
382 /* Read page + OOB from the second half */
383 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
384 STATE_DATAOUT, STATE_READY}},
385 /* Read OOB */
386 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
387 STATE_DATAOUT, STATE_READY}},
daf05ec0 388 /* Program page starting from the beginning */
1da177e4
LT
389 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
390 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
daf05ec0 391 /* Program page starting from the beginning */
1da177e4
LT
392 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
393 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
daf05ec0 394 /* Program page starting from the second half */
1da177e4
LT
395 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
396 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
daf05ec0 397 /* Program OOB */
1da177e4
LT
398 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
399 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
400 /* Erase sector */
401 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
402 /* Read status */
403 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
1da177e4
LT
404 /* Read ID */
405 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
406 /* Large page devices read page */
407 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
74216be4
AB
408 STATE_DATAOUT, STATE_READY}},
409 /* Large page devices random page read */
410 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
411 STATE_DATAOUT, STATE_READY}},
1da177e4
LT
412};
413
514087e7
AH
414struct weak_block {
415 struct list_head list;
416 unsigned int erase_block_no;
417 unsigned int max_erases;
418 unsigned int erases_done;
419};
420
421static LIST_HEAD(weak_blocks);
422
423struct weak_page {
424 struct list_head list;
425 unsigned int page_no;
426 unsigned int max_writes;
427 unsigned int writes_done;
428};
429
430static LIST_HEAD(weak_pages);
431
432struct grave_page {
433 struct list_head list;
434 unsigned int page_no;
435 unsigned int max_reads;
436 unsigned int reads_done;
437};
438
439static LIST_HEAD(grave_pages);
440
57aa6b54
AH
441static unsigned long *erase_block_wear = NULL;
442static unsigned int wear_eb_count = 0;
443static unsigned long total_wear = 0;
57aa6b54 444
1da177e4
LT
445/* MTD structure for NAND controller */
446static struct mtd_info *nsmtd;
447
c78f59d7 448static int nandsim_show(struct seq_file *m, void *private)
5346c27c
EG
449{
450 unsigned long wmin = -1, wmax = 0, avg;
451 unsigned long deciles[10], decile_max[10], tot = 0;
452 unsigned int i;
453
454 /* Calc wear stats */
455 for (i = 0; i < wear_eb_count; ++i) {
456 unsigned long wear = erase_block_wear[i];
457 if (wear < wmin)
458 wmin = wear;
459 if (wear > wmax)
460 wmax = wear;
461 tot += wear;
462 }
463
464 for (i = 0; i < 9; ++i) {
465 deciles[i] = 0;
466 decile_max[i] = (wmax * (i + 1) + 5) / 10;
467 }
468 deciles[9] = 0;
469 decile_max[9] = wmax;
470 for (i = 0; i < wear_eb_count; ++i) {
471 int d;
472 unsigned long wear = erase_block_wear[i];
473 for (d = 0; d < 10; ++d)
474 if (wear <= decile_max[d]) {
475 deciles[d] += 1;
476 break;
477 }
478 }
479 avg = tot / wear_eb_count;
480
481 /* Output wear report */
482 seq_printf(m, "Total numbers of erases: %lu\n", tot);
483 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
484 seq_printf(m, "Average number of erases: %lu\n", avg);
485 seq_printf(m, "Maximum number of erases: %lu\n", wmax);
486 seq_printf(m, "Minimum number of erases: %lu\n", wmin);
487 for (i = 0; i < 10; ++i) {
488 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
489 if (from > decile_max[i])
490 continue;
491 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
492 from,
493 decile_max[i],
494 deciles[i]);
495 }
496
497 return 0;
498}
c78f59d7 499DEFINE_SHOW_ATTRIBUTE(nandsim);
5346c27c
EG
500
501/**
502 * nandsim_debugfs_create - initialize debugfs
503 * @dev: nandsim device description object
504 *
505 * This function creates all debugfs files for UBI device @ubi. Returns zero in
506 * case of success and a negative error code in case of failure.
507 */
508static int nandsim_debugfs_create(struct nandsim *dev)
509{
e8e3edb9 510 struct dentry *root = nsmtd->dbg.dfs_dir;
5346c27c 511 struct dentry *dent;
5346c27c 512
1530578a
BB
513 /*
514 * Just skip debugfs initialization when the debugfs directory is
515 * missing.
516 */
517 if (IS_ERR_OR_NULL(root)) {
518 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
519 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
520 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
5346c27c 521 return 0;
1530578a 522 }
5346c27c 523
e8e3edb9 524 dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
c78f59d7 525 root, dev, &nandsim_fops);
e8e3edb9
MR
526 if (IS_ERR_OR_NULL(dent)) {
527 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
528 return -1;
529 }
5346c27c
EG
530
531 return 0;
5346c27c
EG
532}
533
d086d436 534/*
8a4c2495
AK
535 * Allocate array of page pointers, create slab allocation for an array
536 * and initialize the array by NULL pointers.
d086d436
VK
537 *
538 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
539 */
77784785 540static int __init alloc_device(struct nandsim *ns)
d086d436 541{
a9fc8991
AH
542 struct file *cfile;
543 int i, err;
544
545 if (cache_file) {
546 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
547 if (IS_ERR(cfile))
548 return PTR_ERR(cfile);
7f7f25e8 549 if (!(cfile->f_mode & FMODE_CAN_READ)) {
a9fc8991
AH
550 NS_ERR("alloc_device: cache file not readable\n");
551 err = -EINVAL;
552 goto err_close;
553 }
7f7f25e8 554 if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
a9fc8991
AH
555 NS_ERR("alloc_device: cache file not writeable\n");
556 err = -EINVAL;
557 goto err_close;
558 }
fad953ce
KC
559 ns->pages_written =
560 vzalloc(array_size(sizeof(unsigned long),
561 BITS_TO_LONGS(ns->geom.pgnum)));
a9fc8991
AH
562 if (!ns->pages_written) {
563 NS_ERR("alloc_device: unable to allocate pages written array\n");
564 err = -ENOMEM;
565 goto err_close;
566 }
567 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
568 if (!ns->file_buf) {
569 NS_ERR("alloc_device: unable to allocate file buf\n");
570 err = -ENOMEM;
571 goto err_free;
572 }
573 ns->cfile = cfile;
a9fc8991
AH
574 return 0;
575 }
d086d436 576
42bc47b3 577 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
d086d436 578 if (!ns->pages) {
a9fc8991 579 NS_ERR("alloc_device: unable to allocate page array\n");
d086d436
VK
580 return -ENOMEM;
581 }
582 for (i = 0; i < ns->geom.pgnum; i++) {
583 ns->pages[i].byte = NULL;
584 }
8a4c2495
AK
585 ns->nand_pages_slab = kmem_cache_create("nandsim",
586 ns->geom.pgszoob, 0, 0, NULL);
587 if (!ns->nand_pages_slab) {
588 NS_ERR("cache_create: unable to create kmem_cache\n");
589 return -ENOMEM;
590 }
d086d436
VK
591
592 return 0;
a9fc8991
AH
593
594err_free:
595 vfree(ns->pages_written);
596err_close:
597 filp_close(cfile, NULL);
598 return err;
d086d436
VK
599}
600
601/*
602 * Free any allocated pages, and free the array of page pointers.
603 */
a5602146 604static void free_device(struct nandsim *ns)
d086d436
VK
605{
606 int i;
607
a9fc8991
AH
608 if (ns->cfile) {
609 kfree(ns->file_buf);
610 vfree(ns->pages_written);
611 filp_close(ns->cfile, NULL);
612 return;
613 }
614
d086d436
VK
615 if (ns->pages) {
616 for (i = 0; i < ns->geom.pgnum; i++) {
617 if (ns->pages[i].byte)
8a4c2495
AK
618 kmem_cache_free(ns->nand_pages_slab,
619 ns->pages[i].byte);
d086d436 620 }
0791a5f8 621 kmem_cache_destroy(ns->nand_pages_slab);
d086d436
VK
622 vfree(ns->pages);
623 }
624}
625
77784785 626static char __init *get_partition_name(int i)
2b77a0ed 627{
f03a5729 628 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
2b77a0ed
AH
629}
630
1da177e4
LT
631/*
632 * Initialize the nandsim structure.
633 *
634 * RETURNS: 0 if success, -ERRNO if failure.
