]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/spi-nor/spi-nor.c
mtd: spi-nor: handle timeout errors in spi_nor_write()
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
CommitLineData
b199489d 1/*
8eabdd1e
HS
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
b199489d
HS
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
19
20#include <linux/mtd/cfi.h>
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
27#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
28
29#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
30
70f3ce05
BH
31static const struct spi_device_id *spi_nor_match_id(const char *name);
32
b199489d
HS
33/*
34 * Read the status register, returning its value in the location
35 * Return the status register value.
36 * Returns negative if error occurred.
37 */
38static int read_sr(struct spi_nor *nor)
39{
40 int ret;
41 u8 val;
42
b02e7f3e 43 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
b199489d
HS
44 if (ret < 0) {
45 pr_err("error %d reading SR\n", (int) ret);
46 return ret;
47 }
48
49 return val;
50}
51
c14dedde 52/*
53 * Read the flag status register, returning its value in the location
54 * Return the status register value.
55 * Returns negative if error occurred.
56 */
57static int read_fsr(struct spi_nor *nor)
58{
59 int ret;
60 u8 val;
61
62 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
63 if (ret < 0) {
64 pr_err("error %d reading FSR\n", ret);
65 return ret;
66 }
67
68 return val;
69}
70
b199489d
HS
71/*
72 * Read configuration register, returning its value in the
73 * location. Return the configuration register value.
74 * Returns negative if error occured.
75 */
76static int read_cr(struct spi_nor *nor)
77{
78 int ret;
79 u8 val;
80
b02e7f3e 81 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
b199489d
HS
82 if (ret < 0) {
83 dev_err(nor->dev, "error %d reading CR\n", ret);
84 return ret;
85 }
86
87 return val;
88}
89
90/*
91 * Dummy Cycle calculation for different type of read.
92 * It can be used to support more commands with
93 * different dummy cycle requirements.
94 */
95static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
96{
97 switch (nor->flash_read) {
98 case SPI_NOR_FAST:
99 case SPI_NOR_DUAL:
100 case SPI_NOR_QUAD:
0b78a2cf 101 return 8;
b199489d
HS
102 case SPI_NOR_NORMAL:
103 return 0;
104 }
105 return 0;
106}
107
108/*
109 * Write status register 1 byte
110 * Returns negative if error occurred.
111 */
112static inline int write_sr(struct spi_nor *nor, u8 val)
113{
114 nor->cmd_buf[0] = val;
b02e7f3e 115 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
b199489d
HS
116}
117
118/*
119 * Set write enable latch with Write Enable command.
120 * Returns negative if error occurred.
121 */
122static inline int write_enable(struct spi_nor *nor)
123{
b02e7f3e 124 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
b199489d
HS
125}
126
127/*
128 * Send write disble instruction to the chip.
129 */
130static inline int write_disable(struct spi_nor *nor)
131{
b02e7f3e 132 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
b199489d
HS
133}
134
135static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
136{
137 return mtd->priv;
138}
139
140/* Enable/disable 4-byte addressing mode. */
141static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
142{
143 int status;
144 bool need_wren = false;
145 u8 cmd;
146
147 switch (JEDEC_MFR(jedec_id)) {
148 case CFI_MFR_ST: /* Micron, actually */
149 /* Some Micron need WREN command; all will accept it */
150 need_wren = true;
151 case CFI_MFR_MACRONIX:
152 case 0xEF /* winbond */:
153 if (need_wren)
154 write_enable(nor);
155
b02e7f3e 156 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
b199489d
HS
157 status = nor->write_reg(nor, cmd, NULL, 0, 0);
158 if (need_wren)
159 write_disable(nor);
160
161 return status;
162 default:
163 /* Spansion style */
164 nor->cmd_buf[0] = enable << 7;
b02e7f3e 165 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
b199489d
HS
166 }
167}
51983b7d 168static inline int spi_nor_sr_ready(struct spi_nor *nor)
b199489d 169{
51983b7d
BN
170 int sr = read_sr(nor);
171 if (sr < 0)
172 return sr;
173 else
174 return !(sr & SR_WIP);
175}
b199489d 176
51983b7d
BN
177static inline int spi_nor_fsr_ready(struct spi_nor *nor)
178{
179 int fsr = read_fsr(nor);
180 if (fsr < 0)
181 return fsr;
182 else
183 return fsr & FSR_READY;
184}
b199489d 185
51983b7d
BN
186static int spi_nor_ready(struct spi_nor *nor)
187{
188 int sr, fsr;
189 sr = spi_nor_sr_ready(nor);
190 if (sr < 0)
191 return sr;
192 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
193 if (fsr < 0)
194 return fsr;
195 return sr && fsr;
b199489d
HS
196}
197
51983b7d 198static int spi_nor_wait_till_ready(struct spi_nor *nor)
c14dedde 199{
200 unsigned long deadline;
51983b7d 201 int ret;
c14dedde 202
203 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
204
205 do {
206 cond_resched();
207
51983b7d
BN
208 ret = spi_nor_ready(nor);
209 if (ret < 0)
210 return ret;
211 if (ret)
212 return 0;
c14dedde 213 } while (!time_after_eq(jiffies, deadline));
214
215 return -ETIMEDOUT;
216}
217
b199489d
HS
218/*
219 * Service routine to read status register until ready, or timeout occurs.
