]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/mtd/nand/raw/s3c2410.c
mtd: rawnand: MTD_NAND_BCM47XXNFLASH needs CONFIG_BCMA
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / raw / s3c2410.c
CommitLineData
43a0a45a 1/*
7e74a507
BD
2 * Copyright © 2004-2008 Simtec Electronics
3 * http://armlinux.simtec.co.uk/
fdf2fd52 4 * Ben Dooks <ben@simtec.co.uk>
1da177e4 5 *
7e74a507 6 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
1da177e4 7 *
1da177e4
LT
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21*/
22
92aeb5d2
SK
23#define pr_fmt(fmt) "nand-s3c2410: " fmt
24
1da177e4
LT
25#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
26#define DEBUG
27#endif
28
29#include <linux/module.h>
30#include <linux/types.h>
1da177e4
LT
31#include <linux/kernel.h>
32#include <linux/string.h>
d2a89be8 33#include <linux/io.h>
1da177e4 34#include <linux/ioport.h>
d052d1be 35#include <linux/platform_device.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/err.h>
4e57b681 38#include <linux/slab.h>
f8ce2547 39#include <linux/clk.h>
30821fee 40#include <linux/cpufreq.h>
1c825ad1
SP
41#include <linux/of.h>
42#include <linux/of_device.h>
1da177e4
LT
43
44#include <linux/mtd/mtd.h>
d4092d76 45#include <linux/mtd/rawnand.h>
1da177e4
LT
46#include <linux/mtd/nand_ecc.h>
47#include <linux/mtd/partitions.h>
48
436d42c6 49#include <linux/platform_data/mtd-nand-s3c2410.h>
1da177e4 50
02d01862
SK
51#define S3C2410_NFREG(x) (x)
52
53#define S3C2410_NFCONF S3C2410_NFREG(0x00)
54#define S3C2410_NFCMD S3C2410_NFREG(0x04)
55#define S3C2410_NFADDR S3C2410_NFREG(0x08)
56#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
57#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
58#define S3C2410_NFECC S3C2410_NFREG(0x14)
59#define S3C2440_NFCONT S3C2410_NFREG(0x04)
60#define S3C2440_NFCMD S3C2410_NFREG(0x08)
61#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
62#define S3C2440_NFDATA S3C2410_NFREG(0x10)
63#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
64#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
65#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
66#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
67#define S3C2410_NFCONF_EN (1<<15)
68#define S3C2410_NFCONF_INITECC (1<<12)
69#define S3C2410_NFCONF_nFCE (1<<11)
70#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
71#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
72#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
73#define S3C2410_NFSTAT_BUSY (1<<0)
74#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
75#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
76#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
77#define S3C2440_NFCONT_INITECC (1<<4)
78#define S3C2440_NFCONT_nFCE (1<<1)
79#define S3C2440_NFCONT_ENABLE (1<<0)
80#define S3C2440_NFSTAT_READY (1<<0)
81#define S3C2412_NFCONF_NANDBOOT (1<<31)
82#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
83#define S3C2412_NFCONT_nFCE0 (1<<1)
84#define S3C2412_NFSTAT_READY (1<<0)
85
1da177e4
LT
86/* new oob placement block for use with hardware ecc generation
87 */
bf01e06b
BB
88static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
89 struct mtd_oob_region *oobregion)
90{
91 if (section)
92 return -ERANGE;
93
94 oobregion->offset = 0;
95 oobregion->length = 3;
96
97 return 0;
98}
99
100static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
101 struct mtd_oob_region *oobregion)
102{
103 if (section)
104 return -ERANGE;
105
106 oobregion->offset = 8;
107 oobregion->length = 8;
108
109 return 0;
110}
1da177e4 111
bf01e06b
BB
112static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
113 .ecc = s3c2410_ooblayout_ecc,
114 .free = s3c2410_ooblayout_free,
1da177e4
LT
115};
116
117/* controller and mtd information */
118
119struct s3c2410_nand_info;
120
3db72151
BD
121/**
122 * struct s3c2410_nand_mtd - driver MTD structure
123 * @mtd: The MTD instance to pass to the MTD layer.
124 * @chip: The NAND chip information.
125 * @set: The platform information supplied for this set of NAND chips.
126 * @info: Link back to the hardware information.
3db72151 127*/
1da177e4 128struct s3c2410_nand_mtd {
1da177e4
LT
129 struct nand_chip chip;
130 struct s3c2410_nand_set *set;
131 struct s3c2410_nand_info *info;
1da177e4
LT
132};
133
2c06a082
BD
134enum s3c_cpu_type {
135 TYPE_S3C2410,
136 TYPE_S3C2412,
137 TYPE_S3C2440,
138};
139
ac497c16
JP
140enum s3c_nand_clk_state {
141 CLOCK_DISABLE = 0,
142 CLOCK_ENABLE,
143 CLOCK_SUSPEND,
144};
145
1da177e4
LT
146/* overview of the s3c2410 nand state */
147
3db72151
BD
148/**
149 * struct s3c2410_nand_info - NAND controller state.
150 * @mtds: An array of MTD instances on this controoler.
151 * @platform: The platform data for this board.
152 * @device: The platform device we bound to.
