]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/mtd/nand/s3c2410.c
[MTD] [NAND] S3C2410: Small colon cleanup
[mirror_ubuntu-jammy-kernel.git] / drivers / mtd / nand / s3c2410.c
CommitLineData
1da177e4
LT
1/* linux/drivers/mtd/nand/s3c2410.c
2 *
7e74a507
BD
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
fdf2fd52 5 * Ben Dooks <ben@simtec.co.uk>
1da177e4 6 *
7e74a507 7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
1da177e4 8 *
1da177e4
LT
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22*/
23
1da177e4
LT
24#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
25#define DEBUG
26#endif
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/ioport.h>
d052d1be 34#include <linux/platform_device.h>
1da177e4
LT
35#include <linux/delay.h>
36#include <linux/err.h>
4e57b681 37#include <linux/slab.h>
f8ce2547 38#include <linux/clk.h>
30821fee 39#include <linux/cpufreq.h>
1da177e4
LT
40
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
44#include <linux/mtd/partitions.h>
45
46#include <asm/io.h>
1da177e4 47
7926b5a3
BD
48#include <plat/regs-nand.h>
49#include <plat/nand.h>
1da177e4 50
1da177e4
LT
51#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52static int hardware_ecc = 1;
53#else
54static int hardware_ecc = 0;
55#endif
56
d1fef3c5
BD
57#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58static int clock_stop = 1;
59#else
60static const int clock_stop = 0;
61#endif
62
63
1da177e4
LT
64/* new oob placement block for use with hardware ecc generation
65 */
66
5bd34c09 67static struct nand_ecclayout nand_hw_eccoob = {
e0c7d767
DW
68 .eccbytes = 3,
69 .eccpos = {0, 1, 2},
70 .oobfree = {{8, 8}}
1da177e4
LT
71};
72
73/* controller and mtd information */
74
75struct s3c2410_nand_info;
76
3db72151
BD
77/**
78 * struct s3c2410_nand_mtd - driver MTD structure
79 * @mtd: The MTD instance to pass to the MTD layer.
80 * @chip: The NAND chip information.
81 * @set: The platform information supplied for this set of NAND chips.
82 * @info: Link back to the hardware information.
83 * @scan_res: The result from calling nand_scan_ident().
84*/
1da177e4
LT
85struct s3c2410_nand_mtd {
86 struct mtd_info mtd;
87 struct nand_chip chip;
88 struct s3c2410_nand_set *set;
89 struct s3c2410_nand_info *info;
90 int scan_res;
91};
92
2c06a082
BD
93enum s3c_cpu_type {
94 TYPE_S3C2410,
95 TYPE_S3C2412,
96 TYPE_S3C2440,
97};
98
1da177e4
LT
99/* overview of the s3c2410 nand state */
100
3db72151
BD
101/**
102 * struct s3c2410_nand_info - NAND controller state.
103 * @mtds: An array of MTD instances on this controoler.
104 * @platform: The platform data for this board.
105 * @device: The platform device we bound to.
106 * @area: The IO area resource that came from request_mem_region().
107 * @clk: The clock resource for this controller.
108 * @regs: The area mapped for the hardware registers described by @area.
109 * @sel_reg: Pointer to the register controlling the NAND selection.
110 * @sel_bit: The bit in @sel_reg to select the NAND chip.
111 * @mtd_count: The number of MTDs created from this controller.
112 * @save_sel: The contents of @sel_reg to be saved over suspend.
113 * @clk_rate: The clock rate from @clk.
114 * @cpu_type: The exact type of this controller.
115 */
1da177e4
LT
116struct s3c2410_nand_info {
117 /* mtd info */
118 struct nand_hw_control controller;
119 struct s3c2410_nand_mtd *mtds;
120 struct s3c2410_platform_nand *platform;
121
122 /* device info */
123 struct device *device;
124 struct resource *area;
125 struct clk *clk;
fdf2fd52 126 void __iomem *regs;
2c06a082
BD
127 void __iomem *sel_reg;
128 int sel_bit;
1da177e4 129 int mtd_count;
09160832 130 unsigned long save_sel;
30821fee 131 unsigned long clk_rate;
03680b1e 132
2c06a082 133 enum s3c_cpu_type cpu_type;
30821fee
BD
134
135#ifdef CONFIG_CPU_FREQ
136 struct notifier_block freq_transition;
137#endif
1da177e4
LT
138};
139
140/* conversion functions */
141
142static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
143{
144 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
145}
146
147static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
148{
149 return s3c2410_nand_mtd_toours(mtd)->info;
150}
151
3ae5eaec 152static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
1da177e4 153{
3ae5eaec 154 return platform_get_drvdata(dev);
1da177e4
LT
155}
156
3ae5eaec 157static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
1da177e4 158{
3ae5eaec 159 return dev->dev.platform_data;
1da177e4
LT
160}
161
d1fef3c5
BD
162static inline int allow_clk_stop(struct s3c2410_nand_info *info)
163{
164 return clock_stop;
165}
166
1da177e4
LT
167/* timing calculations */
168
cfd320fb 169#define NS_IN_KHZ 1000000
1da177e4 170
3db72151
BD
171/**
172 * s3c_nand_calc_rate - calculate timing data.
