]>
Commit | Line | Data |
---|---|---|
b199489d | 1 | /* |
8eabdd1e HS |
2 | * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with |
3 | * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c | |
4 | * | |
5 | * Copyright (C) 2005, Intec Automation Inc. | |
6 | * Copyright (C) 2014, Freescale Semiconductor, Inc. | |
b199489d HS |
7 | * |
8 | * This code is free software; you can redistribute it and/or modify | |
9 | * it under the terms of the GNU General Public License version 2 as | |
10 | * published by the Free Software Foundation. | |
11 | */ | |
12 | ||
13 | #include <linux/err.h> | |
14 | #include <linux/errno.h> | |
15 | #include <linux/module.h> | |
16 | #include <linux/device.h> | |
17 | #include <linux/mutex.h> | |
18 | #include <linux/math64.h> | |
19 | ||
20 | #include <linux/mtd/cfi.h> | |
21 | #include <linux/mtd/mtd.h> | |
22 | #include <linux/of_platform.h> | |
23 | #include <linux/spi/flash.h> | |
24 | #include <linux/mtd/spi-nor.h> | |
25 | ||
26 | /* Define max times to check status register before we give up. */ | |
27 | #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ | |
28 | ||
d928a259 HS |
29 | #define SPI_NOR_MAX_ID_LEN 6 |
30 | ||
31 | struct flash_info { | |
32 | /* | |
33 | * This array stores the ID bytes. | |
34 | * The first three bytes are the JEDIC ID. | |
35 | * JEDEC ID zero means "no ID" (mostly older chips). | |
36 | */ | |
37 | u8 id[SPI_NOR_MAX_ID_LEN]; | |
38 | u8 id_len; | |
39 | ||
40 | /* The size listed here is what works with SPINOR_OP_SE, which isn't | |
41 | * necessarily called a "sector" by the vendor. | |
42 | */ | |
43 | unsigned sector_size; | |
44 | u16 n_sectors; | |
45 | ||
46 | u16 page_size; | |
47 | u16 addr_width; | |
48 | ||
49 | u16 flags; | |
50 | #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */ | |
51 | #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */ | |
52 | #define SST_WRITE 0x04 /* use SST byte programming */ | |
53 | #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */ | |
54 | #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */ | |
55 | #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */ | |
56 | #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */ | |
57 | #define USE_FSR 0x80 /* use flag status register */ | |
58 | }; | |
59 | ||
60 | #define JEDEC_MFR(info) ((info)->id[0]) | |
b199489d | 61 | |
70f3ce05 BH |
62 | static const struct spi_device_id *spi_nor_match_id(const char *name); |
63 | ||
b199489d HS |
64 | /* |
65 | * Read the status register, returning its value in the location | |
66 | * Return the status register value. | |
67 | * Returns negative if error occurred. | |
68 | */ | |
69 | static int read_sr(struct spi_nor *nor) | |
70 | { | |
71 | int ret; | |
72 | u8 val; | |
73 | ||
b02e7f3e | 74 | ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); |
b199489d HS |
75 | if (ret < 0) { |
76 | pr_err("error %d reading SR\n", (int) ret); | |
77 | return ret; | |
78 | } | |
79 | ||
80 | return val; | |
81 | } | |
82 | ||
c14dedde | 83 | /* |
84 | * Read the flag status register, returning its value in the location | |
85 | * Return the status register value. | |
86 | * Returns negative if error occurred. | |
87 | */ | |
88 | static int read_fsr(struct spi_nor *nor) | |
89 | { | |
90 | int ret; | |
91 | u8 val; | |
92 | ||
93 | ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); | |
94 | if (ret < 0) { | |
95 | pr_err("error %d reading FSR\n", ret); | |
96 | return ret; | |
97 | } | |
98 | ||
99 | return val; | |
100 | } | |
101 | ||
b199489d HS |
102 | /* |
103 | * Read configuration register, returning its value in the | |
104 | * location. Return the configuration register value. | |
105 | * Returns negative if error occured. | |
106 | */ | |
107 | static int read_cr(struct spi_nor *nor) | |
108 | { | |
109 | int ret; | |
110 | u8 val; | |
111 | ||
b02e7f3e | 112 | ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); |
b199489d HS |
113 | if (ret < 0) { |
114 | dev_err(nor->dev, "error %d reading CR\n", ret); | |
115 | return ret; | |
116 | } | |
117 | ||
118 | return val; | |
119 | } | |
120 | ||
121 | /* | |
122 | * Dummy Cycle calculation for different type of read. | |
123 | * It can be used to support more commands with | |
124 | * different dummy cycle requirements. | |
125 | */ | |
126 | static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) | |
127 | { | |
128 | switch (nor->flash_read) { | |
129 | case SPI_NOR_FAST: | |
130 | case SPI_NOR_DUAL: | |
131 | case SPI_NOR_QUAD: | |
0b78a2cf | 132 | return 8; |
b199489d HS |
133 | case SPI_NOR_NORMAL: |
134 | return 0; | |
135 | } | |
136 | return 0; | |
137 | } | |
138 | ||
139 | /* | |
140 | * Write status register 1 byte | |
141 | * Returns negative if error occurred. | |
142 | */ | |
143 | static inline int write_sr(struct spi_nor *nor, u8 val) | |
144 | { | |
145 | nor->cmd_buf[0] = val; | |
b02e7f3e | 146 | return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); |
b199489d HS |
147 | } |
148 | ||
149 | /* | |
150 | * Set write enable latch with Write Enable command. | |
151 | * Returns negative if error occurred. | |
152 | */ | |
153 | static inline int write_enable(struct spi_nor *nor) | |
154 | { | |
b02e7f3e | 155 | return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); |
b199489d HS |
156 | } |
157 | ||
158 | /* | |
159 | * Send write disble instruction to the chip. | |
160 | */ | |
161 | static inline int write_disable(struct spi_nor *nor) | |
162 | { | |
b02e7f3e | 163 | return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0); |
b199489d HS |
164 | } |
165 | ||
166 | static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) | |
167 | { | |
168 | return mtd->priv; | |