635 */
77784785 636static int __init init_nandsim(struct mtd_info *mtd)
1da177e4 637{
862eba51 638 struct nand_chip *chip = mtd_to_nand(mtd);
d699ed25 639 struct nandsim *ns = nand_get_controller_data(chip);
2b77a0ed 640 int i, ret = 0;
0f07a0be
DW
641 uint64_t remains;
642 uint64_t next_offset;
1da177e4
LT
643
644 if (NS_IS_INITIALIZED(ns)) {
645 NS_ERR("init_nandsim: nandsim is already initialized\n");
646 return -EIO;
647 }
648
1da177e4
LT
649 /* Initialize the NAND flash parameters */
650 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
651 ns->geom.totsz = mtd->size;
28318776 652 ns->geom.pgsz = mtd->writesize;
1da177e4
LT
653 ns->geom.oobsz = mtd->oobsize;
654 ns->geom.secsz = mtd->erasesize;
655 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
596fd462 656 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
6eda7a55 657 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
1da177e4
LT
658 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
659 ns->geom.pgshift = chip->page_shift;
1da177e4
LT
660 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
661 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
662 ns->options = 0;
663
51148f1f 664 if (ns->geom.pgsz == 512) {
831d316b 665 ns->options |= OPT_PAGE512;
1da177e4
LT
666 if (ns->busw == 8)
667 ns->options |= OPT_PAGE512_8BIT;
668 } else if (ns->geom.pgsz == 2048) {
669 ns->options |= OPT_PAGE2048;
75352662
SAS
670 } else if (ns->geom.pgsz == 4096) {
671 ns->options |= OPT_PAGE4096;
1da177e4
LT
672 } else {
673 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
674 return -EIO;
675 }
676
677 if (ns->options & OPT_SMALLPAGE) {
af3deccf 678 if (ns->geom.totsz <= (32 << 20)) {
1da177e4
LT
679 ns->geom.pgaddrbytes = 3;
680 ns->geom.secaddrbytes = 2;
681 } else {
682 ns->geom.pgaddrbytes = 4;
683 ns->geom.secaddrbytes = 3;
684 }
685 } else {
686 if (ns->geom.totsz <= (128 << 20)) {
4a0c50c0 687 ns->geom.pgaddrbytes = 4;
1da177e4
LT
688 ns->geom.secaddrbytes = 2;
689 } else {
690 ns->geom.pgaddrbytes = 5;
691 ns->geom.secaddrbytes = 3;
692 }
693 }
61b03bd7 694
2b77a0ed
AH
695 /* Fill the partition_info structure */
696 if (parts_num > ARRAY_SIZE(ns->partitions)) {
697 NS_ERR("too many partitions.\n");
5891a8d1 698 return -EINVAL;
2b77a0ed
AH
699 }
700 remains = ns->geom.totsz;
701 next_offset = 0;
702 for (i = 0; i < parts_num; ++i) {
0f07a0be 703 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
6eda7a55
AH
704
705 if (!part_sz || part_sz > remains) {
2b77a0ed 706 NS_ERR("bad partition size.\n");
5891a8d1 707 return -EINVAL;
2b77a0ed
AH
708 }
709 ns->partitions[i].name = get_partition_name(i);
641c7925
RW
710 if (!ns->partitions[i].name) {
711 NS_ERR("unable to allocate memory.\n");
5891a8d1 712 return -ENOMEM;
641c7925 713 }
2b77a0ed 714 ns->partitions[i].offset = next_offset;
6eda7a55 715 ns->partitions[i].size = part_sz;
2b77a0ed
AH
716 next_offset += ns->partitions[i].size;
717 remains -= ns->partitions[i].size;
718 }
719 ns->nbparts = parts_num;
720 if (remains) {
721 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
722 NS_ERR("too many partitions.\n");
5891a8d1 723 return -EINVAL;
2b77a0ed
AH
724 }
725 ns->partitions[i].name = get_partition_name(i);
641c7925
RW
726 if (!ns->partitions[i].name) {
727 NS_ERR("unable to allocate memory.\n");
5891a8d1 728 return -ENOMEM;
641c7925 729 }
2b77a0ed
AH
730 ns->partitions[i].offset = next_offset;
731 ns->partitions[i].size = remains;
732 ns->nbparts += 1;
733 }
734
1da177e4
LT
735 if (ns->busw == 16)
736 NS_WARN("16-bit flashes support wasn't tested\n");
737
e4c094a5
AM
738 printk("flash size: %llu MiB\n",
739 (unsigned long long)ns->geom.totsz >> 20);
1da177e4
LT
740 printk("page size: %u bytes\n", ns->geom.pgsz);
741 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
742 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
743 printk("pages number: %u\n", ns->geom.pgnum);
744 printk("pages per sector: %u\n", ns->geom.pgsec);
745 printk("bus width: %u\n", ns->busw);
746 printk("bits in sector size: %u\n", ns->geom.secshift);
747 printk("bits in page size: %u\n", ns->geom.pgshift);
2f3b07a7 748 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1);
e4c094a5
AM
749 printk("flash size with OOB: %llu KiB\n",
750 (unsigned long long)ns->geom.totszoob >> 10);
1da177e4
LT
751 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
752 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
753 printk("options: %#x\n", ns->options);
754
2b77a0ed 755 if ((ret = alloc_device(ns)) != 0)
5891a8d1 756 return ret;
1da177e4
LT
757
758 /* Allocate / initialize the internal buffer */
759 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
760 if (!ns->buf.byte) {
761 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
762 ns->geom.pgszoob);
5891a8d1 763 return -ENOMEM;
1da177e4
LT
764 }
765 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
766
1da177e4 767 return 0;
1da177e4
LT
768}
769
770/*
771 * Free the nandsim structure.
772 */
a5602146 773static void free_nandsim(struct nandsim *ns)
1da177e4
LT
774{
775 kfree(ns->buf.byte);
d086d436 776 free_device(ns);
1da177e4
LT
777
778 return;
779}
780
514087e7
AH
781static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
782{
783 char *w;
784 int zero_ok;
785 unsigned int erase_block_no;
786 loff_t offset;
787
788 if (!badblocks)
789 return 0;
790 w = badblocks;
791 do {
792 zero_ok = (*w == '0' ? 1 : 0);
793 erase_block_no = simple_strtoul(w, &w, 0);
794 if (!zero_ok && !erase_block_no) {
795 NS_ERR("invalid badblocks.\n");
796 return -EINVAL;
797 }
b033e1aa 798 offset = (loff_t)erase_block_no * ns->geom.secsz;
5942ddbc 799 if (mtd_block_markbad(mtd, offset)) {
514087e7
AH
800 NS_ERR("invalid badblocks.\n");
801 return -EINVAL;
802 }
803 if (*w == ',')
804 w += 1;
805 } while (*w);
806 return 0;
807}
808
809static int parse_weakblocks(void)
810{
811 char *w;
812 int zero_ok;
813 unsigned int erase_block_no;
814 unsigned int max_erases;
815 struct weak_block *wb;
816
817 if (!weakblocks)
818 return 0;
819 w = weakblocks;
820 do {
821 zero_ok = (*w == '0' ? 1 : 0);
822 erase_block_no = simple_strtoul(w, &w, 0);
823 if (!zero_ok && !erase_block_no) {
824 NS_ERR("invalid weakblocks.\n");
825 return -EINVAL;
826 }
827 max_erases = 3;
828 if (*w == ':') {
829 w += 1;
830 max_erases = simple_strtoul(w, &w, 0);
831 }
832 if (*w == ',')
833 w += 1;
834 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
835 if (!wb) {
836 NS_ERR("unable to allocate memory.\n");
837 return -ENOMEM;
838 }
839 wb->erase_block_no = erase_block_no;
840 wb->max_erases = max_erases;
841 list_add(&wb->list, &weak_blocks);
842 } while (*w);
843 return 0;
844}
845
846static int erase_error(unsigned int erase_block_no)
847{
848 struct weak_block *wb;
849
850 list_for_each_entry(wb, &weak_blocks, list)
851 if (wb->erase_block_no == erase_block_no) {
852 if (wb->erases_done >= wb->max_erases)
853 return 1;
854 wb->erases_done += 1;
855 return 0;
856 }
857 return 0;
858}
859
860static int parse_weakpages(void)
861{
862 char *w;
863 int zero_ok;
864 unsigned int page_no;
865 unsigned int max_writes;
866 struct weak_page *wp;
867
868 if (!weakpages)
869 return 0;
