]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/spi-nor/spi-nor.c
memory: Update dependency of IFC for Layerscape
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
CommitLineData
b199489d 1/*
8eabdd1e
HS
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
b199489d
HS
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
09b6a377 19#include <linux/sizes.h>
b199489d 20
b199489d
HS
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
09b6a377
FS
27
28/*
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
31 */
32#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
33
34/*
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
36 * for larger flash
37 */
38#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
b199489d 39
d928a259 40#define SPI_NOR_MAX_ID_LEN 6
c67cbb83 41#define SPI_NOR_MAX_ADDR_WIDTH 4
d928a259
HS
42
43struct flash_info {
06bb6f5a
RM
44 char *name;
45
d928a259
HS
46 /*
47 * This array stores the ID bytes.
48 * The first three bytes are the JEDIC ID.
49 * JEDEC ID zero means "no ID" (mostly older chips).
50 */
51 u8 id[SPI_NOR_MAX_ID_LEN];
52 u8 id_len;
53
54 /* The size listed here is what works with SPINOR_OP_SE, which isn't
55 * necessarily called a "sector" by the vendor.
56 */
57 unsigned sector_size;
58 u16 n_sectors;
59
60 u16 page_size;
61 u16 addr_width;
62
63 u16 flags;
0618114e
BN
64#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
65#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
66#define SST_WRITE BIT(2) /* use SST byte programming */
67#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
68#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
69#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
70#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
71#define USE_FSR BIT(7) /* use flag status register */
76a4707d 72#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
3dd8012a
BN
73#define SPI_NOR_HAS_TB BIT(9) /*
74 * Flash SR has Top/Bottom (TB) protect
75 * bit. Must be used with
76 * SPI_NOR_HAS_LOCK.
77 */
d928a259
HS
78};
79
80#define JEDEC_MFR(info) ((info)->id[0])
b199489d 81
06bb6f5a 82static const struct flash_info *spi_nor_match_id(const char *name);
70f3ce05 83
b199489d
HS
84/*
85 * Read the status register, returning its value in the location
86 * Return the status register value.
87 * Returns negative if error occurred.
88 */
89static int read_sr(struct spi_nor *nor)
90{
91 int ret;
92 u8 val;
93
b02e7f3e 94 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
b199489d
HS
95 if (ret < 0) {
96 pr_err("error %d reading SR\n", (int) ret);
97 return ret;
98 }
99
100 return val;
101}
102
c14dedde 103/*
104 * Read the flag status register, returning its value in the location
105 * Return the status register value.
106 * Returns negative if error occurred.
107 */
108static int read_fsr(struct spi_nor *nor)
109{
110 int ret;
111 u8 val;
112
113 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
114 if (ret < 0) {
115 pr_err("error %d reading FSR\n", ret);
116 return ret;
117 }
118
119 return val;
120}
121
b199489d
HS
122/*
123 * Read configuration register, returning its value in the
124 * location. Return the configuration register value.
125 * Returns negative if error occured.
126 */
127static int read_cr(struct spi_nor *nor)
128{
129 int ret;
130 u8 val;
131
b02e7f3e 132 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
b199489d
HS
133 if (ret < 0) {
134 dev_err(nor->dev, "error %d reading CR\n", ret);
135 return ret;
136 }
137
138 return val;
139}
140
141/*
142 * Dummy Cycle calculation for different type of read.
143 * It can be used to support more commands with
144 * different dummy cycle requirements.
145 */
146static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
147{
148 switch (nor->flash_read) {
149 case SPI_NOR_FAST:
150 case SPI_NOR_DUAL:
151 case SPI_NOR_QUAD:
0b78a2cf 152 return 8;
b199489d
HS
153 case SPI_NOR_NORMAL:
154 return 0;
155 }
156 return 0;
157}
158
159/*
160 * Write status register 1 byte
161 * Returns negative if error occurred.
