]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/spi-nor/spi-nor.c
mtd: spi-nor: Add support for Macronix mx25u6435f serial flash
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
CommitLineData
b199489d 1/*
8eabdd1e
HS
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
b199489d
HS
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
19
20#include <linux/mtd/cfi.h>
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
27#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
28
d928a259
HS
29#define SPI_NOR_MAX_ID_LEN 6
30
31struct flash_info {
32 /*
33 * This array stores the ID bytes.
34 * The first three bytes are the JEDIC ID.
35 * JEDEC ID zero means "no ID" (mostly older chips).
36 */
37 u8 id[SPI_NOR_MAX_ID_LEN];
38 u8 id_len;
39
40 /* The size listed here is what works with SPINOR_OP_SE, which isn't
41 * necessarily called a "sector" by the vendor.
42 */
43 unsigned sector_size;
44 u16 n_sectors;
45
46 u16 page_size;
47 u16 addr_width;
48
49 u16 flags;
50#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
51#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
52#define SST_WRITE 0x04 /* use SST byte programming */
53#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
54#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
55#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
56#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
57#define USE_FSR 0x80 /* use flag status register */
58};
59
60#define JEDEC_MFR(info) ((info)->id[0])
b199489d 61
70f3ce05
BH
62static const struct spi_device_id *spi_nor_match_id(const char *name);
63
b199489d
HS
64/*
65 * Read the status register, returning its value in the location
66 * Return the status register value.
67 * Returns negative if error occurred.
68 */
69static int read_sr(struct spi_nor *nor)
70{
71 int ret;
72 u8 val;
73
b02e7f3e 74 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
b199489d
HS
75 if (ret < 0) {
76 pr_err("error %d reading SR\n", (int) ret);
77 return ret;
78 }
79
80 return val;
81}
82
c14dedde 83/*
84 * Read the flag status register, returning its value in the location
85 * Return the status register value.
86 * Returns negative if error occurred.
87 */
88static int read_fsr(struct spi_nor *nor)
89{
90 int ret;
91 u8 val;
92
93 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
94 if (ret < 0) {
95 pr_err("error %d reading FSR\n", ret);
96 return ret;
97 }
98
99 return val;
100}
101
b199489d
HS
102/*
103 * Read configuration register, returning its value in the
104 * location. Return the configuration register value.
105 * Returns negative if error occured.
106 */
107static int read_cr(struct spi_nor *nor)
108{
109 int ret;
110 u8 val;
111
b02e7f3e 112 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
b199489d
HS
113 if (ret < 0) {
114 dev_err(nor->dev, "error %d reading CR\n", ret);
115 return ret;
116 }
117
118 return val;
119}
120
121/*
122 * Dummy Cycle calculation for different type of read.
123 * It can be used to support more commands with
124 * different dummy cycle requirements.
125 */
126static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
127{
128 switch (nor->flash_read) {
129 case SPI_NOR_FAST:
130 case SPI_NOR_DUAL:
131 case SPI_NOR_QUAD:
0b78a2cf 132 return 8;
b199489d
HS
133 case SPI_NOR_NORMAL:
134 return 0;
135 }
136 return 0;
137}
138
139/*
140 * Write status register 1 byte
141 * Returns negative if error occurred.
142 */
143static inline int write_sr(struct spi_nor *nor, u8 val)
144{
145 nor->cmd_buf[0] = val;
b02e7f3e 146 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
b199489d
HS
147}
148
149/*
150 * Set write enable latch with Write Enable command.
151 * Returns negative if error occurred.
152 */
153static inline int write_enable(struct spi_nor *nor)
154{
b02e7f3e 155 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
b199489d
HS
156}
157
158/*
159 * Send write disble instruction to the chip.
