]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/mtd/nand/s3c2410.c
dt-bindings: mtd: add DT binding for s3c2410 flash controller
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / s3c2410.c
CommitLineData
1da177e4
LT
1/* linux/drivers/mtd/nand/s3c2410.c
2 *
7e74a507
BD
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
fdf2fd52 5 * Ben Dooks <ben@simtec.co.uk>
1da177e4 6 *
7e74a507 7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
1da177e4 8 *
1da177e4
LT
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22*/
23
92aeb5d2
SK
24#define pr_fmt(fmt) "nand-s3c2410: " fmt
25
1da177e4
LT
26#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27#define DEBUG
28#endif
29
30#include <linux/module.h>
31#include <linux/types.h>
1da177e4
LT
32#include <linux/kernel.h>
33#include <linux/string.h>
d2a89be8 34#include <linux/io.h>
1da177e4 35#include <linux/ioport.h>
d052d1be 36#include <linux/platform_device.h>
1da177e4
LT
37#include <linux/delay.h>
38#include <linux/err.h>
4e57b681 39#include <linux/slab.h>
f8ce2547 40#include <linux/clk.h>
30821fee 41#include <linux/cpufreq.h>
1da177e4
LT
42
43#include <linux/mtd/mtd.h>
44#include <linux/mtd/nand.h>
45#include <linux/mtd/nand_ecc.h>
46#include <linux/mtd/partitions.h>
47
436d42c6 48#include <linux/platform_data/mtd-nand-s3c2410.h>
1da177e4 49
02d01862
SK
50#define S3C2410_NFREG(x) (x)
51
52#define S3C2410_NFCONF S3C2410_NFREG(0x00)
53#define S3C2410_NFCMD S3C2410_NFREG(0x04)
54#define S3C2410_NFADDR S3C2410_NFREG(0x08)
55#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
56#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
57#define S3C2410_NFECC S3C2410_NFREG(0x14)
58#define S3C2440_NFCONT S3C2410_NFREG(0x04)
59#define S3C2440_NFCMD S3C2410_NFREG(0x08)
60#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
61#define S3C2440_NFDATA S3C2410_NFREG(0x10)
62#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
63#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
64#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
65#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
66#define S3C2410_NFCONF_EN (1<<15)
67#define S3C2410_NFCONF_INITECC (1<<12)
68#define S3C2410_NFCONF_nFCE (1<<11)
69#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
70#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
71#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
72#define S3C2410_NFSTAT_BUSY (1<<0)
73#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
74#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
75#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
76#define S3C2440_NFCONT_INITECC (1<<4)
77#define S3C2440_NFCONT_nFCE (1<<1)
78#define S3C2440_NFCONT_ENABLE (1<<0)
79#define S3C2440_NFSTAT_READY (1<<0)
80#define S3C2412_NFCONF_NANDBOOT (1<<31)
81#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
82#define S3C2412_NFCONT_nFCE0 (1<<1)
83#define S3C2412_NFSTAT_READY (1<<0)
84
1da177e4
LT
85/* new oob placement block for use with hardware ecc generation
86 */
bf01e06b
BB
87static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
88 struct mtd_oob_region *oobregion)
89{
90 if (section)
91 return -ERANGE;
92
93 oobregion->offset = 0;
94 oobregion->length = 3;
95
96 return 0;
97}
98
99static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
100 struct mtd_oob_region *oobregion)
101{
102 if (section)
103 return -ERANGE;
104
105 oobregion->offset = 8;
106 oobregion->length = 8;
107
108 return 0;
109}
1da177e4 110
bf01e06b
BB
111static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
112 .ecc = s3c2410_ooblayout_ecc,
113 .free = s3c2410_ooblayout_free,
1da177e4
LT
114};
115
116/* controller and mtd information */
117
118struct s3c2410_nand_info;
119
3db72151
BD
120/**
121 * struct s3c2410_nand_mtd - driver MTD structure
122 * @mtd: The MTD instance to pass to the MTD layer.
123 * @chip: The NAND chip information.
124 * @set: The platform information supplied for this set of NAND chips.
125 * @info: Link back to the hardware information.
126 * @scan_res: The result from calling nand_scan_ident().
127*/
1da177e4 128struct s3c2410_nand_mtd {
1da177e4
LT
129 struct nand_chip chip;
130 struct s3c2410_nand_set *set;
131 struct s3c2410_nand_info *info;
132 int scan_res;
133};
134
2c06a082
BD
135enum s3c_cpu_type {
136 TYPE_S3C2410,
137 TYPE_S3C2412,
138 TYPE_S3C2440,
139};
140
ac497c16
JP
141enum s3c_nand_clk_state {
142 CLOCK_DISABLE = 0,
143 CLOCK_ENABLE,
144 CLOCK_SUSPEND,
145};
146
1da177e4
LT
147/* overview of the s3c2410 nand state */
148
3db72151
BD
149/**
150 * struct s3c2410_nand_info - NAND controller state.
