]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/mtd/spi-nor/spi-nor.c
mtd: cfi_cmdset_0002: Add support for locking OTP memory
[mirror_ubuntu-focal-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
CommitLineData
b199489d 1/*
8eabdd1e
HS
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
b199489d
HS
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
19
20#include <linux/mtd/cfi.h>
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
27#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
28
29#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
30
31/*
32 * Read the status register, returning its value in the location
33 * Return the status register value.
34 * Returns negative if error occurred.
35 */
36static int read_sr(struct spi_nor *nor)
37{
38 int ret;
39 u8 val;
40
b02e7f3e 41 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
b199489d
HS
42 if (ret < 0) {
43 pr_err("error %d reading SR\n", (int) ret);
44 return ret;
45 }
46
47 return val;
48}
49
c14dedde 50/*
51 * Read the flag status register, returning its value in the location
52 * Return the status register value.
53 * Returns negative if error occurred.
54 */
55static int read_fsr(struct spi_nor *nor)
56{
57 int ret;
58 u8 val;
59
60 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
61 if (ret < 0) {
62 pr_err("error %d reading FSR\n", ret);
63 return ret;
64 }
65
66 return val;
67}
68
b199489d
HS
69/*
70 * Read configuration register, returning its value in the
71 * location. Return the configuration register value.
72 * Returns negative if error occured.
73 */
74static int read_cr(struct spi_nor *nor)
75{
76 int ret;
77 u8 val;
78
b02e7f3e 79 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
b199489d
HS
80 if (ret < 0) {
81 dev_err(nor->dev, "error %d reading CR\n", ret);
82 return ret;
83 }
84
85 return val;
86}
87
88/*
89 * Dummy Cycle calculation for different type of read.
90 * It can be used to support more commands with
91 * different dummy cycle requirements.
92 */
93static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
94{
95 switch (nor->flash_read) {
96 case SPI_NOR_FAST:
97 case SPI_NOR_DUAL:
98 case SPI_NOR_QUAD:
99 return 1;
100 case SPI_NOR_NORMAL:
101 return 0;
102 }
103 return 0;
104}
105
106/*
107 * Write status register 1 byte
108 * Returns negative if error occurred.
109 */
110static inline int write_sr(struct spi_nor *nor, u8 val)
111{
112 nor->cmd_buf[0] = val;
b02e7f3e 113 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
b199489d
HS
114}
115
116/*
117 * Set write enable latch with Write Enable command.
118 * Returns negative if error occurred.
119 */
120static inline int write_enable(struct spi_nor *nor)
121{
b02e7f3e 122 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
b199489d
HS
123}
124
125/*
126 * Send write disble instruction to the chip.
127 */
128static inline int write_disable(struct spi_nor *nor)
129{
b02e7f3e 130 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
b199489d
HS
131}
132
133static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
134{
135 return mtd->priv;
136}
137
138/* Enable/disable 4-byte addressing mode. */
139static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
140{
141 int status;
142 bool need_wren = false;
143 u8 cmd;
144
145 switch (JEDEC_MFR(jedec_id)) {
146 case CFI_MFR_ST: /* Micron, actually */
147 /* Some Micron need WREN command; all will accept it */
148 need_wren = true;
149 case CFI_MFR_MACRONIX:
150 case 0xEF /* winbond */:
151 if (need_wren)
152 write_enable(nor);
153
b02e7f3e 154 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
b199489d
HS
155 status = nor->write_reg(nor, cmd, NULL, 0, 0);
156 if (need_wren)
157 write_disable(nor);
158
159 return status;
160 default:
161 /* Spansion style */
162 nor->cmd_buf[0] = enable << 7;
b02e7f3e 163 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
b199489d
HS
164 }
165}
166
167static int spi_nor_wait_till_ready(struct spi_nor *nor)
168{
169 unsigned long deadline;
170 int sr;
171
172 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
173
174 do {
175 cond_resched();
176
177 sr = read_sr(nor);
178 if (sr < 0)
179 break;
180 else if (!(sr & SR_WIP))
181 return 0;
182 } while (!time_after_eq(jiffies, deadline));
183
184 return -ETIMEDOUT;
185}
186
c14dedde 187static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
188{
189 unsigned long deadline;
190 int sr;
191 int fsr;
192
193 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
194
195 do {
196 cond_resched();
197
198 sr = read_sr(nor);
199 if (sr < 0) {
200 break;
201 } else if (!(sr & SR_WIP)) {
202 fsr = read_fsr(nor);
203 if (fsr < 0)
204 break;
205 if (fsr & FSR_READY)
206 return 0;
207 }
208 } while (!time_after_eq(jiffies, deadline));
209
210 return -ETIMEDOUT;
211}
212
b199489d
HS
213/*
214 * Service routine to read status register until ready, or timeout occurs.