160 */
161static inline int write_disable(struct spi_nor *nor)
162{
b02e7f3e 163 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
b199489d
HS
164}
165
166static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
167{
168 return mtd->priv;
169}
170
171/* Enable/disable 4-byte addressing mode. */
d928a259
HS
172static inline int set_4byte(struct spi_nor *nor, struct flash_info *info,
173 int enable)
b199489d
HS
174{
175 int status;
176 bool need_wren = false;
177 u8 cmd;
178
d928a259 179 switch (JEDEC_MFR(info)) {
b199489d
HS
180 case CFI_MFR_ST: /* Micron, actually */
181 /* Some Micron need WREN command; all will accept it */
182 need_wren = true;
183 case CFI_MFR_MACRONIX:
184 case 0xEF /* winbond */:
185 if (need_wren)
186 write_enable(nor);
187
b02e7f3e 188 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
b199489d
HS
189 status = nor->write_reg(nor, cmd, NULL, 0, 0);
190 if (need_wren)
191 write_disable(nor);
192
193 return status;
194 default:
195 /* Spansion style */
196 nor->cmd_buf[0] = enable << 7;
b02e7f3e 197 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
b199489d
HS
198 }
199}
51983b7d 200static inline int spi_nor_sr_ready(struct spi_nor *nor)
b199489d 201{
51983b7d
BN
202 int sr = read_sr(nor);
203 if (sr < 0)
204 return sr;
205 else
206 return !(sr & SR_WIP);
207}
b199489d 208
51983b7d
BN
209static inline int spi_nor_fsr_ready(struct spi_nor *nor)
210{
211 int fsr = read_fsr(nor);
212 if (fsr < 0)
213 return fsr;
214 else
215 return fsr & FSR_READY;
216}
b199489d 217
51983b7d
BN
218static int spi_nor_ready(struct spi_nor *nor)
219{
220 int sr, fsr;
221 sr = spi_nor_sr_ready(nor);
222 if (sr < 0)
223 return sr;
224 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
225 if (fsr < 0)
226 return fsr;
227 return sr && fsr;
b199489d
HS
228}
229
b94ed087
BN
230/*
231 * Service routine to read status register until ready, or timeout occurs.
232 * Returns non-zero if error.
233 */
51983b7d 234static int spi_nor_wait_till_ready(struct spi_nor *nor)
c14dedde 235{
236 unsigned long deadline;
a95ce92e 237 int timeout = 0, ret;
c14dedde 238
239 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
240
a95ce92e
BN
241 while (!timeout) {
242 if (time_after_eq(jiffies, deadline))
243 timeout = 1;
c14dedde 244
51983b7d
BN
245 ret = spi_nor_ready(nor);
246 if (ret < 0)
247 return ret;
248 if (ret)
249 return 0;
a95ce92e
BN
250
251 cond_resched();
252 }
253
254 dev_err(nor->dev, "flash operation timed out\n");
c14dedde 255
256 return -ETIMEDOUT;
257}
258
b199489d
HS
259/*
260 * Erase the whole flash memory
261 *
262 * Returns 0 if successful, non-zero otherwise.
263 */
264static int erase_chip(struct spi_nor *nor)
265{
b199489d
HS
266 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
267
b02e7f3e 268 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
b199489d
HS
269}
270
271static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
272{
273 int ret = 0;
274
275 mutex_lock(&nor->lock);
276
277 if (nor->prepare) {
278 ret = nor->prepare(nor, ops);
279 if (ret) {
280 dev_err(nor->dev, "failed in the preparation.\n");
281 mutex_unlock(&nor->lock);
282 return ret;
283 }
284 }
285 return ret;
286}
287
288static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
289{
290 if (nor->unprepare)
291 nor->unprepare(nor, ops);
292 mutex_unlock(&nor->lock);
293}
294
295/*
296 * Erase an address range on the nor chip. The address range may extend
297 * one or more erase sectors. Return an error is there is a problem erasing.
298 */
299static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
300{
301 struct spi_nor *nor = mtd_to_spi_nor(mtd);
302 u32 addr, len;
303 uint32_t rem;
304 int ret;
305
306 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
307 (long long)instr->len);
308
309 div_u64_rem(instr->len, mtd->erasesize, &rem);
310 if (rem)
311 return -EINVAL;
312
313 addr = instr->addr;
314 len = instr->len;
315
316 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
317 if (ret)
318 return ret;
319
320 /* whole-chip erase? */
321 if (len == mtd->size) {
05241aea
BN
322 write_enable(nor);
323
b199489d
HS
324 if (erase_chip(nor)) {
325 ret = -EIO;
326 goto erase_err;
327 }
328
dfa9c0cb
BN
329 ret = spi_nor_wait_till_ready(nor);
330 if (ret)
331 goto erase_err;
332
b199489d 333 /* REVISIT in some cases we could speed up erasing large regions
b02e7f3e 334 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
b199489d
HS
335 * to use "small sector erase", but that's not always optimal.
