]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/mtd/nand/raw/s3c2410.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / raw / s3c2410.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
43a0a45a 2/*
7e74a507
BD
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
fdf2fd52 5 * Ben Dooks <ben@simtec.co.uk>
1da177e4 6 *
7e74a507 7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
1da177e4
LT
8*/
9
92aeb5d2
SK
10#define pr_fmt(fmt) "nand-s3c2410: " fmt
11
1da177e4
LT
12#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
13#define DEBUG
14#endif
15
16#include <linux/module.h>
17#include <linux/types.h>
1da177e4
LT
18#include <linux/kernel.h>
19#include <linux/string.h>
d2a89be8 20#include <linux/io.h>
1da177e4 21#include <linux/ioport.h>
d052d1be 22#include <linux/platform_device.h>
1da177e4
LT
23#include <linux/delay.h>
24#include <linux/err.h>
4e57b681 25#include <linux/slab.h>
f8ce2547 26#include <linux/clk.h>
30821fee 27#include <linux/cpufreq.h>
1c825ad1
SP
28#include <linux/of.h>
29#include <linux/of_device.h>
1da177e4
LT
30
31#include <linux/mtd/mtd.h>
d4092d76 32#include <linux/mtd/rawnand.h>
1da177e4
LT
33#include <linux/mtd/nand_ecc.h>
34#include <linux/mtd/partitions.h>
35
436d42c6 36#include <linux/platform_data/mtd-nand-s3c2410.h>
1da177e4 37
02d01862
SK
38#define S3C2410_NFREG(x) (x)
39
40#define S3C2410_NFCONF S3C2410_NFREG(0x00)
41#define S3C2410_NFCMD S3C2410_NFREG(0x04)
42#define S3C2410_NFADDR S3C2410_NFREG(0x08)
43#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
44#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
45#define S3C2410_NFECC S3C2410_NFREG(0x14)
46#define S3C2440_NFCONT S3C2410_NFREG(0x04)
47#define S3C2440_NFCMD S3C2410_NFREG(0x08)
48#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
49#define S3C2440_NFDATA S3C2410_NFREG(0x10)
50#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
51#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
52#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
53#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
54#define S3C2410_NFCONF_EN (1<<15)
55#define S3C2410_NFCONF_INITECC (1<<12)
56#define S3C2410_NFCONF_nFCE (1<<11)
57#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
58#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
59#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
60#define S3C2410_NFSTAT_BUSY (1<<0)
61#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
62#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
63#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
64#define S3C2440_NFCONT_INITECC (1<<4)
65#define S3C2440_NFCONT_nFCE (1<<1)
66#define S3C2440_NFCONT_ENABLE (1<<0)
67#define S3C2440_NFSTAT_READY (1<<0)
68#define S3C2412_NFCONF_NANDBOOT (1<<31)
69#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
70#define S3C2412_NFCONT_nFCE0 (1<<1)
71#define S3C2412_NFSTAT_READY (1<<0)
72
1da177e4
LT
73/* new oob placement block for use with hardware ecc generation
74 */
bf01e06b
BB
75static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
76 struct mtd_oob_region *oobregion)
77{
78 if (section)
79 return -ERANGE;
80
81 oobregion->offset = 0;
82 oobregion->length = 3;
83
84 return 0;
85}
86
87static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
88 struct mtd_oob_region *oobregion)
89{
90 if (section)
91 return -ERANGE;
92
93 oobregion->offset = 8;
94 oobregion->length = 8;
95
96 return 0;
97}
1da177e4 98
bf01e06b
BB
99static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
100 .ecc = s3c2410_ooblayout_ecc,
101 .free = s3c2410_ooblayout_free,
1da177e4
LT
102};
103
104/* controller and mtd information */
105
106struct s3c2410_nand_info;
107
3db72151
BD
108/**
109 * struct s3c2410_nand_mtd - driver MTD structure
110 * @mtd: The MTD instance to pass to the MTD layer.
111 * @chip: The NAND chip information.
112 * @set: The platform information supplied for this set of NAND chips.
113 * @info: Link back to the hardware information.
3db72151 114*/
1da177e4 115struct s3c2410_nand_mtd {
1da177e4
LT
116 struct nand_chip chip;
117 struct s3c2410_nand_set *set;
118 struct s3c2410_nand_info *info;
1da177e4
LT
119};
120
2c06a082
BD
121enum s3c_cpu_type {
122 TYPE_S3C2410,
123 TYPE_S3C2412,
124 TYPE_S3C2440,
125};
126
ac497c16
JP
127enum s3c_nand_clk_state {
128 CLOCK_DISABLE = 0,
129 CLOCK_ENABLE,
130 CLOCK_SUSPEND,
131};
132
1da177e4
LT
133/* overview of the s3c2410 nand state */
134
3db72151
BD
135/**
136 * struct s3c2410_nand_info - NAND controller state.
137 * @mtds: An array of MTD instances on this controoler.
138 * @platform: The platform data for this board.
139 * @device: The platform device we bound to.
3db72151 140 * @clk: The clock resource for this controller.
6f32a3e2 141 * @regs: The area mapped for the hardware registers.
3db72151
BD
142 * @sel_reg: Pointer to the register controlling the NAND selection.
143 * @sel_bit: The bit in @sel_reg to select the NAND chip.
144 * @mtd_count: The number of MTDs created from this controller.
145 * @save_sel: The contents of @sel_reg to be saved over suspend.