3db72151 153 * @clk: The clock resource for this controller.
6f32a3e2 154 * @regs: The area mapped for the hardware registers.
3db72151
BD
155 * @sel_reg: Pointer to the register controlling the NAND selection.
156 * @sel_bit: The bit in @sel_reg to select the NAND chip.
157 * @mtd_count: The number of MTDs created from this controller.
158 * @save_sel: The contents of @sel_reg to be saved over suspend.
159 * @clk_rate: The clock rate from @clk.
ac497c16 160 * @clk_state: The current clock state.
3db72151
BD
161 * @cpu_type: The exact type of this controller.
162 */
1da177e4
LT
163struct s3c2410_nand_info {
164 /* mtd info */
165 struct nand_hw_control controller;
166 struct s3c2410_nand_mtd *mtds;
167 struct s3c2410_platform_nand *platform;
168
169 /* device info */
170 struct device *device;
1da177e4 171 struct clk *clk;
fdf2fd52 172 void __iomem *regs;
2c06a082
BD
173 void __iomem *sel_reg;
174 int sel_bit;
1da177e4 175 int mtd_count;
09160832 176 unsigned long save_sel;
30821fee 177 unsigned long clk_rate;
ac497c16 178 enum s3c_nand_clk_state clk_state;
03680b1e 179
2c06a082 180 enum s3c_cpu_type cpu_type;
30821fee 181
d9ca77f0 182#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
183 struct notifier_block freq_transition;
184#endif
1da177e4
LT
185};
186
1c825ad1
SP
187struct s3c24XX_nand_devtype_data {
188 enum s3c_cpu_type type;
189};
190
191static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
192 .type = TYPE_S3C2410,
193};
194
195static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
196 .type = TYPE_S3C2412,
197};
198
199static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
200 .type = TYPE_S3C2440,
201};
202
1da177e4
LT
203/* conversion functions */
204
205static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
206{
7208b997
BB
207 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
208 chip);
1da177e4
LT
209}
210
211static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
212{
213 return s3c2410_nand_mtd_toours(mtd)->info;
214}
215
3ae5eaec 216static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
1da177e4 217{
3ae5eaec 218 return platform_get_drvdata(dev);
1da177e4
LT
219}
220
3ae5eaec 221static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
1da177e4 222{
453810b7 223 return dev_get_platdata(&dev->dev);
1da177e4
LT
224}
225
ac497c16 226static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
d1fef3c5 227{
a68c5ec8
SK
228#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
229 return 1;
230#else
231 return 0;
232#endif
d1fef3c5
BD
233}
234
ac497c16
JP
235/**
236 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
237 * @info: The controller instance.
238 * @new_state: State to which clock should be set.
239 */
240static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
241 enum s3c_nand_clk_state new_state)
242{
243 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
244 return;
245
246 if (info->clk_state == CLOCK_ENABLE) {
247 if (new_state != CLOCK_ENABLE)
887957b4 248 clk_disable_unprepare(info->clk);
ac497c16
JP
249 } else {
250 if (new_state == CLOCK_ENABLE)
887957b4 251 clk_prepare_enable(info->clk);
ac497c16
JP
252 }
253
254 info->clk_state = new_state;
255}
256
1da177e4
LT
257/* timing calculations */
258
cfd320fb 259#define NS_IN_KHZ 1000000
1da177e4 260
3db72151
BD
261/**
262 * s3c_nand_calc_rate - calculate timing data.
263 * @wanted: The cycle time in nanoseconds.
264 * @clk: The clock rate in kHz.
265 * @max: The maximum divider value.
266 *
267 * Calculate the timing value from the given parameters.
268 */
2c06a082 269static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
1da177e4
LT
270{
271 int result;
272
947391cf 273 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
1da177e4
LT
274
275 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
276
277 if (result > max) {
92aeb5d2
SK
278 pr_err("%d ns is too big for current clock rate %ld\n",
279 wanted, clk);
1da177e4
LT
280 return -1;
281 }
282
283 if (result < 1)
284 result = 1;
285
286 return result;
287}
288
54cd0208 289#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
1da177e4
LT
290
291/* controller setup */
292
3db72151
BD
293/**
294 * s3c2410_nand_setrate - setup controller timing information.
295 * @info: The controller instance.
296 *
297 * Given the information supplied by the platform, calculate and set
298 * the necessary timing registers in the hardware to generate the
299 * necessary timing cycles to the hardware.