215 * Returns non-zero if error.
216 */
217static int wait_till_ready(struct spi_nor *nor)
218{
219 return nor->wait_till_ready(nor);
220}
221
222/*
223 * Erase the whole flash memory
224 *
225 * Returns 0 if successful, non-zero otherwise.
226 */
227static int erase_chip(struct spi_nor *nor)
228{
229 int ret;
230
231 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
232
233 /* Wait until finished previous write command. */
234 ret = wait_till_ready(nor);
235 if (ret)
236 return ret;
237
238 /* Send write enable, then erase commands. */
239 write_enable(nor);
240
b02e7f3e 241 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
b199489d
HS
242}
243
244static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
245{
246 int ret = 0;
247
248 mutex_lock(&nor->lock);
249
250 if (nor->prepare) {
251 ret = nor->prepare(nor, ops);
252 if (ret) {
253 dev_err(nor->dev, "failed in the preparation.\n");
254 mutex_unlock(&nor->lock);
255 return ret;
256 }
257 }
258 return ret;
259}
260
261static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
262{
263 if (nor->unprepare)
264 nor->unprepare(nor, ops);
265 mutex_unlock(&nor->lock);
266}
267
268/*
269 * Erase an address range on the nor chip. The address range may extend
270 * one or more erase sectors. Return an error is there is a problem erasing.
271 */
272static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
273{
274 struct spi_nor *nor = mtd_to_spi_nor(mtd);
275 u32 addr, len;
276 uint32_t rem;
277 int ret;
278
279 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
280 (long long)instr->len);
281
282 div_u64_rem(instr->len, mtd->erasesize, &rem);
283 if (rem)
284 return -EINVAL;
285
286 addr = instr->addr;
287 len = instr->len;
288
289 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
290 if (ret)
291 return ret;
292
293 /* whole-chip erase? */
294 if (len == mtd->size) {
295 if (erase_chip(nor)) {
296 ret = -EIO;
297 goto erase_err;
298 }
299
300 /* REVISIT in some cases we could speed up erasing large regions
b02e7f3e 301 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
b199489d
HS
302 * to use "small sector erase", but that's not always optimal.
303 */
304
305 /* "sector"-at-a-time erase */
306 } else {
307 while (len) {
308 if (nor->erase(nor, addr)) {
309 ret = -EIO;
310 goto erase_err;
311 }
312
313 addr += mtd->erasesize;
314 len -= mtd->erasesize;
315 }
316 }
317
318 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
319
320 instr->state = MTD_ERASE_DONE;
321 mtd_erase_callback(instr);
322
323 return ret;
324
325erase_err:
326 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
327 instr->state = MTD_ERASE_FAILED;
328 return ret;
329}
330
331static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
332{
333 struct spi_nor *nor = mtd_to_spi_nor(mtd);
334 uint32_t offset = ofs;
335 uint8_t status_old, status_new;
336 int ret = 0;
337
338 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
339 if (ret)
340 return ret;
341
342 /* Wait until finished previous command */
343 ret = wait_till_ready(nor);
344 if (ret)
345 goto err;
346
347 status_old = read_sr(nor);
348
349 if (offset < mtd->size - (mtd->size / 2))
350 status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
351 else if (offset < mtd->size - (mtd->size / 4))
352 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
353 else if (offset < mtd->size - (mtd->size / 8))
354 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
355 else if (offset < mtd->size - (mtd->size / 16))
356 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
357 else if (offset < mtd->size - (mtd->size / 32))
358 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
359 else if (offset < mtd->size - (mtd->size / 64))
360 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
361 else
362 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
363
364 /* Only modify protection if it will not unlock other areas */
365 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
366 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
367 write_enable(nor);
368 ret = write_sr(nor, status_new);
369 if (ret)
370 goto err;
371 }
372
373err:
374 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
375 return ret;
376}
377
378static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
379{
380 struct spi_nor *nor = mtd_to_spi_nor(mtd);
381 uint32_t offset = ofs;
382 uint8_t status_old, status_new;
383 int ret = 0;
384
385 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
386 if (ret)
387 return ret;
388
389 /* Wait until finished previous command */
390 ret = wait_till_ready(nor);
391 if (ret)
392 goto err;
393
394 status_old = read_sr(nor);
395
396 if (offset+len > mtd->size - (mtd->size / 64))
397 status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
398 else if (offset+len > mtd->size - (mtd->size / 32))
399 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
400 else if (offset+len > mtd->size - (mtd->size / 16))
401 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
402 else if (offset+len > mtd->size - (mtd->size / 8))
403 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
404 else if (offset+len > mtd->size - (mtd->size / 4))
405 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
406 else if (offset+len > mtd->size - (mtd->size / 2))
407 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
408 else
409 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