146 * @clk_rate: The clock rate from @clk.
ac497c16 147 * @clk_state: The current clock state.
3db72151
BD
148 * @cpu_type: The exact type of this controller.
149 */
1da177e4
LT
150struct s3c2410_nand_info {
151 /* mtd info */
7da45139 152 struct nand_controller controller;
1da177e4
LT
153 struct s3c2410_nand_mtd *mtds;
154 struct s3c2410_platform_nand *platform;
155
156 /* device info */
157 struct device *device;
1da177e4 158 struct clk *clk;
fdf2fd52 159 void __iomem *regs;
2c06a082
BD
160 void __iomem *sel_reg;
161 int sel_bit;
1da177e4 162 int mtd_count;
09160832 163 unsigned long save_sel;
30821fee 164 unsigned long clk_rate;
ac497c16 165 enum s3c_nand_clk_state clk_state;
03680b1e 166
2c06a082 167 enum s3c_cpu_type cpu_type;
30821fee 168
d9ca77f0 169#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
170 struct notifier_block freq_transition;
171#endif
1da177e4
LT
172};
173
1c825ad1
SP
174struct s3c24XX_nand_devtype_data {
175 enum s3c_cpu_type type;
176};
177
178static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
179 .type = TYPE_S3C2410,
180};
181
182static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
183 .type = TYPE_S3C2412,
184};
185
186static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
187 .type = TYPE_S3C2440,
188};
189
1da177e4
LT
190/* conversion functions */
191
192static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
193{
7208b997
BB
194 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
195 chip);
1da177e4
LT
196}
197
198static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
199{
200 return s3c2410_nand_mtd_toours(mtd)->info;
201}
202
3ae5eaec 203static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
1da177e4 204{
3ae5eaec 205 return platform_get_drvdata(dev);
1da177e4
LT
206}
207
3ae5eaec 208static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
1da177e4 209{
453810b7 210 return dev_get_platdata(&dev->dev);
1da177e4
LT
211}
212
ac497c16 213static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
d1fef3c5 214{
a68c5ec8
SK
215#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
216 return 1;
217#else
218 return 0;
219#endif
d1fef3c5
BD
220}
221
ac497c16
JP
222/**
223 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
224 * @info: The controller instance.
225 * @new_state: State to which clock should be set.
226 */
227static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
228 enum s3c_nand_clk_state new_state)
229{
230 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
231 return;
232
233 if (info->clk_state == CLOCK_ENABLE) {
234 if (new_state != CLOCK_ENABLE)
887957b4 235 clk_disable_unprepare(info->clk);
ac497c16
JP
236 } else {
237 if (new_state == CLOCK_ENABLE)
887957b4 238 clk_prepare_enable(info->clk);
ac497c16
JP
239 }
240
241 info->clk_state = new_state;
242}
243
1da177e4
LT
244/* timing calculations */
245
cfd320fb 246#define NS_IN_KHZ 1000000
1da177e4 247
3db72151
BD
248/**
249 * s3c_nand_calc_rate - calculate timing data.
250 * @wanted: The cycle time in nanoseconds.
251 * @clk: The clock rate in kHz.
252 * @max: The maximum divider value.
253 *
254 * Calculate the timing value from the given parameters.
255 */
2c06a082 256static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
1da177e4
LT
257{
258 int result;
259
947391cf 260 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
1da177e4
LT
261
262 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
263
264 if (result > max) {
92aeb5d2
SK
265 pr_err("%d ns is too big for current clock rate %ld\n",
266 wanted, clk);
1da177e4
LT
267 return -1;
268 }
269
270 if (result < 1)
271 result = 1;
272
273 return result;
274}
275
54cd0208 276#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
1da177e4
LT
277
278/* controller setup */
279
3db72151
BD
280/**
281 * s3c2410_nand_setrate - setup controller timing information.
282 * @info: The controller instance.
283 *
284 * Given the information supplied by the platform, calculate and set
285 * the necessary timing registers in the hardware to generate the
286 * necessary timing cycles to the hardware.
287 */
30821fee 288static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
1da177e4 289{
30821fee 290 struct s3c2410_platform_nand *plat = info->platform;
2c06a082 291 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
cfd320fb 292 int tacls, twrph0, twrph1;
30821fee 293 unsigned long clkrate = clk_get_rate(info->clk);
2612e523 294 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
30821fee 295 unsigned long flags;
1da177e4
LT
296
297 /* calculate the timing information for the controller */
298
30821fee 299 info->clk_rate = clkrate;
cfd320fb
BD
300 clkrate /= 1000; /* turn clock into kHz for ease of use */
301
1da177e4 302 if (plat != NULL) {
2c06a082
BD
303 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
304 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
305 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
1da177e4
LT
306 } else {
307 /* default timings */
2c06a082 308 tacls = tacls_max;
1da177e4
LT
309 twrph0 = 8;
310 twrph1 = 8;
311 }
61b03bd7 312
1da177e4 313 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
99974c62 314 dev_err(info->device, "cannot get suitable timings\n");
1da177e4
LT
315 return -EINVAL;
316 }
317
99974c62 318 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
54cd0208
SK
319 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
320 twrph1, to_ns(twrph1, clkrate));
1da177e4 321
30821fee
BD
322 switch (info->cpu_type) {
323 case TYPE_S3C2410:
324 mask = (S3C2410_NFCONF_TACLS(3) |
325 S3C2410_NFCONF_TWRPH0(7) |
326 S3C2410_NFCONF_TWRPH1(7));
327 set = S3C2410_NFCONF_EN;
328 set |= S3C2410_NFCONF_TACLS(tacls - 1);
329 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
330 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
331 break;
332
333 case TYPE_S3C2440:
334 case TYPE_S3C2412:
a755a385
PK
335 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
336 S3C2440_NFCONF_TWRPH0(7) |
337 S3C2440_NFCONF_TWRPH1(7));
30821fee
BD
338
339 set = S3C2440_NFCONF_TACLS(tacls - 1);
340 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
341 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
342 break;
343
344 default:
30821fee
BD
345 BUG();
346 }
347
30821fee
BD
348 local_irq_save(flags);
349
350 cfg = readl(info->regs + S3C2410_NFCONF);
351 cfg &= ~mask;
352 cfg |= set;
353 writel(cfg, info->regs + S3C2410_NFCONF);
354
355 local_irq_restore(flags);
356
ae7304e5
AG
357 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
358
30821fee
BD
359 return 0;
360}
361
3db72151
BD
362/**
363 * s3c2410_nand_inithw - basic hardware initialisation
364 * @info: The hardware state.