220 * Returns non-zero if error.
221 */
222static int wait_till_ready(struct spi_nor *nor)
223{
224 return nor->wait_till_ready(nor);
225}
226
227/*
228 * Erase the whole flash memory
229 *
230 * Returns 0 if successful, non-zero otherwise.
231 */
232static int erase_chip(struct spi_nor *nor)
233{
234 int ret;
235
236 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
237
238 /* Wait until finished previous write command. */
239 ret = wait_till_ready(nor);
240 if (ret)
241 return ret;
242
243 /* Send write enable, then erase commands. */
244 write_enable(nor);
245
b02e7f3e 246 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
b199489d
HS
247}
248
249static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
250{
251 int ret = 0;
252
253 mutex_lock(&nor->lock);
254
255 if (nor->prepare) {
256 ret = nor->prepare(nor, ops);
257 if (ret) {
258 dev_err(nor->dev, "failed in the preparation.\n");
259 mutex_unlock(&nor->lock);
260 return ret;
261 }
262 }
263 return ret;
264}
265
266static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
267{
268 if (nor->unprepare)
269 nor->unprepare(nor, ops);
270 mutex_unlock(&nor->lock);
271}
272
273/*
274 * Erase an address range on the nor chip. The address range may extend
275 * one or more erase sectors. Return an error is there is a problem erasing.
276 */
277static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
278{
279 struct spi_nor *nor = mtd_to_spi_nor(mtd);
280 u32 addr, len;
281 uint32_t rem;
282 int ret;
283
284 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
285 (long long)instr->len);
286
287 div_u64_rem(instr->len, mtd->erasesize, &rem);
288 if (rem)
289 return -EINVAL;
290
291 addr = instr->addr;
292 len = instr->len;
293
294 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
295 if (ret)
296 return ret;
297
298 /* whole-chip erase? */
299 if (len == mtd->size) {
300 if (erase_chip(nor)) {
301 ret = -EIO;
302 goto erase_err;
303 }
304
305 /* REVISIT in some cases we could speed up erasing large regions
b02e7f3e 306 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
b199489d
HS
307 * to use "small sector erase", but that's not always optimal.