162 */
163static inline int write_sr(struct spi_nor *nor, u8 val)
164{
165 nor->cmd_buf[0] = val;
f9f3ce83 166 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
b199489d
HS
167}
168
169/*
170 * Set write enable latch with Write Enable command.
171 * Returns negative if error occurred.
172 */
173static inline int write_enable(struct spi_nor *nor)
174{
f9f3ce83 175 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
b199489d
HS
176}
177
178/*
179 * Send write disble instruction to the chip.
180 */
181static inline int write_disable(struct spi_nor *nor)
182{
f9f3ce83 183 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
b199489d
HS
184}
185
186static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
187{
188 return mtd->priv;
189}
190
191/* Enable/disable 4-byte addressing mode. */
06bb6f5a 192static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
d928a259 193 int enable)
b199489d
HS
194{
195 int status;
196 bool need_wren = false;
197 u8 cmd;
198
d928a259 199 switch (JEDEC_MFR(info)) {
f0d2448e 200 case SNOR_MFR_MICRON:
b199489d
HS
201 /* Some Micron need WREN command; all will accept it */
202 need_wren = true;
f0d2448e
BN
203 case SNOR_MFR_MACRONIX:
204 case SNOR_MFR_WINBOND:
b199489d
HS
205 if (need_wren)
206 write_enable(nor);
207
b02e7f3e 208 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
f9f3ce83 209 status = nor->write_reg(nor, cmd, NULL, 0);
b199489d
HS
210 if (need_wren)
211 write_disable(nor);
212
213 return status;
214 default:
215 /* Spansion style */
216 nor->cmd_buf[0] = enable << 7;
f9f3ce83 217 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
b199489d
HS
218 }
219}
51983b7d 220static inline int spi_nor_sr_ready(struct spi_nor *nor)
b199489d 221{
51983b7d
BN
222 int sr = read_sr(nor);
223 if (sr < 0)
224 return sr;
225 else
226 return !(sr & SR_WIP);
227}
b199489d 228
51983b7d
BN
229static inline int spi_nor_fsr_ready(struct spi_nor *nor)
230{
231 int fsr = read_fsr(nor);
232 if (fsr < 0)
233 return fsr;
234 else
235 return fsr & FSR_READY;
236}
b199489d 237
51983b7d
BN
238static int spi_nor_ready(struct spi_nor *nor)
239{
240 int sr, fsr;
241 sr = spi_nor_sr_ready(nor);
242 if (sr < 0)
243 return sr;
244 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
245 if (fsr < 0)
246 return fsr;
247 return sr && fsr;
b199489d
HS
248}
249
b94ed087
BN
250/*
251 * Service routine to read status register until ready, or timeout occurs.
252 * Returns non-zero if error.
253 */
09b6a377
FS
254static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
255 unsigned long timeout_jiffies)
c14dedde 256{
257 unsigned long deadline;
a95ce92e 258 int timeout = 0, ret;
c14dedde 259
09b6a377 260 deadline = jiffies + timeout_jiffies;
c14dedde 261
a95ce92e
BN
262 while (!timeout) {
263 if (time_after_eq(jiffies, deadline))
264 timeout = 1;
c14dedde 265
51983b7d
BN
266 ret = spi_nor_ready(nor);
267 if (ret < 0)
268 return ret;
269 if (ret)
270 return 0;
a95ce92e
BN
271
272 cond_resched();
273 }
274
275 dev_err(nor->dev, "flash operation timed out\n");
c14dedde 276
277 return -ETIMEDOUT;
278}
279
09b6a377
FS
280static int spi_nor_wait_till_ready(struct spi_nor *nor)
281{
282 return spi_nor_wait_till_ready_with_timeout(nor,
283 DEFAULT_READY_WAIT_JIFFIES);
284}
285
b199489d
HS
286/*
287 * Erase the whole flash memory
288 *
289 * Returns 0 if successful, non-zero otherwise.