151 * @mtds: An array of MTD instances on this controoler.
152 * @platform: The platform data for this board.
153 * @device: The platform device we bound to.
3db72151 154 * @clk: The clock resource for this controller.
6f32a3e2 155 * @regs: The area mapped for the hardware registers.
3db72151
BD
156 * @sel_reg: Pointer to the register controlling the NAND selection.
157 * @sel_bit: The bit in @sel_reg to select the NAND chip.
158 * @mtd_count: The number of MTDs created from this controller.
159 * @save_sel: The contents of @sel_reg to be saved over suspend.
160 * @clk_rate: The clock rate from @clk.
ac497c16 161 * @clk_state: The current clock state.
3db72151
BD
162 * @cpu_type: The exact type of this controller.
163 */
1da177e4
LT
164struct s3c2410_nand_info {
165 /* mtd info */
166 struct nand_hw_control controller;
167 struct s3c2410_nand_mtd *mtds;
168 struct s3c2410_platform_nand *platform;
169
170 /* device info */
171 struct device *device;
1da177e4 172 struct clk *clk;
fdf2fd52 173 void __iomem *regs;
2c06a082
BD
174 void __iomem *sel_reg;
175 int sel_bit;
1da177e4 176 int mtd_count;
09160832 177 unsigned long save_sel;
30821fee 178 unsigned long clk_rate;
ac497c16 179 enum s3c_nand_clk_state clk_state;
03680b1e 180
2c06a082 181 enum s3c_cpu_type cpu_type;
30821fee 182
d9ca77f0 183#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
184 struct notifier_block freq_transition;
185#endif
1da177e4
LT
186};
187
188/* conversion functions */
189
190static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
191{
7208b997
BB
192 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
193 chip);
1da177e4
LT
194}
195
196static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
197{
198 return s3c2410_nand_mtd_toours(mtd)->info;
199}
200
3ae5eaec 201static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
1da177e4 202{
3ae5eaec 203 return platform_get_drvdata(dev);
1da177e4
LT
204}
205
3ae5eaec 206static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
1da177e4 207{
453810b7 208 return dev_get_platdata(&dev->dev);
1da177e4
LT
209}
210
ac497c16 211static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
d1fef3c5 212{
a68c5ec8
SK
213#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
214 return 1;
215#else
216 return 0;
217#endif
d1fef3c5
BD
218}
219
ac497c16
JP
220/**
221 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
222 * @info: The controller instance.
223 * @new_state: State to which clock should be set.
224 */
225static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
226 enum s3c_nand_clk_state new_state)
227{
228 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
229 return;
230
231 if (info->clk_state == CLOCK_ENABLE) {
232 if (new_state != CLOCK_ENABLE)
887957b4 233 clk_disable_unprepare(info->clk);
ac497c16
JP
234 } else {
235 if (new_state == CLOCK_ENABLE)
887957b4 236 clk_prepare_enable(info->clk);
ac497c16
JP
237 }
238
239 info->clk_state = new_state;
240}
241
1da177e4
LT
242/* timing calculations */
243
cfd320fb 244#define NS_IN_KHZ 1000000
1da177e4 245
3db72151
BD
246/**
247 * s3c_nand_calc_rate - calculate timing data.
248 * @wanted: The cycle time in nanoseconds.
249 * @clk: The clock rate in kHz.
250 * @max: The maximum divider value.
251 *
252 * Calculate the timing value from the given parameters.
253 */
2c06a082 254static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
1da177e4
LT
255{
256 int result;
257
947391cf 258 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
1da177e4
LT
259
260 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
261
262 if (result > max) {
92aeb5d2
SK
263 pr_err("%d ns is too big for current clock rate %ld\n",
264 wanted, clk);
1da177e4
LT
265 return -1;
266 }
267
268 if (result < 1)
269 result = 1;
270
271 return result;
272}
273
54cd0208 274#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
1da177e4
LT
275
276/* controller setup */
277
3db72151
BD
278/**
279 * s3c2410_nand_setrate - setup controller timing information.
280 * @info: The controller instance.
281 *
282 * Given the information supplied by the platform, calculate and set
283 * the necessary timing registers in the hardware to generate the
284 * necessary timing cycles to the hardware.