308 */
309
310 /* "sector"-at-a-time erase */
311 } else {
312 while (len) {
313 if (nor->erase(nor, addr)) {
314 ret = -EIO;
315 goto erase_err;
316 }
317
318 addr += mtd->erasesize;
319 len -= mtd->erasesize;
320 }
321 }
322
323 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
324
325 instr->state = MTD_ERASE_DONE;
326 mtd_erase_callback(instr);
327
328 return ret;
329
330erase_err:
331 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
332 instr->state = MTD_ERASE_FAILED;
333 return ret;
334}
335
336static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
337{
338 struct spi_nor *nor = mtd_to_spi_nor(mtd);
339 uint32_t offset = ofs;
340 uint8_t status_old, status_new;
341 int ret = 0;
342
343 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
344 if (ret)
345 return ret;
346
347 /* Wait until finished previous command */
348 ret = wait_till_ready(nor);
349 if (ret)
350 goto err;
351
352 status_old = read_sr(nor);
353
354 if (offset < mtd->size - (mtd->size / 2))
355 status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
356 else if (offset < mtd->size - (mtd->size / 4))
357 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
358 else if (offset < mtd->size - (mtd->size / 8))
359 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
360 else if (offset < mtd->size - (mtd->size / 16))
361 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
362 else if (offset < mtd->size - (mtd->size / 32))
363 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
364 else if (offset < mtd->size - (mtd->size / 64))
365 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
366 else
367 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
368
369 /* Only modify protection if it will not unlock other areas */
370 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
371 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
372 write_enable(nor);
373 ret = write_sr(nor, status_new);
374 if (ret)
375 goto err;
376 }
377
378err:
379 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
380 return ret;
381}
382
383static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
384{
385 struct spi_nor *nor = mtd_to_spi_nor(mtd);
386 uint32_t offset = ofs;
387 uint8_t status_old, status_new;
388 int ret = 0;
389
390 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
391 if (ret)
392 return ret;
393
394 /* Wait until finished previous command */
395 ret = wait_till_ready(nor);
396 if (ret)
397 goto err;
398
399 status_old = read_sr(nor);
400
401 if (offset+len > mtd->size - (mtd->size / 64))
402 status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
403 else if (offset+len > mtd->size - (mtd->size / 32))
404 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
405 else if (offset+len > mtd->size - (mtd->size / 16))
406 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
407 else if (offset+len > mtd->size - (mtd->size / 8))
408 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
409 else if (offset+len > mtd->size - (mtd->size / 4))
410 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
411 else if (offset+len > mtd->size - (mtd->size / 2))
412 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
413 else
414 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
415
416 /* Only modify protection if it will not lock other areas */
417 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
418 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
419 write_enable(nor);
420 ret = write_sr(nor, status_new);
421 if (ret)
422 goto err;
423 }
424
425err:
426 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
427 return ret;
428}
429
430struct flash_info {
431 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
432 * a high byte of zero plus three data bytes: the manufacturer id,
433 * then a two byte device id.
434 */
435 u32 jedec_id;
436 u16 ext_id;
437
b02e7f3e 438 /* The size listed here is what works with SPINOR_OP_SE, which isn't
b199489d
HS
439 * necessarily called a "sector" by the vendor.
440 */
441 unsigned sector_size;
442 u16 n_sectors;
443
444 u16 page_size;
445 u16 addr_width;
446
447 u16 flags;
b02e7f3e 448#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
b199489d
HS
449#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
450#define SST_WRITE 0x04 /* use SST byte programming */
451#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
b02e7f3e 452#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
b199489d
HS
453#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
454#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
c14dedde 455#define USE_FSR 0x80 /* use flag status register */
b199489d
HS
456};
457
458#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
459 ((kernel_ulong_t)&(struct flash_info) { \
460 .jedec_id = (_jedec_id), \
461 .ext_id = (_ext_id), \
462 .sector_size = (_sector_size), \
463 .n_sectors = (_n_sectors), \
464 .page_size = 256, \
465 .flags = (_flags), \
466 })
467
468#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
469 ((kernel_ulong_t)&(struct flash_info) { \
470 .sector_size = (_sector_size), \
471 .n_sectors = (_n_sectors), \
472 .page_size = (_page_size), \
473 .addr_width = (_addr_width), \
474 .flags = (_flags), \
475 })
476
477/* NOTE: double check command sets and memory organization when you add
478 * more nor chips. This current list focusses on newer chips, which
479 * have been converging on command sets which including JEDEC ID.
480 */
a5b7616c 481static const struct spi_device_id spi_nor_ids[] = {
b199489d
HS
482 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
483 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
484 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
485
486 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
487 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
488 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
489
490 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
491 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
492 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
493 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
494
495 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
496
497 /* EON -- en25xxx */
498 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
499 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
500 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
501 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
502 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
a41595b3 503 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
b199489d
HS
504 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
505
506 /* ESMT */
507 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
508
509 /* Everspin */
510 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
511 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
512
513 /* GigaDevice */
514 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
515 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
516
517 /* Intel/Numonyx -- xxxs33b */
518 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
519 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
520 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
521
522 /* Macronix */
523 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
524 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
525 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
526 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
527 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
528 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
529 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
530 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
531 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
532 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
533 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
534 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
535 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
536
537 /* Micron */
538 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
539 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
540 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
541 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
542 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
c14dedde 543 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
544 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
b199489d
HS
545
546 /* PMC */
547 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
548 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
549 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
550
551 /* Spansion -- single (large) sector size only, at least
552 * for the chips listed here (without boot sectors).