290 */
291static int erase_chip(struct spi_nor *nor)
292{
19763671 293 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
b199489d 294
f9f3ce83 295 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
b199489d
HS
296}
297
298static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
299{
300 int ret = 0;
301
302 mutex_lock(&nor->lock);
303
304 if (nor->prepare) {
305 ret = nor->prepare(nor, ops);
306 if (ret) {
307 dev_err(nor->dev, "failed in the preparation.\n");
308 mutex_unlock(&nor->lock);
309 return ret;
310 }
311 }
312 return ret;
313}
314
315static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
316{
317 if (nor->unprepare)
318 nor->unprepare(nor, ops);
319 mutex_unlock(&nor->lock);
320}
321
c67cbb83
BN
322/*
323 * Initiate the erasure of a single sector
324 */
325static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
326{
327 u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
328 int i;
329
330 if (nor->erase)
331 return nor->erase(nor, addr);
332
333 /*
334 * Default implementation, if driver doesn't have a specialized HW
335 * control
336 */
337 for (i = nor->addr_width - 1; i >= 0; i--) {
338 buf[i] = addr & 0xff;
339 addr >>= 8;
340 }
341
342 return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
343}
344
b199489d
HS
345/*
346 * Erase an address range on the nor chip. The address range may extend
347 * one or more erase sectors. Return an error is there is a problem erasing.
348 */
349static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
350{
351 struct spi_nor *nor = mtd_to_spi_nor(mtd);
352 u32 addr, len;
353 uint32_t rem;
354 int ret;
355
356 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
357 (long long)instr->len);
358
359 div_u64_rem(instr->len, mtd->erasesize, &rem);
360 if (rem)
361 return -EINVAL;
362
363 addr = instr->addr;
364 len = instr->len;
365
366 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
367 if (ret)
368 return ret;
369
370 /* whole-chip erase? */
371 if (len == mtd->size) {
09b6a377
FS
372 unsigned long timeout;
373
05241aea
BN
374 write_enable(nor);
375
b199489d
HS
376 if (erase_chip(nor)) {
377 ret = -EIO;
378 goto erase_err;
379 }
380
09b6a377
FS
381 /*
382 * Scale the timeout linearly with the size of the flash, with
383 * a minimum calibrated to an old 2MB flash. We could try to
384 * pull these from CFI/SFDP, but these values should be good
385 * enough for now.
386 */
387 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
388 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
389 (unsigned long)(mtd->size / SZ_2M));
390 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
dfa9c0cb
BN
391 if (ret)
392 goto erase_err;
393
b199489d 394 /* REVISIT in some cases we could speed up erasing large regions
b02e7f3e 395 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
b199489d
HS
396 * to use "small sector erase", but that's not always optimal.
397 */
398
399 /* "sector"-at-a-time erase */
400 } else {
401 while (len) {
05241aea
BN
402 write_enable(nor);
403
c67cbb83
BN
404 ret = spi_nor_erase_sector(nor, addr);
405 if (ret)
b199489d 406 goto erase_err;
b199489d
HS
407
408 addr += mtd->erasesize;
409 len -= mtd->erasesize;
dfa9c0cb
BN
410
411 ret = spi_nor_wait_till_ready(nor);
412 if (ret)
413 goto erase_err;
b199489d
HS
414 }
415 }
416
05241aea
BN
417 write_disable(nor);
418
d6af2694 419erase_err:
b199489d
HS
420 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
421
d6af2694 422 instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
b199489d
HS
423 mtd_erase_callback(instr);
424
425 return ret;
b199489d
HS
426}
427
62593cf4
BN
428static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
429 uint64_t *len)
430{
431 struct mtd_info *mtd = &nor->mtd;
432 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
433 int shift = ffs(mask) - 1;
434 int pow;
435
436 if (!(sr & mask)) {
437 /* No protection */
438 *ofs = 0;
439 *len = 0;
440 } else {
441 pow = ((sr & mask) ^ mask) >> shift;
442 *len = mtd->size >> pow;
3dd8012a
BN
443 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
444 *ofs = 0;
445 else
446 *ofs = mtd->size - *len;
62593cf4
BN
447 }
448}
449
450/*
f8860802
BN
451 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
452 * @locked is false); 0 otherwise
62593cf4 453 */
f8860802
BN
454static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
455 u8 sr, bool locked)
62593cf4
BN
456{
457 loff_t lock_offs;
458 uint64_t lock_len;
459
f8860802
BN
460 if (!len)
461 return 1;
462
62593cf4
BN
463 stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
464
f8860802
BN
465 if (locked)
466 /* Requested range is a sub-range of locked range */
467 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
468 else
469 /* Requested range does not overlap with locked range */
470 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
471}
472
473static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
474 u8 sr)
475{
476 return stm_check_lock_status_sr(nor, ofs, len, sr, true);
477}
478
479static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
480 u8 sr)
481{
482 return stm_check_lock_status_sr(nor, ofs, len, sr, false);
62593cf4
BN
483}
484
485/*
486 * Lock a region of the flash. Compatible with ST Micro and similar flash.