410
411 /* Only modify protection if it will not lock other areas */
412 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
413 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
414 write_enable(nor);
415 ret = write_sr(nor, status_new);
416 if (ret)
417 goto err;
418 }
419
420err:
421 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
422 return ret;
423}
424
425struct flash_info {
426 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
427 * a high byte of zero plus three data bytes: the manufacturer id,
428 * then a two byte device id.
429 */
430 u32 jedec_id;
431 u16 ext_id;
432
b02e7f3e 433 /* The size listed here is what works with SPINOR_OP_SE, which isn't
b199489d
HS
434 * necessarily called a "sector" by the vendor.
435 */
436 unsigned sector_size;
437 u16 n_sectors;
438
439 u16 page_size;
440 u16 addr_width;
441
442 u16 flags;
b02e7f3e 443#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
b199489d
HS
444#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
445#define SST_WRITE 0x04 /* use SST byte programming */
446#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
b02e7f3e 447#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
b199489d
HS
448#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
449#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
c14dedde 450#define USE_FSR 0x80 /* use flag status register */
b199489d
HS
451};
452
453#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
454 ((kernel_ulong_t)&(struct flash_info) { \
455 .jedec_id = (_jedec_id), \
456 .ext_id = (_ext_id), \
457 .sector_size = (_sector_size), \
458 .n_sectors = (_n_sectors), \
459 .page_size = 256, \
460 .flags = (_flags), \
461 })
462
463#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
464 ((kernel_ulong_t)&(struct flash_info) { \
465 .sector_size = (_sector_size), \
466 .n_sectors = (_n_sectors), \
467 .page_size = (_page_size), \
468 .addr_width = (_addr_width), \
469 .flags = (_flags), \
470 })
471
472/* NOTE: double check command sets and memory organization when you add
473 * more nor chips. This current list focusses on newer chips, which
474 * have been converging on command sets which including JEDEC ID.
475 */
476const struct spi_device_id spi_nor_ids[] = {
477 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
478 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
479 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
480
481 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
482 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
483 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
484
485 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
486 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
487 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
488 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
489
490 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
491
492 /* EON -- en25xxx */
493 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
494 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
495 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
496 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
497 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
498 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
499
500 /* ESMT */
501 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
502
503 /* Everspin */
504 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
505 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
506
507 /* GigaDevice */
508 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
509 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
510
511 /* Intel/Numonyx -- xxxs33b */
512 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
513 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
514 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
515
516 /* Macronix */
517 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
518 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
519 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
520 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
521 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
522 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
523 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
524 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
525 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
526 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
527 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
528 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
529 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
530
531 /* Micron */
532 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
533 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
534 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
535 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
536 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
c14dedde 537 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
538 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
b199489d
HS
539
540 /* PMC */
541 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
542 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
543 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
544
545 /* Spansion -- single (large) sector size only, at least
546 * for the chips listed here (without boot sectors).