870 w = weakpages;
871 do {
872 zero_ok = (*w == '0' ? 1 : 0);
873 page_no = simple_strtoul(w, &w, 0);
874 if (!zero_ok && !page_no) {
215157fb 875 NS_ERR("invalid weakpages.\n");
514087e7
AH
876 return -EINVAL;
877 }
878 max_writes = 3;
879 if (*w == ':') {
880 w += 1;
881 max_writes = simple_strtoul(w, &w, 0);
882 }
883 if (*w == ',')
884 w += 1;
885 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
886 if (!wp) {
887 NS_ERR("unable to allocate memory.\n");
888 return -ENOMEM;
889 }
890 wp->page_no = page_no;
891 wp->max_writes = max_writes;
892 list_add(&wp->list, &weak_pages);
893 } while (*w);
894 return 0;
895}
896
897static int write_error(unsigned int page_no)
898{
899 struct weak_page *wp;
900
901 list_for_each_entry(wp, &weak_pages, list)
902 if (wp->page_no == page_no) {
903 if (wp->writes_done >= wp->max_writes)
904 return 1;
905 wp->writes_done += 1;
906 return 0;
907 }
908 return 0;
909}
910
911static int parse_gravepages(void)
912{
913 char *g;
914 int zero_ok;
915 unsigned int page_no;
916 unsigned int max_reads;
917 struct grave_page *gp;
918
919 if (!gravepages)
920 return 0;
921 g = gravepages;
922 do {
923 zero_ok = (*g == '0' ? 1 : 0);
924 page_no = simple_strtoul(g, &g, 0);
925 if (!zero_ok && !page_no) {
926 NS_ERR("invalid gravepagess.\n");
927 return -EINVAL;
928 }
929 max_reads = 3;
930 if (*g == ':') {
931 g += 1;
932 max_reads = simple_strtoul(g, &g, 0);
933 }
934 if (*g == ',')
935 g += 1;
936 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
937 if (!gp) {
938 NS_ERR("unable to allocate memory.\n");
939 return -ENOMEM;
940 }
941 gp->page_no = page_no;
942 gp->max_reads = max_reads;
943 list_add(&gp->list, &grave_pages);
944 } while (*g);
945 return 0;
946}
947
948static int read_error(unsigned int page_no)
949{
950 struct grave_page *gp;
951
952 list_for_each_entry(gp, &grave_pages, list)
953 if (gp->page_no == page_no) {
954 if (gp->reads_done >= gp->max_reads)
955 return 1;
956 gp->reads_done += 1;
957 return 0;
958 }
959 return 0;
960}
961
962static void free_lists(void)
963{
964 struct list_head *pos, *n;
965 list_for_each_safe(pos, n, &weak_blocks) {
966 list_del(pos);
967 kfree(list_entry(pos, struct weak_block, list));
968 }
969 list_for_each_safe(pos, n, &weak_pages) {
970 list_del(pos);
971 kfree(list_entry(pos, struct weak_page, list));
972 }
973 list_for_each_safe(pos, n, &grave_pages) {
974 list_del(pos);
975 kfree(list_entry(pos, struct grave_page, list));
976 }
57aa6b54
AH
977 kfree(erase_block_wear);
978}
979
980static int setup_wear_reporting(struct mtd_info *mtd)
981{
982 size_t mem;
983
596fd462 984 wear_eb_count = div_u64(mtd->size, mtd->erasesize);
57aa6b54
AH
985 mem = wear_eb_count * sizeof(unsigned long);
986 if (mem / sizeof(unsigned long) != wear_eb_count) {
987 NS_ERR("Too many erase blocks for wear reporting\n");
988 return -ENOMEM;
989 }
990 erase_block_wear = kzalloc(mem, GFP_KERNEL);
991 if (!erase_block_wear) {
992 NS_ERR("Too many erase blocks for wear reporting\n");
993 return -ENOMEM;
994 }
995 return 0;
996}
997
998static void update_wear(unsigned int erase_block_no)
999{
57aa6b54
AH
1000 if (!erase_block_wear)
1001 return;
1002 total_wear += 1;
5346c27c
EG
1003 /*
1004 * TODO: Notify this through a debugfs entry,
1005 * instead of showing an error message.
1006 */
57aa6b54
AH
1007 if (total_wear == 0)
1008 NS_ERR("Erase counter total overflow\n");
1009 erase_block_wear[erase_block_no] += 1;
1010 if (erase_block_wear[erase_block_no] == 0)
1011 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
514087e7
AH
1012}
1013
1da177e4
LT
1014/*
1015 * Returns the string representation of 'state' state.
1016 */
a5602146 1017static char *get_state_name(uint32_t state)
1da177e4
LT
1018{
1019 switch (NS_STATE(state)) {
1020 case STATE_CMD_READ0:
1021 return "STATE_CMD_READ0";
1022 case STATE_CMD_READ1:
1023 return "STATE_CMD_READ1";
1024 case STATE_CMD_PAGEPROG:
1025 return "STATE_CMD_PAGEPROG";
1026 case STATE_CMD_READOOB:
1027 return "STATE_CMD_READOOB";
1028 case STATE_CMD_READSTART:
1029 return "STATE_CMD_READSTART";
1030 case STATE_CMD_ERASE1:
1031 return "STATE_CMD_ERASE1";
1032 case STATE_CMD_STATUS:
1033 return "STATE_CMD_STATUS";
1da177e4
LT
1034 case STATE_CMD_SEQIN:
1035 return "STATE_CMD_SEQIN";
1036 case STATE_CMD_READID:
1037 return "STATE_CMD_READID";
1038 case STATE_CMD_ERASE2:
1039 return "STATE_CMD_ERASE2";
1040 case STATE_CMD_RESET:
1041 return "STATE_CMD_RESET";
74216be4
AB
1042 case STATE_CMD_RNDOUT:
1043 return "STATE_CMD_RNDOUT";
1044 case STATE_CMD_RNDOUTSTART:
1045 return "STATE_CMD_RNDOUTSTART";
1da177e4
LT
1046 case STATE_ADDR_PAGE:
1047 return "STATE_ADDR_PAGE";
1048 case STATE_ADDR_SEC:
1049 return "STATE_ADDR_SEC";
1050 case STATE_ADDR_ZERO:
1051 return "STATE_ADDR_ZERO";
74216be4
AB
1052 case STATE_ADDR_COLUMN:
1053 return "STATE_ADDR_COLUMN";
1da177e4
LT
1054 case STATE_DATAIN:
1055 return "STATE_DATAIN";
1056 case STATE_DATAOUT:
1057 return "STATE_DATAOUT";
1058 case STATE_DATAOUT_ID:
1059 return "STATE_DATAOUT_ID";
1060 case STATE_DATAOUT_STATUS:
1061 return "STATE_DATAOUT_STATUS";
1da177e4
LT
1062 case STATE_READY:
1063 return "STATE_READY";
1064 case STATE_UNKNOWN:
1065 return "STATE_UNKNOWN";
1066 }
1067
1068 NS_ERR("get_state_name: unknown state, BUG\n");
1069 return NULL;
1070}
1071
1072/*
1073 * Check if command is valid.
1074 *
1075 * RETURNS: 1 if wrong command, 0 if right.
1076 */
a5602146 1077static int check_command(int cmd)
1da177e4
LT
1078{
1079 switch (cmd) {
61b03bd7 1080
1da177e4 1081 case NAND_CMD_READ0:
74216be4 1082 case NAND_CMD_READ1:
1da177e4
LT
1083 case NAND_CMD_READSTART:
1084 case NAND_CMD_PAGEPROG:
1085 case NAND_CMD_READOOB:
1086 case NAND_CMD_ERASE1:
1087 case NAND_CMD_STATUS:
1088 case NAND_CMD_SEQIN:
1089 case NAND_CMD_READID:
1090 case NAND_CMD_ERASE2:
1091 case NAND_CMD_RESET:
74216be4
AB
1092 case NAND_CMD_RNDOUT:
1093 case NAND_CMD_RNDOUTSTART:
1da177e4 1094 return 0;
61b03bd7 1095
1da177e4
LT
1096 default:
1097 return 1;
1098 }
1099}
1100
1101/*
1102 * Returns state after command is accepted by command number.
1103 */
a5602146 1104static uint32_t get_state_by_command(unsigned command)
1da177e4
LT
1105{
1106 switch (command) {
1107 case NAND_CMD_READ0:
1108 return STATE_CMD_READ0;
1109 case NAND_CMD_READ1:
1110 return STATE_CMD_READ1;
1111 case NAND_CMD_PAGEPROG:
1112 return STATE_CMD_PAGEPROG;
1113 case NAND_CMD_READSTART:
1114 return STATE_CMD_READSTART;
1115 case NAND_CMD_READOOB:
1116 return STATE_CMD_READOOB;
1117 case NAND_CMD_ERASE1:
1118 return STATE_CMD_ERASE1;
1119 case NAND_CMD_STATUS:
1120 return STATE_CMD_STATUS;
1da177e4
LT
1121 case NAND_CMD_SEQIN:
1122 return STATE_CMD_SEQIN;
1123 case NAND_CMD_READID:
1124 return STATE_CMD_READID;
1125 case NAND_CMD_ERASE2:
1126 return STATE_CMD_ERASE2;
1127 case NAND_CMD_RESET:
1128 return STATE_CMD_RESET;
74216be4
AB
1129 case NAND_CMD_RNDOUT:
1130 return STATE_CMD_RNDOUT;
1131 case NAND_CMD_RNDOUTSTART:
1132 return STATE_CMD_RNDOUTSTART;
1da177e4
LT
1133 }
1134
1135 NS_ERR("get_state_by_command: unknown command, BUG\n");
1136 return 0;
1137}
1138
1139/*
1140 * Move an address byte to the correspondent internal register.