3dd8012a 487 * Supports the block protection bits BP{0,1,2} in the status register
62593cf4 488 * (SR). Does not support these features found in newer SR bitfields:
62593cf4
BN
489 * - SEC: sector/block protect - only handle SEC=0 (block protect)
490 * - CMP: complement protect - only support CMP=0 (range is not complemented)
491 *
3dd8012a
BN
492 * Support for the following is provided conditionally for some flash:
493 * - TB: top/bottom protect
494 *
62593cf4
BN
495 * Sample table portion for 8MB flash (Winbond w25q64fw):
496 *
497 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
498 * --------------------------------------------------------------------------
499 * X | X | 0 | 0 | 0 | NONE | NONE
500 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
501 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
502 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
503 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
504 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
505 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
506 * X | X | 1 | 1 | 1 | 8 MB | ALL
3dd8012a
BN
507 * ------|-------|-------|-------|-------|---------------|-------------------
508 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
509 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
510 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
511 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
512 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
513 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
62593cf4
BN
514 *
515 * Returns negative on errors, 0 on success.
516 */
8cc7f33a 517static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 518{
19763671 519 struct mtd_info *mtd = &nor->mtd;
f49289ce 520 int status_old, status_new;
62593cf4
BN
521 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
522 u8 shift = ffs(mask) - 1, pow, val;
f8860802 523 loff_t lock_len;
3dd8012a
BN
524 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
525 bool use_top;
32321e95 526 int ret;
b199489d 527
b199489d 528 status_old = read_sr(nor);
f49289ce
FE
529 if (status_old < 0)
530 return status_old;
b199489d 531
f8860802
BN
532 /* If nothing in our range is unlocked, we don't need to do anything */
533 if (stm_is_locked_sr(nor, ofs, len, status_old))
534 return 0;
535
3dd8012a
BN
536 /* If anything below us is unlocked, we can't use 'bottom' protection */
537 if (!stm_is_locked_sr(nor, 0, ofs, status_old))
538 can_be_bottom = false;
539
f8860802
BN
540 /* If anything above us is unlocked, we can't use 'top' protection */
541 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
542 status_old))
3dd8012a
BN
543 can_be_top = false;
544
545 if (!can_be_bottom && !can_be_top)
f8860802
BN
546 return -EINVAL;
547
3dd8012a
BN
548 /* Prefer top, if both are valid */
549 use_top = can_be_top;
550
f8860802 551 /* lock_len: length of region that should end up locked */
3dd8012a
BN
552 if (use_top)
553 lock_len = mtd->size - ofs;
554 else
555 lock_len = ofs + len;
62593cf4
BN
556
557 /*
558 * Need smallest pow such that:
559 *
560 * 1 / (2^pow) <= (len / size)
561 *
562 * so (assuming power-of-2 size) we do:
563 *
564 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
565 */
f8860802 566 pow = ilog2(mtd->size) - ilog2(lock_len);
62593cf4
BN
567 val = mask - (pow << shift);
568 if (val & ~mask)
569 return -EINVAL;
570 /* Don't "lock" with no region! */
571 if (!(val & mask))
572 return -EINVAL;
573
3dd8012a 574 status_new = (status_old & ~mask & ~SR_TB) | val;
b199489d 575
47b8edbf
BN
576 /* Disallow further writes if WP pin is asserted */
577 status_new |= SR_SRWD;
578
3dd8012a
BN
579 if (!use_top)
580 status_new |= SR_TB;
581
4c0dba44
BN
582 /* Don't bother if they're the same */
583 if (status_new == status_old)
584 return 0;
585
b199489d 586 /* Only modify protection if it will not unlock other areas */
4c0dba44 587 if ((status_new & mask) < (status_old & mask))
62593cf4 588 return -EINVAL;
b199489d 589
62593cf4 590 write_enable(nor);
32321e95
EG
591 ret = write_sr(nor, status_new);
592 if (ret)
593 return ret;
594 return spi_nor_wait_till_ready(nor);
b199489d
HS
595}
596
62593cf4
BN
597/*
598 * Unlock a region of the flash. See stm_lock() for more info
599 *
600 * Returns negative on errors, 0 on success.