285 */
30821fee 286static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
1da177e4 287{
30821fee 288 struct s3c2410_platform_nand *plat = info->platform;
2c06a082 289 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
cfd320fb 290 int tacls, twrph0, twrph1;
30821fee 291 unsigned long clkrate = clk_get_rate(info->clk);
2612e523 292 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
30821fee 293 unsigned long flags;
1da177e4
LT
294
295 /* calculate the timing information for the controller */
296
30821fee 297 info->clk_rate = clkrate;
cfd320fb
BD
298 clkrate /= 1000; /* turn clock into kHz for ease of use */
299
1da177e4 300 if (plat != NULL) {
2c06a082
BD
301 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
302 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
303 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
1da177e4
LT
304 } else {
305 /* default timings */
2c06a082 306 tacls = tacls_max;
1da177e4
LT
307 twrph0 = 8;
308 twrph1 = 8;
309 }
61b03bd7 310
1da177e4 311 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
99974c62 312 dev_err(info->device, "cannot get suitable timings\n");
1da177e4
LT
313 return -EINVAL;
314 }
315
99974c62 316 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
54cd0208
SK
317 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
318 twrph1, to_ns(twrph1, clkrate));
1da177e4 319
30821fee
BD
320 switch (info->cpu_type) {
321 case TYPE_S3C2410:
322 mask = (S3C2410_NFCONF_TACLS(3) |
323 S3C2410_NFCONF_TWRPH0(7) |
324 S3C2410_NFCONF_TWRPH1(7));
325 set = S3C2410_NFCONF_EN;
326 set |= S3C2410_NFCONF_TACLS(tacls - 1);
327 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
328 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
329 break;
330
331 case TYPE_S3C2440:
332 case TYPE_S3C2412:
a755a385
PK
333 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
334 S3C2440_NFCONF_TWRPH0(7) |
335 S3C2440_NFCONF_TWRPH1(7));
30821fee
BD
336
337 set = S3C2440_NFCONF_TACLS(tacls - 1);
338 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
339 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
340 break;
341
342 default:
30821fee
BD
343 BUG();
344 }
345
30821fee
BD
346 local_irq_save(flags);
347
348 cfg = readl(info->regs + S3C2410_NFCONF);
349 cfg &= ~mask;
350 cfg |= set;
351 writel(cfg, info->regs + S3C2410_NFCONF);
352
353 local_irq_restore(flags);
354
ae7304e5
AG
355 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
356
30821fee
BD
357 return 0;
358}
359
3db72151
BD
360/**
361 * s3c2410_nand_inithw - basic hardware initialisation
362 * @info: The hardware state.
363 *
364 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
365 * to setup the hardware access speeds and set the controller to be enabled.
366*/
30821fee
BD
367static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
368{
369 int ret;
370
371 ret = s3c2410_nand_setrate(info);
372 if (ret < 0)
373 return ret;
374
54cd0208
SK
375 switch (info->cpu_type) {
376 case TYPE_S3C2410:
30821fee 377 default:
2c06a082
BD
378 break;
379
54cd0208
SK
380 case TYPE_S3C2440:
381 case TYPE_S3C2412:
d1fef3c5
BD
382 /* enable the controller and de-assert nFCE */
383
2c06a082 384 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
a4f957f1 385 }
1da177e4 386
1da177e4
LT
387 return 0;
388}
389
3db72151
BD
390/**
391 * s3c2410_nand_select_chip - select the given nand chip
392 * @mtd: The MTD instance for this chip.
393 * @chip: The chip number.
394 *
395 * This is called by the MTD layer to either select a given chip for the
396 * @mtd instance, or to indicate that the access has finished and the
397 * chip can be de-selected.
398 *
399 * The routine ensures that the nFCE line is correctly setup, and any
400 * platform specific selection code is called to route nFCE to the specific
401 * chip.