547 */
9ab86995 548 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
549 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
550 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
551 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
552 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
553 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
554 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
555 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
556 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
557 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
558 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
559 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
560 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
561 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
562 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
563 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
564 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
565 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
566
567 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
568 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
569 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
570 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
571 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
572 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
573 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
574 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
575 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
576 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
577
578 /* ST Microelectronics -- newer production may have feature updates */
579 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
580 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
581 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
582 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
583 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
584 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
585 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
586 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
587 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
588 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
589
590 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
591 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
592 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
593 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
594 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
595 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
596 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
597 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
598 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
599
600 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
601 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
602 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
603
604 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
605 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
606 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
607
608 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
609 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
610 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
611 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
612 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
613
614 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
615 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
616 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
617 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
618 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
619 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
620 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
621 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
622 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
623 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
624 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
625 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
626 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
627 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
628 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
629 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
630
631 /* Catalyst / On Semiconductor -- non-JEDEC */
632 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
633 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
634 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
635 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
636 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
637 { },
638};
b61834b0 639EXPORT_SYMBOL_GPL(spi_nor_ids);
b199489d
HS
640
641static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
642{
643 int tmp;
644 u8 id[5];
645 u32 jedec;
646 u16 ext_jedec;
647 struct flash_info *info;
648
b02e7f3e 649 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
b199489d
HS
650 if (tmp < 0) {
651 dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
652 return ERR_PTR(tmp);
653 }
654 jedec = id[0];
655 jedec = jedec << 8;
656 jedec |= id[1];
657 jedec = jedec << 8;
658 jedec |= id[2];
659
660 ext_jedec = id[3] << 8 | id[4];
661
662 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
663 info = (void *)spi_nor_ids[tmp].driver_data;
664 if (info->jedec_id == jedec) {
665 if (info->ext_id == 0 || info->ext_id == ext_jedec)
666 return &spi_nor_ids[tmp];
667 }
668 }
669 dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
670 return ERR_PTR(-ENODEV);
671}
672
673static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
674{
675 return nor->read_id(nor);
676}
677
678static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
679 size_t *retlen, u_char *buf)
680{
681 struct spi_nor *nor = mtd_to_spi_nor(mtd);
682 int ret;
683
684 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
685
686 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
687 if (ret)
688 return ret;
689
690 ret = nor->read(nor, from, len, retlen, buf);
691
692 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
693 return ret;
694}
695
696static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
697 size_t *retlen, const u_char *buf)
698{
699 struct spi_nor *nor = mtd_to_spi_nor(mtd);
700 size_t actual;
701 int ret;
702
703 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
704
705 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
706 if (ret)
707 return ret;
708
709 /* Wait until finished previous write command. */
710 ret = wait_till_ready(nor);
711 if (ret)
712 goto time_out;
713
714 write_enable(nor);
715
716 nor->sst_write_second = false;
717
718 actual = to % 2;
719 /* Start write from odd address. */
720 if (actual) {
b02e7f3e 721 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
722
723 /* write one byte. */
724 nor->write(nor, to, 1, retlen, buf);
725 ret = wait_till_ready(nor);
726 if (ret)
727 goto time_out;
728 }
729 to += actual;
730
731 /* Write out most of the data here. */
732 for (; actual < len - 1; actual += 2) {
b02e7f3e 733 nor->program_opcode = SPINOR_OP_AAI_WP;
b199489d
HS
734
735 /* write two bytes. */
736 nor->write(nor, to, 2, retlen, buf + actual);
737 ret = wait_till_ready(nor);
738 if (ret)
739 goto time_out;
740 to += 2;
741 nor->sst_write_second = true;
742 }
743 nor->sst_write_second = false;
744
745 write_disable(nor);
746 ret = wait_till_ready(nor);
747 if (ret)
748 goto time_out;
749
750 /* Write out trailing byte if it exists. */
751 if (actual != len) {
752 write_enable(nor);
753
b02e7f3e 754 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
755 nor->write(nor, to, 1, retlen, buf + actual);
756
757 ret = wait_till_ready(nor);
758 if (ret)
759 goto time_out;
760 write_disable(nor);
761 }
762time_out:
763 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
764 return ret;
765}
766
767/*
768 * Write an address range to the nor chip. Data must be written in
769 * FLASH_PAGESIZE chunks. The address range may be any size provided
770 * it is within the physical boundaries.