300 */
30821fee 301static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
1da177e4 302{
30821fee 303 struct s3c2410_platform_nand *plat = info->platform;
2c06a082 304 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
cfd320fb 305 int tacls, twrph0, twrph1;
30821fee 306 unsigned long clkrate = clk_get_rate(info->clk);
2612e523 307 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
30821fee 308 unsigned long flags;
1da177e4
LT
309
310 /* calculate the timing information for the controller */
311
30821fee 312 info->clk_rate = clkrate;
cfd320fb
BD
313 clkrate /= 1000; /* turn clock into kHz for ease of use */
314
1da177e4 315 if (plat != NULL) {
2c06a082
BD
316 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
317 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
318 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
1da177e4
LT
319 } else {
320 /* default timings */
2c06a082 321 tacls = tacls_max;
1da177e4
LT
322 twrph0 = 8;
323 twrph1 = 8;
324 }
61b03bd7 325
1da177e4 326 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
99974c62 327 dev_err(info->device, "cannot get suitable timings\n");
1da177e4
LT
328 return -EINVAL;
329 }
330
99974c62 331 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
54cd0208
SK
332 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
333 twrph1, to_ns(twrph1, clkrate));
1da177e4 334
30821fee
BD
335 switch (info->cpu_type) {
336 case TYPE_S3C2410:
337 mask = (S3C2410_NFCONF_TACLS(3) |
338 S3C2410_NFCONF_TWRPH0(7) |
339 S3C2410_NFCONF_TWRPH1(7));
340 set = S3C2410_NFCONF_EN;
341 set |= S3C2410_NFCONF_TACLS(tacls - 1);
342 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
343 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
344 break;
345
346 case TYPE_S3C2440:
347 case TYPE_S3C2412:
a755a385
PK
348 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
349 S3C2440_NFCONF_TWRPH0(7) |
350 S3C2440_NFCONF_TWRPH1(7));
30821fee
BD
351
352 set = S3C2440_NFCONF_TACLS(tacls - 1);
353 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
354 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
355 break;
356
357 default:
30821fee
BD
358 BUG();
359 }
360
30821fee
BD
361 local_irq_save(flags);
362
363 cfg = readl(info->regs + S3C2410_NFCONF);
364 cfg &= ~mask;
365 cfg |= set;
366 writel(cfg, info->regs + S3C2410_NFCONF);
367
368 local_irq_restore(flags);
369
ae7304e5
AG
370 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
371
30821fee
BD
372 return 0;
373}
374
3db72151
BD
375/**
376 * s3c2410_nand_inithw - basic hardware initialisation
377 * @info: The hardware state.
378 *
379 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
380 * to setup the hardware access speeds and set the controller to be enabled.
381*/
30821fee
BD
382static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
383{
384 int ret;
385
386 ret = s3c2410_nand_setrate(info);
387 if (ret < 0)
388 return ret;
389
54cd0208
SK
390 switch (info->cpu_type) {
391 case TYPE_S3C2410:
30821fee 392 default:
2c06a082
BD
393 break;
394
54cd0208
SK
395 case TYPE_S3C2440:
396 case TYPE_S3C2412:
d1fef3c5
BD
397 /* enable the controller and de-assert nFCE */
398
2c06a082 399 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
a4f957f1 400 }
1da177e4 401
1da177e4
LT
402 return 0;
403}
404
3db72151
BD
405/**
406 * s3c2410_nand_select_chip - select the given nand chip
407 * @mtd: The MTD instance for this chip.
408 * @chip: The chip number.
409 *
410 * This is called by the MTD layer to either select a given chip for the
411 * @mtd instance, or to indicate that the access has finished and the
412 * chip can be de-selected.
413 *
414 * The routine ensures that the nFCE line is correctly setup, and any
415 * platform specific selection code is called to route nFCE to the specific
416 * chip.
417 */
1da177e4
LT
418static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
419{
420 struct s3c2410_nand_info *info;
61b03bd7 421 struct s3c2410_nand_mtd *nmtd;
4bd4ebcc 422 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
423 unsigned long cur;
424
d699ed25 425 nmtd = nand_get_controller_data(this);
1da177e4
LT
426 info = nmtd->info;
427
ac497c16
JP
428 if (chip != -1)
429 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
d1fef3c5 430
2c06a082 431 cur = readl(info->sel_reg);
1da177e4
LT
432
433 if (chip == -1) {
2c06a082 434 cur |= info->sel_bit;
1da177e4 435 } else {
fb8d82a8 436 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
99974c62 437 dev_err(info->device, "invalid chip %d\n", chip);
1da177e4
LT
438 return;
439 }
440
441 if (info->platform != NULL) {
442 if (info->platform->select_chip != NULL)
e0c7d767 443 (info->platform->select_chip) (nmtd->set, chip);
1da177e4
LT
444 }
445
2c06a082 446 cur &= ~info->sel_bit;
1da177e4
LT
447 }
448
2c06a082 449 writel(cur, info->sel_reg);
d1fef3c5 450
ac497c16
JP
451 if (chip == -1)
452 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1da177e4
LT
453}
454
ad3b5fb7 455/* s3c2410_nand_hwcontrol
a4f957f1 456 *
ad3b5fb7 457 * Issue command and address cycles to the chip
a4f957f1 458*/
1da177e4 459
7abd3ef9 460static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
f9068876 461 unsigned int ctrl)
1da177e4
LT
462{
463 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
c9ac5977 464
7abd3ef9
TG
465 if (cmd == NAND_CMD_NONE)
466 return;
467
f9068876 468 if (ctrl & NAND_CLE)
7abd3ef9
TG
469 writeb(cmd, info->regs + S3C2410_NFCMD);
470 else
471 writeb(cmd, info->regs + S3C2410_NFADDR);
a4f957f1
BD
472}
473
474/* command and control functions */
475
f9068876
DW
476static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