402 */
1da177e4
LT
403static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
404{
405 struct s3c2410_nand_info *info;
61b03bd7 406 struct s3c2410_nand_mtd *nmtd;
4bd4ebcc 407 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
408 unsigned long cur;
409
d699ed25 410 nmtd = nand_get_controller_data(this);
1da177e4
LT
411 info = nmtd->info;
412
ac497c16
JP
413 if (chip != -1)
414 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
d1fef3c5 415
2c06a082 416 cur = readl(info->sel_reg);
1da177e4
LT
417
418 if (chip == -1) {
2c06a082 419 cur |= info->sel_bit;
1da177e4 420 } else {
fb8d82a8 421 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
99974c62 422 dev_err(info->device, "invalid chip %d\n", chip);
1da177e4
LT
423 return;
424 }
425
426 if (info->platform != NULL) {
427 if (info->platform->select_chip != NULL)
e0c7d767 428 (info->platform->select_chip) (nmtd->set, chip);
1da177e4
LT
429 }
430
2c06a082 431 cur &= ~info->sel_bit;
1da177e4
LT
432 }
433
2c06a082 434 writel(cur, info->sel_reg);
d1fef3c5 435
ac497c16
JP
436 if (chip == -1)
437 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1da177e4
LT
438}
439
ad3b5fb7 440/* s3c2410_nand_hwcontrol
a4f957f1 441 *
ad3b5fb7 442 * Issue command and address cycles to the chip
a4f957f1 443*/
1da177e4 444
7abd3ef9 445static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
f9068876 446 unsigned int ctrl)
1da177e4
LT
447{
448 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
c9ac5977 449
7abd3ef9
TG
450 if (cmd == NAND_CMD_NONE)
451 return;
452
f9068876 453 if (ctrl & NAND_CLE)
7abd3ef9
TG
454 writeb(cmd, info->regs + S3C2410_NFCMD);
455 else
456 writeb(cmd, info->regs + S3C2410_NFADDR);
a4f957f1
BD
457}
458
459/* command and control functions */
460
f9068876
DW
461static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
462 unsigned int ctrl)
a4f957f1
BD
463{
464 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4 465
7abd3ef9
TG
466 if (cmd == NAND_CMD_NONE)
467 return;
468
f9068876 469 if (ctrl & NAND_CLE)
7abd3ef9
TG
470 writeb(cmd, info->regs + S3C2440_NFCMD);
471 else
472 writeb(cmd, info->regs + S3C2440_NFADDR);
1da177e4
LT
473}
474
1da177e4
LT
475/* s3c2410_nand_devready()
476 *
477 * returns 0 if the nand is busy, 1 if it is ready
478*/
479
480static int s3c2410_nand_devready(struct mtd_info *mtd)
481{
482 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4
LT
483 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
484}
485
2c06a082
BD
486static int s3c2440_nand_devready(struct mtd_info *mtd)
487{
488 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
489 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
490}
491
492static int s3c2412_nand_devready(struct mtd_info *mtd)
493{
494 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
495 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
496}
497
1da177e4
LT
498/* ECC handling functions */
499
2c06a082
BD
500static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
501 u_char *read_ecc, u_char *calc_ecc)
1da177e4 502{
a2593247
BD
503 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
504 unsigned int diff0, diff1, diff2;
505 unsigned int bit, byte;
506
507 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
508
509 diff0 = read_ecc[0] ^ calc_ecc[0];
510 diff1 = read_ecc[1] ^ calc_ecc[1];
511 diff2 = read_ecc[2] ^ calc_ecc[2];
512
13e85974
AS
513 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
514 __func__, 3, read_ecc, 3, calc_ecc,
a2593247
BD
515 diff0, diff1, diff2);
516
517 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
518 return 0; /* ECC is ok */
519
c45c6c68
BD
520 /* sometimes people do not think about using the ECC, so check
521 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
522 * the error, on the assumption that this is an un-eccd page.
523 */
524 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
525 && info->platform->ignore_unset_ecc)
526 return 0;
527
a2593247
BD
528 /* Can we correct this ECC (ie, one row and column change).
529 * Note, this is similar to the 256 error code on smartmedia */
530
531 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
532 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
533 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
534 /* calculate the bit position of the error */
535
d0bf3793
MR
536 bit = ((diff2 >> 3) & 1) |
537 ((diff2 >> 4) & 2) |
538 ((diff2 >> 5) & 4);
1da177e4 539
a2593247 540 /* calculate the byte position of the error */
1da177e4 541
d0bf3793
MR
542 byte = ((diff2 << 7) & 0x100) |
543 ((diff1 << 0) & 0x80) |
544 ((diff1 << 1) & 0x40) |
545 ((diff1 << 2) & 0x20) |
546 ((diff1 << 3) & 0x10) |
547 ((diff0 >> 4) & 0x08) |
548 ((diff0 >> 3) & 0x04) |
549 ((diff0 >> 2) & 0x02) |
550 ((diff0 >> 1) & 0x01);
a2593247
BD
551
552 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
553 bit, byte);
554
555 dat[byte] ^= (1 << bit);
556 return 1;
557 }
558
559 /* if there is only one bit difference in the ECC, then
560 * one of only a row or column parity has changed, which
561 * means the error is most probably in the ECC itself */
562
563 diff0 |= (diff1 << 8);
564 diff0 |= (diff2 << 16);
565
03a97550
ZZ
566 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
567 if ((diff0 & (diff0 - 1)) == 0)
a2593247
BD
568 return 1;
569
4fac9f69 570 return -1;
1da177e4
LT
571}
572
a4f957f1
BD
573/* ECC functions
574 *
575 * These allow the s3c2410 and s3c2440 to use the controller's ECC
576 * generator block to ECC the data as it passes through]
577*/
578
1da177e4
LT
579static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
580{
581 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
582 unsigned long ctrl;
583
584 ctrl = readl(info->regs + S3C2410_NFCONF);
585 ctrl |= S3C2410_NFCONF_INITECC;
586 writel(ctrl, info->regs + S3C2410_NFCONF);
587}
588
4f659923
MC
589static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
590{
591 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
592 unsigned long ctrl;
593