365 *
366 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
367 * to setup the hardware access speeds and set the controller to be enabled.
368*/
30821fee
BD
369static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
370{
371 int ret;
372
373 ret = s3c2410_nand_setrate(info);
374 if (ret < 0)
375 return ret;
376
54cd0208
SK
377 switch (info->cpu_type) {
378 case TYPE_S3C2410:
30821fee 379 default:
2c06a082
BD
380 break;
381
54cd0208
SK
382 case TYPE_S3C2440:
383 case TYPE_S3C2412:
d1fef3c5
BD
384 /* enable the controller and de-assert nFCE */
385
2c06a082 386 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
a4f957f1 387 }
1da177e4 388
1da177e4
LT
389 return 0;
390}
391
3db72151
BD
392/**
393 * s3c2410_nand_select_chip - select the given nand chip
758b56f5 394 * @this: NAND chip object.
3db72151
BD
395 * @chip: The chip number.
396 *
397 * This is called by the MTD layer to either select a given chip for the
398 * @mtd instance, or to indicate that the access has finished and the
399 * chip can be de-selected.
400 *
401 * The routine ensures that the nFCE line is correctly setup, and any
402 * platform specific selection code is called to route nFCE to the specific
403 * chip.
404 */
758b56f5 405static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
1da177e4
LT
406{
407 struct s3c2410_nand_info *info;
61b03bd7 408 struct s3c2410_nand_mtd *nmtd;
1da177e4
LT
409 unsigned long cur;
410
d699ed25 411 nmtd = nand_get_controller_data(this);
1da177e4
LT
412 info = nmtd->info;
413
ac497c16
JP
414 if (chip != -1)
415 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
d1fef3c5 416
2c06a082 417 cur = readl(info->sel_reg);
1da177e4
LT
418
419 if (chip == -1) {
2c06a082 420 cur |= info->sel_bit;
1da177e4 421 } else {
fb8d82a8 422 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
99974c62 423 dev_err(info->device, "invalid chip %d\n", chip);
1da177e4
LT
424 return;
425 }
426
427 if (info->platform != NULL) {
428 if (info->platform->select_chip != NULL)
e0c7d767 429 (info->platform->select_chip) (nmtd->set, chip);
1da177e4
LT
430 }
431
2c06a082 432 cur &= ~info->sel_bit;
1da177e4
LT
433 }
434
2c06a082 435 writel(cur, info->sel_reg);
d1fef3c5 436
ac497c16
JP
437 if (chip == -1)
438 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1da177e4
LT
439}
440
ad3b5fb7 441/* s3c2410_nand_hwcontrol
a4f957f1 442 *
ad3b5fb7 443 * Issue command and address cycles to the chip
a4f957f1 444*/
1da177e4 445
0f808c16 446static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
f9068876 447 unsigned int ctrl)
1da177e4 448{
0f808c16 449 struct mtd_info *mtd = nand_to_mtd(chip);
1da177e4 450 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
c9ac5977 451
7abd3ef9
TG
452 if (cmd == NAND_CMD_NONE)
453 return;
454
f9068876 455 if (ctrl & NAND_CLE)
7abd3ef9
TG
456 writeb(cmd, info->regs + S3C2410_NFCMD);
457 else
458 writeb(cmd, info->regs + S3C2410_NFADDR);
a4f957f1
BD
459}
460
461/* command and control functions */
462
0f808c16 463static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
f9068876 464 unsigned int ctrl)
a4f957f1 465{
0f808c16 466 struct mtd_info *mtd = nand_to_mtd(chip);
a4f957f1 467 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4 468
7abd3ef9
TG
469 if (cmd == NAND_CMD_NONE)
470 return;
471
f9068876 472 if (ctrl & NAND_CLE)
7abd3ef9
TG
473 writeb(cmd, info->regs + S3C2440_NFCMD);
474 else
475 writeb(cmd, info->regs + S3C2440_NFADDR);
1da177e4
LT
476}
477
1da177e4
LT
478/* s3c2410_nand_devready()
479 *
480 * returns 0 if the nand is busy, 1 if it is ready
481*/
482
50a487e7 483static int s3c2410_nand_devready(struct nand_chip *chip)
1da177e4 484{
50a487e7 485 struct mtd_info *mtd = nand_to_mtd(chip);
1da177e4 486 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4
LT
487 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
488}
489
50a487e7 490static int s3c2440_nand_devready(struct nand_chip *chip)
2c06a082 491{
50a487e7 492 struct mtd_info *mtd = nand_to_mtd(chip);
2c06a082
BD
493 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
494 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
495}
496
50a487e7 497static int s3c2412_nand_devready(struct nand_chip *chip)
2c06a082 498{
50a487e7 499 struct mtd_info *mtd = nand_to_mtd(chip);
2c06a082
BD
500 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
502}
503
1da177e4
LT
504/* ECC handling functions */
505
00da2ea9 506static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
2c06a082 507 u_char *read_ecc, u_char *calc_ecc)
1da177e4 508{
00da2ea9 509 struct mtd_info *mtd = nand_to_mtd(chip);
a2593247
BD
510 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
511 unsigned int diff0, diff1, diff2;
512 unsigned int bit, byte;
513
514 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
515
516 diff0 = read_ecc[0] ^ calc_ecc[0];
517 diff1 = read_ecc[1] ^ calc_ecc[1];
518 diff2 = read_ecc[2] ^ calc_ecc[2];
519
13e85974
AS
520 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
521 __func__, 3, read_ecc, 3, calc_ecc,
a2593247
BD
522 diff0, diff1, diff2);
523
524 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
525 return 0; /* ECC is ok */
526
c45c6c68
BD
527 /* sometimes people do not think about using the ECC, so check
528 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
529 * the error, on the assumption that this is an un-eccd page.