169 | } | |
170 | ||
171 | /* Enable/disable 4-byte addressing mode. */ | |
d928a259 HS |
172 | static inline int set_4byte(struct spi_nor *nor, struct flash_info *info, |
173 | int enable) | |
b199489d HS |
174 | { |
175 | int status; | |
176 | bool need_wren = false; | |
177 | u8 cmd; | |
178 | ||
d928a259 | 179 | switch (JEDEC_MFR(info)) { |
b199489d HS |
180 | case CFI_MFR_ST: /* Micron, actually */ |
181 | /* Some Micron need WREN command; all will accept it */ | |
182 | need_wren = true; | |
183 | case CFI_MFR_MACRONIX: | |
184 | case 0xEF /* winbond */: | |
185 | if (need_wren) | |
186 | write_enable(nor); | |
187 | ||
b02e7f3e | 188 | cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; |
b199489d HS |
189 | status = nor->write_reg(nor, cmd, NULL, 0, 0); |
190 | if (need_wren) | |
191 | write_disable(nor); | |
192 | ||
193 | return status; | |
194 | default: | |
195 | /* Spansion style */ | |
196 | nor->cmd_buf[0] = enable << 7; | |
b02e7f3e | 197 | return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0); |
b199489d HS |
198 | } |
199 | } | |
51983b7d | 200 | static inline int spi_nor_sr_ready(struct spi_nor *nor) |
b199489d | 201 | { |
51983b7d BN |
202 | int sr = read_sr(nor); |
203 | if (sr < 0) | |
204 | return sr; | |
205 | else | |
206 | return !(sr & SR_WIP); | |
207 | } | |
b199489d | 208 | |
51983b7d BN |
209 | static inline int spi_nor_fsr_ready(struct spi_nor *nor) |
210 | { | |
211 | int fsr = read_fsr(nor); | |
212 | if (fsr < 0) | |
213 | return fsr; | |
214 | else | |
215 | return fsr & FSR_READY; | |
216 | } | |
b199489d | 217 | |
51983b7d BN |
218 | static int spi_nor_ready(struct spi_nor *nor) |
219 | { | |
220 | int sr, fsr; | |
221 | sr = spi_nor_sr_ready(nor); | |
222 | if (sr < 0) | |
223 | return sr; | |
224 | fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; | |
225 | if (fsr < 0) | |
226 | return fsr; | |
227 | return sr && fsr; | |
b199489d HS |
228 | } |
229 | ||
b94ed087 BN |
230 | /* |
231 | * Service routine to read status register until ready, or timeout occurs. | |
232 | * Returns non-zero if error. | |
233 | */ | |
51983b7d | 234 | static int spi_nor_wait_till_ready(struct spi_nor *nor) |
c14dedde | 235 | { |
236 | unsigned long deadline; | |
a95ce92e | 237 | int timeout = 0, ret; |
c14dedde | 238 | |
239 | deadline = jiffies + MAX_READY_WAIT_JIFFIES; | |
240 | ||
a95ce92e BN |
241 | while (!timeout) { |
242 | if (time_after_eq(jiffies, deadline)) | |
243 | timeout = 1; | |
c14dedde | 244 | |
51983b7d BN |
245 | ret = spi_nor_ready(nor); |
246 | if (ret < 0) | |
247 | return ret; | |
248 | if (ret) | |
249 | return 0; | |
a95ce92e BN |
250 | |
251 | cond_resched(); | |
252 | } | |
253 | ||
254 | dev_err(nor->dev, "flash operation timed out\n"); | |
c14dedde | 255 | |
256 | return -ETIMEDOUT; | |
257 | } | |
258 | ||
b199489d HS |
259 | /* |
260 | * Erase the whole flash memory | |
261 | * | |
262 | * Returns 0 if successful, non-zero otherwise. | |
263 | */ | |
264 | static int erase_chip(struct spi_nor *nor) | |
265 | { | |
b199489d HS |
266 | dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10)); |
267 | ||
b02e7f3e | 268 | return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0); |
b199489d HS |
269 | } |
270 | ||
271 | static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) | |
272 | { | |
273 | int ret = 0; | |
274 | ||
275 | mutex_lock(&nor->lock); | |
276 | ||
277 | if (nor->prepare) { | |
278 | ret = nor->prepare(nor, ops); | |
279 | if (ret) { | |
280 | dev_err(nor->dev, "failed in the preparation.\n"); | |
281 | mutex_unlock(&nor->lock); | |
282 | return ret; | |
283 | } | |
284 | } | |
285 | return ret; | |
286 | } | |
287 | ||
288 | static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) | |
289 | { | |
290 | if (nor->unprepare) | |
291 | nor->unprepare(nor, ops); | |
292 | mutex_unlock(&nor->lock); | |
293 | } | |
294 | ||
295 | /* | |
296 | * Erase an address range on the nor chip. The address range may extend | |
297 | * one or more erase sectors. Return an error is there is a problem erasing. | |
298 | */ | |
299 | static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) | |
300 | { | |
301 | struct spi_nor *nor = mtd_to_spi_nor(mtd); | |
302 | u32 addr, len; | |
303 | uint32_t rem; | |
304 | int ret; | |
305 | ||
306 | dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, | |
307 | (long long)instr->len); | |
308 | ||
309 | div_u64_rem(instr->len, mtd->erasesize, &rem); | |
310 | if (rem) | |
311 | return -EINVAL; | |
312 | ||
313 | addr = instr->addr; | |
314 | len = instr->len; | |
315 | ||
316 | ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); | |
317 | if (ret) | |
318 | return ret; | |
319 | ||
320 | /* whole-chip erase? */ | |
321 | if (len == mtd->size) { | |
05241aea BN |
322 | write_enable(nor); |
323 | ||
b199489d HS |
324 | if (erase_chip(nor)) { |
325 | ret = -EIO; | |
326 | goto erase_err; | |
327 | } | |
328 | ||
dfa9c0cb BN |
329 | ret = spi_nor_wait_till_ready(nor); |
330 | if (ret) | |
331 | goto erase_err; | |
332 | ||
b199489d | 333 | /* REVISIT in some cases we could speed up erasing large regions |
b02e7f3e | 334 | * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up |
b199489d HS |
335 | * to use "small sector erase", but that's not always optimal. |
336 | */ | |
337 | ||
338 | /* "sector"-at-a-time erase */ | |
339 | } else { | |
340 | while (len) { | |
05241aea BN |
341 | write_enable(nor); |
342 | ||
b199489d HS |
343 | if (nor->erase(nor, addr)) { |
344 | ret = -EIO; | |
345 | goto erase_err; | |
346 | } | |
347 | ||
348 | addr += mtd->erasesize; | |
349 | len -= mtd->erasesize; | |
dfa9c0cb BN |
350 | |
351 | ret = spi_nor_wait_till_ready(nor); | |