336 */
337
338 /* "sector"-at-a-time erase */
339 } else {
340 while (len) {
05241aea
BN
341 write_enable(nor);
342
b199489d
HS
343 if (nor->erase(nor, addr)) {
344 ret = -EIO;
345 goto erase_err;
346 }
347
348 addr += mtd->erasesize;
349 len -= mtd->erasesize;
dfa9c0cb
BN
350
351 ret = spi_nor_wait_till_ready(nor);
352 if (ret)
353 goto erase_err;
b199489d
HS
354 }
355 }
356
05241aea
BN
357 write_disable(nor);
358
b199489d
HS
359 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
360
361 instr->state = MTD_ERASE_DONE;
362 mtd_erase_callback(instr);
363
364 return ret;
365
366erase_err:
367 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
368 instr->state = MTD_ERASE_FAILED;
369 return ret;
370}
371
8cc7f33a 372static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 373{
8cc7f33a 374 struct mtd_info *mtd = nor->mtd;
b199489d
HS
375 uint32_t offset = ofs;
376 uint8_t status_old, status_new;
377 int ret = 0;
378
b199489d
HS
379 status_old = read_sr(nor);
380
381 if (offset < mtd->size - (mtd->size / 2))
382 status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
383 else if (offset < mtd->size - (mtd->size / 4))
384 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
385 else if (offset < mtd->size - (mtd->size / 8))
386 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
387 else if (offset < mtd->size - (mtd->size / 16))
388 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
389 else if (offset < mtd->size - (mtd->size / 32))
390 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
391 else if (offset < mtd->size - (mtd->size / 64))
392 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
393 else
394 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
395
396 /* Only modify protection if it will not unlock other areas */
397 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
398 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
399 write_enable(nor);
400 ret = write_sr(nor, status_new);
b199489d
HS
401 }
402
b199489d
HS
403 return ret;
404}
405
8cc7f33a 406static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 407{
8cc7f33a 408 struct mtd_info *mtd = nor->mtd;
b199489d
HS
409 uint32_t offset = ofs;
410 uint8_t status_old, status_new;
411 int ret = 0;
412
b199489d
HS
413 status_old = read_sr(nor);
414
415 if (offset+len > mtd->size - (mtd->size / 64))
416 status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
417 else if (offset+len > mtd->size - (mtd->size / 32))
418 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
419 else if (offset+len > mtd->size - (mtd->size / 16))
420 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
421 else if (offset+len > mtd->size - (mtd->size / 8))
422 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
423 else if (offset+len > mtd->size - (mtd->size / 4))
424 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
425 else if (offset+len > mtd->size - (mtd->size / 2))
426 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
427 else
428 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
429
430 /* Only modify protection if it will not lock other areas */
431 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
432 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
433 write_enable(nor);
434 ret = write_sr(nor, status_new);
b199489d
HS
435 }
436
8cc7f33a
BN
437 return ret;
438}
439
440static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
441{
442 struct spi_nor *nor = mtd_to_spi_nor(mtd);
443 int ret;
444
445 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
446 if (ret)
447 return ret;
448
449 ret = nor->flash_lock(nor, ofs, len);
450
b199489d
HS
451 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
452 return ret;
453}
454
8cc7f33a
BN
455static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
456{
457 struct spi_nor *nor = mtd_to_spi_nor(mtd);
458 int ret;
459
460 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
461 if (ret)
462 return ret;
463
464 ret = nor->flash_unlock(nor, ofs, len);
465
466 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
467 return ret;
468}
469
09ffafb6 470/* Used when the "_ext_id" is two bytes at most */
b199489d
HS
471#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
472 ((kernel_ulong_t)&(struct flash_info) { \
09ffafb6
HS
473 .id = { \
474 ((_jedec_id) >> 16) & 0xff, \
475 ((_jedec_id) >> 8) & 0xff, \
476 (_jedec_id) & 0xff, \
477 ((_ext_id) >> 8) & 0xff, \
478 (_ext_id) & 0xff, \
479 }, \
480 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
b199489d
HS
481 .sector_size = (_sector_size), \
482 .n_sectors = (_n_sectors), \
483 .page_size = 256, \
484 .flags = (_flags), \
485 })
486
6d7604e5
HS
487#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
488 ((kernel_ulong_t)&(struct flash_info) { \
489 .id = { \
490 ((_jedec_id) >> 16) & 0xff, \
491 ((_jedec_id) >> 8) & 0xff, \
492 (_jedec_id) & 0xff, \
493 ((_ext_id) >> 16) & 0xff, \
494 ((_ext_id) >> 8) & 0xff, \
495 (_ext_id) & 0xff, \
496 }, \
497 .id_len = 6, \
498 .sector_size = (_sector_size), \
499 .n_sectors = (_n_sectors), \
500 .page_size = 256, \
501 .flags = (_flags), \
502 })
503
b199489d
HS
504#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
505 ((kernel_ulong_t)&(struct flash_info) { \
506 .sector_size = (_sector_size), \
507 .n_sectors = (_n_sectors), \
508 .page_size = (_page_size), \
509 .addr_width = (_addr_width), \
510 .flags = (_flags), \
511 })
512
513/* NOTE: double check command sets and memory organization when you add
514 * more nor chips. This current list focusses on newer chips, which
515 * have been converging on command sets which including JEDEC ID.