601 */
8cc7f33a 602static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 603{
19763671 604 struct mtd_info *mtd = &nor->mtd;
f49289ce 605 int status_old, status_new;
62593cf4
BN
606 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
607 u8 shift = ffs(mask) - 1, pow, val;
f8860802 608 loff_t lock_len;
3dd8012a
BN
609 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
610 bool use_top;
32321e95 611 int ret;
b199489d 612
b199489d 613 status_old = read_sr(nor);
f49289ce
FE
614 if (status_old < 0)
615 return status_old;
b199489d 616
f8860802
BN
617 /* If nothing in our range is locked, we don't need to do anything */
618 if (stm_is_unlocked_sr(nor, ofs, len, status_old))
619 return 0;
620
621 /* If anything below us is locked, we can't use 'top' protection */
622 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
3dd8012a
BN
623 can_be_top = false;
624
625 /* If anything above us is locked, we can't use 'bottom' protection */
626 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
627 status_old))
628 can_be_bottom = false;
629
630 if (!can_be_bottom && !can_be_top)
62593cf4 631 return -EINVAL;
b199489d 632
3dd8012a
BN
633 /* Prefer top, if both are valid */
634 use_top = can_be_top;
635
f8860802 636 /* lock_len: length of region that should remain locked */
3dd8012a
BN
637 if (use_top)
638 lock_len = mtd->size - (ofs + len);
639 else
640 lock_len = ofs;
f8860802 641
62593cf4
BN
642 /*
643 * Need largest pow such that:
644 *
645 * 1 / (2^pow) >= (len / size)
646 *
647 * so (assuming power-of-2 size) we do:
648 *
649 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
650 */
f8860802
BN
651 pow = ilog2(mtd->size) - order_base_2(lock_len);
652 if (lock_len == 0) {
62593cf4
BN
653 val = 0; /* fully unlocked */
654 } else {
655 val = mask - (pow << shift);
656 /* Some power-of-two sizes are not supported */
657 if (val & ~mask)
658 return -EINVAL;
b199489d
HS
659 }
660
3dd8012a 661 status_new = (status_old & ~mask & ~SR_TB) | val;
62593cf4 662
47b8edbf 663 /* Don't protect status register if we're fully unlocked */
06586204 664 if (lock_len == 0)
47b8edbf
BN
665 status_new &= ~SR_SRWD;
666
3dd8012a
BN
667 if (!use_top)
668 status_new |= SR_TB;
669
4c0dba44
BN
670 /* Don't bother if they're the same */
671 if (status_new == status_old)
672 return 0;
673
62593cf4 674 /* Only modify protection if it will not lock other areas */
4c0dba44 675 if ((status_new & mask) > (status_old & mask))
62593cf4
BN
676 return -EINVAL;
677
678 write_enable(nor);
32321e95
EG
679 ret = write_sr(nor, status_new);
680 if (ret)
681 return ret;
682 return spi_nor_wait_till_ready(nor);
8cc7f33a
BN
683}
684
5bf0e69b
BN
685/*
686 * Check if a region of the flash is (completely) locked. See stm_lock() for
687 * more info.