352 | if (ret) | |
353 | goto erase_err; | |
b199489d HS |
354 | } |
355 | } | |
356 | ||
05241aea BN |
357 | write_disable(nor); |
358 | ||
b199489d HS |
359 | spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); |
360 | ||
361 | instr->state = MTD_ERASE_DONE; | |
362 | mtd_erase_callback(instr); | |
363 | ||
364 | return ret; | |
365 | ||
366 | erase_err: | |
367 | spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); | |
368 | instr->state = MTD_ERASE_FAILED; | |
369 | return ret; | |
370 | } | |
371 | ||
372 | static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | |
373 | { | |
374 | struct spi_nor *nor = mtd_to_spi_nor(mtd); | |
375 | uint32_t offset = ofs; | |
376 | uint8_t status_old, status_new; | |
377 | int ret = 0; | |
378 | ||
379 | ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); | |
380 | if (ret) | |
381 | return ret; | |
382 | ||
b199489d HS |
383 | status_old = read_sr(nor); |
384 | ||
385 | if (offset < mtd->size - (mtd->size / 2)) | |
386 | status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0; | |
387 | else if (offset < mtd->size - (mtd->size / 4)) | |
388 | status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; | |
389 | else if (offset < mtd->size - (mtd->size / 8)) | |
390 | status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; | |
391 | else if (offset < mtd->size - (mtd->size / 16)) | |
392 | status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; | |
393 | else if (offset < mtd->size - (mtd->size / 32)) | |
394 | status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; | |
395 | else if (offset < mtd->size - (mtd->size / 64)) | |
396 | status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; | |
397 | else | |
398 | status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; | |
399 | ||
400 | /* Only modify protection if it will not unlock other areas */ | |
401 | if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) > | |
402 | (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { | |
403 | write_enable(nor); | |
404 | ret = write_sr(nor, status_new); | |
405 | if (ret) | |
406 | goto err; | |
407 | } | |
408 | ||
409 | err: | |
410 | spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); | |
411 | return ret; | |
412 | } | |
413 | ||
414 | static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | |
415 | { | |
416 | struct spi_nor *nor = mtd_to_spi_nor(mtd); | |
417 | uint32_t offset = ofs; | |
418 | uint8_t status_old, status_new; | |
419 | int ret = 0; | |
420 | ||
421 | ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); | |
422 | if (ret) | |
423 | return ret; | |
424 | ||
b199489d HS |
425 | status_old = read_sr(nor); |
426 | ||
427 | if (offset+len > mtd->size - (mtd->size / 64)) | |
428 | status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0); | |
429 | else if (offset+len > mtd->size - (mtd->size / 32)) | |
430 | status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; | |
431 | else if (offset+len > mtd->size - (mtd->size / 16)) | |
432 | status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; | |
433 | else if (offset+len > mtd->size - (mtd->size / 8)) | |
434 | status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; | |
435 | else if (offset+len > mtd->size - (mtd->size / 4)) | |
436 | status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; | |
437 | else if (offset+len > mtd->size - (mtd->size / 2)) | |
438 | status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; | |
439 | else | |
440 | status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; | |
441 | ||
442 | /* Only modify protection if it will not lock other areas */ | |
443 | if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) < | |
444 | (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { | |
445 | write_enable(nor); | |
446 | ret = write_sr(nor, status_new); | |
447 | if (ret) | |
448 | goto err; | |
449 | } | |
450 | ||
451 | err: | |
452 | spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); | |
453 | return ret; | |
454 | } | |
455 | ||
09ffafb6 | 456 | /* Used when the "_ext_id" is two bytes at most */ |
b199489d HS |
457 | #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ |
458 | ((kernel_ulong_t)&(struct flash_info) { \ | |
09ffafb6 HS |
459 | .id = { \ |
460 | ((_jedec_id) >> 16) & 0xff, \ | |
461 | ((_jedec_id) >> 8) & 0xff, \ | |
462 | (_jedec_id) & 0xff, \ | |
463 | ((_ext_id) >> 8) & 0xff, \ | |
464 | (_ext_id) & 0xff, \ | |
465 | }, \ | |
466 | .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \ | |
b199489d HS |
467 | .sector_size = (_sector_size), \ |
468 | .n_sectors = (_n_sectors), \ | |
469 | .page_size = 256, \ | |
470 | .flags = (_flags), \ | |
471 | }) | |
472 | ||
6d7604e5 HS |
473 | #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ |
474 | ((kernel_ulong_t)&(struct flash_info) { \ | |
475 | .id = { \ | |
476 | ((_jedec_id) >> 16) & 0xff, \ | |
477 | ((_jedec_id) >> 8) & 0xff, \ | |
478 | (_jedec_id) & 0xff, \ | |
479 | ((_ext_id) >> 16) & 0xff, \ | |
480 | ((_ext_id) >> 8) & 0xff, \ | |
481 | (_ext_id) & 0xff, \ | |
482 | }, \ | |
483 | .id_len = 6, \ | |
484 | .sector_size = (_sector_size), \ | |
485 | .n_sectors = (_n_sectors), \ | |
486 | .page_size = 256, \ | |
487 | .flags = (_flags), \ | |
488 | }) | |
489 | ||
b199489d HS |
490 | #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ |
491 | ((kernel_ulong_t)&(struct flash_info) { \ | |
492 | .sector_size = (_sector_size), \ | |
493 | .n_sectors = (_n_sectors), \ | |
494 | .page_size = (_page_size), \ | |
495 | .addr_width = (_addr_width), \ | |
496 | .flags = (_flags), \ | |
497 | }) | |
498 | ||
499 | /* NOTE: double check command sets and memory organization when you add | |