516 */
a5b7616c 517static const struct spi_device_id spi_nor_ids[] = {
b199489d
HS
518 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
519 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
520 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
521
522 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
523 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
524 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
525
526 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
527 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
528 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
529 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
530
531 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
532
533 /* EON -- en25xxx */
534 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
535 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
536 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
537 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
538 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
a41595b3 539 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
b199489d 540 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
072b56ab 541 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, 0) },
b199489d
HS
542
543 /* ESMT */
544 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
545
546 /* Everspin */
547 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
548 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
549
ce56ce7d
RL
550 /* Fujitsu */
551 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
552
b199489d
HS
553 /* GigaDevice */
554 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
555 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
fcc87a95 556 { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
b199489d
HS
557
558 /* Intel/Numonyx -- xxxs33b */
559 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
560 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
561 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
562
563 /* Macronix */
564 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
565 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
566 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
567 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
568 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
569 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
570 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
81a1209c 571 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
572 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
573 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
574 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
575 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
576 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
577 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
578
579 /* Micron */
548cd3ab
BH
580 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
581 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SPI_NOR_QUAD_READ) },
582 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
583 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
584 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
585 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
586 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
587 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
b199489d
HS
588
589 /* PMC */
590 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
591 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
592 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
593
594 /* Spansion -- single (large) sector size only, at least
595 * for the chips listed here (without boot sectors).
596 */
9ab86995 597 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
598 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
599 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
600 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
601 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
602 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
603 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
604 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
6d7604e5 605 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
b199489d
HS
606 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
607 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
608 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
609 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
610 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
611 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
612 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
613 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
614 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
615 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
3e38933d 616 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, 0) },
b199489d
HS
617
618 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
619 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
620 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
621 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
622 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
623 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
624 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
625 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
626 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
627 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
f02985b7 628 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
b199489d
HS
629
630 /* ST Microelectronics -- newer production may have feature updates */
631 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
632 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
633 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
634 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
635 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
636 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
637 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
638 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
639 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
b199489d
HS
640
641 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
642 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
643 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
644 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
645 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
646 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
647 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
648 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
649 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
650
651 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
652 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
653 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
654
655 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
656 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