173 * @wanted: The cycle time in nanoseconds.
174 * @clk: The clock rate in kHz.
175 * @max: The maximum divider value.
176 *
177 * Calculate the timing value from the given parameters.
178 */
2c06a082 179static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
1da177e4
LT
180{
181 int result;
182
cfd320fb 183 result = (wanted * clk) / NS_IN_KHZ;
1da177e4
LT
184 result++;
185
186 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
187
188 if (result > max) {
e0c7d767 189 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
1da177e4
LT
190 return -1;
191 }
192
193 if (result < 1)
194 result = 1;
195
196 return result;
197}
198
cfd320fb 199#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
1da177e4
LT
200
201/* controller setup */
202
3db72151
BD
203/**
204 * s3c2410_nand_setrate - setup controller timing information.
205 * @info: The controller instance.
206 *
207 * Given the information supplied by the platform, calculate and set
208 * the necessary timing registers in the hardware to generate the
209 * necessary timing cycles to the hardware.
210 */
30821fee 211static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
1da177e4 212{
30821fee 213 struct s3c2410_platform_nand *plat = info->platform;
2c06a082 214 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
cfd320fb 215 int tacls, twrph0, twrph1;
30821fee
BD
216 unsigned long clkrate = clk_get_rate(info->clk);
217 unsigned long set, cfg, mask;
218 unsigned long flags;
1da177e4
LT
219
220 /* calculate the timing information for the controller */
221
30821fee 222 info->clk_rate = clkrate;
cfd320fb
BD
223 clkrate /= 1000; /* turn clock into kHz for ease of use */
224
1da177e4 225 if (plat != NULL) {
2c06a082
BD
226 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
227 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
228 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
1da177e4
LT
229 } else {
230 /* default timings */
2c06a082 231 tacls = tacls_max;
1da177e4
LT
232 twrph0 = 8;
233 twrph1 = 8;
234 }
61b03bd7 235
1da177e4 236 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
99974c62 237 dev_err(info->device, "cannot get suitable timings\n");
1da177e4
LT
238 return -EINVAL;
239 }
240
99974c62 241 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
e0c7d767 242 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
1da177e4 243
30821fee
BD
244 switch (info->cpu_type) {
245 case TYPE_S3C2410:
246 mask = (S3C2410_NFCONF_TACLS(3) |
247 S3C2410_NFCONF_TWRPH0(7) |
248 S3C2410_NFCONF_TWRPH1(7));
249 set = S3C2410_NFCONF_EN;
250 set |= S3C2410_NFCONF_TACLS(tacls - 1);
251 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
252 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
253 break;
254
255 case TYPE_S3C2440:
256 case TYPE_S3C2412:
257 mask = (S3C2410_NFCONF_TACLS(tacls_max - 1) |
258 S3C2410_NFCONF_TWRPH0(7) |
259 S3C2410_NFCONF_TWRPH1(7));
260
261 set = S3C2440_NFCONF_TACLS(tacls - 1);
262 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
263 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
264 break;
265
266 default:
267 /* keep compiler happy */
268 mask = 0;
269 set = 0;
270 BUG();
271 }
272
273 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
274
275 local_irq_save(flags);
276
277 cfg = readl(info->regs + S3C2410_NFCONF);
278 cfg &= ~mask;
279 cfg |= set;
280 writel(cfg, info->regs + S3C2410_NFCONF);
281
282 local_irq_restore(flags);
283
284 return 0;
285}
286
3db72151
BD
287/**
288 * s3c2410_nand_inithw - basic hardware initialisation
289 * @info: The hardware state.
290 *
291 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
292 * to setup the hardware access speeds and set the controller to be enabled.