500 | * more nor chips. This current list focusses on newer chips, which | |
501 | * have been converging on command sets which including JEDEC ID. | |
502 | */ | |
a5b7616c | 503 | static const struct spi_device_id spi_nor_ids[] = { |
b199489d HS |
504 | /* Atmel -- some are (confusingly) marketed as "DataFlash" */ |
505 | { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, | |
506 | { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, | |
507 | ||
508 | { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, | |
509 | { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, | |
510 | { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, | |
511 | ||
512 | { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, | |
513 | { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, | |
514 | { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, | |
515 | { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, | |
516 | ||
517 | { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, | |
518 | ||
519 | /* EON -- en25xxx */ | |
520 | { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, | |
521 | { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, | |
522 | { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, | |
523 | { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, | |
524 | { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, | |
a41595b3 | 525 | { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, |
b199489d HS |
526 | { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, |
527 | ||
528 | /* ESMT */ | |
529 | { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, | |
530 | ||
531 | /* Everspin */ | |
532 | { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, | |
533 | { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, | |
534 | ||
ce56ce7d RL |
535 | /* Fujitsu */ |
536 | { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) }, | |
537 | ||
b199489d HS |
538 | /* GigaDevice */ |
539 | { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) }, | |
540 | { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) }, | |
541 | ||
542 | /* Intel/Numonyx -- xxxs33b */ | |
543 | { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, | |
544 | { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, | |
545 | { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, | |
546 | ||
547 | /* Macronix */ | |
548 | { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, | |
549 | { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, | |
550 | { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, | |
551 | { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, | |
552 | { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, | |
553 | { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, | |
554 | { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, | |
555 | { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, | |
556 | { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, | |
557 | { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, | |
558 | { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, | |
559 | { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, | |
560 | { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, | |
561 | ||
562 | /* Micron */ | |
548cd3ab BH |
563 | { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, |
564 | { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SPI_NOR_QUAD_READ) }, | |
565 | { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, | |
566 | { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, | |
567 | { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, | |
568 | { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, | |
569 | { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, | |
570 | { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, | |
b199489d HS |
571 | |
572 | /* PMC */ | |
573 | { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, | |
574 | { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, | |
575 | { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, | |
576 | ||
577 | /* Spansion -- single (large) sector size only, at least | |
578 | * for the chips listed here (without boot sectors). | |
579 | */ | |
9ab86995 | 580 | { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
b199489d HS |
581 | { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, |
582 | { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, | |
583 | { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, | |
584 | { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, | |
585 | { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, | |
586 | { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, | |
587 | { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, | |
6d7604e5 | 588 | { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, |
b199489d HS |
589 | { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, |
590 | { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, | |
591 | { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, | |
592 | { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, | |
593 | { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, | |
594 | { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, | |
595 | { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, | |
596 | { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, | |
597 | { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, | |
598 | { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, | |
3e38933d | 599 | { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, 0) }, |
b199489d HS |
600 | |
601 | /* SST -- large erase sizes are "overlays", "sectors" are 4K */ | |