1141 */
a5602146 1142static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1da177e4
LT
1143{
1144 uint byte = (uint)bt;
61b03bd7 1145
1da177e4
LT
1146 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1147 ns->regs.column |= (byte << 8 * ns->regs.count);
1148 else {
1149 ns->regs.row |= (byte << 8 * (ns->regs.count -
1150 ns->geom.pgaddrbytes +
1151 ns->geom.secaddrbytes));
1152 }
1153
1154 return;
1155}
61b03bd7 1156
1da177e4
LT
1157/*
1158 * Switch to STATE_READY state.
1159 */
a5602146 1160static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1da177e4
LT
1161{
1162 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1163
1164 ns->state = STATE_READY;
1165 ns->nxstate = STATE_UNKNOWN;
1166 ns->op = NULL;
1167 ns->npstates = 0;
1168 ns->stateidx = 0;
1169 ns->regs.num = 0;
1170 ns->regs.count = 0;
1171 ns->regs.off = 0;
1172 ns->regs.row = 0;
1173 ns->regs.column = 0;
1174 ns->regs.status = status;
1175}
1176
1177/*
1178 * If the operation isn't known yet, try to find it in the global array
1179 * of supported operations.
1180 *
1181 * Operation can be unknown because of the following.
daf05ec0 1182 * 1. New command was accepted and this is the first call to find the
1da177e4 1183 * correspondent states chain. In this case ns->npstates = 0;
daf05ec0 1184 * 2. There are several operations which begin with the same command(s)
1da177e4
LT
1185 * (for example program from the second half and read from the
1186 * second half operations both begin with the READ1 command). In this
1187 * case the ns->pstates[] array contains previous states.
61b03bd7 1188 *
1da177e4
LT
1189 * Thus, the function tries to find operation containing the following
1190 * states (if the 'flag' parameter is 0):
1191 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1192 *
1193 * If (one and only one) matching operation is found, it is accepted (
1194 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1195 * zeroed).
61b03bd7 1196 *
daf05ec0 1197 * If there are several matches, the current state is pushed to the
1da177e4
LT
1198 * ns->pstates.
1199 *
1200 * The operation can be unknown only while commands are input to the chip.
1201 * As soon as address command is accepted, the operation must be known.
1202 * In such situation the function is called with 'flag' != 0, and the
1203 * operation is searched using the following pattern:
1204 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
61b03bd7 1205 *
daf05ec0 1206 * It is supposed that this pattern must either match one operation or
1da177e4
LT
1207 * none. There can't be ambiguity in that case.
1208 *
daf05ec0 1209 * If no matches found, the function does the following:
1da177e4
LT
1210 * 1. if there are saved states present, try to ignore them and search
1211 * again only using the last command. If nothing was found, switch
1212 * to the STATE_READY state.
1213 * 2. if there are no saved states, switch to the STATE_READY state.
1214 *
1215 * RETURNS: -2 - no matched operations found.
1216 * -1 - several matches.
1217 * 0 - operation is found.
1218 */
a5602146 1219static int find_operation(struct nandsim *ns, uint32_t flag)
1da177e4
LT
1220{
1221 int opsfound = 0;
1222 int i, j, idx = 0;
61b03bd7 1223
1da177e4
LT
1224 for (i = 0; i < NS_OPER_NUM; i++) {
1225
1226 int found = 1;
61b03bd7 1227
1da177e4
LT
1228 if (!(ns->options & ops[i].reqopts))
1229 /* Ignore operations we can't perform */
1230 continue;
61b03bd7 1231
1da177e4
LT
1232 if (flag) {
1233 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1234 continue;
1235 } else {
1236 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1237 continue;
1238 }
1239
61b03bd7 1240 for (j = 0; j < ns->npstates; j++)
1da177e4
LT
1241 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1242 && (ns->options & ops[idx].reqopts)) {
1243 found = 0;
1244 break;
1245 }
1246
1247 if (found) {
1248 idx = i;
1249 opsfound += 1;
1250 }
1251 }
1252
1253 if (opsfound == 1) {
1254 /* Exact match */
1255 ns->op = &ops[idx].states[0];
1256 if (flag) {
61b03bd7 1257 /*
1da177e4
LT
1258 * In this case the find_operation function was
1259 * called when address has just began input. But it isn't
1260 * yet fully input and the current state must
1261 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1262 * state must be the next state (ns->nxstate).
1263 */
1264 ns->stateidx = ns->npstates - 1;
1265 } else {
1266 ns->stateidx = ns->npstates;
1267 }
1268 ns->npstates = 0;
1269 ns->state = ns->op[ns->stateidx];
1270 ns->nxstate = ns->op[ns->stateidx + 1];
1271 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1272 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1273 return 0;
1274 }
61b03bd7 1275
1da177e4
LT
1276 if (opsfound == 0) {
1277 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1278 if (ns->npstates != 0) {
1279 NS_DBG("find_operation: no operation found, try again with state %s\n",
1280 get_state_name(ns->state));
1281 ns->npstates = 0;
1282 return find_operation(ns, 0);
1283
1284 }
1285 NS_DBG("find_operation: no operations found\n");
1286 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1287 return -2;
1288 }
61b03bd7 1289
1da177e4
LT
1290 if (flag) {
1291 /* This shouldn't happen */
1292 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1293 return -2;
1294 }
61b03bd7 1295
1da177e4
LT
1296 NS_DBG("find_operation: there is still ambiguity\n");
1297
1298 ns->pstates[ns->npstates++] = ns->state;
1299
1300 return -1;
1301}
1302
a9fc8991
AH
1303static void put_pages(struct nandsim *ns)
1304{
1305 int i;
1306
1307 for (i = 0; i < ns->held_cnt; i++)
09cbfeaf 1308 put_page(ns->held_pages[i]);
a9fc8991
AH
1309}
1310
1311/* Get page cache pages in advance to provide NOFS memory allocation */
1312static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1313{
1314 pgoff_t index, start_index, end_index;
1315 struct page *page;
1316 struct address_space *mapping = file->f_mapping;
1317
09cbfeaf
KS
1318 start_index = pos >> PAGE_SHIFT;
1319 end_index = (pos + count - 1) >> PAGE_SHIFT;
a9fc8991
AH
1320 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1321 return -EINVAL;
1322 ns->held_cnt = 0;
1323 for (index = start_index; index <= end_index; index++) {
1324 page = find_get_page(mapping, index);
1325 if (page == NULL) {
1326 page = find_or_create_page(mapping, index, GFP_NOFS);
1327 if (page == NULL) {
1328 write_inode_now(mapping->host, 1);
1329 page = find_or_create_page(mapping, index, GFP_NOFS);
1330 }
1331 if (page == NULL) {
1332 put_pages(ns);
1333 return -ENOMEM;
1334 }
1335 unlock_page(page);
1336 }
1337 ns->held_pages[ns->held_cnt++] = page;
1338 }
1339 return 0;
1340}
1341
7bb307e8 1342static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
a9fc8991 1343{
a9fc8991 1344 ssize_t tx;
dcbe8214
VB
1345 int err;
1346 unsigned int noreclaim_flag;
a9fc8991 1347
7bb307e8 1348 err = get_pages(ns, file, count, pos);
a9fc8991
AH
1349 if (err)
1350 return err;
dcbe8214 1351 noreclaim_flag = memalloc_noreclaim_save();
bdd1d2d3 1352 tx = kernel_read(file, buf, count, &pos);
dcbe8214 1353 memalloc_noreclaim_restore(noreclaim_flag);
a9fc8991
AH
1354 put_pages(ns);
1355 return tx;
1356}
1357
7bb307e8 1358static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
a9fc8991 1359{
a9fc8991 1360 ssize_t tx;
dcbe8214
VB
1361 int err;
1362 unsigned int noreclaim_flag;
a9fc8991 1363
7bb307e8 1364 err = get_pages(ns, file, count, pos);
a9fc8991
AH
1365 if (err)
1366 return err;
dcbe8214 1367 noreclaim_flag = memalloc_noreclaim_save();
e13ec939 1368 tx = kernel_write(file, buf, count, &pos);
dcbe8214 1369 memalloc_noreclaim_restore(noreclaim_flag);
a9fc8991
AH
1370 put_pages(ns);
1371 return tx;
1372}
1373
d086d436
VK
1374/*
1375 * Returns a pointer to the current page.