553 */
9ab86995 554 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
555 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
556 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
557 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
558 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
559 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
560 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
561 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
562 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
563 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
564 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
565 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
566 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
567 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
568 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
569 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
570 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
571 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
572
573 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
574 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
575 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
576 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
577 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
578 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
579 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
580 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
581 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
582 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
583
584 /* ST Microelectronics -- newer production may have feature updates */
585 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
586 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
587 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
588 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
589 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
590 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
591 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
592 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
593 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
594 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
595
596 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
597 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
598 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
599 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
600 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
601 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
602 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
603 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
604 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
605
606 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
607 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
608 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
609
610 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
611 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
612 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
613
614 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
615 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
616 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
617 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
618 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
f2fabe16 619 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
b199489d
HS
620
621 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
622 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
623 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
624 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
625 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
626 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
627 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
628 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
629 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
630 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
631 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
632 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
633 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
634 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
635 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
636
637 /* Catalyst / On Semiconductor -- non-JEDEC */
638 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
639 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
640 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
641 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
642 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
643 { },
644};
645
646static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
647{
648 int tmp;
649 u8 id[5];
650 u32 jedec;
651 u16 ext_jedec;
652 struct flash_info *info;
653
b02e7f3e 654 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
b199489d
HS
655 if (tmp < 0) {
656 dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
657 return ERR_PTR(tmp);
658 }
659 jedec = id[0];
660 jedec = jedec << 8;
661 jedec |= id[1];
662 jedec = jedec << 8;
663 jedec |= id[2];
664
665 ext_jedec = id[3] << 8 | id[4];
666
667 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
668 info = (void *)spi_nor_ids[tmp].driver_data;
669 if (info->jedec_id == jedec) {
670 if (info->ext_id == 0 || info->ext_id == ext_jedec)
671 return &spi_nor_ids[tmp];
672 }
673 }
674 dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
675 return ERR_PTR(-ENODEV);
676}
677
b199489d
HS
678static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
679 size_t *retlen, u_char *buf)
680{
681 struct spi_nor *nor = mtd_to_spi_nor(mtd);
682 int ret;
683
684 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
685
686 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
687 if (ret)
688 return ret;
689
690 ret = nor->read(nor, from, len, retlen, buf);
691
692 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
693 return ret;
694}
695
696static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
697 size_t *retlen, const u_char *buf)
698{
699 struct spi_nor *nor = mtd_to_spi_nor(mtd);
700 size_t actual;
701 int ret;
702
703 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
704
705 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
706 if (ret)
707 return ret;
708
709 /* Wait until finished previous write command. */
710 ret = wait_till_ready(nor);
711 if (ret)
712 goto time_out;
713
714 write_enable(nor);
715
716 nor->sst_write_second = false;
717
718 actual = to % 2;
719 /* Start write from odd address. */
720 if (actual) {
b02e7f3e 721 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
722
723 /* write one byte. */
724 nor->write(nor, to, 1, retlen, buf);
725 ret = wait_till_ready(nor);
726 if (ret)
727 goto time_out;
728 }
729 to += actual;
730
731 /* Write out most of the data here. */
732 for (; actual < len - 1; actual += 2) {
b02e7f3e 733 nor->program_opcode = SPINOR_OP_AAI_WP;
b199489d
HS
734
735 /* write two bytes. */
736 nor->write(nor, to, 2, retlen, buf + actual);
737 ret = wait_till_ready(nor);
738 if (ret)
739 goto time_out;
740 to += 2;
741 nor->sst_write_second = true;
742 }
743 nor->sst_write_second = false;
744
745 write_disable(nor);
746 ret = wait_till_ready(nor);
747 if (ret)
748 goto time_out;
749
750 /* Write out trailing byte if it exists. */
751 if (actual != len) {
752 write_enable(nor);
753
b02e7f3e 754 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
755 nor->write(nor, to, 1, retlen, buf + actual);
756
757 ret = wait_till_ready(nor);
758 if (ret)
759 goto time_out;
760 write_disable(nor);
761 }
762time_out:
763 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
764 return ret;
765}
766
767/*
768 * Write an address range to the nor chip. Data must be written in
769 * FLASH_PAGESIZE chunks. The address range may be any size provided
770 * it is within the physical boundaries.