688 *
689 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
690 * negative on errors.
691 */
692static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
693{
694 int status;
695
696 status = read_sr(nor);
697 if (status < 0)
698 return status;
699
700 return stm_is_locked_sr(nor, ofs, len, status);
701}
702
8cc7f33a
BN
703static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
704{
705 struct spi_nor *nor = mtd_to_spi_nor(mtd);
706 int ret;
707
708 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
709 if (ret)
710 return ret;
711
712 ret = nor->flash_lock(nor, ofs, len);
713
b199489d
HS
714 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
715 return ret;
716}
717
8cc7f33a
BN
718static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
719{
720 struct spi_nor *nor = mtd_to_spi_nor(mtd);
721 int ret;
722
723 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
724 if (ret)
725 return ret;
726
727 ret = nor->flash_unlock(nor, ofs, len);
728
729 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
730 return ret;
731}
732
5bf0e69b
BN
733static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
734{
735 struct spi_nor *nor = mtd_to_spi_nor(mtd);
736 int ret;
737
738 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
739 if (ret)
740 return ret;
741
742 ret = nor->flash_is_locked(nor, ofs, len);
743
744 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
745 return ret;
746}
747
09ffafb6 748/* Used when the "_ext_id" is two bytes at most */
b199489d 749#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
09ffafb6
HS
750 .id = { \
751 ((_jedec_id) >> 16) & 0xff, \
752 ((_jedec_id) >> 8) & 0xff, \
753 (_jedec_id) & 0xff, \
754 ((_ext_id) >> 8) & 0xff, \
755 (_ext_id) & 0xff, \
756 }, \
757 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
b199489d
HS
758 .sector_size = (_sector_size), \
759 .n_sectors = (_n_sectors), \
760 .page_size = 256, \
06bb6f5a 761 .flags = (_flags),
b199489d 762
6d7604e5 763#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
6d7604e5
HS
764 .id = { \
765 ((_jedec_id) >> 16) & 0xff, \
766 ((_jedec_id) >> 8) & 0xff, \
767 (_jedec_id) & 0xff, \
768 ((_ext_id) >> 16) & 0xff, \
769 ((_ext_id) >> 8) & 0xff, \
770 (_ext_id) & 0xff, \
771 }, \
772 .id_len = 6, \
773 .sector_size = (_sector_size), \
774 .n_sectors = (_n_sectors), \
775 .page_size = 256, \
06bb6f5a 776 .flags = (_flags),
6d7604e5 777
b199489d 778#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
b199489d
HS
779 .sector_size = (_sector_size), \
780 .n_sectors = (_n_sectors), \
781 .page_size = (_page_size), \
782 .addr_width = (_addr_width), \
06bb6f5a 783 .flags = (_flags),
b199489d
HS
784
785/* NOTE: double check command sets and memory organization when you add
786 * more nor chips. This current list focusses on newer chips, which
787 * have been converging on command sets which including JEDEC ID.
c19900ed
RM
788 *
789 * All newly added entries should describe *hardware* and should use SECT_4K
790 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
791 * scenarios excluding small sectors there is config option that can be
792 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
793 * For historical (and compatibility) reasons (before we got above config) some
794 * old entries may be missing 4K flag.