657 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
658
659 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
660 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
661 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
662 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
663 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
f2fabe16 664 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
b199489d
HS
665
666 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
40d19ab6 667 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
668 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
669 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
670 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
671 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
672 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
673 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
674 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
675 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
676 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
677 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
e88e567f 678 { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
679 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
680 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
681 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
682 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
683
684 /* Catalyst / On Semiconductor -- non-JEDEC */
685 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
686 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
687 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
688 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
689 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
690 { },
691};
692
693static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
694{
695 int tmp;
09ffafb6 696 u8 id[SPI_NOR_MAX_ID_LEN];
b199489d
HS
697 struct flash_info *info;
698
09ffafb6 699 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
b199489d
HS
700 if (tmp < 0) {
701 dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
702 return ERR_PTR(tmp);
703 }
b199489d
HS
704
705 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
706 info = (void *)spi_nor_ids[tmp].driver_data;
09ffafb6
HS
707 if (info->id_len) {
708 if (!memcmp(info->id, id, info->id_len))
b199489d
HS
709 return &spi_nor_ids[tmp];
710 }
711 }
09ffafb6
HS
712 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
713 id[0], id[1], id[2]);
b199489d
HS
714 return ERR_PTR(-ENODEV);
715}
716
b199489d
HS
717static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
718 size_t *retlen, u_char *buf)
719{
720 struct spi_nor *nor = mtd_to_spi_nor(mtd);
721 int ret;
722
723 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
724
725 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
726 if (ret)
727 return ret;
728
729 ret = nor->read(nor, from, len, retlen, buf);
730
731 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
732 return ret;
733}
734
735static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
736 size_t *retlen, const u_char *buf)
737{
738 struct spi_nor *nor = mtd_to_spi_nor(mtd);
739 size_t actual;
740 int ret;
741
742 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
743
744 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
745 if (ret)
746 return ret;
747
b199489d
HS
748 write_enable(nor);
749
750 nor->sst_write_second = false;
751
752 actual = to % 2;
753 /* Start write from odd address. */
754 if (actual) {
b02e7f3e 755 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
756
757 /* write one byte. */
758 nor->write(nor, to, 1, retlen, buf);
b94ed087 759 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
760 if (ret)
761 goto time_out;
762 }
763 to += actual;
764
765 /* Write out most of the data here. */
766 for (; actual < len - 1; actual += 2) {
b02e7f3e 767 nor->program_opcode = SPINOR_OP_AAI_WP;
b199489d
HS
768
769 /* write two bytes. */
770 nor->write(nor, to, 2, retlen, buf + actual);
b94ed087 771 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
772 if (ret)
773 goto time_out;
774 to += 2;
775 nor->sst_write_second = true;
776 }
777 nor->sst_write_second = false;
778
779 write_disable(nor);
b94ed087 780 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
781 if (ret)
782 goto time_out;
783
784 /* Write out trailing byte if it exists. */
785 if (actual != len) {
786 write_enable(nor);
787
b02e7f3e 788 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
789 nor->write(nor, to, 1, retlen, buf + actual);
790
b94ed087 791 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
792 if (ret)
793 goto time_out;
794 write_disable(nor);
795 }
796time_out:
797 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
798 return ret;
799}
800
801/*
802 * Write an address range to the nor chip. Data must be written in
803 * FLASH_PAGESIZE chunks. The address range may be any size provided
804 * it is within the physical boundaries.
805 */
806static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
807 size_t *retlen, const u_char *buf)
808{
809 struct spi_nor *nor = mtd_to_spi_nor(mtd);
810 u32 page_offset, page_size, i;
811 int ret;
812
813 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
814
815 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
816 if (ret)
817 return ret;
818
b199489d
HS
819 write_enable(nor);
820
821 page_offset = to & (nor->page_size - 1);
822
823 /* do all the bytes fit onto one page? */
824 if (page_offset + len <= nor->page_size) {
825 nor->write(nor, to, len, retlen, buf);
826 } else {
827 /* the size of data remaining on the first page */
828 page_size = nor->page_size - page_offset;
829 nor->write(nor, to, page_size, retlen, buf);
830
831 /* write everything in nor->page_size chunks */
832 for (i = page_size; i < len; i += page_size) {
833 page_size = len - i;
834 if (page_size > nor->page_size)
835 page_size = nor->page_size;
836
b94ed087 837 ret = spi_nor_wait_till_ready(nor);
1d61dcb3
BN
838 if (ret)
839 goto write_err;
840
b199489d
HS
841 write_enable(nor);
842
843 nor->write(nor, to + i, page_size, retlen, buf + i);
844 }
845 }
846
dfa9c0cb 847 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
848write_err:
849 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1d61dcb3 850 return ret;
b199489d
HS
851}
852
853static int macronix_quad_enable(struct spi_nor *nor)
854{
855 int ret, val;
856
857 val = read_sr(nor);
858 write_enable(nor);
859
860 nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
b02e7f3e 861 nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
b199489d 862
b94ed087 863 if (spi_nor_wait_till_ready(nor))
b199489d
HS
864 return 1;
865
866 ret = read_sr(nor);
867 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
868 dev_err(nor->dev, "Macronix Quad bit not set\n");
869 return -EINVAL;
870 }
871
872 return 0;
873}
874
875/*
876 * Write status Register and configuration register with 2 bytes
877 * The first byte will be written to the status register, while the
878 * second byte will be written to the configuration register.