293*/
30821fee
BD
294static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
295{
296 int ret;
297
298 ret = s3c2410_nand_setrate(info);
299 if (ret < 0)
300 return ret;
301
2c06a082
BD
302 switch (info->cpu_type) {
303 case TYPE_S3C2410:
30821fee 304 default:
2c06a082
BD
305 break;
306
307 case TYPE_S3C2440:
308 case TYPE_S3C2412:
d1fef3c5
BD
309 /* enable the controller and de-assert nFCE */
310
2c06a082 311 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
a4f957f1 312 }
1da177e4 313
1da177e4
LT
314 return 0;
315}
316
3db72151
BD
317/**
318 * s3c2410_nand_select_chip - select the given nand chip
319 * @mtd: The MTD instance for this chip.
320 * @chip: The chip number.
321 *
322 * This is called by the MTD layer to either select a given chip for the
323 * @mtd instance, or to indicate that the access has finished and the
324 * chip can be de-selected.
325 *
326 * The routine ensures that the nFCE line is correctly setup, and any
327 * platform specific selection code is called to route nFCE to the specific
328 * chip.
329 */
1da177e4
LT
330static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
331{
332 struct s3c2410_nand_info *info;
61b03bd7 333 struct s3c2410_nand_mtd *nmtd;
1da177e4
LT
334 struct nand_chip *this = mtd->priv;
335 unsigned long cur;
336
337 nmtd = this->priv;
338 info = nmtd->info;
339
d1fef3c5
BD
340 if (chip != -1 && allow_clk_stop(info))
341 clk_enable(info->clk);
342
2c06a082 343 cur = readl(info->sel_reg);
1da177e4
LT
344
345 if (chip == -1) {
2c06a082 346 cur |= info->sel_bit;
1da177e4 347 } else {
fb8d82a8 348 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
99974c62 349 dev_err(info->device, "invalid chip %d\n", chip);
1da177e4
LT
350 return;
351 }
352
353 if (info->platform != NULL) {
354 if (info->platform->select_chip != NULL)
e0c7d767 355 (info->platform->select_chip) (nmtd->set, chip);
1da177e4
LT
356 }
357
2c06a082 358 cur &= ~info->sel_bit;
1da177e4
LT
359 }
360
2c06a082 361 writel(cur, info->sel_reg);
d1fef3c5
BD
362
363 if (chip == -1 && allow_clk_stop(info))
364 clk_disable(info->clk);
1da177e4
LT
365}
366
ad3b5fb7 367/* s3c2410_nand_hwcontrol
a4f957f1 368 *
ad3b5fb7 369 * Issue command and address cycles to the chip
a4f957f1 370*/
1da177e4 371
7abd3ef9 372static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
f9068876 373 unsigned int ctrl)
1da177e4
LT
374{
375 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
c9ac5977 376
7abd3ef9
TG
377 if (cmd == NAND_CMD_NONE)
378 return;
379
f9068876 380 if (ctrl & NAND_CLE)
7abd3ef9
TG
381 writeb(cmd, info->regs + S3C2410_NFCMD);
382 else
383 writeb(cmd, info->regs + S3C2410_NFADDR);
a4f957f1
BD
384}
385
386/* command and control functions */
387
f9068876
DW
388static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
389 unsigned int ctrl)
a4f957f1
BD
390{
391 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4 392
7abd3ef9
TG
393 if (cmd == NAND_CMD_NONE)
394 return;
395
f9068876 396 if (ctrl & NAND_CLE)
7abd3ef9
TG
397 writeb(cmd, info->regs + S3C2440_NFCMD);
398 else
399 writeb(cmd, info->regs + S3C2440_NFADDR);
1da177e4
LT
400}
401
1da177e4
LT
402/* s3c2410_nand_devready()
403 *
404 * returns 0 if the nand is busy, 1 if it is ready
405*/
406
407static int s3c2410_nand_devready(struct mtd_info *mtd)
408{
409 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4
LT
410 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
411}
412
2c06a082
BD
413static int s3c2440_nand_devready(struct mtd_info *mtd)
414{
415 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
416 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
417}
418
419static int s3c2412_nand_devready(struct mtd_info *mtd)
420{
421 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
422 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
423}
424
1da177e4
LT
425/* ECC handling functions */
426
2c06a082
BD
427static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
428 u_char *read_ecc, u_char *calc_ecc)
1da177e4 429{
a2593247
BD
430 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
431 unsigned int diff0, diff1, diff2;
432 unsigned int bit, byte;
433
434 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
435
436 diff0 = read_ecc[0] ^ calc_ecc[0];
437 diff1 = read_ecc[1] ^ calc_ecc[1];
438 diff2 = read_ecc[2] ^ calc_ecc[2];
439
440 pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
441 __func__,
442 read_ecc[0], read_ecc[1], read_ecc[2],
443 calc_ecc[0], calc_ecc[1], calc_ecc[2],
444 diff0, diff1, diff2);
445
446 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
447 return 0; /* ECC is ok */
448
c45c6c68
BD
449 /* sometimes people do not think about using the ECC, so check
450 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
451 * the error, on the assumption that this is an un-eccd page.