771 */
772static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
773 size_t *retlen, const u_char *buf)
774{
775 struct spi_nor *nor = mtd_to_spi_nor(mtd);
776 u32 page_offset, page_size, i;
777 int ret;
778
779 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
780
781 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
782 if (ret)
783 return ret;
784
785 /* Wait until finished previous write command. */
786 ret = wait_till_ready(nor);
787 if (ret)
788 goto write_err;
789
790 write_enable(nor);
791
792 page_offset = to & (nor->page_size - 1);
793
794 /* do all the bytes fit onto one page? */
795 if (page_offset + len <= nor->page_size) {
796 nor->write(nor, to, len, retlen, buf);
797 } else {
798 /* the size of data remaining on the first page */
799 page_size = nor->page_size - page_offset;
800 nor->write(nor, to, page_size, retlen, buf);
801
802 /* write everything in nor->page_size chunks */
803 for (i = page_size; i < len; i += page_size) {
804 page_size = len - i;
805 if (page_size > nor->page_size)
806 page_size = nor->page_size;
807
808 wait_till_ready(nor);
809 write_enable(nor);
810
811 nor->write(nor, to + i, page_size, retlen, buf + i);
812 }
813 }
814
815write_err:
816 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
817 return 0;
818}
819
820static int macronix_quad_enable(struct spi_nor *nor)
821{
822 int ret, val;
823
824 val = read_sr(nor);
825 write_enable(nor);
826
827 nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
b02e7f3e 828 nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
b199489d
HS
829
830 if (wait_till_ready(nor))
831 return 1;
832
833 ret = read_sr(nor);
834 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
835 dev_err(nor->dev, "Macronix Quad bit not set\n");
836 return -EINVAL;
837 }
838
839 return 0;
840}
841
842/*
843 * Write status Register and configuration register with 2 bytes
844 * The first byte will be written to the status register, while the
845 * second byte will be written to the configuration register.
846 * Return negative if error occured.
847 */
848static int write_sr_cr(struct spi_nor *nor, u16 val)
849{
850 nor->cmd_buf[0] = val & 0xff;
851 nor->cmd_buf[1] = (val >> 8);
852
b02e7f3e 853 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
b199489d
HS
854}
855
856static int spansion_quad_enable(struct spi_nor *nor)
857{
858 int ret;
859 int quad_en = CR_QUAD_EN_SPAN << 8;
860
861 write_enable(nor);
862
863 ret = write_sr_cr(nor, quad_en);
864 if (ret < 0) {
865 dev_err(nor->dev,
866 "error while writing configuration register\n");
867 return -EINVAL;
868 }
869
870 /* read back and check it */
871 ret = read_cr(nor);
872 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
873 dev_err(nor->dev, "Spansion Quad bit not set\n");
874 return -EINVAL;
875 }
876
877 return 0;
878}
879
880static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
881{
882 int status;
883
884 switch (JEDEC_MFR(jedec_id)) {
885 case CFI_MFR_MACRONIX:
886 status = macronix_quad_enable(nor);
887 if (status) {
888 dev_err(nor->dev, "Macronix quad-read not enabled\n");
889 return -EINVAL;
890 }
891 return status;
892 default:
893 status = spansion_quad_enable(nor);
894 if (status) {
895 dev_err(nor->dev, "Spansion quad-read not enabled\n");
896 return -EINVAL;
897 }
898 return status;
899 }
900}
901
902static int spi_nor_check(struct spi_nor *nor)
903{
904 if (!nor->dev || !nor->read || !nor->write ||
905 !nor->read_reg || !nor->write_reg || !nor->erase) {
906 pr_err("spi-nor: please fill all the necessary fields!\n");
907 return -EINVAL;
908 }
909
910 if (!nor->read_id)
911 nor->read_id = spi_nor_read_id;
912 if (!nor->wait_till_ready)
913 nor->wait_till_ready = spi_nor_wait_till_ready;
914
915 return 0;
916}
917
918int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
919 enum read_mode mode)
920{
921 struct flash_info *info;
922 struct flash_platform_data *data;
923 struct device *dev = nor->dev;
924 struct mtd_info *mtd = nor->mtd;
925 struct device_node *np = dev->of_node;
926 int ret;
927 int i;
928
929 ret = spi_nor_check(nor);
930 if (ret)
931 return ret;
932
933 /* Platform data helps sort out which chip type we have, as
934 * well as how this board partitions it. If we don't have
935 * a chip ID, try the JEDEC id commands; they'll work for most
936 * newer chips, even if we don't recognize the particular chip.