530 */
531 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
532 && info->platform->ignore_unset_ecc)
533 return 0;
534
a2593247
BD
535 /* Can we correct this ECC (ie, one row and column change).
536 * Note, this is similar to the 256 error code on smartmedia */
537
538 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
539 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
540 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
541 /* calculate the bit position of the error */
542
d0bf3793
MR
543 bit = ((diff2 >> 3) & 1) |
544 ((diff2 >> 4) & 2) |
545 ((diff2 >> 5) & 4);
1da177e4 546
a2593247 547 /* calculate the byte position of the error */
1da177e4 548
d0bf3793
MR
549 byte = ((diff2 << 7) & 0x100) |
550 ((diff1 << 0) & 0x80) |
551 ((diff1 << 1) & 0x40) |
552 ((diff1 << 2) & 0x20) |
553 ((diff1 << 3) & 0x10) |
554 ((diff0 >> 4) & 0x08) |
555 ((diff0 >> 3) & 0x04) |
556 ((diff0 >> 2) & 0x02) |
557 ((diff0 >> 1) & 0x01);
a2593247
BD
558
559 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
560 bit, byte);
561
562 dat[byte] ^= (1 << bit);
563 return 1;
564 }
565
566 /* if there is only one bit difference in the ECC, then
567 * one of only a row or column parity has changed, which
568 * means the error is most probably in the ECC itself */
569
570 diff0 |= (diff1 << 8);
571 diff0 |= (diff2 << 16);
572
03a97550
ZZ
573 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
574 if ((diff0 & (diff0 - 1)) == 0)
a2593247
BD
575 return 1;
576
4fac9f69 577 return -1;
1da177e4
LT
578}
579
a4f957f1
BD
580/* ECC functions
581 *
582 * These allow the s3c2410 and s3c2440 to use the controller's ECC
583 * generator block to ECC the data as it passes through]
584*/
585
ec47636c 586static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
1da177e4 587{
ec47636c 588 struct s3c2410_nand_info *info;
1da177e4
LT
589 unsigned long ctrl;
590
ec47636c 591 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
1da177e4
LT
592 ctrl = readl(info->regs + S3C2410_NFCONF);
593 ctrl |= S3C2410_NFCONF_INITECC;
594 writel(ctrl, info->regs + S3C2410_NFCONF);
595}
596
ec47636c 597static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
4f659923 598{
ec47636c 599 struct s3c2410_nand_info *info;
4f659923
MC
600 unsigned long ctrl;
601
ec47636c 602 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
4f659923 603 ctrl = readl(info->regs + S3C2440_NFCONT);
f938bc56
SK
604 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
605 info->regs + S3C2440_NFCONT);
4f659923
MC
606}
607
ec47636c 608static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
a4f957f1 609{
ec47636c 610 struct s3c2410_nand_info *info;
a4f957f1
BD
611 unsigned long ctrl;
612
ec47636c 613 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
a4f957f1
BD
614 ctrl = readl(info->regs + S3C2440_NFCONT);
615 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
616}
617
af37d2c3
BB
618static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
619 const u_char *dat, u_char *ecc_code)
1da177e4 620{
af37d2c3 621 struct mtd_info *mtd = nand_to_mtd(chip);
1da177e4
LT
622 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
623
624 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
625 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
626 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
627
13e85974 628 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
1da177e4
LT
629
630 return 0;
631}
632
af37d2c3
BB
633static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
634 const u_char *dat, u_char *ecc_code)
4f659923 635{
af37d2c3 636 struct mtd_info *mtd = nand_to_mtd(chip);
4f659923
MC
637 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
638 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
639
640 ecc_code[0] = ecc;
641 ecc_code[1] = ecc >> 8;
642 ecc_code[2] = ecc >> 16;
643
13e85974 644 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
4f659923
MC
645
646 return 0;
647}
648
af37d2c3
BB
649static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
650 const u_char *dat, u_char *ecc_code)
a4f957f1 651{
af37d2c3 652 struct mtd_info *mtd = nand_to_mtd(chip);
a4f957f1
BD
653 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
654 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
655
656 ecc_code[0] = ecc;
657 ecc_code[1] = ecc >> 8;
658 ecc_code[2] = ecc >> 16;
659
71d54f38 660 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
a4f957f1
BD
661
662 return 0;
663}
664
a4f957f1
BD
665/* over-ride the standard functions for a little more speed. We can
666 * use read/write block to move the data buffers to/from the controller
667*/
1da177e4 668
7e534323 669static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
1da177e4 670{
82fc5099 671 readsb(this->legacy.IO_ADDR_R, buf, len);
1da177e4
LT
672}
673
7e534323 674static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
b773bb2e 675{
7e534323 676 struct mtd_info *mtd = nand_to_mtd(this);