602 | { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, | |
603 | { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, | |
604 | { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, | |
605 | { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, | |
606 | { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, | |
607 | { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, | |
608 | { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, | |
609 | { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, | |
610 | { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, | |
f02985b7 | 611 | { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, |
b199489d HS |
612 | |
613 | /* ST Microelectronics -- newer production may have feature updates */ | |
614 | { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, | |
615 | { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, | |
616 | { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, | |
617 | { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, | |
618 | { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, | |
619 | { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, | |
620 | { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, | |
621 | { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, | |
622 | { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, | |
b199489d HS |
623 | |
624 | { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, | |
625 | { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, | |
626 | { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, | |
627 | { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, | |
628 | { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, | |
629 | { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, | |
630 | { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, | |
631 | { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, | |
632 | { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, | |
633 | ||
634 | { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, | |
635 | { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, | |
636 | { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, | |
637 | ||
638 | { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, | |
639 | { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, | |
640 | { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, | |
641 | ||
642 | { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, | |
643 | { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, | |
644 | { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, | |
645 | { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, | |
646 | { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, | |
f2fabe16 | 647 | { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) }, |
b199489d HS |
648 | |
649 | /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ | |
650 | { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, | |
651 | { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, | |
652 | { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, | |
653 | { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, | |
654 | { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, | |
655 | { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, | |
656 | { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, | |
657 | { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, | |
658 | { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, | |
659 | { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, | |
b199489d HS |
660 | { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, |
661 | { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, | |
662 | { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, | |
663 | { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, | |
664 | ||
665 | /* Catalyst / On Semiconductor -- non-JEDEC */ | |
666 | { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, | |
667 | { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, | |
668 | { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, | |
669 | { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, | |
670 | { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, | |
671 | { }, | |
672 | }; | |
673 | ||
674 | static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor) | |
675 | { | |
676 | int tmp; | |
09ffafb6 | 677 | u8 id[SPI_NOR_MAX_ID_LEN]; |
b199489d HS |
678 | struct flash_info *info; |
679 | ||
09ffafb6 | 680 | tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); |
b199489d HS |
681 | if (tmp < 0) { |
682 | dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp); | |
683 | return ERR_PTR(tmp); | |
684 | } | |
b199489d HS |
685 | |
686 | for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { | |
687 | info = (void *)spi_nor_ids[tmp].driver_data; | |
09ffafb6 HS |
688 | if (info->id_len) { |
689 | if (!memcmp(info->id, id, info->id_len)) | |
b199489d HS |
690 | return &spi_nor_ids[tmp]; |
691 | } | |
692 | } | |
09ffafb6 HS |
693 | dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n", |
694 | id[0], id[1], id[2]); | |
b199489d HS |
695 | return ERR_PTR(-ENODEV); |
696 | } | |
697 | ||
b199489d HS |
698 | static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, |
699 | size_t *retlen, u_char *buf) | |
700 | { | |
701 | struct spi_nor *nor = mtd_to_spi_nor(mtd); | |
702 | int ret; | |
703 | ||
704 | dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); | |
705 | ||
706 | ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); | |
707 | if (ret) | |
708 | return ret; | |
709 | ||
710 | ret = nor->read(nor, from, len, retlen, buf); | |
711 | ||
712 | spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); | |