1376 */
1377static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1378{
1379 return &(ns->pages[ns->regs.row]);
1380}
1381
1382/*
1383 * Retuns a pointer to the current byte, within the current page.
1384 */
1385static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1386{
1387 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1388}
1389
b2b263f2 1390static int do_read_error(struct nandsim *ns, int num)
a9fc8991
AH
1391{
1392 unsigned int page_no = ns->regs.row;
1393
1394 if (read_error(page_no)) {
7e45bf83 1395 prandom_bytes(ns->buf.byte, num);
a9fc8991
AH
1396 NS_WARN("simulating read error in page %u\n", page_no);
1397 return 1;
1398 }
1399 return 0;
1400}
1401
b2b263f2 1402static void do_bit_flips(struct nandsim *ns, int num)
a9fc8991 1403{
aca662a3 1404 if (bitflips && prandom_u32() < (1 << 22)) {
a9fc8991
AH
1405 int flips = 1;
1406 if (bitflips > 1)
aca662a3 1407 flips = (prandom_u32() % (int) bitflips) + 1;
a9fc8991 1408 while (flips--) {
aca662a3 1409 int pos = prandom_u32() % (num * 8);
a9fc8991
AH
1410 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1411 NS_WARN("read_page: flipping bit %d in page %d "
1412 "reading from %d ecc: corrected=%u failed=%u\n",
1413 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1414 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1415 }
1416 }
1417}
1418
d086d436
VK
1419/*
1420 * Fill the NAND buffer with data read from the specified page.
1421 */
1422static void read_page(struct nandsim *ns, int num)
1423{
1424 union ns_mem *mypage;
1425
a9fc8991 1426 if (ns->cfile) {
08efe91a 1427 if (!test_bit(ns->regs.row, ns->pages_written)) {
a9fc8991
AH
1428 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1429 memset(ns->buf.byte, 0xFF, num);
1430 } else {
1431 loff_t pos;
1432 ssize_t tx;
1433
1434 NS_DBG("read_page: page %d written, reading from %d\n",
1435 ns->regs.row, ns->regs.column + ns->regs.off);
1436 if (do_read_error(ns, num))
1437 return;
6d07fcf7 1438 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
7bb307e8 1439 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
a9fc8991
AH
1440 if (tx != num) {
1441 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1442 return;
1443 }
1444 do_bit_flips(ns, num);
1445 }
1446 return;
1447 }
1448
d086d436
VK
1449 mypage = NS_GET_PAGE(ns);
1450 if (mypage->byte == NULL) {
1451 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1452 memset(ns->buf.byte, 0xFF, num);
1453 } else {
1454 NS_DBG("read_page: page %d allocated, reading from %d\n",
1455 ns->regs.row, ns->regs.column + ns->regs.off);
a9fc8991 1456 if (do_read_error(ns, num))
514087e7 1457 return;
d086d436 1458 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
a9fc8991 1459 do_bit_flips(ns, num);
d086d436
VK
1460 }
1461}
1462
1463/*
1464 * Erase all pages in the specified sector.
1465 */
1466static void erase_sector(struct nandsim *ns)
1467{
1468 union ns_mem *mypage;
1469 int i;
1470
a9fc8991
AH
1471 if (ns->cfile) {
1472 for (i = 0; i < ns->geom.pgsec; i++)
08efe91a
AM
1473 if (__test_and_clear_bit(ns->regs.row + i,
1474 ns->pages_written)) {
a9fc8991 1475 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
a9fc8991
AH
1476 }
1477 return;
1478 }
1479
d086d436
VK
1480 mypage = NS_GET_PAGE(ns);
1481 for (i = 0; i < ns->geom.pgsec; i++) {
1482 if (mypage->byte != NULL) {
1483 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
8a4c2495 1484 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
d086d436
VK
1485 mypage->byte = NULL;
1486 }
1487 mypage++;
1488 }
1489}
1490
1491/*
1492 * Program the specified page with the contents from the NAND buffer.
1493 */
1494static int prog_page(struct nandsim *ns, int num)
1495{
82810b7b 1496 int i;
d086d436
VK
1497 union ns_mem *mypage;
1498 u_char *pg_off;
1499
a9fc8991 1500 if (ns->cfile) {
7bb307e8 1501 loff_t off;
a9fc8991
AH
1502 ssize_t tx;
1503 int all;
1504
1505 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1506 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
6d07fcf7 1507 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
08efe91a 1508 if (!test_bit(ns->regs.row, ns->pages_written)) {
a9fc8991
AH
1509 all = 1;
1510 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1511 } else {
1512 all = 0;
7bb307e8 1513 tx = read_file(ns, ns->cfile, pg_off, num, off);
a9fc8991
AH
1514 if (tx != num) {
1515 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1516 return -1;
1517 }
1518 }
1519 for (i = 0; i < num; i++)
1520 pg_off[i] &= ns->buf.byte[i];
1521 if (all) {
7bb307e8
AV
1522 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1523 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
a9fc8991
AH
1524 if (tx != ns->geom.pgszoob) {
1525 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1526 return -1;
1527 }
08efe91a 1528 __set_bit(ns->regs.row, ns->pages_written);
a9fc8991 1529 } else {
7bb307e8 1530 tx = write_file(ns, ns->cfile, pg_off, num, off);
a9fc8991
AH
1531 if (tx != num) {
1532 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1533 return -1;
1534 }
1535 }
1536 return 0;
1537 }
1538
d086d436
VK
1539 mypage = NS_GET_PAGE(ns);
1540 if (mypage->byte == NULL) {
1541 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
98b830d2
AB
1542 /*
1543 * We allocate memory with GFP_NOFS because a flash FS may
1544 * utilize this. If it is holding an FS lock, then gets here,
8a4c2495
AK
1545 * then kernel memory alloc runs writeback which goes to the FS
1546 * again and deadlocks. This was seen in practice.
98b830d2 1547 */
8a4c2495 1548 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
d086d436
VK
1549 if (mypage->byte == NULL) {
1550 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1551 return -1;
1552 }
1553 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1554 }
1555
1556 pg_off = NS_PAGE_BYTE_OFF(ns);
82810b7b
AB
1557 for (i = 0; i < num; i++)
1558 pg_off[i] &= ns->buf.byte[i];
d086d436
VK
1559
1560 return 0;
1561}
1562
1da177e4
LT
1563/*
1564 * If state has any action bit, perform this action.
1565 *
1566 * RETURNS: 0 if success, -1 if error.
1567 */
a5602146 1568static int do_state_action(struct nandsim *ns, uint32_t action)
1da177e4 1569{
d086d436 1570 int num;
1da177e4 1571 int busdiv = ns->busw == 8 ? 1 : 2;
514087e7 1572 unsigned int erase_block_no, page_no;
1da177e4
LT
1573
1574 action &= ACTION_MASK;
61b03bd7 1575
1da177e4
LT
1576 /* Check that page address input is correct */
1577 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1578 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1579 return -1;
1580 }
1581
1582 switch (action) {
1583
1584 case ACTION_CPY:
1585 /*
1586 * Copy page data to the internal buffer.
1587 */
1588
1589 /* Column shouldn't be very large */
1590 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1591 NS_ERR("do_state_action: column number is too large\n");
1592 break;
1593 }
1594 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
d086d436 1595 read_page(ns, num);
1da177e4
LT
1596
1597 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1598 num, NS_RAW_OFFSET(ns) + ns->regs.off);
61b03bd7 1599
1da177e4
LT
1600 if (ns->regs.off == 0)
1601 NS_LOG("read page %d\n", ns->regs.row);
1602 else if (ns->regs.off < ns->geom.pgsz)
1603 NS_LOG("read page %d (second half)\n", ns->regs.row);
1604 else
1605 NS_LOG("read OOB of page %d\n", ns->regs.row);
61b03bd7 1606
1da177e4
LT
1607 NS_UDELAY(access_delay);
1608 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1609
1610 break;
1611
1612 case ACTION_SECERASE:
1613 /*
1614 * Erase sector.