879 * Return negative if error occured.
880 */
881static int write_sr_cr(struct spi_nor *nor, u16 val)
882{
883 nor->cmd_buf[0] = val & 0xff;
884 nor->cmd_buf[1] = (val >> 8);
885
b02e7f3e 886 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
b199489d
HS
887}
888
889static int spansion_quad_enable(struct spi_nor *nor)
890{
891 int ret;
892 int quad_en = CR_QUAD_EN_SPAN << 8;
893
894 write_enable(nor);
895
896 ret = write_sr_cr(nor, quad_en);
897 if (ret < 0) {
898 dev_err(nor->dev,
899 "error while writing configuration register\n");
900 return -EINVAL;
901 }
902
903 /* read back and check it */
904 ret = read_cr(nor);
905 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
906 dev_err(nor->dev, "Spansion Quad bit not set\n");
907 return -EINVAL;
908 }
909
910 return 0;
911}
912
548cd3ab
BH
913static int micron_quad_enable(struct spi_nor *nor)
914{
915 int ret;
916 u8 val;
917
918 ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
919 if (ret < 0) {
920 dev_err(nor->dev, "error %d reading EVCR\n", ret);
921 return ret;
922 }
923
924 write_enable(nor);
925
926 /* set EVCR, enable quad I/O */
927 nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
928 ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0);
929 if (ret < 0) {
930 dev_err(nor->dev, "error while writing EVCR register\n");
931 return ret;
932 }
933
934 ret = spi_nor_wait_till_ready(nor);
935 if (ret)
936 return ret;
937
938 /* read EVCR and check it */
939 ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
940 if (ret < 0) {
941 dev_err(nor->dev, "error %d reading EVCR\n", ret);
942 return ret;
943 }
944 if (val & EVCR_QUAD_EN_MICRON) {
945 dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
946 return -EINVAL;
947 }
948
949 return 0;
950}
951
d928a259 952static int set_quad_mode(struct spi_nor *nor, struct flash_info *info)
b199489d
HS
953{
954 int status;
955
d928a259 956 switch (JEDEC_MFR(info)) {
b199489d
HS
957 case CFI_MFR_MACRONIX:
958 status = macronix_quad_enable(nor);
959 if (status) {
960 dev_err(nor->dev, "Macronix quad-read not enabled\n");
961 return -EINVAL;
962 }
963 return status;
548cd3ab
BH
964 case CFI_MFR_ST:
965 status = micron_quad_enable(nor);
966 if (status) {
967 dev_err(nor->dev, "Micron quad-read not enabled\n");
968 return -EINVAL;
969 }
970 return status;
b199489d
HS
971 default:
972 status = spansion_quad_enable(nor);
973 if (status) {
974 dev_err(nor->dev, "Spansion quad-read not enabled\n");
975 return -EINVAL;
976 }
977 return status;
978 }
979}
980
981static int spi_nor_check(struct spi_nor *nor)
982{
983 if (!nor->dev || !nor->read || !nor->write ||
984 !nor->read_reg || !nor->write_reg || !nor->erase) {
985 pr_err("spi-nor: please fill all the necessary fields!\n");
986 return -EINVAL;
987 }
988
b199489d
HS
989 return 0;
990}
991
70f3ce05 992int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
b199489d 993{
70f3ce05 994 const struct spi_device_id *id = NULL;
b199489d 995 struct flash_info *info;
b199489d
HS
996 struct device *dev = nor->dev;
997 struct mtd_info *mtd = nor->mtd;
998 struct device_node *np = dev->of_node;
999 int ret;
1000 int i;
1001
1002 ret = spi_nor_check(nor);
1003 if (ret)
1004 return ret;
1005
58c81957
RM
1006 /* Try to auto-detect if chip name wasn't specified */
1007 if (!name)
1008 id = spi_nor_read_id(nor);
1009 else
1010 id = spi_nor_match_id(name);
1011 if (IS_ERR_OR_NULL(id))
70f3ce05
BH
1012 return -ENOENT;
1013
b199489d
HS
1014 info = (void *)id->driver_data;
1015
58c81957
RM
1016 /*
1017 * If caller has specified name of flash model that can normally be
1018 * detected using JEDEC, let's verify it.