713 | return ret; | |
714 | } | |
715 | ||
716 | static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, | |
717 | size_t *retlen, const u_char *buf) | |
718 | { | |
719 | struct spi_nor *nor = mtd_to_spi_nor(mtd); | |
720 | size_t actual; | |
721 | int ret; | |
722 | ||
723 | dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); | |
724 | ||
725 | ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); | |
726 | if (ret) | |
727 | return ret; | |
728 | ||
b199489d HS |
729 | write_enable(nor); |
730 | ||
731 | nor->sst_write_second = false; | |
732 | ||
733 | actual = to % 2; | |
734 | /* Start write from odd address. */ | |
735 | if (actual) { | |
b02e7f3e | 736 | nor->program_opcode = SPINOR_OP_BP; |
b199489d HS |
737 | |
738 | /* write one byte. */ | |
739 | nor->write(nor, to, 1, retlen, buf); | |
b94ed087 | 740 | ret = spi_nor_wait_till_ready(nor); |
b199489d HS |
741 | if (ret) |
742 | goto time_out; | |
743 | } | |
744 | to += actual; | |
745 | ||
746 | /* Write out most of the data here. */ | |
747 | for (; actual < len - 1; actual += 2) { | |
b02e7f3e | 748 | nor->program_opcode = SPINOR_OP_AAI_WP; |
b199489d HS |
749 | |
750 | /* write two bytes. */ | |
751 | nor->write(nor, to, 2, retlen, buf + actual); | |
b94ed087 | 752 | ret = spi_nor_wait_till_ready(nor); |
b199489d HS |
753 | if (ret) |
754 | goto time_out; | |
755 | to += 2; | |
756 | nor->sst_write_second = true; | |
757 | } | |
758 | nor->sst_write_second = false; | |
759 | ||
760 | write_disable(nor); | |
b94ed087 | 761 | ret = spi_nor_wait_till_ready(nor); |
b199489d HS |
762 | if (ret) |
763 | goto time_out; | |
764 | ||
765 | /* Write out trailing byte if it exists. */ | |
766 | if (actual != len) { | |
767 | write_enable(nor); | |
768 | ||
b02e7f3e | 769 | nor->program_opcode = SPINOR_OP_BP; |
b199489d HS |
770 | nor->write(nor, to, 1, retlen, buf + actual); |
771 | ||
b94ed087 | 772 | ret = spi_nor_wait_till_ready(nor); |
b199489d HS |
773 | if (ret) |
774 | goto time_out; | |
775 | write_disable(nor); | |
776 | } | |
777 | time_out: | |
778 | spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); | |
779 | return ret; | |
780 | } | |
781 | ||
782 | /* | |
783 | * Write an address range to the nor chip. Data must be written in | |
784 | * FLASH_PAGESIZE chunks. The address range may be any size provided | |
785 | * it is within the physical boundaries. | |
786 | */ | |
787 | static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, | |
788 | size_t *retlen, const u_char *buf) | |
789 | { | |
790 | struct spi_nor *nor = mtd_to_spi_nor(mtd); | |
791 | u32 page_offset, page_size, i; | |
792 | int ret; | |
793 | ||
794 | dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); | |
795 | ||
796 | ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); | |
797 | if (ret) | |
798 | return ret; | |
799 | ||
b199489d HS |
800 | write_enable(nor); |
801 | ||
802 | page_offset = to & (nor->page_size - 1); | |
803 | ||
804 | /* do all the bytes fit onto one page? */ | |
805 | if (page_offset + len <= nor->page_size) { | |
806 | nor->write(nor, to, len, retlen, buf); | |
807 | } else { | |
808 | /* the size of data remaining on the first page */ | |
809 | page_size = nor->page_size - page_offset; | |
810 | nor->write(nor, to, page_size, retlen, buf); | |
811 | ||
812 | /* write everything in nor->page_size chunks */ | |
813 | for (i = page_size; i < len; i += page_size) { | |
814 | page_size = len - i; | |
815 | if (page_size > nor->page_size) | |
816 | page_size = nor->page_size; | |
817 | ||
b94ed087 | 818 | ret = spi_nor_wait_till_ready(nor); |
1d61dcb3 BN |
819 | if (ret) |
820 | goto write_err; | |
821 | ||
b199489d HS |
822 | write_enable(nor); |
823 | ||
824 | nor->write(nor, to + i, page_size, retlen, buf + i); | |
825 | } | |
826 | } | |
827 | ||
dfa9c0cb | 828 | ret = spi_nor_wait_till_ready(nor); |
b199489d HS |
829 | write_err: |
830 | spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); | |
1d61dcb3 | 831 | return ret; |
b199489d HS |
832 | } |
833 | ||
834 | static int macronix_quad_enable(struct spi_nor *nor) | |
835 | { | |
836 | int ret, val; | |
837 | ||
838 | val = read_sr(nor); | |
839 | write_enable(nor); | |
840 | ||
841 | nor->cmd_buf[0] = val | SR_QUAD_EN_MX; | |
b02e7f3e | 842 | nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); |
b199489d | 843 | |
b94ed087 | 844 | if (spi_nor_wait_till_ready(nor)) |
b199489d HS |
845 | return 1; |
846 | ||
847 | ret = read_sr(nor); | |
848 | if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { | |
849 | dev_err(nor->dev, "Macronix Quad bit not set\n"); | |
850 | return -EINVAL; | |
851 | } | |
852 | ||
853 | return 0; | |
854 | } | |
855 | ||
856 | /* | |
857 | * Write status Register and configuration register with 2 bytes | |
858 | * The first byte will be written to the status register, while the | |
859 | * second byte will be written to the configuration register. | |
860 | * Return negative if error occured. | |
861 | */ | |
862 | static int write_sr_cr(struct spi_nor *nor, u16 val) | |
863 | { | |
864 | nor->cmd_buf[0] = val & 0xff; | |
865 | nor->cmd_buf[1] = (val >> 8); | |
866 | ||
b02e7f3e | 867 | return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0); |
b199489d HS |
868 | } |
869 | ||
870 | static int spansion_quad_enable(struct spi_nor *nor) | |
871 | { | |
872 | int ret; | |
873 | int quad_en = CR_QUAD_EN_SPAN << 8; | |
874 | ||
875 | write_enable(nor); | |
876 | ||
877 | ret = write_sr_cr(nor, quad_en); | |
878 | if (ret < 0) { | |
879 | dev_err(nor->dev, | |
880 | "error while writing configuration register\n"); | |
881 | return -EINVAL; | |
882 | } | |
883 | ||
884 | /* read back and check it */ | |