1615 */
61b03bd7 1616
1da177e4
LT
1617 if (ns->lines.wp) {
1618 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1619 return -1;
1620 }
61b03bd7 1621
1da177e4
LT
1622 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1623 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1624 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1625 return -1;
1626 }
61b03bd7 1627
1da177e4
LT
1628 ns->regs.row = (ns->regs.row <<
1629 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1630 ns->regs.column = 0;
61b03bd7 1631
514087e7
AH
1632 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1633
1da177e4
LT
1634 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1635 ns->regs.row, NS_RAW_OFFSET(ns));
514087e7 1636 NS_LOG("erase sector %u\n", erase_block_no);
1da177e4 1637
d086d436 1638 erase_sector(ns);
61b03bd7 1639
1da177e4 1640 NS_MDELAY(erase_delay);
61b03bd7 1641
57aa6b54
AH
1642 if (erase_block_wear)
1643 update_wear(erase_block_no);
1644
514087e7
AH
1645 if (erase_error(erase_block_no)) {
1646 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1647 return -1;
1648 }
1649
1da177e4
LT
1650 break;
1651
1652 case ACTION_PRGPAGE:
1653 /*
daf05ec0 1654 * Program page - move internal buffer data to the page.
1da177e4
LT
1655 */
1656
1657 if (ns->lines.wp) {
1658 NS_WARN("do_state_action: device is write-protected, programm\n");
1659 return -1;
1660 }
1661
1662 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1663 if (num != ns->regs.count) {
1664 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1665 ns->regs.count, num);
1666 return -1;
1667 }
1668
d086d436
VK
1669 if (prog_page(ns, num) == -1)
1670 return -1;
1da177e4 1671
514087e7
AH
1672 page_no = ns->regs.row;
1673
1da177e4
LT
1674 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1675 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1676 NS_LOG("programm page %d\n", ns->regs.row);
61b03bd7 1677
1da177e4
LT
1678 NS_UDELAY(programm_delay);
1679 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
61b03bd7 1680
514087e7
AH
1681 if (write_error(page_no)) {
1682 NS_WARN("simulating write failure in page %u\n", page_no);
1683 return -1;
1684 }
1685
1da177e4 1686 break;
61b03bd7 1687
1da177e4
LT
1688 case ACTION_ZEROOFF:
1689 NS_DBG("do_state_action: set internal offset to 0\n");
1690 ns->regs.off = 0;
1691 break;
1692
1693 case ACTION_HALFOFF:
1694 if (!(ns->options & OPT_PAGE512_8BIT)) {
1695 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1696 "byte page size 8x chips\n");
1697 return -1;
1698 }
1699 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1700 ns->regs.off = ns->geom.pgsz/2;
1701 break;
1702
1703 case ACTION_OOBOFF:
1704 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1705 ns->regs.off = ns->geom.pgsz;
1706 break;
61b03bd7 1707
1da177e4
LT
1708 default:
1709 NS_DBG("do_state_action: BUG! unknown action\n");
1710 }
1711
1712 return 0;
1713}
1714
1715/*
1716 * Switch simulator's state.
1717 */
a5602146 1718static void switch_state(struct nandsim *ns)
1da177e4
LT
1719{
1720 if (ns->op) {
1721 /*
1722 * The current operation have already been identified.
1723 * Just follow the states chain.
1724 */
61b03bd7 1725
1da177e4
LT
1726 ns->stateidx += 1;
1727 ns->state = ns->nxstate;
1728 ns->nxstate = ns->op[ns->stateidx + 1];
1729
1730 NS_DBG("switch_state: operation is known, switch to the next state, "
1731 "state: %s, nxstate: %s\n",
1732 get_state_name(ns->state), get_state_name(ns->nxstate));
1733
1734 /* See, whether we need to do some action */
1735 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1736 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1737 return;
1738 }
61b03bd7 1739
1da177e4
LT
1740 } else {
1741 /*
1742 * We don't yet know which operation we perform.
1743 * Try to identify it.
1744 */
1745
61b03bd7 1746 /*
1da177e4
LT
1747 * The only event causing the switch_state function to
1748 * be called with yet unknown operation is new command.
1749 */
1750 ns->state = get_state_by_command(ns->regs.command);
1751
1752 NS_DBG("switch_state: operation is unknown, try to find it\n");
1753
1754 if (find_operation(ns, 0) != 0)
1755 return;
1756
1757 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1758 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1759 return;
1760 }
1761 }
1762
1763 /* For 16x devices column means the page offset in words */
1764 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1765 NS_DBG("switch_state: double the column number for 16x device\n");
1766 ns->regs.column <<= 1;
1767 }
1768
1769 if (NS_STATE(ns->nxstate) == STATE_READY) {
1770 /*
1771 * The current state is the last. Return to STATE_READY
1772 */
1773
1774 u_char status = NS_STATUS_OK(ns);
61b03bd7 1775
1da177e4
LT
1776 /* In case of data states, see if all bytes were input/output */
1777 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1778 && ns->regs.count != ns->regs.num) {
1779 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1780 ns->regs.num - ns->regs.count);
1781 status = NS_STATUS_FAILED(ns);
1782 }
61b03bd7 1783
1da177e4
LT
1784 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1785
1786 switch_to_ready_state(ns, status);
1787
1788 return;
1789 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
61b03bd7 1790 /*
1da177e4
LT
1791 * If the next state is data input/output, switch to it now
1792 */
61b03bd7 1793
1da177e4
LT
1794 ns->state = ns->nxstate;
1795 ns->nxstate = ns->op[++ns->stateidx + 1];
1796 ns->regs.num = ns->regs.count = 0;
1797
1798 NS_DBG("switch_state: the next state is data I/O, switch, "
1799 "state: %s, nxstate: %s\n",
1800 get_state_name(ns->state), get_state_name(ns->nxstate));
1801
1802 /*
1803 * Set the internal register to the count of bytes which
1804 * are expected to be input or output
1805 */
1806 switch (NS_STATE(ns->state)) {
1807 case STATE_DATAIN:
1808 case STATE_DATAOUT:
1809 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1810 break;
61b03bd7 1811
1da177e4
LT
1812 case STATE_DATAOUT_ID:
1813 ns->regs.num = ns->geom.idbytes;
1814 break;
61b03bd7 1815
1da177e4 1816 case STATE_DATAOUT_STATUS:
1da177e4
LT
1817 ns->regs.count = ns->regs.num = 0;
1818 break;
61b03bd7 1819
1da177e4
LT
1820 default:
1821 NS_ERR("switch_state: BUG! unknown data state\n");
1822 }
1823
1824 } else if (ns->nxstate & STATE_ADDR_MASK) {
1825 /*
1826 * If the next state is address input, set the internal
1827 * register to the number of expected address bytes
1828 */
1829
1830 ns->regs.count = 0;
61b03bd7 1831
1da177e4
LT
1832 switch (NS_STATE(ns->nxstate)) {
1833 case STATE_ADDR_PAGE:
1834 ns->regs.num = ns->geom.pgaddrbytes;
61b03bd7 1835
1da177e4
LT
1836 break;
1837 case STATE_ADDR_SEC:
1838 ns->regs.num = ns->geom.secaddrbytes;
1839 break;
61b03bd7 1840
1da177e4
LT
1841 case STATE_ADDR_ZERO:
1842 ns->regs.num = 1;
1843 break;
1844
74216be4
AB
1845 case STATE_ADDR_COLUMN:
1846 /* Column address is always 2 bytes */
1847 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1848 break;
1849
1da177e4
LT
1850 default:
1851 NS_ERR("switch_state: BUG! unknown address state\n");
1852 }
1853 } else {
61b03bd7 1854 /*
1da177e4
LT
1855 * Just reset internal counters.