1019 */
1020 if (name && info->id_len) {
b199489d
HS
1021 const struct spi_device_id *jid;
1022
e66fcf72 1023 jid = spi_nor_read_id(nor);
b199489d
HS
1024 if (IS_ERR(jid)) {
1025 return PTR_ERR(jid);
1026 } else if (jid != id) {
1027 /*
1028 * JEDEC knows better, so overwrite platform ID. We
1029 * can't trust partitions any longer, but we'll let
1030 * mtd apply them anyway, since some partitions may be
1031 * marked read-only, and we don't want to lose that
1032 * information, even if it's not 100% accurate.
1033 */
1034 dev_warn(dev, "found %s, expected %s\n",
1035 jid->name, id->name);
1036 id = jid;
1037 info = (void *)jid->driver_data;
1038 }
1039 }
1040
1041 mutex_init(&nor->lock);
1042
1043 /*
1044 * Atmel, SST and Intel/Numonyx serial nor tend to power
1045 * up with the software protection bits set
1046 */
1047
d928a259
HS
1048 if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
1049 JEDEC_MFR(info) == CFI_MFR_INTEL ||
1050 JEDEC_MFR(info) == CFI_MFR_SST) {
b199489d
HS
1051 write_enable(nor);
1052 write_sr(nor, 0);
1053 }
1054
32f1b7c8 1055 if (!mtd->name)
b199489d 1056 mtd->name = dev_name(dev);
b199489d
HS
1057 mtd->type = MTD_NORFLASH;
1058 mtd->writesize = 1;
1059 mtd->flags = MTD_CAP_NORFLASH;
1060 mtd->size = info->sector_size * info->n_sectors;
1061 mtd->_erase = spi_nor_erase;
1062 mtd->_read = spi_nor_read;
1063
1064 /* nor protection support for STmicro chips */
d928a259 1065 if (JEDEC_MFR(info) == CFI_MFR_ST) {
8cc7f33a
BN
1066 nor->flash_lock = stm_lock;
1067 nor->flash_unlock = stm_unlock;
1068 }
1069
1070 if (nor->flash_lock && nor->flash_unlock) {
b199489d
HS
1071 mtd->_lock = spi_nor_lock;
1072 mtd->_unlock = spi_nor_unlock;
1073 }
1074
1075 /* sst nor chips use AAI word program */
1076 if (info->flags & SST_WRITE)
1077 mtd->_write = sst_write;
1078 else
1079 mtd->_write = spi_nor_write;
1080
51983b7d
BN
1081 if (info->flags & USE_FSR)
1082 nor->flags |= SNOR_F_USE_FSR;
c14dedde 1083
57cf26c1 1084#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
b199489d
HS
1085 /* prefer "small sector" erase if possible */
1086 if (info->flags & SECT_4K) {
b02e7f3e 1087 nor->erase_opcode = SPINOR_OP_BE_4K;
b199489d
HS
1088 mtd->erasesize = 4096;
1089 } else if (info->flags & SECT_4K_PMC) {
b02e7f3e 1090 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
b199489d 1091 mtd->erasesize = 4096;
57cf26c1
RM
1092 } else
1093#endif
1094 {
b02e7f3e 1095 nor->erase_opcode = SPINOR_OP_SE;
b199489d
HS
1096 mtd->erasesize = info->sector_size;
1097 }
1098
1099 if (info->flags & SPI_NOR_NO_ERASE)
1100 mtd->flags |= MTD_NO_ERASE;
1101
1102 mtd->dev.parent = dev;
1103 nor->page_size = info->page_size;
1104 mtd->writebufsize = nor->page_size;
1105
1106 if (np) {
1107 /* If we were instantiated by DT, use it */
1108 if (of_property_read_bool(np, "m25p,fast-read"))
1109 nor->flash_read = SPI_NOR_FAST;
1110 else
1111 nor->flash_read = SPI_NOR_NORMAL;
1112 } else {
1113 /* If we weren't instantiated by DT, default to fast-read */
1114 nor->flash_read = SPI_NOR_FAST;
1115 }
1116
1117 /* Some devices cannot do fast-read, no matter what DT tells us */
1118 if (info->flags & SPI_NOR_NO_FR)
1119 nor->flash_read = SPI_NOR_NORMAL;
1120
1121 /* Quad/Dual-read mode takes precedence over fast/normal */
1122 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