885 | ret = read_cr(nor); | |
886 | if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { | |
887 | dev_err(nor->dev, "Spansion Quad bit not set\n"); | |
888 | return -EINVAL; | |
889 | } | |
890 | ||
891 | return 0; | |
892 | } | |
893 | ||
548cd3ab BH |
894 | static int micron_quad_enable(struct spi_nor *nor) |
895 | { | |
896 | int ret; | |
897 | u8 val; | |
898 | ||
899 | ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1); | |
900 | if (ret < 0) { | |
901 | dev_err(nor->dev, "error %d reading EVCR\n", ret); | |
902 | return ret; | |
903 | } | |
904 | ||
905 | write_enable(nor); | |
906 | ||
907 | /* set EVCR, enable quad I/O */ | |
908 | nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON; | |
909 | ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0); | |
910 | if (ret < 0) { | |
911 | dev_err(nor->dev, "error while writing EVCR register\n"); | |
912 | return ret; | |
913 | } | |
914 | ||
915 | ret = spi_nor_wait_till_ready(nor); | |
916 | if (ret) | |
917 | return ret; | |
918 | ||
919 | /* read EVCR and check it */ | |
920 | ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1); | |
921 | if (ret < 0) { | |
922 | dev_err(nor->dev, "error %d reading EVCR\n", ret); | |
923 | return ret; | |
924 | } | |
925 | if (val & EVCR_QUAD_EN_MICRON) { | |
926 | dev_err(nor->dev, "Micron EVCR Quad bit not clear\n"); | |
927 | return -EINVAL; | |
928 | } | |
929 | ||
930 | return 0; | |
931 | } | |
932 | ||
d928a259 | 933 | static int set_quad_mode(struct spi_nor *nor, struct flash_info *info) |
b199489d HS |
934 | { |
935 | int status; | |
936 | ||
d928a259 | 937 | switch (JEDEC_MFR(info)) { |
b199489d HS |
938 | case CFI_MFR_MACRONIX: |
939 | status = macronix_quad_enable(nor); | |
940 | if (status) { | |
941 | dev_err(nor->dev, "Macronix quad-read not enabled\n"); | |
942 | return -EINVAL; | |
943 | } | |
944 | return status; | |
548cd3ab BH |
945 | case CFI_MFR_ST: |
946 | status = micron_quad_enable(nor); | |
947 | if (status) { | |
948 | dev_err(nor->dev, "Micron quad-read not enabled\n"); | |
949 | return -EINVAL; | |
950 | } | |
951 | return status; | |
b199489d HS |
952 | default: |
953 | status = spansion_quad_enable(nor); | |
954 | if (status) { | |
955 | dev_err(nor->dev, "Spansion quad-read not enabled\n"); | |
956 | return -EINVAL; | |
957 | } | |
958 | return status; | |
959 | } | |
960 | } | |
961 | ||
962 | static int spi_nor_check(struct spi_nor *nor) | |
963 | { | |
964 | if (!nor->dev || !nor->read || !nor->write || | |
965 | !nor->read_reg || !nor->write_reg || !nor->erase) { | |
966 | pr_err("spi-nor: please fill all the necessary fields!\n"); | |
967 | return -EINVAL; | |
968 | } | |
969 | ||
b199489d HS |
970 | return 0; |
971 | } | |
972 | ||
70f3ce05 | 973 | int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) |
b199489d | 974 | { |
70f3ce05 | 975 | const struct spi_device_id *id = NULL; |
b199489d | 976 | struct flash_info *info; |
b199489d HS |
977 | struct device *dev = nor->dev; |
978 | struct mtd_info *mtd = nor->mtd; | |
979 | struct device_node *np = dev->of_node; | |
980 | int ret; | |
981 | int i; | |
982 | ||
983 | ret = spi_nor_check(nor); | |
984 | if (ret) | |
985 | return ret; | |
986 | ||
58c81957 RM |
987 | /* Try to auto-detect if chip name wasn't specified */ |
988 | if (!name) | |
989 | id = spi_nor_read_id(nor); | |
990 | else | |
991 | id = spi_nor_match_id(name); | |
992 | if (IS_ERR_OR_NULL(id)) | |
70f3ce05 BH |
993 | return -ENOENT; |
994 | ||
b199489d HS |
995 | info = (void *)id->driver_data; |
996 | ||
58c81957 RM |
997 | /* |
998 | * If caller has specified name of flash model that can normally be | |
999 | * detected using JEDEC, let's verify it. | |
1000 | */ | |
1001 | if (name && info->id_len) { | |
b199489d HS |
1002 | const struct spi_device_id *jid; |
1003 | ||
e66fcf72 | 1004 | jid = spi_nor_read_id(nor); |
b199489d HS |
1005 | if (IS_ERR(jid)) { |
1006 | return PTR_ERR(jid); | |
1007 | } else if (jid != id) { | |
1008 | /* | |
1009 | * JEDEC knows better, so overwrite platform ID. We | |
1010 | * can't trust partitions any longer, but we'll let | |
1011 | * mtd apply them anyway, since some partitions may be | |
1012 | * marked read-only, and we don't want to lose that | |
1013 | * information, even if it's not 100% accurate. | |
1014 | */ | |
1015 | dev_warn(dev, "found %s, expected %s\n", | |
1016 | jid->name, id->name); | |
1017 | id = jid; | |
1018 | info = (void *)jid->driver_data; | |
1019 | } | |
1020 | } | |
1021 | ||
1022 | mutex_init(&nor->lock); | |
1023 | ||
1024 | /* | |
1025 | * Atmel, SST and Intel/Numonyx serial nor tend to power | |
1026 | * up with the software protection bits set | |
1027 | */ | |
1028 | ||
d928a259 HS |
1029 | if (JEDEC_MFR(info) == CFI_MFR_ATMEL || |
1030 | JEDEC_MFR(info) == CFI_MFR_INTEL || | |
1031 | JEDEC_MFR(info) == CFI_MFR_SST) { | |
b199489d HS |
1032 | write_enable(nor); |
1033 | write_sr(nor, 0); | |
1034 | } | |
1035 | ||
32f1b7c8 | 1036 | if (!mtd->name) |
b199489d | 1037 | mtd->name = dev_name(dev); |
b199489d HS |
1038 | mtd->type = MTD_NORFLASH; |
1039 | mtd->writesize = 1; | |
1040 | mtd->flags = MTD_CAP_NORFLASH; | |
1041 | mtd->size = info->sector_size * info->n_sectors; | |
1042 | mtd->_erase = spi_nor_erase; | |
1043 | mtd->_read = spi_nor_read; | |
1044 | ||
1045 | /* nor protection support for STmicro chips */ | |
d928a259 | 1046 | if (JEDEC_MFR(info) == CFI_MFR_ST) { |
b199489d HS |
1047 | mtd->_lock = spi_nor_lock; |
1048 | mtd->_unlock = spi_nor_unlock; | |
1049 | } | |
1050 | ||
1051 | /* sst nor chips use AAI word program */ | |
1052 | if (info->flags & SST_WRITE) | |
1053 | mtd->_write = sst_write; | |
1054 | else | |