b199489d 795 */
06bb6f5a 796static const struct flash_info spi_nor_ids[] = {
b199489d
HS
797 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
798 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
799 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
800
801 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
802 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
803 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
804
805 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
806 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
807 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
808 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
809
810 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
811
812 /* EON -- en25xxx */
813 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
814 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
815 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
816 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
817 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
a41595b3 818 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
b199489d 819 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
c19900ed 820 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
821
822 /* ESMT */
823 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
824
825 /* Everspin */
826 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
827 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
828
ce56ce7d
RL
829 /* Fujitsu */
830 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
831
b199489d
HS
832 /* GigaDevice */
833 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
834 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
e5366a26 835 { "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
fcc87a95 836 { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
b199489d
HS
837
838 /* Intel/Numonyx -- xxxs33b */
839 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
840 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
841 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
842
b79c332f
GJ
843 /* ISSI */
844 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
845
b199489d 846 /* Macronix */
660b5b07 847 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
848 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
849 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
850 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
851 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
0501f2e5 852 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
b199489d 853 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
0501f2e5 854 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
81a1209c 855 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
856 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
857 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
858 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
859 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
860 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
861 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
862
863 /* Micron */
548cd3ab 864 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
f9bcb6dc 865 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
0db7fae2 866 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2a06c7b1 867 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
4607777c
EG
868 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
869 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
548cd3ab
BH
870 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
871 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
872 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
873 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
b199489d
HS
874
875 /* PMC */
876 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
877 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
878 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
879
880 /* Spansion -- single (large) sector size only, at least
881 * for the chips listed here (without boot sectors).
882 */
9ab86995 883 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
0f12a27b 884 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
885 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
886 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
887 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
888 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
889 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
890 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
c19900ed 891 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
c1752086
JG
892 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
893 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
894 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
895 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
896 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
897 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
898 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
7c748f57 899 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
adf508c3
JE
900 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
901 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d 902 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
c0826679 903 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
c19900ed 904 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
413780d7 905 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
aada20cd 906 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
b199489d
HS
907
908 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
909 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
910 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
911 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
912 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
913 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
914 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
915 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
916 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
a1d97ef9 917 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
c887be71 918 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
b199489d 919 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
f02985b7 920 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
b199489d
HS
921
922 /* ST Microelectronics -- newer production may have feature updates */
923 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
924 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
925 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
926 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
927 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
928 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
929 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
930 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
931 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
b199489d
HS
932
933 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
934 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
935 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
936 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
937 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
938 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
939 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
940 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