b773bb2e 677 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
678
679 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
680
681 /* cleanup if we've got less than a word to do */
682 if (len & 3) {
683 buf += len & ~3;
684
685 for (; len & 3; len--)
686 *buf++ = readb(info->regs + S3C2440_NFDATA);
687 }
b773bb2e
MR
688}
689
c0739d85 690static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
f938bc56 691 int len)
1da177e4 692{
82fc5099 693 writesb(this->legacy.IO_ADDR_W, buf, len);
1da177e4
LT
694}
695
c0739d85 696static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
f938bc56 697 int len)
b773bb2e 698{
c0739d85 699 struct mtd_info *mtd = nand_to_mtd(this);
b773bb2e 700 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
701
702 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
703
704 /* cleanup any fractional write */
705 if (len & 3) {
706 buf += len & ~3;
707
708 for (; len & 3; len--, buf++)
709 writeb(*buf, info->regs + S3C2440_NFDATA);
710 }
b773bb2e
MR
711}
712
30821fee
BD
713/* cpufreq driver support */
714
d9ca77f0 715#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
716
717static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
718 unsigned long val, void *data)
719{
720 struct s3c2410_nand_info *info;
721 unsigned long newclk;
722
723 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
724 newclk = clk_get_rate(info->clk);
725
726 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
727 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
728 s3c2410_nand_setrate(info);
729 }
730
731 return 0;
732}
733
734static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
735{
736 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
737
738 return cpufreq_register_notifier(&info->freq_transition,
739 CPUFREQ_TRANSITION_NOTIFIER);
740}
741
f938bc56
SK
742static inline void
743s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
744{
745 cpufreq_unregister_notifier(&info->freq_transition,
746 CPUFREQ_TRANSITION_NOTIFIER);
747}
748
749#else
750static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
751{
752 return 0;
753}
754
f938bc56
SK
755static inline void
756s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
757{
758}
759#endif
760
1da177e4
LT
761/* device management functions */
762
ec0482e6 763static int s3c24xx_nand_remove(struct platform_device *pdev)
1da177e4 764{
3ae5eaec 765 struct s3c2410_nand_info *info = to_nand_info(pdev);
1da177e4 766
61b03bd7 767 if (info == NULL)
1da177e4
LT
768 return 0;
769
30821fee
BD
770 s3c2410_nand_cpufreq_deregister(info);
771
772 /* Release all our mtds and their partitions, then go through
773 * freeing the resources used
1da177e4 774 */
61b03bd7 775
1da177e4
LT
776 if (info->mtds != NULL) {
777 struct s3c2410_nand_mtd *ptr = info->mtds;
778 int mtdno;
779
780 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
781 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
59ac276f 782 nand_release(&ptr->chip);
1da177e4 783 }
1da177e4
LT
784 }
785
786 /* free the common resources */
787
6f32a3e2 788 if (!IS_ERR(info->clk))
ac497c16 789 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1da177e4
LT
790
791 return 0;
792}
793
1da177e4
LT
794static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
795 struct s3c2410_nand_mtd *mtd,
796 struct s3c2410_nand_set *set)
797{
ded4c55d 798 if (set) {
7208b997 799 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
ed27f028 800
7208b997
BB
801 mtdinfo->name = set->name;
802
29597ca1
RM
803 return mtd_device_register(mtdinfo, set->partitions,
804 set->nr_partitions);
ded4c55d
SK
805 }
806
807 return -ENODEV;
1da177e4 808}
1da177e4 809
858838b8 810static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
104e442a 811 const struct nand_data_interface *conf)
1c825ad1 812{
858838b8 813 struct mtd_info *mtd = nand_to_mtd(chip);
1c825ad1
SP
814 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
815 struct s3c2410_platform_nand *pdata = info->platform;
816 const struct nand_sdr_timings *timings;
817 int tacls;
818
819 timings = nand_get_sdr_timings(conf);
820 if (IS_ERR(timings))
821 return -ENOTSUPP;
822
823 tacls = timings->tCLS_min - timings->tWP_min;
824 if (tacls < 0)
825 tacls = 0;
826
827 pdata->tacls = DIV_ROUND_UP(tacls, 1000);
828 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
829 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
830
831 return s3c2410_nand_setrate(info);
832}
833
3db72151
BD
834/**
835 * s3c2410_nand_init_chip - initialise a single instance of an chip
836 * @info: The base NAND controller the chip is on.
837 * @nmtd: The new controller MTD instance to fill in.
838 * @set: The information passed from the board specific platform data.
1da177e4 839 *
3db72151
BD
840 * Initialise the given @nmtd from the information in @info and @set. This
841 * readies the structure for use with the MTD layer functions by ensuring
842 * all pointers are setup and the necessary control routines selected.