594 ctrl = readl(info->regs + S3C2440_NFCONT);
f938bc56
SK
595 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
596 info->regs + S3C2440_NFCONT);
4f659923
MC
597}
598
a4f957f1
BD
599static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
600{
601 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
602 unsigned long ctrl;
603
604 ctrl = readl(info->regs + S3C2440_NFCONT);
605 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
606}
607
f938bc56
SK
608static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
609 u_char *ecc_code)
1da177e4
LT
610{
611 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
612
613 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
614 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
615 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
616
13e85974 617 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
1da177e4
LT
618
619 return 0;
620}
621
f938bc56
SK
622static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
623 u_char *ecc_code)
4f659923
MC
624{
625 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
626 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
627
628 ecc_code[0] = ecc;
629 ecc_code[1] = ecc >> 8;
630 ecc_code[2] = ecc >> 16;
631
13e85974 632 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
4f659923
MC
633
634 return 0;
635}
636
f938bc56
SK
637static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
638 u_char *ecc_code)
a4f957f1
BD
639{
640 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
641 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
642
643 ecc_code[0] = ecc;
644 ecc_code[1] = ecc >> 8;
645 ecc_code[2] = ecc >> 16;
646
71d54f38 647 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
a4f957f1
BD
648
649 return 0;
650}
651
a4f957f1
BD
652/* over-ride the standard functions for a little more speed. We can
653 * use read/write block to move the data buffers to/from the controller
654*/
1da177e4
LT
655
656static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
657{
4bd4ebcc 658 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
659 readsb(this->IO_ADDR_R, buf, len);
660}
661
b773bb2e
MR
662static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
663{
664 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
665
666 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
667
668 /* cleanup if we've got less than a word to do */
669 if (len & 3) {
670 buf += len & ~3;
671
672 for (; len & 3; len--)
673 *buf++ = readb(info->regs + S3C2440_NFDATA);
674 }
b773bb2e
MR
675}
676
f938bc56
SK
677static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
678 int len)
1da177e4 679{
4bd4ebcc 680 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
681 writesb(this->IO_ADDR_W, buf, len);
682}
683
f938bc56
SK
684static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
685 int len)
b773bb2e
MR
686{
687 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
688
689 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
690
691 /* cleanup any fractional write */
692 if (len & 3) {
693 buf += len & ~3;
694
695 for (; len & 3; len--, buf++)
696 writeb(*buf, info->regs + S3C2440_NFDATA);
697 }
b773bb2e
MR
698}
699
30821fee
BD
700/* cpufreq driver support */
701
d9ca77f0 702#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
703
704static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
705 unsigned long val, void *data)
706{
707 struct s3c2410_nand_info *info;
708 unsigned long newclk;
709
710 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
711 newclk = clk_get_rate(info->clk);
712
713 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
714 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
715 s3c2410_nand_setrate(info);
716 }
717
718 return 0;
719}
720
721static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
722{
723 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
724
725 return cpufreq_register_notifier(&info->freq_transition,
726 CPUFREQ_TRANSITION_NOTIFIER);
727}
728
f938bc56
SK
729static inline void
730s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
731{
732 cpufreq_unregister_notifier(&info->freq_transition,
733 CPUFREQ_TRANSITION_NOTIFIER);
734}
735
736#else
737static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
738{
739 return 0;
740}
741
f938bc56
SK
742static inline void
743s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
744{
745}
746#endif
747
1da177e4
LT
748/* device management functions */
749
ec0482e6 750static int s3c24xx_nand_remove(struct platform_device *pdev)
1da177e4 751{
3ae5eaec 752 struct s3c2410_nand_info *info = to_nand_info(pdev);
1da177e4 753
61b03bd7 754 if (info == NULL)
1da177e4
LT
755 return 0;
756
30821fee
BD
757 s3c2410_nand_cpufreq_deregister(info);
758
759 /* Release all our mtds and their partitions, then go through
760 * freeing the resources used
1da177e4 761 */
61b03bd7 762
1da177e4
LT
763 if (info->mtds != NULL) {
764 struct s3c2410_nand_mtd *ptr = info->mtds;
765 int mtdno;
766
767 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
768 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
7208b997 769 nand_release(nand_to_mtd(&ptr->chip));
1da177e4 770 }
1da177e4
LT
771 }
772
773 /* free the common resources */
774
6f32a3e2 775 if (!IS_ERR(info->clk))
ac497c16 776 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1da177e4
LT
777
778 return 0;
779}
780
1da177e4
LT
781static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
782 struct s3c2410_nand_mtd *mtd,
783 struct s3c2410_nand_set *set)
784{
ded4c55d 785 if (set) {
7208b997 786 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
ed27f028 787
7208b997
BB
788 mtdinfo->name = set->name;
789
790 return mtd_device_parse_register(mtdinfo, NULL, NULL,
42d7fbe2 791 set->partitions, set->nr_partitions);
ded4c55d
SK
792 }
793
794 return -ENODEV;
1da177e4 795}
1da177e4 796
3db72151
BD
797/**
798 * s3c2410_nand_init_chip - initialise a single instance of an chip
799 * @info: The base NAND controller the chip is on.