477 unsigned int ctrl)
a4f957f1
BD
478{
479 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4 480
7abd3ef9
TG
481 if (cmd == NAND_CMD_NONE)
482 return;
483
f9068876 484 if (ctrl & NAND_CLE)
7abd3ef9
TG
485 writeb(cmd, info->regs + S3C2440_NFCMD);
486 else
487 writeb(cmd, info->regs + S3C2440_NFADDR);
1da177e4
LT
488}
489
1da177e4
LT
490/* s3c2410_nand_devready()
491 *
492 * returns 0 if the nand is busy, 1 if it is ready
493*/
494
495static int s3c2410_nand_devready(struct mtd_info *mtd)
496{
497 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4
LT
498 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
499}
500
2c06a082
BD
501static int s3c2440_nand_devready(struct mtd_info *mtd)
502{
503 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
504 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
505}
506
507static int s3c2412_nand_devready(struct mtd_info *mtd)
508{
509 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
510 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
511}
512
1da177e4
LT
513/* ECC handling functions */
514
2c06a082
BD
515static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
516 u_char *read_ecc, u_char *calc_ecc)
1da177e4 517{
a2593247
BD
518 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
519 unsigned int diff0, diff1, diff2;
520 unsigned int bit, byte;
521
522 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
523
524 diff0 = read_ecc[0] ^ calc_ecc[0];
525 diff1 = read_ecc[1] ^ calc_ecc[1];
526 diff2 = read_ecc[2] ^ calc_ecc[2];
527
13e85974
AS
528 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
529 __func__, 3, read_ecc, 3, calc_ecc,
a2593247
BD
530 diff0, diff1, diff2);
531
532 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
533 return 0; /* ECC is ok */
534
c45c6c68
BD
535 /* sometimes people do not think about using the ECC, so check
536 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
537 * the error, on the assumption that this is an un-eccd page.
538 */
539 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
540 && info->platform->ignore_unset_ecc)
541 return 0;
542
a2593247
BD
543 /* Can we correct this ECC (ie, one row and column change).
544 * Note, this is similar to the 256 error code on smartmedia */
545
546 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
547 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
548 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
549 /* calculate the bit position of the error */
550
d0bf3793
MR
551 bit = ((diff2 >> 3) & 1) |
552 ((diff2 >> 4) & 2) |
553 ((diff2 >> 5) & 4);
1da177e4 554
a2593247 555 /* calculate the byte position of the error */
1da177e4 556
d0bf3793
MR
557 byte = ((diff2 << 7) & 0x100) |
558 ((diff1 << 0) & 0x80) |
559 ((diff1 << 1) & 0x40) |
560 ((diff1 << 2) & 0x20) |
561 ((diff1 << 3) & 0x10) |
562 ((diff0 >> 4) & 0x08) |
563 ((diff0 >> 3) & 0x04) |
564 ((diff0 >> 2) & 0x02) |
565 ((diff0 >> 1) & 0x01);
a2593247
BD
566
567 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
568 bit, byte);
569
570 dat[byte] ^= (1 << bit);
571 return 1;
572 }
573
574 /* if there is only one bit difference in the ECC, then
575 * one of only a row or column parity has changed, which
576 * means the error is most probably in the ECC itself */
577
578 diff0 |= (diff1 << 8);
579 diff0 |= (diff2 << 16);
580
03a97550
ZZ
581 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
582 if ((diff0 & (diff0 - 1)) == 0)
a2593247
BD
583 return 1;
584
4fac9f69 585 return -1;
1da177e4
LT
586}
587
a4f957f1
BD
588/* ECC functions
589 *
590 * These allow the s3c2410 and s3c2440 to use the controller's ECC
591 * generator block to ECC the data as it passes through]
592*/
593
1da177e4
LT
594static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
595{
596 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
597 unsigned long ctrl;
598
599 ctrl = readl(info->regs + S3C2410_NFCONF);
600 ctrl |= S3C2410_NFCONF_INITECC;
601 writel(ctrl, info->regs + S3C2410_NFCONF);
602}
603
4f659923
MC
604static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
605{
606 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
607 unsigned long ctrl;
608
609 ctrl = readl(info->regs + S3C2440_NFCONT);
f938bc56
SK
610 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
611 info->regs + S3C2440_NFCONT);
4f659923
MC
612}
613
a4f957f1
BD
614static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
615{
616 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
617 unsigned long ctrl;
618
619 ctrl = readl(info->regs + S3C2440_NFCONT);
620 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
621}
622
f938bc56
SK
623static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
624 u_char *ecc_code)
1da177e4
LT
625{
626 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
627
628 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
629 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
630 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
631
13e85974 632 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
1da177e4
LT
633
634 return 0;
635}
636
f938bc56
SK
637static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
638 u_char *ecc_code)
4f659923
MC
639{
640 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
641 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
642
643 ecc_code[0] = ecc;
644 ecc_code[1] = ecc >> 8;
645 ecc_code[2] = ecc >> 16;
646
13e85974 647 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
4f659923
MC
648
649 return 0;
650}
651
f938bc56
SK
652static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
653 u_char *ecc_code)
a4f957f1
BD
654{