843 */
1da177e4
LT
844static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
845 struct s3c2410_nand_mtd *nmtd,
846 struct s3c2410_nand_set *set)
847{
1c825ad1 848 struct device_node *np = info->device->of_node;
1da177e4 849 struct nand_chip *chip = &nmtd->chip;
2c06a082 850 void __iomem *regs = info->regs;
1da177e4 851
1c825ad1
SP
852 nand_set_flash_node(chip, set->of_node);
853
716bbbab
BB
854 chip->legacy.write_buf = s3c2410_nand_write_buf;
855 chip->legacy.read_buf = s3c2410_nand_read_buf;
7d6c37e9 856 chip->legacy.select_chip = s3c2410_nand_select_chip;
3cece3ab 857 chip->legacy.chip_delay = 50;
d699ed25 858 nand_set_controller_data(chip, nmtd);
74218fed 859 chip->options = set->options;
1da177e4
LT
860 chip->controller = &info->controller;
861
1c825ad1
SP
862 /*
863 * let's keep behavior unchanged for legacy boards booting via pdata and
864 * auto-detect timings only when booting with a device tree.
865 */
7a08dbae
BB
866 if (!np)
867 chip->options |= NAND_KEEP_TIMINGS;
1c825ad1 868
2c06a082
BD
869 switch (info->cpu_type) {
870 case TYPE_S3C2410:
82fc5099 871 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
2c06a082
BD
872 info->sel_reg = regs + S3C2410_NFCONF;
873 info->sel_bit = S3C2410_NFCONF_nFCE;
bf6065c6 874 chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol;
8395b753 875 chip->legacy.dev_ready = s3c2410_nand_devready;
2c06a082
BD
876 break;
877
878 case TYPE_S3C2440:
82fc5099 879 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
2c06a082
BD
880 info->sel_reg = regs + S3C2440_NFCONT;
881 info->sel_bit = S3C2440_NFCONT_nFCE;
bf6065c6 882 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
8395b753 883 chip->legacy.dev_ready = s3c2440_nand_devready;
716bbbab
BB
884 chip->legacy.read_buf = s3c2440_nand_read_buf;
885 chip->legacy.write_buf = s3c2440_nand_write_buf;
2c06a082
BD
886 break;
887
888 case TYPE_S3C2412:
82fc5099 889 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
2c06a082
BD
890 info->sel_reg = regs + S3C2440_NFCONT;
891 info->sel_bit = S3C2412_NFCONT_nFCE0;
bf6065c6 892 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
8395b753 893 chip->legacy.dev_ready = s3c2412_nand_devready;
2c06a082
BD
894
895 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
896 dev_info(info->device, "System booted from NAND\n");
897
898 break;
54cd0208 899 }
2c06a082 900
82fc5099 901 chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
a4f957f1 902
1da177e4 903 nmtd->info = info;
1da177e4
LT
904 nmtd->set = set;
905
e9f66ae2 906 chip->ecc.mode = info->platform->ecc_mode;
9db41f9e 907
1c825ad1
SP
908 /*
909 * If you use u-boot BBT creation code, specifying this flag will
910 * let the kernel fish out the BBT from the NAND.
911 */
912 if (set->flash_bbt)
bb9ebd4e 913 chip->bbt_options |= NAND_BBT_USE_FLASH;
1da177e4
LT
914}
915
3db72151 916/**
12748318
MR
917 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
918 * @chip: The NAND chip
71d54f38 919 *
12748318
MR
920 * This hook is called by the core after the identification of the NAND chip,
921 * once the relevant per-chip information is up to date.. This call ensure that
3db72151
BD
922 * we update the internal state accordingly.
923 *
924 * The internal state is currently limited to the ECC state information.
925*/
12748318 926static int s3c2410_nand_attach_chip(struct nand_chip *chip)
71d54f38 927{
12748318
MR
928 struct mtd_info *mtd = nand_to_mtd(chip);
929 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
71d54f38 930
e9f66ae2 931 switch (chip->ecc.mode) {
71d54f38 932
e9f66ae2
SP
933 case NAND_ECC_NONE:
934 dev_info(info->device, "ECC disabled\n");
935 break;
936
937 case NAND_ECC_SOFT:
938 /*
939 * This driver expects Hamming based ECC when ecc_mode is set
940 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
941 * avoid adding an extra ecc_algo field to
942 * s3c2410_platform_nand.