452 */
453 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
454 && info->platform->ignore_unset_ecc)
455 return 0;
456
a2593247
BD
457 /* Can we correct this ECC (ie, one row and column change).
458 * Note, this is similar to the 256 error code on smartmedia */
459
460 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
461 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
462 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
463 /* calculate the bit position of the error */
464
d0bf3793
MR
465 bit = ((diff2 >> 3) & 1) |
466 ((diff2 >> 4) & 2) |
467 ((diff2 >> 5) & 4);
1da177e4 468
a2593247 469 /* calculate the byte position of the error */
1da177e4 470
d0bf3793
MR
471 byte = ((diff2 << 7) & 0x100) |
472 ((diff1 << 0) & 0x80) |
473 ((diff1 << 1) & 0x40) |
474 ((diff1 << 2) & 0x20) |
475 ((diff1 << 3) & 0x10) |
476 ((diff0 >> 4) & 0x08) |
477 ((diff0 >> 3) & 0x04) |
478 ((diff0 >> 2) & 0x02) |
479 ((diff0 >> 1) & 0x01);
a2593247
BD
480
481 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
482 bit, byte);
483
484 dat[byte] ^= (1 << bit);
485 return 1;
486 }
487
488 /* if there is only one bit difference in the ECC, then
489 * one of only a row or column parity has changed, which
490 * means the error is most probably in the ECC itself */
491
492 diff0 |= (diff1 << 8);
493 diff0 |= (diff2 << 16);
494
495 if ((diff0 & ~(1<<fls(diff0))) == 0)
496 return 1;
497
4fac9f69 498 return -1;
1da177e4
LT
499}
500
a4f957f1
BD
501/* ECC functions
502 *
503 * These allow the s3c2410 and s3c2440 to use the controller's ECC
504 * generator block to ECC the data as it passes through]
505*/
506
1da177e4
LT
507static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
508{
509 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
510 unsigned long ctrl;
511
512 ctrl = readl(info->regs + S3C2410_NFCONF);
513 ctrl |= S3C2410_NFCONF_INITECC;
514 writel(ctrl, info->regs + S3C2410_NFCONF);
515}
516
4f659923
MC
517static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
518{
519 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
520 unsigned long ctrl;
521
522 ctrl = readl(info->regs + S3C2440_NFCONT);
523 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
524}
525
a4f957f1
BD
526static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
527{
528 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
529 unsigned long ctrl;
530
531 ctrl = readl(info->regs + S3C2440_NFCONT);
532 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
533}
534
e0c7d767 535static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
1da177e4
LT
536{
537 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
538
539 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
540 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
541 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
542
a2593247
BD
543 pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
544 ecc_code[0], ecc_code[1], ecc_code[2]);
1da177e4
LT
545
546 return 0;
547}
548
4f659923
MC
549static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
550{
551 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
552 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
553
554 ecc_code[0] = ecc;
555 ecc_code[1] = ecc >> 8;
556 ecc_code[2] = ecc >> 16;
557
558 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
559
560 return 0;
561}
562
e0c7d767 563static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
a4f957f1
BD
564{
565 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
566 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
567
568 ecc_code[0] = ecc;
569 ecc_code[1] = ecc >> 8;
570 ecc_code[2] = ecc >> 16;
571
71d54f38 572 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
a4f957f1
BD
573
574 return 0;
575}
576
a4f957f1
BD
577/* over-ride the standard functions for a little more speed. We can
578 * use read/write block to move the data buffers to/from the controller
579*/
1da177e4
LT
580
581static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
582{
583 struct nand_chip *this = mtd->priv;
584 readsb(this->IO_ADDR_R, buf, len);
585}
586
b773bb2e
MR