1856 */
1857
1858 ns->regs.num = 0;
1859 ns->regs.count = 0;
1860 }
1861}
1862
7e534323 1863static u_char ns_nand_read_byte(struct nand_chip *chip)
1da177e4 1864{
c66b651c 1865 struct nandsim *ns = nand_get_controller_data(chip);
1da177e4
LT
1866 u_char outb = 0x00;
1867
1868 /* Sanity and correctness checks */
1869 if (!ns->lines.ce) {
1870 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1871 return outb;
1872 }
1873 if (ns->lines.ale || ns->lines.cle) {
1874 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1875 return outb;
1876 }
1877 if (!(ns->state & STATE_DATAOUT_MASK)) {
1878 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1879 "return %#x\n", get_state_name(ns->state), (uint)outb);
1880 return outb;
1881 }
1882
1883 /* Status register may be read as many times as it is wanted */
1884 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1885 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1886 return ns->regs.status;
1887 }
1888
1889 /* Check if there is any data in the internal buffer which may be read */
1890 if (ns->regs.count == ns->regs.num) {
1891 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1892 return outb;
1893 }
1894
1895 switch (NS_STATE(ns->state)) {
1896 case STATE_DATAOUT:
1897 if (ns->busw == 8) {
1898 outb = ns->buf.byte[ns->regs.count];
1899 ns->regs.count += 1;
1900 } else {
1901 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1902 ns->regs.count += 2;
1903 }
1904 break;
1905 case STATE_DATAOUT_ID:
1906 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1907 outb = ns->ids[ns->regs.count];
1908 ns->regs.count += 1;
1909 break;
1910 default:
1911 BUG();
1912 }
61b03bd7 1913
1da177e4
LT
1914 if (ns->regs.count == ns->regs.num) {
1915 NS_DBG("read_byte: all bytes were read\n");
1916
831d316b 1917 if (NS_STATE(ns->nxstate) == STATE_READY)
1da177e4 1918 switch_state(ns);
1da177e4 1919 }
61b03bd7 1920
1da177e4
LT
1921 return outb;
1922}
1923
c0739d85 1924static void ns_nand_write_byte(struct nand_chip *chip, u_char byte)
1da177e4 1925{
c66b651c 1926 struct nandsim *ns = nand_get_controller_data(chip);
61b03bd7 1927
1da177e4
LT
1928 /* Sanity and correctness checks */
1929 if (!ns->lines.ce) {
1930 NS_ERR("write_byte: chip is disabled, ignore write\n");
1931 return;
1932 }
1933 if (ns->lines.ale && ns->lines.cle) {
1934 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1935 return;
1936 }
61b03bd7 1937
1da177e4
LT
1938 if (ns->lines.cle == 1) {
1939 /*
1940 * The byte written is a command.
1941 */
1942
1943 if (byte == NAND_CMD_RESET) {
1944 NS_LOG("reset chip\n");
1945 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1946 return;
1947 }
1948
74216be4
AB
1949 /* Check that the command byte is correct */
1950 if (check_command(byte)) {
1951 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1952 return;
1953 }
1954
1da177e4 1955 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
74216be4
AB
1956 || NS_STATE(ns->state) == STATE_DATAOUT) {
1957 int row = ns->regs.row;
1958
1da177e4 1959 switch_state(ns);
74216be4
AB
1960 if (byte == NAND_CMD_RNDOUT)
1961 ns->regs.row = row;
1962 }
1da177e4
LT
1963
1964 /* Check if chip is expecting command */
1965 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
9359ea46
AH
1966 /* Do not warn if only 2 id bytes are read */
1967 if (!(ns->regs.command == NAND_CMD_READID &&
1968 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1969 /*
1970 * We are in situation when something else (not command)
1971 * was expected but command was input. In this case ignore
1972 * previous command(s)/state(s) and accept the last one.
1973 */
1974 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1975 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1976 }
1da177e4
LT
1977 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1978 }
61b03bd7 1979
1da177e4
LT
1980 NS_DBG("command byte corresponding to %s state accepted\n",
1981 get_state_name(get_state_by_command(byte)));
1982 ns->regs.command = byte;
1983 switch_state(ns);
1984
1985 } else if (ns->lines.ale == 1) {
1986 /*
1987 * The byte written is an address.
1988 */
1989
1990 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1991
1992 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1993
1994 if (find_operation(ns, 1) < 0)
1995 return;
61b03bd7 1996
1da177e4
LT
1997 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1998 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1999 return;
2000 }
61b03bd7 2001
1da177e4
LT
2002 ns->regs.count = 0;
2003 switch (NS_STATE(ns->nxstate)) {
2004 case STATE_ADDR_PAGE:
2005 ns->regs.num = ns->geom.pgaddrbytes;
2006 break;
2007 case STATE_ADDR_SEC:
2008 ns->regs.num = ns->geom.secaddrbytes;
2009 break;
2010 case STATE_ADDR_ZERO:
2011 ns->regs.num = 1;
2012 break;
2013 default:
2014 BUG();
2015 }
2016 }
2017
2018 /* Check that chip is expecting address */
2019 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2020 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2021 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2022 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2023 return;
2024 }
61b03bd7 2025
1da177e4
LT
2026 /* Check if this is expected byte */
2027 if (ns->regs.count == ns->regs.num) {
2028 NS_ERR("write_byte: no more address bytes expected\n");
2029 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2030 return;
2031 }
2032
2033 accept_addr_byte(ns, byte);
2034
2035 ns->regs.count += 1;
2036
2037 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2038 (uint)byte, ns->regs.count, ns->regs.num);
2039
2040 if (ns->regs.count == ns->regs.num) {
2041 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2042 switch_state(ns);
2043 }
61b03bd7 2044
1da177e4
LT
2045 } else {
2046 /*
2047 * The byte written is an input data.
2048 */
61b03bd7 2049
1da177e4
LT
2050 /* Check that chip is expecting data input */
2051 if (!(ns->state & STATE_DATAIN_MASK)) {
2052 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2053 "switch to %s\n", (uint)byte,
2054 get_state_name(ns->state), get_state_name(STATE_READY));
2055 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2056 return;
2057 }
2058
2059 /* Check if this is expected byte */
2060 if (ns->regs.count == ns->regs.num) {
2061 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2062 ns->regs.num);
2063 return;
2064 }
2065
2066 if (ns->busw == 8) {
2067 ns->buf.byte[ns->regs.count] = byte;
2068 ns->regs.count += 1;
2069 } else {
2070 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2071 ns->regs.count += 2;
2072 }
2073 }
2074
2075 return;
2076}
2077
c0739d85
BB
2078static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf,
2079 int len)
1da177e4 2080{
c66b651c 2081 struct nandsim *ns = nand_get_controller_data(chip);
1da177e4
LT
2082
2083 /* Check that chip is expecting data input */
2084 if (!(ns->state & STATE_DATAIN_MASK)) {
2085 NS_ERR("write_buf: data input isn't expected, state is %s, "
2086 "switch to STATE_READY\n", get_state_name(ns->state));
2087 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2088 return;
2089 }
2090
2091 /* Check if these are expected bytes */
2092 if (ns->regs.count + len > ns->regs.num) {
2093 NS_ERR("write_buf: too many input bytes\n");
2094 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2095 return;
2096 }
2097
2098 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2099 ns->regs.count += len;
61b03bd7 2100
1da177e4
LT
2101 if (ns->regs.count == ns->regs.num) {
2102 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2103 }
2104}
2105
7e534323 2106static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
1da177e4 2107{
c66b651c 2108 struct nandsim *ns = nand_get_controller_data(chip);
1da177e4
LT
2109
2110 /* Sanity and correctness checks */
2111 if (!ns->lines.ce) {
2112 NS_ERR("read_buf: chip is disabled\n");
2113 return;
2114 }
2115 if (ns->lines.ale || ns->lines.cle) {
2116 NS_ERR("read_buf: ALE or CLE pin is high\n");
2117 return;
2118 }
2119 if (!(ns->state & STATE_DATAOUT_MASK)) {
2120 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2121 get_state_name(ns->state));
2122 return;
2123 }
2124
2125 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2126 int i;
2127
2128 for (i = 0; i < len; i++)
1c14fe21 2129 buf[i] = ns_nand_read_byte(chip);