937 */
938 data = dev_get_platdata(dev);
939 if (data && data->type) {
940 const struct spi_device_id *plat_id;
941
942 for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
943 plat_id = &spi_nor_ids[i];
944 if (strcmp(data->type, plat_id->name))
945 continue;
946 break;
947 }
948
949 if (i < ARRAY_SIZE(spi_nor_ids) - 1)
950 id = plat_id;
951 else
952 dev_warn(dev, "unrecognized id %s\n", data->type);
953 }
954
955 info = (void *)id->driver_data;
956
957 if (info->jedec_id) {
958 const struct spi_device_id *jid;
959
960 jid = jedec_probe(nor);
961 if (IS_ERR(jid)) {
962 return PTR_ERR(jid);
963 } else if (jid != id) {
964 /*
965 * JEDEC knows better, so overwrite platform ID. We
966 * can't trust partitions any longer, but we'll let
967 * mtd apply them anyway, since some partitions may be
968 * marked read-only, and we don't want to lose that
969 * information, even if it's not 100% accurate.
970 */
971 dev_warn(dev, "found %s, expected %s\n",
972 jid->name, id->name);
973 id = jid;
974 info = (void *)jid->driver_data;
975 }
976 }
977
978 mutex_init(&nor->lock);
979
980 /*
981 * Atmel, SST and Intel/Numonyx serial nor tend to power
982 * up with the software protection bits set
983 */
984
985 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
986 JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
987 JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
988 write_enable(nor);
989 write_sr(nor, 0);
990 }
991
992 if (data && data->name)
993 mtd->name = data->name;
994 else
995 mtd->name = dev_name(dev);
996
997 mtd->type = MTD_NORFLASH;
998 mtd->writesize = 1;
999 mtd->flags = MTD_CAP_NORFLASH;
1000 mtd->size = info->sector_size * info->n_sectors;
1001 mtd->_erase = spi_nor_erase;
1002 mtd->_read = spi_nor_read;
1003
1004 /* nor protection support for STmicro chips */
1005 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
1006 mtd->_lock = spi_nor_lock;
1007 mtd->_unlock = spi_nor_unlock;
1008 }
1009
1010 /* sst nor chips use AAI word program */
1011 if (info->flags & SST_WRITE)
1012 mtd->_write = sst_write;
1013 else
1014 mtd->_write = spi_nor_write;
1015
c14dedde 1016 if ((info->flags & USE_FSR) &&
1017 nor->wait_till_ready == spi_nor_wait_till_ready)
1018 nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
1019
b199489d
HS
1020 /* prefer "small sector" erase if possible */
1021 if (info->flags & SECT_4K) {
b02e7f3e 1022 nor->erase_opcode = SPINOR_OP_BE_4K;
b199489d
HS
1023 mtd->erasesize = 4096;
1024 } else if (info->flags & SECT_4K_PMC) {
b02e7f3e 1025 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
b199489d
HS
1026 mtd->erasesize = 4096;
1027 } else {
b02e7f3e 1028 nor->erase_opcode = SPINOR_OP_SE;
b199489d
HS
1029 mtd->erasesize = info->sector_size;
1030 }
1031
1032 if (info->flags & SPI_NOR_NO_ERASE)
1033 mtd->flags |= MTD_NO_ERASE;
1034
1035 mtd->dev.parent = dev;
1036 nor->page_size = info->page_size;
1037 mtd->writebufsize = nor->page_size;
1038
1039 if (np) {
1040 /* If we were instantiated by DT, use it */
1041 if (of_property_read_bool(np, "m25p,fast-read"))
1042 nor->flash_read = SPI_NOR_FAST;
1043 else
1044 nor->flash_read = SPI_NOR_NORMAL;
1045 } else {
1046 /* If we weren't instantiated by DT, default to fast-read */
1047 nor->flash_read = SPI_NOR_FAST;
1048 }
1049
1050 /* Some devices cannot do fast-read, no matter what DT tells us */
1051 if (info->flags & SPI_NOR_NO_FR)
1052 nor->flash_read = SPI_NOR_NORMAL;
1053
1054 /* Quad/Dual-read mode takes precedence over fast/normal */