587static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
588{
589 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
590 readsl(info->regs + S3C2440_NFDATA, buf, len / 4);
591}
592
e0c7d767 593static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1da177e4
LT
594{
595 struct nand_chip *this = mtd->priv;
596 writesb(this->IO_ADDR_W, buf, len);
597}
598
b773bb2e
MR
599static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
600{
601 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
602 writesl(info->regs + S3C2440_NFDATA, buf, len / 4);
603}
604
30821fee
BD
605/* cpufreq driver support */
606
607#ifdef CONFIG_CPU_FREQ
608
609static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
610 unsigned long val, void *data)
611{
612 struct s3c2410_nand_info *info;
613 unsigned long newclk;
614
615 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
616 newclk = clk_get_rate(info->clk);
617
618 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
619 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
620 s3c2410_nand_setrate(info);
621 }
622
623 return 0;
624}
625
626static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
627{
628 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
629
630 return cpufreq_register_notifier(&info->freq_transition,
631 CPUFREQ_TRANSITION_NOTIFIER);
632}
633
634static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
635{
636 cpufreq_unregister_notifier(&info->freq_transition,
637 CPUFREQ_TRANSITION_NOTIFIER);
638}
639
640#else
641static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
642{
643 return 0;
644}
645
646static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
647{
648}
649#endif
650
1da177e4
LT
651/* device management functions */
652
ec0482e6 653static int s3c24xx_nand_remove(struct platform_device *pdev)
1da177e4 654{
3ae5eaec 655 struct s3c2410_nand_info *info = to_nand_info(pdev);
1da177e4 656
3ae5eaec 657 platform_set_drvdata(pdev, NULL);
1da177e4 658
61b03bd7 659 if (info == NULL)
1da177e4
LT
660 return 0;
661
30821fee
BD
662 s3c2410_nand_cpufreq_deregister(info);
663
664 /* Release all our mtds and their partitions, then go through
665 * freeing the resources used
1da177e4 666 */
61b03bd7 667
1da177e4
LT
668 if (info->mtds != NULL) {
669 struct s3c2410_nand_mtd *ptr = info->mtds;
670 int mtdno;
671
672 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
673 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
674 nand_release(&ptr->mtd);
675 }
676
677 kfree(info->mtds);
678 }
679
680 /* free the common resources */
681
682 if (info->clk != NULL && !IS_ERR(info->clk)) {
d1fef3c5
BD
683 if (!allow_clk_stop(info))
684 clk_disable(info->clk);
1da177e4
LT
685 clk_put(info->clk);
686 }
687
688 if (info->regs != NULL) {
689 iounmap(info->regs);
690 info->regs = NULL;
691 }
692
693 if (info->area != NULL) {
694 release_resource(info->area);
695 kfree(info->area);
696 info->area = NULL;
697 }
698
699 kfree(info);
700
701 return 0;
702}
703
704#ifdef CONFIG_MTD_PARTITIONS
705static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
706 struct s3c2410_nand_mtd *mtd,
707 struct s3c2410_nand_set *set)
708{
709 if (set == NULL)
710 return add_mtd_device(&mtd->mtd);
711
712 if (set->nr_partitions > 0 && set->partitions != NULL) {
e0c7d767 713 return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
1da177e4
LT
714 }
715
716 return add_mtd_device(&mtd->mtd);
717}
718#else
719static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
720 struct s3c2410_nand_mtd *mtd,
721 struct s3c2410_nand_set *set)
722{
723 return add_mtd_device(&mtd->mtd);
724}
725#endif
726
3db72151
BD
727/**
728 * s3c2410_nand_init_chip - initialise a single instance of an chip
729 * @info: The base NAND controller the chip is on.
730 * @nmtd: The new controller MTD instance to fill in.
731 * @set: The information passed from the board specific platform data.
1da177e4 732 *
3db72151
BD
733 * Initialise the given @nmtd from the information in @info and @set. This
734 * readies the structure for use with the MTD layer functions by ensuring
735 * all pointers are setup and the necessary control routines selected.