943 */
944 chip->ecc.algo = NAND_ECC_HAMMING;
945 dev_info(info->device, "soft ECC\n");
946 break;
947
948 case NAND_ECC_HW:
949 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
950 chip->ecc.correct = s3c2410_nand_correct_data;
951 chip->ecc.strength = 1;
952
953 switch (info->cpu_type) {
954 case TYPE_S3C2410:
955 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
956 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
957 break;
958
959 case TYPE_S3C2412:
960 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
961 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
962 break;
963
964 case TYPE_S3C2440:
965 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
966 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
967 break;
968 }
969
970 dev_dbg(info->device, "chip %p => page shift %d\n",
971 chip, chip->page_shift);
8c3e843d 972
48fc7f7e 973 /* change the behaviour depending on whether we are using
71d54f38 974 * the large or small page nand device */
e9f66ae2
SP
975 if (chip->page_shift > 10) {
976 chip->ecc.size = 256;
977 chip->ecc.bytes = 3;
978 } else {
979 chip->ecc.size = 512;
980 chip->ecc.bytes = 3;
981 mtd_set_ooblayout(nand_to_mtd(chip),
982 &s3c2410_ooblayout_ops);
983 }
71d54f38 984
e9f66ae2
SP
985 dev_info(info->device, "hardware ECC\n");
986 break;
987
988 default:
989 dev_err(info->device, "invalid ECC mode!\n");
990 return -EINVAL;
71d54f38 991 }
e9f66ae2 992
1c825ad1
SP
993 if (chip->bbt_options & NAND_BBT_USE_FLASH)
994 chip->options |= NAND_SKIP_BBTSCAN;
995
996 return 0;
997}
998
12748318
MR
999static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1000 .attach_chip = s3c2410_nand_attach_chip,
7a08dbae 1001 .setup_data_interface = s3c2410_nand_setup_data_interface,
12748318
MR
1002};
1003
1c825ad1
SP
1004static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1005 {
1006 .compatible = "samsung,s3c2410-nand",
1007 .data = &s3c2410_nand_devtype_data,
1008 }, {
1009 /* also compatible with s3c6400 */
1010 .compatible = "samsung,s3c2412-nand",
1011 .data = &s3c2412_nand_devtype_data,
1012 }, {
1013 .compatible = "samsung,s3c2440-nand",
1014 .data = &s3c2440_nand_devtype_data,
1015 },
1016 { /* sentinel */ }
1017};
1018MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1019
1020static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1021{
1022 const struct s3c24XX_nand_devtype_data *devtype_data;
1023 struct s3c2410_platform_nand *pdata;
1024 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1025 struct device_node *np = pdev->dev.of_node, *child;
1026 struct s3c2410_nand_set *sets;
1027
1028 devtype_data = of_device_get_match_data(&pdev->dev);
1029 if (!devtype_data)
1030 return -ENODEV;
1031
1032 info->cpu_type = devtype_data->type;
1033
1034 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1035 if (!pdata)
1036 return -ENOMEM;
1037
1038 pdev->dev.platform_data = pdata;
1039
1040 pdata->nr_sets = of_get_child_count(np);
1041 if (!pdata->nr_sets)
1042 return 0;
1043
a86854d0 1044 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1c825ad1
SP
1045 GFP_KERNEL);
1046 if (!sets)
1047 return -ENOMEM;
1048
1049 pdata->sets = sets;
1050
1051 for_each_available_child_of_node(np, child) {
1052 sets->name = (char *)child->name;
1053 sets->of_node = child;
1054 sets->nr_chips = 1;
1055
1056 of_node_get(child);
1057
1058 sets++;
1059 }
1060
1061 return 0;
1062}
1063
1064static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1065{
1066 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1067
1068 info->cpu_type = platform_get_device_id(pdev)->driver_data;
1069
e9f66ae2 1070 return 0;
71d54f38
BD
1071}
1072
ec0482e6 1073/* s3c24xx_nand_probe
1da177e4
LT
1074 *
1075 * called by device layer when it finds a device matching
1076 * one our driver can handled. This code checks to see if
1077 * it can allocate all necessary resources then calls the
1078 * nand layer to look for devices
1079*/
ec0482e6 1080static int s3c24xx_nand_probe(struct platform_device *pdev)
1da177e4 1081{
1c825ad1 1082 struct s3c2410_platform_nand *plat;
1da177e4
LT
1083 struct s3c2410_nand_info *info;
1084 struct s3c2410_nand_mtd *nmtd;
1085 struct s3c2410_nand_set *sets;
1086 struct resource *res;
1087 int err = 0;
1088 int size;
1089 int nr_sets;
1090 int setno;
1091
6f32a3e2 1092 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1da177e4 1093 if (info == NULL) {
1da177e4
LT
1094 err = -ENOMEM;
1095 goto exit_error;
1096 }
1097
3ae5eaec 1098 platform_set_drvdata(pdev, info);
1da177e4 1099
7da45139 1100 nand_controller_init(&info->controller);
12748318 1101 info->controller.ops = &s3c24xx_nand_controller_ops;
1da177e4
LT
1102
1103 /* get the clock source and enable it */
1104
6f32a3e2 1105 info->clk = devm_clk_get(&pdev->dev, "nand");
1da177e4 1106 if (IS_ERR(info->clk)) {
898eb71c 1107 dev_err(&pdev->dev, "failed to get clock\n");
1da177e4
LT
1108 err = -ENOENT;
1109 goto exit_error;
1110 }
1111
ac497c16 1112 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1da177e4 1113
1c825ad1
SP
1114 if (pdev->dev.of_node)
1115 err = s3c24xx_nand_probe_dt(pdev);
1116 else
1117 err = s3c24xx_nand_probe_pdata(pdev);
1118
1119 if (err)