655 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
656 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
657
658 ecc_code[0] = ecc;
659 ecc_code[1] = ecc >> 8;
660 ecc_code[2] = ecc >> 16;
661
71d54f38 662 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
a4f957f1
BD
663
664 return 0;
665}
666
a4f957f1
BD
667/* over-ride the standard functions for a little more speed. We can
668 * use read/write block to move the data buffers to/from the controller
669*/
1da177e4
LT
670
671static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
672{
4bd4ebcc 673 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
674 readsb(this->IO_ADDR_R, buf, len);
675}
676
b773bb2e
MR
677static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
678{
679 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
680
681 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
682
683 /* cleanup if we've got less than a word to do */
684 if (len & 3) {
685 buf += len & ~3;
686
687 for (; len & 3; len--)
688 *buf++ = readb(info->regs + S3C2440_NFDATA);
689 }
b773bb2e
MR
690}
691
f938bc56
SK
692static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
693 int len)
1da177e4 694{
4bd4ebcc 695 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
696 writesb(this->IO_ADDR_W, buf, len);
697}
698
f938bc56
SK
699static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
700 int len)
b773bb2e
MR
701{
702 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
703
704 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
705
706 /* cleanup any fractional write */
707 if (len & 3) {
708 buf += len & ~3;
709
710 for (; len & 3; len--, buf++)
711 writeb(*buf, info->regs + S3C2440_NFDATA);
712 }
b773bb2e
MR
713}
714
30821fee
BD
715/* cpufreq driver support */
716
d9ca77f0 717#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
718
719static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
720 unsigned long val, void *data)
721{
722 struct s3c2410_nand_info *info;
723 unsigned long newclk;
724
725 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
726 newclk = clk_get_rate(info->clk);
727
728 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
729 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
730 s3c2410_nand_setrate(info);
731 }
732
733 return 0;
734}
735
736static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
737{
738 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
739
740 return cpufreq_register_notifier(&info->freq_transition,
741 CPUFREQ_TRANSITION_NOTIFIER);
742}
743
f938bc56
SK
744static inline void
745s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
746{
747 cpufreq_unregister_notifier(&info->freq_transition,
748 CPUFREQ_TRANSITION_NOTIFIER);
749}
750
751#else
752static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
753{
754 return 0;
755}
756
f938bc56
SK
757static inline void
758s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
759{
760}
761#endif
762
1da177e4
LT
763/* device management functions */
764
ec0482e6 765static int s3c24xx_nand_remove(struct platform_device *pdev)
1da177e4 766{
3ae5eaec 767 struct s3c2410_nand_info *info = to_nand_info(pdev);
1da177e4 768
61b03bd7 769 if (info == NULL)
1da177e4
LT
770 return 0;
771
30821fee
BD
772 s3c2410_nand_cpufreq_deregister(info);
773
774 /* Release all our mtds and their partitions, then go through
775 * freeing the resources used
1da177e4 776 */
61b03bd7 777
1da177e4
LT
778 if (info->mtds != NULL) {
779 struct s3c2410_nand_mtd *ptr = info->mtds;
780 int mtdno;
781
782 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
783 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
7208b997 784 nand_release(nand_to_mtd(&ptr->chip));
1da177e4 785 }
1da177e4
LT
786 }
787
788 /* free the common resources */
789
6f32a3e2 790 if (!IS_ERR(info->clk))
ac497c16 791 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1da177e4
LT
792
793 return 0;
794}
795
1da177e4
LT
796static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
797 struct s3c2410_nand_mtd *mtd,
798 struct s3c2410_nand_set *set)
799{
ded4c55d 800 if (set) {
7208b997 801 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
ed27f028 802
7208b997
BB
803 mtdinfo->name = set->name;
804
805 return mtd_device_parse_register(mtdinfo, NULL, NULL,
42d7fbe2 806 set->partitions, set->nr_partitions);
ded4c55d
SK
807 }
808
809 return -ENODEV;
1da177e4 810}
1da177e4 811
104e442a
BB
812static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
813 const struct nand_data_interface *conf)
1c825ad1
SP
814{
815 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
816 struct s3c2410_platform_nand *pdata = info->platform;
817 const struct nand_sdr_timings *timings;
818 int tacls;
819
820 timings = nand_get_sdr_timings(conf);
821 if (IS_ERR(timings))
822 return -ENOTSUPP;
823
824 tacls = timings->tCLS_min - timings->tWP_min;
825 if (tacls < 0)
826 tacls = 0;
827
828 pdata->tacls = DIV_ROUND_UP(tacls, 1000);
829 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
830 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
831
832 return s3c2410_nand_setrate(info);
833}
834
3db72151
BD
835/**
836 * s3c2410_nand_init_chip - initialise a single instance of an chip
837 * @info: The base NAND controller the chip is on.
838 * @nmtd: The new controller MTD instance to fill in.
839 * @set: The information passed from the board specific platform data.
1da177e4 840 *
3db72151
BD
841 * Initialise the given @nmtd from the information in @info and @set. This
842 * readies the structure for use with the MTD layer functions by ensuring
843 * all pointers are setup and the necessary control routines selected.