771 */
772static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
773 size_t *retlen, const u_char *buf)
774{
775 struct spi_nor *nor = mtd_to_spi_nor(mtd);
776 u32 page_offset, page_size, i;
777 int ret;
778
779 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
780
781 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
782 if (ret)
783 return ret;
784
785 /* Wait until finished previous write command. */
786 ret = wait_till_ready(nor);
787 if (ret)
788 goto write_err;
789
790 write_enable(nor);
791
792 page_offset = to & (nor->page_size - 1);
793
794 /* do all the bytes fit onto one page? */
795 if (page_offset + len <= nor->page_size) {
796 nor->write(nor, to, len, retlen, buf);
797 } else {
798 /* the size of data remaining on the first page */
799 page_size = nor->page_size - page_offset;
800 nor->write(nor, to, page_size, retlen, buf);
801
802 /* write everything in nor->page_size chunks */
803 for (i = page_size; i < len; i += page_size) {
804 page_size = len - i;
805 if (page_size > nor->page_size)
806 page_size = nor->page_size;
807
1d61dcb3
BN
808 ret = wait_till_ready(nor);
809 if (ret)
810 goto write_err;
811
b199489d
HS
812 write_enable(nor);
813
814 nor->write(nor, to + i, page_size, retlen, buf + i);
815 }
816 }
817
818write_err:
819 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1d61dcb3 820 return ret;
b199489d
HS
821}
822
823static int macronix_quad_enable(struct spi_nor *nor)
824{
825 int ret, val;
826
827 val = read_sr(nor);
828 write_enable(nor);
829
830 nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
b02e7f3e 831 nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
b199489d
HS
832
833 if (wait_till_ready(nor))
834 return 1;
835
836 ret = read_sr(nor);
837 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
838 dev_err(nor->dev, "Macronix Quad bit not set\n");
839 return -EINVAL;
840 }
841
842 return 0;
843}
844
845/*
846 * Write status Register and configuration register with 2 bytes
847 * The first byte will be written to the status register, while the
848 * second byte will be written to the configuration register.
849 * Return negative if error occured.
850 */
851static int write_sr_cr(struct spi_nor *nor, u16 val)
852{
853 nor->cmd_buf[0] = val & 0xff;
854 nor->cmd_buf[1] = (val >> 8);
855
b02e7f3e 856 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
b199489d
HS
857}
858
859static int spansion_quad_enable(struct spi_nor *nor)
860{
861 int ret;
862 int quad_en = CR_QUAD_EN_SPAN << 8;
863
864 write_enable(nor);
865
866 ret = write_sr_cr(nor, quad_en);
867 if (ret < 0) {
868 dev_err(nor->dev,
869 "error while writing configuration register\n");
870 return -EINVAL;
871 }
872
873 /* read back and check it */
874 ret = read_cr(nor);
875 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
876 dev_err(nor->dev, "Spansion Quad bit not set\n");
877 return -EINVAL;
878 }
879
880 return 0;
881}
882
883static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
884{
885 int status;
886
887 switch (JEDEC_MFR(jedec_id)) {
888 case CFI_MFR_MACRONIX:
889 status = macronix_quad_enable(nor);
890 if (status) {
891 dev_err(nor->dev, "Macronix quad-read not enabled\n");
892 return -EINVAL;
893 }
894 return status;
895 default:
896 status = spansion_quad_enable(nor);
897 if (status) {
898 dev_err(nor->dev, "Spansion quad-read not enabled\n");
899 return -EINVAL;
900 }
901 return status;
902 }
903}
904
905static int spi_nor_check(struct spi_nor *nor)
906{
907 if (!nor->dev || !nor->read || !nor->write ||
908 !nor->read_reg || !nor->write_reg || !nor->erase) {
909 pr_err("spi-nor: please fill all the necessary fields!\n");
910 return -EINVAL;
911 }
912
b199489d
HS
913 if (!nor->wait_till_ready)
914 nor->wait_till_ready = spi_nor_wait_till_ready;
915
916 return 0;
917}
918
70f3ce05 919int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
b199489d 920{
70f3ce05 921 const struct spi_device_id *id = NULL;
b199489d 922 struct flash_info *info;
b199489d
HS
923 struct device *dev = nor->dev;
924 struct mtd_info *mtd = nor->mtd;
925 struct device_node *np = dev->of_node;
926 int ret;
927 int i;
928
929 ret = spi_nor_check(nor);
930 if (ret)
931 return ret;
932
70f3ce05
BH
933 id = spi_nor_match_id(name);
934 if (!id)
935 return -ENOENT;
936
b199489d
HS
937 info = (void *)id->driver_data;
938
939 if (info->jedec_id) {
940 const struct spi_device_id *jid;
941
e66fcf72 942 jid = spi_nor_read_id(nor);
b199489d
HS
943 if (IS_ERR(jid)) {
944 return PTR_ERR(jid);
945 } else if (jid != id) {
946 /*
947 * JEDEC knows better, so overwrite platform ID. We
948 * can't trust partitions any longer, but we'll let
949 * mtd apply them anyway, since some partitions may be
950 * marked read-only, and we don't want to lose that
951 * information, even if it's not 100% accurate.