d928a259 1123 ret = set_quad_mode(nor, info);
b199489d
HS
1124 if (ret) {
1125 dev_err(dev, "quad mode not supported\n");
1126 return ret;
1127 }
1128 nor->flash_read = SPI_NOR_QUAD;
1129 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1130 nor->flash_read = SPI_NOR_DUAL;
1131 }
1132
1133 /* Default commands */
1134 switch (nor->flash_read) {
1135 case SPI_NOR_QUAD:
58b89a1f 1136 nor->read_opcode = SPINOR_OP_READ_1_1_4;
b199489d
HS
1137 break;
1138 case SPI_NOR_DUAL:
58b89a1f 1139 nor->read_opcode = SPINOR_OP_READ_1_1_2;
b199489d
HS
1140 break;
1141 case SPI_NOR_FAST:
58b89a1f 1142 nor->read_opcode = SPINOR_OP_READ_FAST;
b199489d
HS
1143 break;
1144 case SPI_NOR_NORMAL:
58b89a1f 1145 nor->read_opcode = SPINOR_OP_READ;
b199489d
HS
1146 break;
1147 default:
1148 dev_err(dev, "No Read opcode defined\n");
1149 return -EINVAL;
1150 }
1151
b02e7f3e 1152 nor->program_opcode = SPINOR_OP_PP;
b199489d
HS
1153
1154 if (info->addr_width)
1155 nor->addr_width = info->addr_width;
1156 else if (mtd->size > 0x1000000) {
1157 /* enable 4-byte addressing if the device exceeds 16MiB */
1158 nor->addr_width = 4;
d928a259 1159 if (JEDEC_MFR(info) == CFI_MFR_AMD) {
b199489d
HS
1160 /* Dedicated 4-byte command set */
1161 switch (nor->flash_read) {
1162 case SPI_NOR_QUAD:
58b89a1f 1163 nor->read_opcode = SPINOR_OP_READ4_1_1_4;
b199489d
HS
1164 break;
1165 case SPI_NOR_DUAL:
58b89a1f 1166 nor->read_opcode = SPINOR_OP_READ4_1_1_2;
b199489d
HS
1167 break;
1168 case SPI_NOR_FAST:
58b89a1f 1169 nor->read_opcode = SPINOR_OP_READ4_FAST;
b199489d
HS
1170 break;
1171 case SPI_NOR_NORMAL:
58b89a1f 1172 nor->read_opcode = SPINOR_OP_READ4;
b199489d
HS
1173 break;
1174 }
b02e7f3e 1175 nor->program_opcode = SPINOR_OP_PP_4B;
b199489d 1176 /* No small sector erase for 4-byte command set */
b02e7f3e 1177 nor->erase_opcode = SPINOR_OP_SE_4B;
b199489d
HS
1178 mtd->erasesize = info->sector_size;
1179 } else
d928a259 1180 set_4byte(nor, info, 1);
b199489d
HS
1181 } else {
1182 nor->addr_width = 3;
1183 }
1184
1185 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1186
1187 dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1188 (long long)mtd->size >> 10);
1189
1190 dev_dbg(dev,
1191 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1192 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1193 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1194 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1195
1196 if (mtd->numeraseregions)
1197 for (i = 0; i < mtd->numeraseregions; i++)
1198 dev_dbg(dev,
1199 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1200 ".erasesize = 0x%.8x (%uKiB), "
1201 ".numblocks = %d }\n",
1202 i, (long long)mtd->eraseregions[i].offset,
1203 mtd->eraseregions[i].erasesize,
1204 mtd->eraseregions[i].erasesize / 1024,
1205 mtd->eraseregions[i].numblocks);
1206 return 0;
1207}
b61834b0 1208EXPORT_SYMBOL_GPL(spi_nor_scan);
b199489d 1209
70f3ce05 1210static const struct spi_device_id *spi_nor_match_id(const char *name)
0d8c11c0
HS
1211{
1212 const struct spi_device_id *id = spi_nor_ids;
1213
1214 while (id->name[0]) {
1215 if (!strcmp(name, id->name))
1216 return id;
1217 id++;
1218 }
1219 return NULL;
1220}
1221
b199489d
HS
1222MODULE_LICENSE("GPL");
1223MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1224MODULE_AUTHOR("Mike Lavender");
1225MODULE_DESCRIPTION("framework for SPI NOR");