736 */
1da177e4
LT
737static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
738 struct s3c2410_nand_mtd *nmtd,
739 struct s3c2410_nand_set *set)
740{
741 struct nand_chip *chip = &nmtd->chip;
2c06a082 742 void __iomem *regs = info->regs;
1da177e4 743
1da177e4
LT
744 chip->write_buf = s3c2410_nand_write_buf;
745 chip->read_buf = s3c2410_nand_read_buf;
746 chip->select_chip = s3c2410_nand_select_chip;
747 chip->chip_delay = 50;
748 chip->priv = nmtd;
749 chip->options = 0;
750 chip->controller = &info->controller;
751
2c06a082
BD
752 switch (info->cpu_type) {
753 case TYPE_S3C2410:
754 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
755 info->sel_reg = regs + S3C2410_NFCONF;
756 info->sel_bit = S3C2410_NFCONF_nFCE;
757 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
758 chip->dev_ready = s3c2410_nand_devready;
759 break;
760
761 case TYPE_S3C2440:
762 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
763 info->sel_reg = regs + S3C2440_NFCONT;
764 info->sel_bit = S3C2440_NFCONT_nFCE;
765 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
766 chip->dev_ready = s3c2440_nand_devready;
b773bb2e
MR
767 chip->read_buf = s3c2440_nand_read_buf;
768 chip->write_buf = s3c2440_nand_write_buf;
2c06a082
BD
769 break;
770
771 case TYPE_S3C2412:
772 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
773 info->sel_reg = regs + S3C2440_NFCONT;
774 info->sel_bit = S3C2412_NFCONT_nFCE0;
775 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
776 chip->dev_ready = s3c2412_nand_devready;
777
778 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
779 dev_info(info->device, "System booted from NAND\n");
780
781 break;
782 }
783
784 chip->IO_ADDR_R = chip->IO_ADDR_W;
a4f957f1 785
1da177e4
LT
786 nmtd->info = info;
787 nmtd->mtd.priv = chip;
552d9205 788 nmtd->mtd.owner = THIS_MODULE;
1da177e4
LT
789 nmtd->set = set;
790
791 if (hardware_ecc) {
6dfc6d25 792 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
2c06a082 793 chip->ecc.correct = s3c2410_nand_correct_data;
6dfc6d25 794 chip->ecc.mode = NAND_ECC_HW;
a4f957f1 795
2c06a082
BD
796 switch (info->cpu_type) {
797 case TYPE_S3C2410:
798 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
799 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
800 break;
801
802 case TYPE_S3C2412:
4f659923
MC
803 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
804 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
805 break;
806
2c06a082
BD
807 case TYPE_S3C2440:
808 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
809 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
810 break;
811
a4f957f1 812 }
1da177e4 813 } else {
6dfc6d25 814 chip->ecc.mode = NAND_ECC_SOFT;
1da177e4 815 }
1c21ab67
BD
816
817 if (set->ecc_layout != NULL)
818 chip->ecc.layout = set->ecc_layout;
37e5ffa3
BD
819
820 if (set->disable_ecc)
821 chip->ecc.mode = NAND_ECC_NONE;
8c3e843d
AG
822
823 switch (chip->ecc.mode) {
824 case NAND_ECC_NONE:
825 dev_info(info->device, "NAND ECC disabled\n");
826 break;
827 case NAND_ECC_SOFT:
828 dev_info(info->device, "NAND soft ECC\n");
829 break;
830 case NAND_ECC_HW:
831 dev_info(info->device, "NAND hardware ECC\n");
832 break;
833 default:
834 dev_info(info->device, "NAND ECC UNKNOWN\n");
835 break;
836 }
1da177e4
LT
837}
838
3db72151
BD
839/**
840 * s3c2410_nand_update_chip - post probe update
841 * @info: The controller instance.
842 * @nmtd: The driver version of the MTD instance.
71d54f38 843 *
3db72151
BD
844 * This routine is called after the chip probe has succesfully completed
845 * and the relevant per-chip information updated. This call ensure that
846 * we update the internal state accordingly.
847 *
848 * The internal state is currently limited to the ECC state information.