952 */
953 dev_warn(dev, "found %s, expected %s\n",
954 jid->name, id->name);
955 id = jid;
956 info = (void *)jid->driver_data;
957 }
958 }
959
960 mutex_init(&nor->lock);
961
962 /*
963 * Atmel, SST and Intel/Numonyx serial nor tend to power
964 * up with the software protection bits set
965 */
966
967 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
968 JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
969 JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
970 write_enable(nor);
971 write_sr(nor, 0);
972 }
973
32f1b7c8 974 if (!mtd->name)
b199489d 975 mtd->name = dev_name(dev);
b199489d
HS
976 mtd->type = MTD_NORFLASH;
977 mtd->writesize = 1;
978 mtd->flags = MTD_CAP_NORFLASH;
979 mtd->size = info->sector_size * info->n_sectors;
980 mtd->_erase = spi_nor_erase;
981 mtd->_read = spi_nor_read;
982
983 /* nor protection support for STmicro chips */
984 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
985 mtd->_lock = spi_nor_lock;
986 mtd->_unlock = spi_nor_unlock;
987 }
988
989 /* sst nor chips use AAI word program */
990 if (info->flags & SST_WRITE)
991 mtd->_write = sst_write;
992 else
993 mtd->_write = spi_nor_write;
994
51983b7d
BN
995 if (info->flags & USE_FSR)
996 nor->flags |= SNOR_F_USE_FSR;
c14dedde 997
57cf26c1 998#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
b199489d
HS
999 /* prefer "small sector" erase if possible */
1000 if (info->flags & SECT_4K) {
b02e7f3e 1001 nor->erase_opcode = SPINOR_OP_BE_4K;
b199489d
HS
1002 mtd->erasesize = 4096;
1003 } else if (info->flags & SECT_4K_PMC) {
b02e7f3e 1004 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
b199489d 1005 mtd->erasesize = 4096;
57cf26c1
RM
1006 } else
1007#endif
1008 {
b02e7f3e 1009 nor->erase_opcode = SPINOR_OP_SE;
b199489d
HS
1010 mtd->erasesize = info->sector_size;
1011 }
1012
1013 if (info->flags & SPI_NOR_NO_ERASE)
1014 mtd->flags |= MTD_NO_ERASE;
1015
1016 mtd->dev.parent = dev;
1017 nor->page_size = info->page_size;
1018 mtd->writebufsize = nor->page_size;
1019
1020 if (np) {
1021 /* If we were instantiated by DT, use it */
1022 if (of_property_read_bool(np, "m25p,fast-read"))
1023 nor->flash_read = SPI_NOR_FAST;
1024 else
1025 nor->flash_read = SPI_NOR_NORMAL;
1026 } else {
1027 /* If we weren't instantiated by DT, default to fast-read */
1028 nor->flash_read = SPI_NOR_FAST;
1029 }
1030
1031 /* Some devices cannot do fast-read, no matter what DT tells us */
1032 if (info->flags & SPI_NOR_NO_FR)
1033 nor->flash_read = SPI_NOR_NORMAL;
1034
1035 /* Quad/Dual-read mode takes precedence over fast/normal */
1036 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1037 ret = set_quad_mode(nor, info->jedec_id);
1038 if (ret) {
1039 dev_err(dev, "quad mode not supported\n");
1040 return ret;
1041 }
1042 nor->flash_read = SPI_NOR_QUAD;
1043 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1044 nor->flash_read = SPI_NOR_DUAL;
1045 }
1046
1047 /* Default commands */
1048 switch (nor->flash_read) {
1049 case SPI_NOR_QUAD:
58b89a1f 1050 nor->read_opcode = SPINOR_OP_READ_1_1_4;
b199489d
HS
1051 break;
1052 case SPI_NOR_DUAL:
58b89a1f 1053 nor->read_opcode = SPINOR_OP_READ_1_1_2;
b199489d
HS
1054 break;
1055 case SPI_NOR_FAST:
58b89a1f 1056 nor->read_opcode = SPINOR_OP_READ_FAST;
b199489d
HS
1057 break;
1058 case SPI_NOR_NORMAL:
58b89a1f 1059 nor->read_opcode = SPINOR_OP_READ;
b199489d
HS
1060 break;
1061 default:
1062 dev_err(dev, "No Read opcode defined\n");
1063 return -EINVAL;
1064 }
1065
b02e7f3e 1066 nor->program_opcode = SPINOR_OP_PP;
b199489d
HS
1067
1068 if (info->addr_width)
1069 nor->addr_width = info->addr_width;
1070 else if (mtd->size > 0x1000000) {
1071 /* enable 4-byte addressing if the device exceeds 16MiB */
1072 nor->addr_width = 4;
1073 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
1074 /* Dedicated 4-byte command set */
1075 switch (nor->flash_read) {
1076 case SPI_NOR_QUAD:
58b89a1f 1077 nor->read_opcode = SPINOR_OP_READ4_1_1_4;
b199489d
HS
1078 break;
1079 case SPI_NOR_DUAL:
58b89a1f 1080 nor->read_opcode = SPINOR_OP_READ4_1_1_2;
b199489d
HS
1081 break;
1082 case SPI_NOR_FAST:
58b89a1f 1083 nor->read_opcode = SPINOR_OP_READ4_FAST;
b199489d
HS
1084 break;
1085 case SPI_NOR_NORMAL:
58b89a1f 1086 nor->read_opcode = SPINOR_OP_READ4;
b199489d
HS
1087 break;
1088 }
b02e7f3e 1089 nor->program_opcode = SPINOR_OP_PP_4B;
b199489d 1090 /* No small sector erase for 4-byte command set */
b02e7f3e 1091 nor->erase_opcode = SPINOR_OP_SE_4B;
b199489d
HS
1092 mtd->erasesize = info->sector_size;
1093 } else
1094 set_4byte(nor, info->jedec_id, 1);
1095 } else {
1096 nor->addr_width = 3;
1097 }
1098
1099 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1100
1101 dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1102 (long long)mtd->size >> 10);
1103
1104 dev_dbg(dev,
1105 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1106 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1107 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1108 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1109
1110 if (mtd->numeraseregions)
1111 for (i = 0; i < mtd->numeraseregions; i++)
1112 dev_dbg(dev,
1113 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1114 ".erasesize = 0x%.8x (%uKiB), "
1115 ".numblocks = %d }\n",
1116 i, (long long)mtd->eraseregions[i].offset,
1117 mtd->eraseregions[i].erasesize,
1118 mtd->eraseregions[i].erasesize / 1024,
1119 mtd->eraseregions[i].numblocks);
1120 return 0;
1121}
b61834b0 1122EXPORT_SYMBOL_GPL(spi_nor_scan);
b199489d 1123
70f3ce05 1124static const struct spi_device_id *spi_nor_match_id(const char *name)
0d8c11c0
HS
1125{
1126 const struct spi_device_id *id = spi_nor_ids;
1127
1128 while (id->name[0]) {
1129 if (!strcmp(name, id->name))
1130 return id;
1131 id++;
1132 }
1133 return NULL;
1134}
1135
b199489d
HS
1136MODULE_LICENSE("GPL");
1137MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1138MODULE_AUTHOR("Mike Lavender");
1139MODULE_DESCRIPTION("framework for SPI NOR");