800 * @nmtd: The new controller MTD instance to fill in.
801 * @set: The information passed from the board specific platform data.
1da177e4 802 *
3db72151
BD
803 * Initialise the given @nmtd from the information in @info and @set. This
804 * readies the structure for use with the MTD layer functions by ensuring
805 * all pointers are setup and the necessary control routines selected.
806 */
1da177e4
LT
807static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
808 struct s3c2410_nand_mtd *nmtd,
809 struct s3c2410_nand_set *set)
810{
811 struct nand_chip *chip = &nmtd->chip;
2c06a082 812 void __iomem *regs = info->regs;
1da177e4 813
1da177e4
LT
814 chip->write_buf = s3c2410_nand_write_buf;
815 chip->read_buf = s3c2410_nand_read_buf;
816 chip->select_chip = s3c2410_nand_select_chip;
817 chip->chip_delay = 50;
d699ed25 818 nand_set_controller_data(chip, nmtd);
74218fed 819 chip->options = set->options;
1da177e4
LT
820 chip->controller = &info->controller;
821
2c06a082
BD
822 switch (info->cpu_type) {
823 case TYPE_S3C2410:
824 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
825 info->sel_reg = regs + S3C2410_NFCONF;
826 info->sel_bit = S3C2410_NFCONF_nFCE;
827 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
828 chip->dev_ready = s3c2410_nand_devready;
829 break;
830
831 case TYPE_S3C2440:
832 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
833 info->sel_reg = regs + S3C2440_NFCONT;
834 info->sel_bit = S3C2440_NFCONT_nFCE;
835 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
836 chip->dev_ready = s3c2440_nand_devready;
b773bb2e
MR
837 chip->read_buf = s3c2440_nand_read_buf;
838 chip->write_buf = s3c2440_nand_write_buf;
2c06a082
BD
839 break;
840
841 case TYPE_S3C2412:
842 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
843 info->sel_reg = regs + S3C2440_NFCONT;
844 info->sel_bit = S3C2412_NFCONT_nFCE0;
845 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
846 chip->dev_ready = s3c2412_nand_devready;
847
848 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
849 dev_info(info->device, "System booted from NAND\n");
850
851 break;
54cd0208 852 }
2c06a082
BD
853
854 chip->IO_ADDR_R = chip->IO_ADDR_W;
a4f957f1 855
1da177e4 856 nmtd->info = info;
1da177e4
LT
857 nmtd->set = set;
858
e9f66ae2 859 chip->ecc.mode = info->platform->ecc_mode;
9db41f9e
MP
860
861 /* If you use u-boot BBT creation code, specifying this flag will
862 * let the kernel fish out the BBT from the NAND, and also skip the
863 * full NAND scan that can take 1/2s or so. Little things... */
a40f7341 864 if (set->flash_bbt) {
bb9ebd4e 865 chip->bbt_options |= NAND_BBT_USE_FLASH;
a40f7341
BN
866 chip->options |= NAND_SKIP_BBTSCAN;
867 }
1da177e4
LT
868}
869
3db72151
BD
870/**
871 * s3c2410_nand_update_chip - post probe update
872 * @info: The controller instance.
873 * @nmtd: The driver version of the MTD instance.
71d54f38 874 *
af901ca1 875 * This routine is called after the chip probe has successfully completed
3db72151
BD
876 * and the relevant per-chip information updated. This call ensure that
877 * we update the internal state accordingly.
878 *
879 * The internal state is currently limited to the ECC state information.
880*/
e9f66ae2
SP
881static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
882 struct s3c2410_nand_mtd *nmtd)
71d54f38
BD
883{
884 struct nand_chip *chip = &nmtd->chip;
885
e9f66ae2 886 switch (chip->ecc.mode) {
71d54f38 887
e9f66ae2
SP
888 case NAND_ECC_NONE:
889 dev_info(info->device, "ECC disabled\n");
890 break;
891
892 case NAND_ECC_SOFT:
893 /*
894 * This driver expects Hamming based ECC when ecc_mode is set
895 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
896 * avoid adding an extra ecc_algo field to
897 * s3c2410_platform_nand.