849*/
71d54f38
BD
850static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
851 struct s3c2410_nand_mtd *nmtd)
852{
853 struct nand_chip *chip = &nmtd->chip;
854
451d3399
BD
855 dev_dbg(info->device, "chip %p => page shift %d\n",
856 chip, chip->page_shift);
71d54f38 857
8c3e843d
AG
858 if (chip->ecc.mode != NAND_ECC_HW)
859 return;
860
71d54f38
BD
861 /* change the behaviour depending on wether we are using
862 * the large or small page nand device */
863
8c3e843d
AG
864 if (chip->page_shift > 10) {
865 chip->ecc.size = 256;
866 chip->ecc.bytes = 3;
867 } else {
868 chip->ecc.size = 512;
869 chip->ecc.bytes = 3;
870 chip->ecc.layout = &nand_hw_eccoob;
71d54f38
BD
871 }
872}
873
ec0482e6 874/* s3c24xx_nand_probe
1da177e4
LT
875 *
876 * called by device layer when it finds a device matching
877 * one our driver can handled. This code checks to see if
878 * it can allocate all necessary resources then calls the
879 * nand layer to look for devices
880*/
ec0482e6 881static int s3c24xx_nand_probe(struct platform_device *pdev)
1da177e4 882{
3ae5eaec 883 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
ec0482e6 884 enum s3c_cpu_type cpu_type;
1da177e4
LT
885 struct s3c2410_nand_info *info;
886 struct s3c2410_nand_mtd *nmtd;
887 struct s3c2410_nand_set *sets;
888 struct resource *res;
889 int err = 0;
890 int size;
891 int nr_sets;
892 int setno;
893
ec0482e6
BD
894 cpu_type = platform_get_device_id(pdev)->driver_data;
895
3ae5eaec 896 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
1da177e4
LT
897
898 info = kmalloc(sizeof(*info), GFP_KERNEL);
899 if (info == NULL) {
3ae5eaec 900 dev_err(&pdev->dev, "no memory for flash info\n");
1da177e4
LT
901 err = -ENOMEM;
902 goto exit_error;
903 }
904
59f0cb0f 905 memset(info, 0, sizeof(*info));
3ae5eaec 906 platform_set_drvdata(pdev, info);
1da177e4
LT
907
908 spin_lock_init(&info->controller.lock);
a4f957f1 909 init_waitqueue_head(&info->controller.wq);
1da177e4
LT
910
911 /* get the clock source and enable it */
912
3ae5eaec 913 info->clk = clk_get(&pdev->dev, "nand");
1da177e4 914 if (IS_ERR(info->clk)) {
898eb71c 915 dev_err(&pdev->dev, "failed to get clock\n");
1da177e4
LT
916 err = -ENOENT;
917 goto exit_error;
918 }
919
1da177e4
LT
920 clk_enable(info->clk);
921
922 /* allocate and map the resource */
923
a4f957f1
BD
924 /* currently we assume we have the one resource */
925 res = pdev->resource;
1da177e4
LT
926 size = res->end - res->start + 1;
927
928 info->area = request_mem_region(res->start, size, pdev->name);
929
930 if (info->area == NULL) {
3ae5eaec 931 dev_err(&pdev->dev, "cannot reserve register region\n");
1da177e4
LT
932 err = -ENOENT;
933 goto exit_error;
934 }
935
3ae5eaec 936 info->device = &pdev->dev;
a4f957f1
BD
937 info->platform = plat;
938 info->regs = ioremap(res->start, size);
2c06a082 939 info->cpu_type = cpu_type;
1da177e4
LT
940
941 if (info->regs == NULL) {
3ae5eaec 942 dev_err(&pdev->dev, "cannot reserve register region\n");
1da177e4
LT
943 err = -EIO;
944 goto exit_error;
61b03bd7 945 }
1da177e4 946
3ae5eaec 947 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1da177e4
LT
948
949 /* initialise the hardware */
950
30821fee 951 err = s3c2410_nand_inithw(info);
1da177e4
LT
952 if (err != 0)
953 goto exit_error;
954
955 sets = (plat != NULL) ? plat->sets : NULL;
956 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
957
958 info->mtd_count = nr_sets;
959
960 /* allocate our information */
961
962 size = nr_sets * sizeof(*info->mtds);
963 info->mtds = kmalloc(size, GFP_KERNEL);
964 if (info->mtds == NULL) {
3ae5eaec 965 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1da177e4
LT
966 err = -ENOMEM;
967 goto exit_error;
968 }
969
59f0cb0f 970 memset(info->mtds, 0, size);
1da177e4
LT
971
972 /* initialise all possible chips */
973
974 nmtd = info->mtds;
975
976 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