844 */
1da177e4
LT
845static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
846 struct s3c2410_nand_mtd *nmtd,
847 struct s3c2410_nand_set *set)
848{
1c825ad1 849 struct device_node *np = info->device->of_node;
1da177e4 850 struct nand_chip *chip = &nmtd->chip;
2c06a082 851 void __iomem *regs = info->regs;
1da177e4 852
1c825ad1
SP
853 nand_set_flash_node(chip, set->of_node);
854
1da177e4
LT
855 chip->write_buf = s3c2410_nand_write_buf;
856 chip->read_buf = s3c2410_nand_read_buf;
857 chip->select_chip = s3c2410_nand_select_chip;
858 chip->chip_delay = 50;
d699ed25 859 nand_set_controller_data(chip, nmtd);
74218fed 860 chip->options = set->options;
1da177e4
LT
861 chip->controller = &info->controller;
862
1c825ad1
SP
863 /*
864 * let's keep behavior unchanged for legacy boards booting via pdata and
865 * auto-detect timings only when booting with a device tree.
866 */
867 if (np)
868 chip->setup_data_interface = s3c2410_nand_setup_data_interface;
869
2c06a082
BD
870 switch (info->cpu_type) {
871 case TYPE_S3C2410:
872 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
873 info->sel_reg = regs + S3C2410_NFCONF;
874 info->sel_bit = S3C2410_NFCONF_nFCE;
875 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
876 chip->dev_ready = s3c2410_nand_devready;
877 break;
878
879 case TYPE_S3C2440:
880 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
881 info->sel_reg = regs + S3C2440_NFCONT;
882 info->sel_bit = S3C2440_NFCONT_nFCE;
883 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
884 chip->dev_ready = s3c2440_nand_devready;
b773bb2e
MR
885 chip->read_buf = s3c2440_nand_read_buf;
886 chip->write_buf = s3c2440_nand_write_buf;
2c06a082
BD
887 break;
888
889 case TYPE_S3C2412:
890 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
891 info->sel_reg = regs + S3C2440_NFCONT;
892 info->sel_bit = S3C2412_NFCONT_nFCE0;
893 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
894 chip->dev_ready = s3c2412_nand_devready;
895
896 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
897 dev_info(info->device, "System booted from NAND\n");
898
899 break;
54cd0208 900 }
2c06a082
BD
901
902 chip->IO_ADDR_R = chip->IO_ADDR_W;
a4f957f1 903
1da177e4 904 nmtd->info = info;
1da177e4
LT
905 nmtd->set = set;
906
e9f66ae2 907 chip->ecc.mode = info->platform->ecc_mode;
9db41f9e 908
1c825ad1
SP
909 /*
910 * If you use u-boot BBT creation code, specifying this flag will
911 * let the kernel fish out the BBT from the NAND.
912 */
913 if (set->flash_bbt)
bb9ebd4e 914 chip->bbt_options |= NAND_BBT_USE_FLASH;
1da177e4
LT
915}
916
3db72151
BD
917/**
918 * s3c2410_nand_update_chip - post probe update
919 * @info: The controller instance.
920 * @nmtd: The driver version of the MTD instance.
71d54f38 921 *
af901ca1 922 * This routine is called after the chip probe has successfully completed
3db72151
BD
923 * and the relevant per-chip information updated. This call ensure that
924 * we update the internal state accordingly.
925 *
926 * The internal state is currently limited to the ECC state information.
927*/
e9f66ae2
SP
928static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
929 struct s3c2410_nand_mtd *nmtd)
71d54f38
BD
930{
931 struct nand_chip *chip = &nmtd->chip;
932
e9f66ae2 933 switch (chip->ecc.mode) {
71d54f38 934
e9f66ae2
SP
935 case NAND_ECC_NONE:
936 dev_info(info->device, "ECC disabled\n");
937 break;
938
939 case NAND_ECC_SOFT:
940 /*
941 * This driver expects Hamming based ECC when ecc_mode is set
942 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
943 * avoid adding an extra ecc_algo field to
944 * s3c2410_platform_nand.