1da177e4
LT
2130
2131 return;
2132 }
2133
2134 /* Check if these are expected bytes */
2135 if (ns->regs.count + len > ns->regs.num) {
2136 NS_ERR("read_buf: too many bytes to read\n");
2137 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2138 return;
2139 }
2140
2141 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2142 ns->regs.count += len;
61b03bd7 2143
1da177e4 2144 if (ns->regs.count == ns->regs.num) {
831d316b 2145 if (NS_STATE(ns->nxstate) == STATE_READY)
1da177e4
LT
2146 switch_state(ns);
2147 }
61b03bd7 2148
1da177e4
LT
2149 return;
2150}
2151
1c14fe21
RW
2152static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op,
2153 bool check_only)
2154{
2155 int i;
2156 unsigned int op_id;
2157 const struct nand_op_instr *instr = NULL;
2158 struct nandsim *ns = nand_get_controller_data(chip);
2159
2160 ns->lines.ce = 1;
2161
2162 for (op_id = 0; op_id < op->ninstrs; op_id++) {
2163 instr = &op->instrs[op_id];
2164 ns->lines.cle = 0;
2165 ns->lines.ale = 0;
2166
2167 switch (instr->type) {
2168 case NAND_OP_CMD_INSTR:
2169 ns->lines.cle = 1;
2170 ns_nand_write_byte(chip, instr->ctx.cmd.opcode);
2171 break;
2172 case NAND_OP_ADDR_INSTR:
2173 ns->lines.ale = 1;
2174 for (i = 0; i < instr->ctx.addr.naddrs; i++)
2175 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]);
2176 break;
2177 case NAND_OP_DATA_IN_INSTR:
2178 ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
2179 break;
2180 case NAND_OP_DATA_OUT_INSTR:
2181 ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
2182 break;
2183 case NAND_OP_WAITRDY_INSTR:
2184 /* we are always ready */
2185 break;
2186 }
2187 }
2188
2189 return 0;
2190}
2191
5cbad9e3
MR
2192static int ns_attach_chip(struct nand_chip *chip)
2193{
2194 unsigned int eccsteps, eccbytes;
2195
2196 if (!bch)
2197 return 0;
2198
2199 if (!mtd_nand_has_bch()) {
2200 NS_ERR("BCH ECC support is disabled\n");
2201 return -EINVAL;
2202 }
2203
2204 /* Use 512-byte ecc blocks */
2205 eccsteps = nsmtd->writesize / 512;
2206 eccbytes = ((bch * 13) + 7) / 8;
2207
2208 /* Do not bother supporting small page devices */
2209 if (nsmtd->oobsize < 64 || !eccsteps) {
2210 NS_ERR("BCH not available on small page devices\n");
2211 return -EINVAL;
2212 }
2213
2214 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
2215 NS_ERR("Invalid BCH value %u\n", bch);
2216 return -EINVAL;
2217 }
2218
2219 chip->ecc.mode = NAND_ECC_SOFT;
2220 chip->ecc.algo = NAND_ECC_BCH;
2221 chip->ecc.size = 512;
2222 chip->ecc.strength = bch;
2223 chip->ecc.bytes = eccbytes;
2224
2225 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2226
2227 return 0;
2228}
2229
2230static const struct nand_controller_ops ns_controller_ops = {
2231 .attach_chip = ns_attach_chip,
1c14fe21 2232 .exec_op = ns_exec_op,
5cbad9e3
MR
2233};
2234
1da177e4
LT
2235/*
2236 * Module initialization function
2237 */
2b9175c1 2238static int __init ns_init_module(void)
1da177e4
LT
2239{
2240 struct nand_chip *chip;
74aee14c 2241 struct nandsim *ns;
2b77a0ed 2242 int retval = -ENOMEM, i;
1da177e4
LT
2243
2244 if (bus_width != 8 && bus_width != 16) {
2245 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2246 return -EINVAL;
2247 }
61b03bd7 2248
74aee14c
RW
2249 ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL);
2250 if (!ns) {
1da177e4
LT
2251 NS_ERR("unable to allocate core structures.\n");
2252 return -ENOMEM;
2253 }
74aee14c 2254 chip = &ns->chip;
ed10f165 2255 nsmtd = nand_to_mtd(chip);
74aee14c 2256 nand_set_controller_data(chip, (void *)ns);
1da177e4 2257
6dfc6d25 2258 chip->ecc.mode = NAND_ECC_SOFT;
8ae6bcd1 2259 chip->ecc.algo = NAND_ECC_HAMMING;
a5ac8aeb
AH
2260 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2261 /* and 'badblocks' parameters to work */
51502287 2262 chip->options |= NAND_SKIP_BBTSCAN;
1da177e4 2263
ce85b79f
SAS
2264 switch (bbt) {
2265 case 2:
64f1da10
GS
2266 chip->bbt_options |= NAND_BBT_NO_OOB;
2267 /* fall through */
ce85b79f 2268 case 1:
64f1da10
GS
2269 chip->bbt_options |= NAND_BBT_USE_FLASH;
2270 /* fall through */
ce85b79f
SAS
2271 case 0:
2272 break;
2273 default:
2274 NS_ERR("bbt has to be 0..2\n");
2275 retval = -EINVAL;
2276 goto error;
2277 }
61b03bd7 2278 /*
1da177e4 2279 * Perform minimum nandsim structure initialization to handle
61b03bd7 2280 * the initial ID read command correctly
1da177e4 2281 */
b00358a5 2282 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
74aee14c 2283 ns->geom.idbytes = 8;
b00358a5 2284 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
74aee14c 2285 ns->geom.idbytes = 6;
b00358a5 2286 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
74aee14c 2287 ns->geom.idbytes = 4;
1da177e4 2288 else
74aee14c
RW
2289 ns->geom.idbytes = 2;
2290 ns->regs.status = NS_STATUS_OK(ns);
2291 ns->nxstate = STATE_UNKNOWN;
2292 ns->options |= OPT_PAGE512; /* temporary value */
2293 memcpy(ns->ids, id_bytes, sizeof(ns->ids));
1da177e4 2294 if (bus_width == 16) {
74aee14c 2295 ns->busw = 16;
1da177e4
LT
2296 chip->options |= NAND_BUSWIDTH_16;
2297 }
2298
552d9205
DW
2299 nsmtd->owner = THIS_MODULE;
2300
514087e7
AH
2301 if ((retval = parse_weakblocks()) != 0)
2302 goto error;
2303
2304 if ((retval = parse_weakpages()) != 0)
2305 goto error;
2306
2307 if ((retval = parse_gravepages()) != 0)
2308 goto error;
2309
1c14fe21
RW
2310 nand_controller_init(&ns->base);
2311 ns->base.ops = &ns_controller_ops;
2312 chip->controller = &ns->base;
2313
00ad378f 2314 retval = nand_scan(chip, 1);
fc2ff592 2315 if (retval) {
5cbad9e3 2316 NS_ERR("Could not scan NAND Simulator device\n");
1da177e4
LT
2317 goto error;
2318 }
2319
a5ac8aeb 2320 if (overridesize) {
0f07a0be 2321 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
629a442c 2322 struct nand_memory_organization *memorg;
6c836d51 2323 u64 targetsize;
629a442c
BB
2324
2325 memorg = nanddev_get_memorg(&chip->base);
2326
a5ac8aeb
AH
2327 if (new_size >> overridesize != nsmtd->erasesize) {
2328 NS_ERR("overridesize is too big\n");
bb0a13a1 2329 retval = -EINVAL;
a5ac8aeb
AH
2330 goto err_exit;
2331 }
6c836d51 2332
a5ac8aeb
AH
2333 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2334 nsmtd->size = new_size;
629a442c 2335 memorg->eraseblocks_per_lun = 1 << overridesize;
6c836d51 2336 targetsize = nanddev_target_size(&chip->base);
6eda7a55 2337 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
6c836d51 2338 chip->pagemask = (targetsize >> chip->page_shift) - 1;
a5ac8aeb
AH
2339 }
2340
57aa6b54
AH
2341 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2342 goto err_exit;
2343
2b77a0ed
AH
2344 if ((retval = init_nandsim(nsmtd)) != 0)
2345 goto err_exit;
61b03bd7 2346
e80eba75 2347 if ((retval = nand_create_bbt(chip)) != 0)
514087e7
AH
2348 goto err_exit;
2349
74aee14c 2350 if ((retval = parse_badblocks(ns, nsmtd)) != 0)
2b77a0ed 2351 goto err_exit;
51502287 2352
2b77a0ed 2353 /* Register NAND partitions */
74aee14c
RW
2354 retval = mtd_device_register(nsmtd, &ns->partitions[0],
2355 ns->nbparts);
ee0e87b1 2356 if (retval != 0)
2b77a0ed 2357 goto err_exit;
1da177e4 2358
74aee14c 2359 if ((retval = nandsim_debugfs_create(ns)) != 0)
e8e3edb9
MR
2360 goto err_exit;
2361
1da177e4
LT
2362 return 0;
2363
2b77a0ed 2364err_exit:
74aee14c 2365 free_nandsim(ns);
59ac276f 2366 nand_release(chip);
74aee14c
RW
2367 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2368 kfree(ns->partitions[i].name);
1da177e4 2369error:
74aee14c 2370 kfree(ns);
514087e7 2371 free_lists();
1da177e4
LT
2372
2373 return retval;
2374}
2375
2376module_init(ns_init_module);
2377
2378/*
2379 * Module clean-up function
2380 */
2381static void __exit ns_cleanup_module(void)
2382{
c66b651c
BN
2383 struct nand_chip *chip = mtd_to_nand(nsmtd);
2384 struct nandsim *ns = nand_get_controller_data(chip);
2b77a0ed 2385 int i;
1da177e4
LT
2386
2387 free_nandsim(ns); /* Free nandsim private resources */
59ac276f 2388 nand_release(chip); /* Unregister driver */
2b77a0ed
AH
2389 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2390 kfree(ns->partitions[i].name);
74aee14c 2391 kfree(ns); /* Free other structures */
514087e7 2392 free_lists();
1da177e4
LT
2393}
2394
2395module_exit(ns_cleanup_module);
2396
2397MODULE_LICENSE ("GPL");
2398MODULE_AUTHOR ("Artem B. Bityuckiy");
2399MODULE_DESCRIPTION ("The NAND flash simulator");