898 */
899 chip->ecc.algo = NAND_ECC_HAMMING;
900 dev_info(info->device, "soft ECC\n");
901 break;
902
903 case NAND_ECC_HW:
904 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
905 chip->ecc.correct = s3c2410_nand_correct_data;
906 chip->ecc.strength = 1;
907
908 switch (info->cpu_type) {
909 case TYPE_S3C2410:
910 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
911 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
912 break;
913
914 case TYPE_S3C2412:
915 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
916 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
917 break;
918
919 case TYPE_S3C2440:
920 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
921 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
922 break;
923 }
924
925 dev_dbg(info->device, "chip %p => page shift %d\n",
926 chip, chip->page_shift);
8c3e843d 927
48fc7f7e 928 /* change the behaviour depending on whether we are using
71d54f38 929 * the large or small page nand device */
e9f66ae2
SP
930 if (chip->page_shift > 10) {
931 chip->ecc.size = 256;
932 chip->ecc.bytes = 3;
933 } else {
934 chip->ecc.size = 512;
935 chip->ecc.bytes = 3;
936 mtd_set_ooblayout(nand_to_mtd(chip),
937 &s3c2410_ooblayout_ops);
938 }
71d54f38 939
e9f66ae2
SP
940 dev_info(info->device, "hardware ECC\n");
941 break;
942
943 default:
944 dev_err(info->device, "invalid ECC mode!\n");
945 return -EINVAL;
71d54f38 946 }
e9f66ae2
SP
947
948 return 0;
71d54f38
BD
949}
950
ec0482e6 951/* s3c24xx_nand_probe
1da177e4
LT
952 *
953 * called by device layer when it finds a device matching
954 * one our driver can handled. This code checks to see if
955 * it can allocate all necessary resources then calls the
956 * nand layer to look for devices
957*/
ec0482e6 958static int s3c24xx_nand_probe(struct platform_device *pdev)
1da177e4 959{
3ae5eaec 960 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
54cd0208 961 enum s3c_cpu_type cpu_type;
1da177e4
LT
962 struct s3c2410_nand_info *info;
963 struct s3c2410_nand_mtd *nmtd;
964 struct s3c2410_nand_set *sets;
965 struct resource *res;
966 int err = 0;
967 int size;
968 int nr_sets;
969 int setno;
970
ec0482e6
BD
971 cpu_type = platform_get_device_id(pdev)->driver_data;
972
6f32a3e2 973 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1da177e4 974 if (info == NULL) {
1da177e4
LT
975 err = -ENOMEM;
976 goto exit_error;
977 }
978
3ae5eaec 979 platform_set_drvdata(pdev, info);
1da177e4 980
d45bc58d 981 nand_hw_control_init(&info->controller);
1da177e4
LT
982
983 /* get the clock source and enable it */
984
6f32a3e2 985 info->clk = devm_clk_get(&pdev->dev, "nand");
1da177e4 986 if (IS_ERR(info->clk)) {
898eb71c 987 dev_err(&pdev->dev, "failed to get clock\n");
1da177e4
LT
988 err = -ENOENT;
989 goto exit_error;
990 }
991
ac497c16 992 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1da177e4
LT
993
994 /* allocate and map the resource */
995
a4f957f1 996 /* currently we assume we have the one resource */
6f32a3e2 997 res = pdev->resource;
fc161c4e 998 size = resource_size(res);
1da177e4 999
6f32a3e2
SK
1000 info->device = &pdev->dev;
1001 info->platform = plat;
1002 info->cpu_type = cpu_type;
1da177e4 1003
b0de774c
TR
1004 info->regs = devm_ioremap_resource(&pdev->dev, res);
1005 if (IS_ERR(info->regs)) {
1006 err = PTR_ERR(info->regs);
1da177e4 1007 goto exit_error;
61b03bd7 1008 }
1da177e4 1009
3ae5eaec 1010 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1da177e4
LT
1011
1012 /* initialise the hardware */
1013
30821fee 1014 err = s3c2410_nand_inithw(info);
1da177e4
LT
1015 if (err != 0)
1016 goto exit_error;
1017
1018 sets = (plat != NULL) ? plat->sets : NULL;
1019 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1020
1021 info->mtd_count = nr_sets;
1022
1023 /* allocate our information */
1024
1025 size = nr_sets * sizeof(*info->mtds);
6f32a3e2 1026 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1da177e4 1027 if (info->mtds == NULL) {
1da177e4
LT
1028 err = -ENOMEM;
1029 goto exit_error;
1030 }
1031
1da177e4
LT