945 */
946 chip->ecc.algo = NAND_ECC_HAMMING;
947 dev_info(info->device, "soft ECC\n");
948 break;
949
950 case NAND_ECC_HW:
951 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
952 chip->ecc.correct = s3c2410_nand_correct_data;
953 chip->ecc.strength = 1;
954
955 switch (info->cpu_type) {
956 case TYPE_S3C2410:
957 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
958 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
959 break;
960
961 case TYPE_S3C2412:
962 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
963 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
964 break;
965
966 case TYPE_S3C2440:
967 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
968 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
969 break;
970 }
971
972 dev_dbg(info->device, "chip %p => page shift %d\n",
973 chip, chip->page_shift);
8c3e843d 974
48fc7f7e 975 /* change the behaviour depending on whether we are using
71d54f38 976 * the large or small page nand device */
e9f66ae2
SP
977 if (chip->page_shift > 10) {
978 chip->ecc.size = 256;
979 chip->ecc.bytes = 3;
980 } else {
981 chip->ecc.size = 512;
982 chip->ecc.bytes = 3;
983 mtd_set_ooblayout(nand_to_mtd(chip),
984 &s3c2410_ooblayout_ops);
985 }
71d54f38 986
e9f66ae2
SP
987 dev_info(info->device, "hardware ECC\n");
988 break;
989
990 default:
991 dev_err(info->device, "invalid ECC mode!\n");
992 return -EINVAL;
71d54f38 993 }
e9f66ae2 994
1c825ad1
SP
995 if (chip->bbt_options & NAND_BBT_USE_FLASH)
996 chip->options |= NAND_SKIP_BBTSCAN;
997
998 return 0;
999}
1000
1001static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1002 {
1003 .compatible = "samsung,s3c2410-nand",
1004 .data = &s3c2410_nand_devtype_data,
1005 }, {
1006 /* also compatible with s3c6400 */
1007 .compatible = "samsung,s3c2412-nand",
1008 .data = &s3c2412_nand_devtype_data,
1009 }, {
1010 .compatible = "samsung,s3c2440-nand",
1011 .data = &s3c2440_nand_devtype_data,
1012 },
1013 { /* sentinel */ }
1014};
1015MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1016
1017static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1018{
1019 const struct s3c24XX_nand_devtype_data *devtype_data;
1020 struct s3c2410_platform_nand *pdata;
1021 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1022 struct device_node *np = pdev->dev.of_node, *child;
1023 struct s3c2410_nand_set *sets;
1024
1025 devtype_data = of_device_get_match_data(&pdev->dev);
1026 if (!devtype_data)
1027 return -ENODEV;
1028
1029 info->cpu_type = devtype_data->type;
1030
1031 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1032 if (!pdata)
1033 return -ENOMEM;
1034
1035 pdev->dev.platform_data = pdata;
1036
1037 pdata->nr_sets = of_get_child_count(np);
1038 if (!pdata->nr_sets)
1039 return 0;
1040
a86854d0 1041 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1c825ad1
SP
1042 GFP_KERNEL);
1043 if (!sets)
1044 return -ENOMEM;
1045
1046 pdata->sets = sets;
1047
1048 for_each_available_child_of_node(np, child) {
1049 sets->name = (char *)child->name;
1050 sets->of_node = child;
1051 sets->nr_chips = 1;
1052
1053 of_node_get(child);
1054
1055 sets++;
1056 }
1057
1058 return 0;
1059}
1060
1061static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1062{
1063 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1064
1065 info->cpu_type = platform_get_device_id(pdev)->driver_data;
1066
e9f66ae2 1067 return 0;
71d54f38
BD
1068}
1069
ec0482e6 1070/* s3c24xx_nand_probe
1da177e4
LT
1071 *
1072 * called by device layer when it finds a device matching
1073 * one our driver can handled. This code checks to see if
1074 * it can allocate all necessary resources then calls the
1075 * nand layer to look for devices
1076*/
ec0482e6 1077static int s3c24xx_nand_probe(struct platform_device *pdev)
1da177e4 1078{
1c825ad1 1079 struct s3c2410_platform_nand *plat;
1da177e4
LT
1080 struct s3c2410_nand_info *info;
1081 struct s3c2410_nand_mtd *nmtd;
1082 struct s3c2410_nand_set *sets;
1083 struct resource *res;
1084 int err = 0;
1085 int size;
1086 int nr_sets;
1087 int setno;
1088
6f32a3e2 1089 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1da177e4 1090 if (info == NULL) {
1da177e4
LT
1091 err = -ENOMEM;
1092 goto exit_error;
1093 }
1094
3ae5eaec 1095 platform_set_drvdata(pdev, info);
1da177e4 1096
d45bc58d 1097 nand_hw_control_init(&info->controller);
1da177e4
LT
1098
1099 /* get the clock source and enable it */
1100
6f32a3e2 1101 info->clk = devm_clk_get(&pdev->dev, "nand");
1da177e4 1102 if (IS_ERR(info->clk)) {
898eb71c 1103 dev_err(&pdev->dev, "failed to get clock\n");
1da177e4
LT
1104 err = -ENOENT;
1105 goto exit_error;
1106 }
1107
ac497c16 1108 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1da177e4 1109
1c825ad1
SP
1110 if (pdev->dev.of_node)
1111 err = s3c24xx_nand_probe_dt(pdev);
1112 else
1113 err = s3c24xx_nand_probe_pdata(pdev);
1114
1115 if (err)
1116 goto exit_error;
1117
1118 plat = to_nand_plat(pdev);
1119
1da177e4
LT
1120 /* allocate and map the resource */
1121
a4f957f1 1122 /* currently we assume we have the one resource */
6f32a3e2 1123 res = pdev->resource;