1055 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1056 ret = set_quad_mode(nor, info->jedec_id);
1057 if (ret) {
1058 dev_err(dev, "quad mode not supported\n");
1059 return ret;
1060 }
1061 nor->flash_read = SPI_NOR_QUAD;
1062 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1063 nor->flash_read = SPI_NOR_DUAL;
1064 }
1065
1066 /* Default commands */
1067 switch (nor->flash_read) {
1068 case SPI_NOR_QUAD:
58b89a1f 1069 nor->read_opcode = SPINOR_OP_READ_1_1_4;
b199489d
HS
1070 break;
1071 case SPI_NOR_DUAL:
58b89a1f 1072 nor->read_opcode = SPINOR_OP_READ_1_1_2;
b199489d
HS
1073 break;
1074 case SPI_NOR_FAST:
58b89a1f 1075 nor->read_opcode = SPINOR_OP_READ_FAST;
b199489d
HS
1076 break;
1077 case SPI_NOR_NORMAL:
58b89a1f 1078 nor->read_opcode = SPINOR_OP_READ;
b199489d
HS
1079 break;
1080 default:
1081 dev_err(dev, "No Read opcode defined\n");
1082 return -EINVAL;
1083 }
1084
b02e7f3e 1085 nor->program_opcode = SPINOR_OP_PP;
b199489d
HS
1086
1087 if (info->addr_width)
1088 nor->addr_width = info->addr_width;
1089 else if (mtd->size > 0x1000000) {
1090 /* enable 4-byte addressing if the device exceeds 16MiB */
1091 nor->addr_width = 4;
1092 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
1093 /* Dedicated 4-byte command set */
1094 switch (nor->flash_read) {
1095 case SPI_NOR_QUAD:
58b89a1f 1096 nor->read_opcode = SPINOR_OP_READ4_1_1_4;
b199489d
HS
1097 break;
1098 case SPI_NOR_DUAL:
58b89a1f 1099 nor->read_opcode = SPINOR_OP_READ4_1_1_2;
b199489d
HS
1100 break;
1101 case SPI_NOR_FAST:
58b89a1f 1102 nor->read_opcode = SPINOR_OP_READ4_FAST;
b199489d
HS
1103 break;
1104 case SPI_NOR_NORMAL:
58b89a1f 1105 nor->read_opcode = SPINOR_OP_READ4;
b199489d
HS
1106 break;
1107 }
b02e7f3e 1108 nor->program_opcode = SPINOR_OP_PP_4B;
b199489d 1109 /* No small sector erase for 4-byte command set */
b02e7f3e 1110 nor->erase_opcode = SPINOR_OP_SE_4B;
b199489d
HS
1111 mtd->erasesize = info->sector_size;
1112 } else
1113 set_4byte(nor, info->jedec_id, 1);
1114 } else {
1115 nor->addr_width = 3;
1116 }
1117
1118 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1119
1120 dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1121 (long long)mtd->size >> 10);
1122
1123 dev_dbg(dev,
1124 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1125 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1126 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1127 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1128
1129 if (mtd->numeraseregions)
1130 for (i = 0; i < mtd->numeraseregions; i++)
1131 dev_dbg(dev,
1132 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1133 ".erasesize = 0x%.8x (%uKiB), "
1134 ".numblocks = %d }\n",
1135 i, (long long)mtd->eraseregions[i].offset,
1136 mtd->eraseregions[i].erasesize,
1137 mtd->eraseregions[i].erasesize / 1024,
1138 mtd->eraseregions[i].numblocks);
1139 return 0;
1140}
b61834b0 1141EXPORT_SYMBOL_GPL(spi_nor_scan);
b199489d 1142
0d8c11c0
HS
1143const struct spi_device_id *spi_nor_match_id(char *name)
1144{
1145 const struct spi_device_id *id = spi_nor_ids;
1146
1147 while (id->name[0]) {
1148 if (!strcmp(name, id->name))
1149 return id;
1150 id++;
1151 }
1152 return NULL;
1153}
b61834b0 1154EXPORT_SYMBOL_GPL(spi_nor_match_id);
0d8c11c0 1155
b199489d
HS
1156MODULE_LICENSE("GPL");
1157MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1158MODULE_AUTHOR("Mike Lavender");
1159MODULE_DESCRIPTION("framework for SPI NOR");