e0c7d767 977 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
61b03bd7 978
1da177e4
LT
979 s3c2410_nand_init_chip(info, nmtd, sets);
980
71d54f38
BD
981 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
982 (sets) ? sets->nr_chips : 1);
1da177e4
LT
983
984 if (nmtd->scan_res == 0) {
71d54f38
BD
985 s3c2410_nand_update_chip(info, nmtd);
986 nand_scan_tail(&nmtd->mtd);
1da177e4
LT
987 s3c2410_nand_add_partition(info, nmtd, sets);
988 }
989
990 if (sets != NULL)
991 sets++;
992 }
61b03bd7 993
30821fee
BD
994 err = s3c2410_nand_cpufreq_register(info);
995 if (err < 0) {
996 dev_err(&pdev->dev, "failed to init cpufreq support\n");
997 goto exit_error;
998 }
999
d1fef3c5
BD
1000 if (allow_clk_stop(info)) {
1001 dev_info(&pdev->dev, "clock idle support enabled\n");
1002 clk_disable(info->clk);
1003 }
1004
1da177e4
LT
1005 pr_debug("initialised ok\n");
1006 return 0;
1007
1008 exit_error:
ec0482e6 1009 s3c24xx_nand_remove(pdev);
1da177e4
LT
1010
1011 if (err == 0)
1012 err = -EINVAL;
1013 return err;
1014}
1015
d1fef3c5
BD
1016/* PM Support */
1017#ifdef CONFIG_PM
1018
1019static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1020{
1021 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1022
1023 if (info) {
09160832 1024 info->save_sel = readl(info->sel_reg);
03680b1e
BD
1025
1026 /* For the moment, we must ensure nFCE is high during
1027 * the time we are suspended. This really should be
1028 * handled by suspending the MTDs we are using, but
1029 * that is currently not the case. */
1030
09160832 1031 writel(info->save_sel | info->sel_bit, info->sel_reg);
03680b1e 1032
d1fef3c5
BD
1033 if (!allow_clk_stop(info))
1034 clk_disable(info->clk);
1035 }
1036
1037 return 0;
1038}
1039
1040static int s3c24xx_nand_resume(struct platform_device *dev)
1041{
1042 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
09160832 1043 unsigned long sel;
d1fef3c5
BD
1044
1045 if (info) {
1046 clk_enable(info->clk);
30821fee 1047 s3c2410_nand_inithw(info);
d1fef3c5 1048
03680b1e
BD
1049 /* Restore the state of the nFCE line. */
1050
09160832
BD
1051 sel = readl(info->sel_reg);
1052 sel &= ~info->sel_bit;
1053 sel |= info->save_sel & info->sel_bit;
1054 writel(sel, info->sel_reg);
03680b1e 1055
d1fef3c5
BD
1056 if (allow_clk_stop(info))
1057 clk_disable(info->clk);
1058 }
1059
1060 return 0;
1061}
1062
1063#else
1064#define s3c24xx_nand_suspend NULL
1065#define s3c24xx_nand_resume NULL
1066#endif
1067
a4f957f1
BD
1068/* driver device registration */
1069
ec0482e6
BD
1070static struct platform_device_id s3c24xx_driver_ids[] = {
1071 {
1072 .name = "s3c2410-nand",
1073 .driver_data = TYPE_S3C2410,
1074 }, {
1075 .name = "s3c2440-nand",
1076 .driver_data = TYPE_S3C2440,
1077 }, {
1078 .name = "s3c2412-nand",
1079 .driver_data = TYPE_S3C2412,
3ae5eaec 1080 },
ec0482e6 1081 { }
1da177e4
LT
1082};
1083
ec0482e6 1084MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
a4f957f1 1085
ec0482e6
BD
1086static struct platform_driver s3c24xx_nand_driver = {
1087 .probe = s3c24xx_nand_probe,
1088 .remove = s3c24xx_nand_remove,
2c06a082
BD
1089 .suspend = s3c24xx_nand_suspend,
1090 .resume = s3c24xx_nand_resume,
ec0482e6 1091 .id_table = s3c24xx_driver_ids,
2c06a082 1092 .driver = {
ec0482e6 1093 .name = "s3c24xx-nand",
2c06a082
BD
1094 .owner = THIS_MODULE,
1095 },
1096};
1097
1da177e4
LT
1098static int __init s3c2410_nand_init(void)
1099{
a4f957f1
BD
1100 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1101
ec0482e6 1102 return platform_driver_register(&s3c24xx_nand_driver);
1da177e4
LT
1103}
1104
1105static void __exit s3c2410_nand_exit(void)
1106{
ec0482e6 1107 platform_driver_unregister(&s3c24xx_nand_driver);
1da177e4
LT
1108}
1109
1110module_init(s3c2410_nand_init);
1111module_exit(s3c2410_nand_exit);
1112
1113MODULE_LICENSE("GPL");
1114MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
a4f957f1 1115MODULE_DESCRIPTION("S3C24XX MTD NAND driver");