1120 goto exit_error;
1121
1122 plat = to_nand_plat(pdev);
1123
1da177e4
LT
1124 /* allocate and map the resource */
1125
a4f957f1 1126 /* currently we assume we have the one resource */
6f32a3e2 1127 res = pdev->resource;
fc161c4e 1128 size = resource_size(res);
1da177e4 1129
6f32a3e2
SK
1130 info->device = &pdev->dev;
1131 info->platform = plat;
1da177e4 1132
b0de774c
TR
1133 info->regs = devm_ioremap_resource(&pdev->dev, res);
1134 if (IS_ERR(info->regs)) {
1135 err = PTR_ERR(info->regs);
1da177e4 1136 goto exit_error;
61b03bd7 1137 }
1da177e4 1138
3ae5eaec 1139 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1da177e4 1140
bdc4e58d
BB
1141 if (!plat->sets || plat->nr_sets < 1) {
1142 err = -EINVAL;
1143 goto exit_error;
1144 }
1145
1146 sets = plat->sets;
1147 nr_sets = plat->nr_sets;
1da177e4
LT
1148
1149 info->mtd_count = nr_sets;
1150
1151 /* allocate our information */
1152
1153 size = nr_sets * sizeof(*info->mtds);
6f32a3e2 1154 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1da177e4 1155 if (info->mtds == NULL) {
1da177e4
LT
1156 err = -ENOMEM;
1157 goto exit_error;
1158 }
1159
1da177e4
LT
1160 /* initialise all possible chips */
1161
1162 nmtd = info->mtds;
1163
bdc4e58d 1164 for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
7208b997
BB
1165 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1166
f938bc56
SK
1167 pr_debug("initialising set %d (%p, info %p)\n",
1168 setno, nmtd, info);
61b03bd7 1169
7208b997 1170 mtd->dev.parent = &pdev->dev;
1da177e4
LT
1171 s3c2410_nand_init_chip(info, nmtd, sets);
1172
00ad378f 1173 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
bb00ff2f
MR
1174 if (err)
1175 goto exit_error;
1176
1177 s3c2410_nand_add_partition(info, nmtd, sets);
1da177e4 1178 }
61b03bd7 1179
1c825ad1
SP
1180 /* initialise the hardware */
1181 err = s3c2410_nand_inithw(info);
1182 if (err != 0)
1183 goto exit_error;
1184
30821fee
BD
1185 err = s3c2410_nand_cpufreq_register(info);
1186 if (err < 0) {
1187 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1188 goto exit_error;
1189 }
1190
ac497c16 1191 if (allow_clk_suspend(info)) {
d1fef3c5 1192 dev_info(&pdev->dev, "clock idle support enabled\n");
ac497c16 1193 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1194 }
1195
1da177e4
LT
1196 return 0;
1197
1198 exit_error:
ec0482e6 1199 s3c24xx_nand_remove(pdev);
1da177e4
LT
1200
1201 if (err == 0)
1202 err = -EINVAL;
1203 return err;
1204}
1205
d1fef3c5
BD
1206/* PM Support */
1207#ifdef CONFIG_PM
1208
1209static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1210{
1211 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1212
1213 if (info) {
09160832 1214 info->save_sel = readl(info->sel_reg);
03680b1e
BD
1215
1216 /* For the moment, we must ensure nFCE is high during
1217 * the time we are suspended. This really should be
1218 * handled by suspending the MTDs we are using, but
1219 * that is currently not the case. */
1220
09160832 1221 writel(info->save_sel | info->sel_bit, info->sel_reg);
03680b1e 1222
ac497c16 1223 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
d1fef3c5
BD
1224 }
1225
1226 return 0;
1227}
1228
1229static int s3c24xx_nand_resume(struct platform_device *dev)
1230{
1231 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
09160832 1232 unsigned long sel;
d1fef3c5
BD
1233
1234 if (info) {
ac497c16 1235 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
30821fee 1236 s3c2410_nand_inithw(info);
d1fef3c5 1237
03680b1e
BD
1238 /* Restore the state of the nFCE line. */
1239
09160832
BD
1240 sel = readl(info->sel_reg);
1241 sel &= ~info->sel_bit;
1242 sel |= info->save_sel & info->sel_bit;
1243 writel(sel, info->sel_reg);
03680b1e 1244
ac497c16 1245 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1246 }
1247
1248 return 0;
1249}
1250
1251#else
1252#define s3c24xx_nand_suspend NULL
1253#define s3c24xx_nand_resume NULL
1254#endif
1255
a4f957f1
BD
1256/* driver device registration */
1257
0abe75d2 1258static const struct platform_device_id s3c24xx_driver_ids[] = {
ec0482e6
BD
1259 {
1260 .name = "s3c2410-nand",
1261 .driver_data = TYPE_S3C2410,
1262 }, {
1263 .name = "s3c2440-nand",
1264 .driver_data = TYPE_S3C2440,
1265 }, {
1266 .name = "s3c2412-nand",
1267 .driver_data = TYPE_S3C2412,
9dbc0902
PK
1268 }, {
1269 .name = "s3c6400-nand",
1270 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
3ae5eaec 1271 },
ec0482e6 1272 { }
1da177e4
LT
1273};
1274
ec0482e6 1275MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
a4f957f1 1276
ec0482e6
BD
1277static struct platform_driver s3c24xx_nand_driver = {
1278 .probe = s3c24xx_nand_probe,
1279 .remove = s3c24xx_nand_remove,
2c06a082
BD
1280 .suspend = s3c24xx_nand_suspend,
1281 .resume = s3c24xx_nand_resume,
ec0482e6 1282 .id_table = s3c24xx_driver_ids,
2c06a082 1283 .driver = {
ec0482e6 1284 .name = "s3c24xx-nand",
1c825ad1 1285 .of_match_table = s3c24xx_nand_dt_ids,
2c06a082
BD
1286 },
1287};
1288
056fcab5 1289module_platform_driver(s3c24xx_nand_driver);
1da177e4
LT
1290
1291MODULE_LICENSE("GPL");
1292MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
a4f957f1 1293MODULE_DESCRIPTION("S3C24XX MTD NAND driver");