1055 | mtd->_write = spi_nor_write; | |
1056 | ||
51983b7d BN |
1057 | if (info->flags & USE_FSR) |
1058 | nor->flags |= SNOR_F_USE_FSR; | |
c14dedde | 1059 | |
57cf26c1 | 1060 | #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS |
b199489d HS |
1061 | /* prefer "small sector" erase if possible */ |
1062 | if (info->flags & SECT_4K) { | |
b02e7f3e | 1063 | nor->erase_opcode = SPINOR_OP_BE_4K; |
b199489d HS |
1064 | mtd->erasesize = 4096; |
1065 | } else if (info->flags & SECT_4K_PMC) { | |
b02e7f3e | 1066 | nor->erase_opcode = SPINOR_OP_BE_4K_PMC; |
b199489d | 1067 | mtd->erasesize = 4096; |
57cf26c1 RM |
1068 | } else |
1069 | #endif | |
1070 | { | |
b02e7f3e | 1071 | nor->erase_opcode = SPINOR_OP_SE; |
b199489d HS |
1072 | mtd->erasesize = info->sector_size; |
1073 | } | |
1074 | ||
1075 | if (info->flags & SPI_NOR_NO_ERASE) | |
1076 | mtd->flags |= MTD_NO_ERASE; | |
1077 | ||
1078 | mtd->dev.parent = dev; | |
1079 | nor->page_size = info->page_size; | |
1080 | mtd->writebufsize = nor->page_size; | |
1081 | ||
1082 | if (np) { | |
1083 | /* If we were instantiated by DT, use it */ | |
1084 | if (of_property_read_bool(np, "m25p,fast-read")) | |
1085 | nor->flash_read = SPI_NOR_FAST; | |
1086 | else | |
1087 | nor->flash_read = SPI_NOR_NORMAL; | |
1088 | } else { | |
1089 | /* If we weren't instantiated by DT, default to fast-read */ | |
1090 | nor->flash_read = SPI_NOR_FAST; | |
1091 | } | |
1092 | ||
1093 | /* Some devices cannot do fast-read, no matter what DT tells us */ | |
1094 | if (info->flags & SPI_NOR_NO_FR) | |
1095 | nor->flash_read = SPI_NOR_NORMAL; | |
1096 | ||
1097 | /* Quad/Dual-read mode takes precedence over fast/normal */ | |
1098 | if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) { | |
d928a259 | 1099 | ret = set_quad_mode(nor, info); |
b199489d HS |
1100 | if (ret) { |
1101 | dev_err(dev, "quad mode not supported\n"); | |
1102 | return ret; | |
1103 | } | |
1104 | nor->flash_read = SPI_NOR_QUAD; | |
1105 | } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) { | |
1106 | nor->flash_read = SPI_NOR_DUAL; | |
1107 | } | |
1108 | ||
1109 | /* Default commands */ | |
1110 | switch (nor->flash_read) { | |
1111 | case SPI_NOR_QUAD: | |
58b89a1f | 1112 | nor->read_opcode = SPINOR_OP_READ_1_1_4; |
b199489d HS |
1113 | break; |
1114 | case SPI_NOR_DUAL: | |
58b89a1f | 1115 | nor->read_opcode = SPINOR_OP_READ_1_1_2; |
b199489d HS |
1116 | break; |
1117 | case SPI_NOR_FAST: | |
58b89a1f | 1118 | nor->read_opcode = SPINOR_OP_READ_FAST; |
b199489d HS |
1119 | break; |
1120 | case SPI_NOR_NORMAL: | |
58b89a1f | 1121 | nor->read_opcode = SPINOR_OP_READ; |
b199489d HS |
1122 | break; |
1123 | default: | |
1124 | dev_err(dev, "No Read opcode defined\n"); | |
1125 | return -EINVAL; | |
1126 | } | |
1127 | ||
b02e7f3e | 1128 | nor->program_opcode = SPINOR_OP_PP; |
b199489d HS |
1129 | |
1130 | if (info->addr_width) | |
1131 | nor->addr_width = info->addr_width; | |
1132 | else if (mtd->size > 0x1000000) { | |
1133 | /* enable 4-byte addressing if the device exceeds 16MiB */ | |
1134 | nor->addr_width = 4; | |
d928a259 | 1135 | if (JEDEC_MFR(info) == CFI_MFR_AMD) { |
b199489d HS |
1136 | /* Dedicated 4-byte command set */ |
1137 | switch (nor->flash_read) { | |
1138 | case SPI_NOR_QUAD: | |
58b89a1f | 1139 | nor->read_opcode = SPINOR_OP_READ4_1_1_4; |
b199489d HS |
1140 | break; |
1141 | case SPI_NOR_DUAL: | |
58b89a1f | 1142 | nor->read_opcode = SPINOR_OP_READ4_1_1_2; |
b199489d HS |
1143 | break; |
1144 | case SPI_NOR_FAST: | |
58b89a1f | 1145 | nor->read_opcode = SPINOR_OP_READ4_FAST; |
b199489d HS |
1146 | break; |
1147 | case SPI_NOR_NORMAL: | |
58b89a1f | 1148 | nor->read_opcode = SPINOR_OP_READ4; |
b199489d HS |
1149 | break; |
1150 | } | |
b02e7f3e | 1151 | nor->program_opcode = SPINOR_OP_PP_4B; |
b199489d | 1152 | /* No small sector erase for 4-byte command set */ |
b02e7f3e | 1153 | nor->erase_opcode = SPINOR_OP_SE_4B; |
b199489d HS |
1154 | mtd->erasesize = info->sector_size; |
1155 | } else | |
d928a259 | 1156 | set_4byte(nor, info, 1); |
b199489d HS |
1157 | } else { |
1158 | nor->addr_width = 3; | |
1159 | } | |
1160 | ||
1161 | nor->read_dummy = spi_nor_read_dummy_cycles(nor); | |
1162 | ||
1163 | dev_info(dev, "%s (%lld Kbytes)\n", id->name, | |
1164 | (long long)mtd->size >> 10); | |
1165 | ||
1166 | dev_dbg(dev, | |
1167 | "mtd .name = %s, .size = 0x%llx (%lldMiB), " | |
1168 | ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", | |
1169 | mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), | |
1170 | mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); | |
1171 | ||
1172 | if (mtd->numeraseregions) | |
1173 | for (i = 0; i < mtd->numeraseregions; i++) | |
1174 | dev_dbg(dev, | |
1175 | "mtd.eraseregions[%d] = { .offset = 0x%llx, " | |
1176 | ".erasesize = 0x%.8x (%uKiB), " | |
1177 | ".numblocks = %d }\n", | |
1178 | i, (long long)mtd->eraseregions[i].offset, | |
1179 | mtd->eraseregions[i].erasesize, | |
1180 | mtd->eraseregions[i].erasesize / 1024, | |
1181 | mtd->eraseregions[i].numblocks); | |
1182 | return 0; | |
1183 | } | |
b61834b0 | 1184 | EXPORT_SYMBOL_GPL(spi_nor_scan); |
b199489d | 1185 | |
70f3ce05 | 1186 | static const struct spi_device_id *spi_nor_match_id(const char *name) |
0d8c11c0 HS |
1187 | { |
1188 | const struct spi_device_id *id = spi_nor_ids; | |
1189 | ||
1190 | while (id->name[0]) { | |
1191 | if (!strcmp(name, id->name)) | |
1192 | return id; | |
1193 | id++; | |
1194 | } | |
1195 | return NULL; | |
1196 | } | |
1197 | ||
b199489d HS |
1198 | MODULE_LICENSE("GPL"); |
1199 | MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); | |
1200 | MODULE_AUTHOR("Mike Lavender"); | |
1201 | MODULE_DESCRIPTION("framework for SPI NOR"); |