1032 /* initialise all possible chips */
1033
1034 nmtd = info->mtds;
1035
1036 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
7208b997
BB
1037 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1038
f938bc56
SK
1039 pr_debug("initialising set %d (%p, info %p)\n",
1040 setno, nmtd, info);
61b03bd7 1041
7208b997 1042 mtd->dev.parent = &pdev->dev;
1da177e4
LT
1043 s3c2410_nand_init_chip(info, nmtd, sets);
1044
7208b997 1045 nmtd->scan_res = nand_scan_ident(mtd,
5e81e88a
DW
1046 (sets) ? sets->nr_chips : 1,
1047 NULL);
1da177e4
LT
1048
1049 if (nmtd->scan_res == 0) {
e9f66ae2
SP
1050 err = s3c2410_nand_update_chip(info, nmtd);
1051 if (err < 0)
1052 goto exit_error;
7208b997 1053 nand_scan_tail(mtd);
1da177e4
LT
1054 s3c2410_nand_add_partition(info, nmtd, sets);
1055 }
1056
1057 if (sets != NULL)
1058 sets++;
1059 }
61b03bd7 1060
30821fee
BD
1061 err = s3c2410_nand_cpufreq_register(info);
1062 if (err < 0) {
1063 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1064 goto exit_error;
1065 }
1066
ac497c16 1067 if (allow_clk_suspend(info)) {
d1fef3c5 1068 dev_info(&pdev->dev, "clock idle support enabled\n");
ac497c16 1069 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1070 }
1071
1da177e4
LT
1072 return 0;
1073
1074 exit_error:
ec0482e6 1075 s3c24xx_nand_remove(pdev);
1da177e4
LT
1076
1077 if (err == 0)
1078 err = -EINVAL;
1079 return err;
1080}
1081
d1fef3c5
BD
1082/* PM Support */
1083#ifdef CONFIG_PM
1084
1085static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1086{
1087 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1088
1089 if (info) {
09160832 1090 info->save_sel = readl(info->sel_reg);
03680b1e
BD
1091
1092 /* For the moment, we must ensure nFCE is high during
1093 * the time we are suspended. This really should be
1094 * handled by suspending the MTDs we are using, but
1095 * that is currently not the case. */
1096
09160832 1097 writel(info->save_sel | info->sel_bit, info->sel_reg);
03680b1e 1098
ac497c16 1099 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
d1fef3c5
BD
1100 }
1101
1102 return 0;
1103}
1104
1105static int s3c24xx_nand_resume(struct platform_device *dev)
1106{
1107 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
09160832 1108 unsigned long sel;
d1fef3c5
BD
1109
1110 if (info) {
ac497c16 1111 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
30821fee 1112 s3c2410_nand_inithw(info);
d1fef3c5 1113
03680b1e
BD
1114 /* Restore the state of the nFCE line. */
1115
09160832
BD
1116 sel = readl(info->sel_reg);
1117 sel &= ~info->sel_bit;
1118 sel |= info->save_sel & info->sel_bit;
1119 writel(sel, info->sel_reg);
03680b1e 1120
ac497c16 1121 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1122 }
1123
1124 return 0;
1125}
1126
1127#else
1128#define s3c24xx_nand_suspend NULL
1129#define s3c24xx_nand_resume NULL
1130#endif
1131
a4f957f1
BD
1132/* driver device registration */
1133
0abe75d2 1134static const struct platform_device_id s3c24xx_driver_ids[] = {
ec0482e6
BD
1135 {
1136 .name = "s3c2410-nand",
1137 .driver_data = TYPE_S3C2410,
1138 }, {
1139 .name = "s3c2440-nand",
1140 .driver_data = TYPE_S3C2440,
1141 }, {
1142 .name = "s3c2412-nand",
1143 .driver_data = TYPE_S3C2412,
9dbc0902
PK
1144 }, {
1145 .name = "s3c6400-nand",
1146 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
3ae5eaec 1147 },
ec0482e6 1148 { }
1da177e4
LT
1149};
1150
ec0482e6 1151MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
a4f957f1 1152
ec0482e6
BD
1153static struct platform_driver s3c24xx_nand_driver = {
1154 .probe = s3c24xx_nand_probe,
1155 .remove = s3c24xx_nand_remove,
2c06a082
BD
1156 .suspend = s3c24xx_nand_suspend,
1157 .resume = s3c24xx_nand_resume,
ec0482e6 1158 .id_table = s3c24xx_driver_ids,
2c06a082 1159 .driver = {
ec0482e6 1160 .name = "s3c24xx-nand",
2c06a082
BD
1161 },
1162};
1163
056fcab5 1164module_platform_driver(s3c24xx_nand_driver);
1da177e4
LT
1165
1166MODULE_LICENSE("GPL");
1167MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
a4f957f1 1168MODULE_DESCRIPTION("S3C24XX MTD NAND driver");