fc161c4e 1124 size = resource_size(res);
1da177e4 1125
6f32a3e2
SK
1126 info->device = &pdev->dev;
1127 info->platform = plat;
1da177e4 1128
b0de774c
TR
1129 info->regs = devm_ioremap_resource(&pdev->dev, res);
1130 if (IS_ERR(info->regs)) {
1131 err = PTR_ERR(info->regs);
1da177e4 1132 goto exit_error;
61b03bd7 1133 }
1da177e4 1134
3ae5eaec 1135 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1da177e4 1136
1da177e4
LT
1137 sets = (plat != NULL) ? plat->sets : NULL;
1138 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1139
1140 info->mtd_count = nr_sets;
1141
1142 /* allocate our information */
1143
1144 size = nr_sets * sizeof(*info->mtds);
6f32a3e2 1145 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1da177e4 1146 if (info->mtds == NULL) {
1da177e4
LT
1147 err = -ENOMEM;
1148 goto exit_error;
1149 }
1150
1da177e4
LT
1151 /* initialise all possible chips */
1152
1153 nmtd = info->mtds;
1154
1155 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
7208b997
BB
1156 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1157
f938bc56
SK
1158 pr_debug("initialising set %d (%p, info %p)\n",
1159 setno, nmtd, info);
61b03bd7 1160
7208b997 1161 mtd->dev.parent = &pdev->dev;
1da177e4
LT
1162 s3c2410_nand_init_chip(info, nmtd, sets);
1163
bb00ff2f
MR
1164 err = nand_scan_ident(mtd, (sets) ? sets->nr_chips : 1, NULL);
1165 if (err)
1166 goto exit_error;
1da177e4 1167
bb00ff2f
MR
1168 err = s3c2410_nand_update_chip(info, nmtd);
1169 if (err < 0)
1170 goto exit_error;
1171
1172 err = nand_scan_tail(mtd);
1173 if (err)
1174 goto exit_error;
1175
1176 s3c2410_nand_add_partition(info, nmtd, sets);
1da177e4
LT
1177
1178 if (sets != NULL)
1179 sets++;
1180 }
61b03bd7 1181
1c825ad1
SP
1182 /* initialise the hardware */
1183 err = s3c2410_nand_inithw(info);
1184 if (err != 0)
1185 goto exit_error;
1186
30821fee
BD
1187 err = s3c2410_nand_cpufreq_register(info);
1188 if (err < 0) {
1189 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1190 goto exit_error;
1191 }
1192
ac497c16 1193 if (allow_clk_suspend(info)) {
d1fef3c5 1194 dev_info(&pdev->dev, "clock idle support enabled\n");
ac497c16 1195 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1196 }
1197
1da177e4
LT
1198 return 0;
1199
1200 exit_error:
ec0482e6 1201 s3c24xx_nand_remove(pdev);
1da177e4
LT
1202
1203 if (err == 0)
1204 err = -EINVAL;
1205 return err;
1206}
1207
d1fef3c5
BD
1208/* PM Support */
1209#ifdef CONFIG_PM
1210
1211static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1212{
1213 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1214
1215 if (info) {
09160832 1216 info->save_sel = readl(info->sel_reg);
03680b1e
BD
1217
1218 /* For the moment, we must ensure nFCE is high during
1219 * the time we are suspended. This really should be
1220 * handled by suspending the MTDs we are using, but
1221 * that is currently not the case. */
1222
09160832 1223 writel(info->save_sel | info->sel_bit, info->sel_reg);
03680b1e 1224
ac497c16 1225 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
d1fef3c5
BD
1226 }
1227
1228 return 0;
1229}
1230
1231static int s3c24xx_nand_resume(struct platform_device *dev)
1232{
1233 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
09160832 1234 unsigned long sel;
d1fef3c5
BD
1235
1236 if (info) {
ac497c16 1237 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
30821fee 1238 s3c2410_nand_inithw(info);
d1fef3c5 1239
03680b1e
BD
1240 /* Restore the state of the nFCE line. */
1241
09160832
BD
1242 sel = readl(info->sel_reg);
1243 sel &= ~info->sel_bit;
1244 sel |= info->save_sel & info->sel_bit;
1245 writel(sel, info->sel_reg);
03680b1e 1246
ac497c16 1247 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1248 }
1249
1250 return 0;
1251}
1252
1253#else
1254#define s3c24xx_nand_suspend NULL
1255#define s3c24xx_nand_resume NULL
1256#endif
1257
a4f957f1
BD
1258/* driver device registration */
1259
0abe75d2 1260static const struct platform_device_id s3c24xx_driver_ids[] = {
ec0482e6
BD
1261 {
1262 .name = "s3c2410-nand",
1263 .driver_data = TYPE_S3C2410,
1264 }, {
1265 .name = "s3c2440-nand",
1266 .driver_data = TYPE_S3C2440,
1267 }, {
1268 .name = "s3c2412-nand",
1269 .driver_data = TYPE_S3C2412,
9dbc0902
PK
1270 }, {
1271 .name = "s3c6400-nand",
1272 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
3ae5eaec 1273 },
ec0482e6 1274 { }
1da177e4
LT
1275};
1276
ec0482e6 1277MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
a4f957f1 1278
ec0482e6
BD
1279static struct platform_driver s3c24xx_nand_driver = {
1280 .probe = s3c24xx_nand_probe,
1281 .remove = s3c24xx_nand_remove,
2c06a082
BD
1282 .suspend = s3c24xx_nand_suspend,
1283 .resume = s3c24xx_nand_resume,
ec0482e6 1284 .id_table = s3c24xx_driver_ids,
2c06a082 1285 .driver = {
ec0482e6 1286 .name = "s3c24xx-nand",
1c825ad1 1287 .of_match_table = s3c24xx_nand_dt_ids,
2c06a082
BD
1288 },
1289};
1290
056fcab5 1291module_platform_driver(s3c24xx_nand_driver);
1da177e4
LT
1292
1293MODULE_LICENSE("GPL");
1294MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
a4f957f1 1295MODULE_DESCRIPTION("S3C24XX MTD NAND driver");