941 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
942
943 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
944 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
945 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
946
947 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
948 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
949 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
950
951 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
952 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
953 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
954 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
955 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
f2fabe16 956 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
b199489d
HS
957
958 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
40d19ab6 959 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
960 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
961 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
962 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
963 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
964 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
965 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
966 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
9648388f
BN
967 {
968 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
969 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
970 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
971 },
b199489d
HS
972 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
973 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
9648388f
BN
974 {
975 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
976 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
977 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
978 },
979 {
980 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
981 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
982 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
983 },
b199489d
HS
984 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
985 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
986 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
987 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
988
989 /* Catalyst / On Semiconductor -- non-JEDEC */
990 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
991 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
992 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
993 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
994 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
995 { },
996};
997
06bb6f5a 998static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
b199489d
HS
999{
1000 int tmp;
09ffafb6 1001 u8 id[SPI_NOR_MAX_ID_LEN];
06bb6f5a 1002 const struct flash_info *info;
b199489d 1003
09ffafb6 1004 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
b199489d 1005 if (tmp < 0) {
20625dfe 1006 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
b199489d
HS
1007 return ERR_PTR(tmp);
1008 }
b199489d
HS
1009
1010 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
06bb6f5a 1011 info = &spi_nor_ids[tmp];
09ffafb6
HS
1012 if (info->id_len) {
1013 if (!memcmp(info->id, id, info->id_len))
b199489d
HS
1014 return &spi_nor_ids[tmp];
1015 }
1016 }
9b9f1033 1017 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
09ffafb6 1018 id[0], id[1], id[2]);
b199489d
HS
1019 return ERR_PTR(-ENODEV);
1020}
1021
b199489d
HS
1022static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1023 size_t *retlen, u_char *buf)
1024{
1025 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1026 int ret;
1027
1028 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1029
1030 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
1031 if (ret)
1032 return ret;
1033
26f9bcad
MS
1034 while (len) {
1035 ret = nor->read(nor, from, len, buf);
1036 if (ret == 0) {
1037 /* We shouldn't see 0-length reads */
1038 ret = -EIO;
1039 goto read_err;
1040 }
1041 if (ret < 0)
1042 goto read_err;
b199489d 1043
26f9bcad
MS
1044 WARN_ON(ret > len);
1045 *retlen += ret;
1046 buf += ret;
1047 from += ret;
1048 len -= ret;
1049 }
1050 ret = 0;
59451e12 1051
26f9bcad
MS
1052read_err:
1053 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
1054 return ret;
b199489d
HS
1055}
1056
1057static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1058 size_t *retlen, const u_char *buf)
1059{
1060 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1061 size_t actual;
1062 int ret;
1063
1064 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1065
1066 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1067 if (ret)
1068 return ret;
1069
b199489d
HS
1070 write_enable(nor);
1071
1072 nor->sst_write_second = false;
1073
1074 actual = to % 2;
1075 /* Start write from odd address. */
1076 if (actual) {
b02e7f3e 1077 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
1078
1079 /* write one byte. */
2dd087b1 1080 ret = nor->write(nor, to, 1, buf);
0bad7b93
MS
1081 if (ret < 0)
1082 goto sst_write_err;
1083 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1084 (int)ret);
b94ed087 1085 ret = spi_nor_wait_till_ready(nor);
b199489d 1086 if (ret)
0bad7b93 1087 goto sst_write_err;
b199489d
HS
1088 }
1089 to += actual;
1090
1091 /* Write out most of the data here. */
1092 for (; actual < len - 1; actual += 2) {
b02e7f3e 1093 nor->program_opcode = SPINOR_OP_AAI_WP;
b199489d
HS
1094
1095 /* write two bytes. */
2dd087b1 1096 ret = nor->write(nor, to, 2, buf + actual);
0bad7b93
MS
1097 if (ret < 0)
1098 goto sst_write_err;
1099 WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
1100 (int)ret);
b94ed087 1101 ret = spi_nor_wait_till_ready(nor);
b199489d 1102 if (ret)
0bad7b93 1103 goto sst_write_err;
b199489d
HS
1104 to += 2;
1105 nor->sst_write_second = true;
1106 }
1107 nor->sst_write_second = false;
1108
1109 write_disable(nor);
b94ed087 1110 ret = spi_nor_wait_till_ready(nor);
b199489d 1111 if (ret)
0bad7b93 1112 goto sst_write_err;
b199489d
HS
1113
1114 /* Write out trailing byte if it exists. */
1115 if (actual != len) {
1116 write_enable(nor);
1117
b02e7f3e 1118 nor->program_opcode = SPINOR_OP_BP;
2dd087b1 1119 ret = nor->write(nor, to, 1, buf + actual);
0bad7b93
MS
1120 if (ret < 0)
1121 goto sst_write_err;
1122 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1123 (int)ret);
b94ed087 1124 ret = spi_nor_wait_till_ready(nor);
b199489d 1125 if (ret)
0bad7b93 1126 goto sst_write_err;
b199489d 1127 write_disable(nor);
2dd087b1 1128 actual += 1;
b199489d 1129 }
0bad7b93 1130sst_write_err:
2dd087b1 1131 *retlen += actual;
b199489d
HS
1132 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1133 return ret;
1134}
1135
1136/*
1137 * Write an address range to the nor chip. Data must be written in
1138 * FLASH_PAGESIZE chunks. The address range may be any size provided
1139 * it is within the physical boundaries.
1140 */
1141static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1142 size_t *retlen, const u_char *buf)
1143{
1144 struct spi_nor *nor = mtd_to_spi_nor(mtd);
e5d05cbd
MS
1145 size_t page_offset, page_remain, i;
1146 ssize_t ret;
b199489d
HS
1147
1148 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1149
1150 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1151 if (ret)
1152 return ret;
1153
e5d05cbd
MS
1154 for (i = 0; i < len; ) {
1155 ssize_t written;
b199489d 1156
e5d05cbd
MS
1157 page_offset = (to + i) & (nor->page_size - 1);
1158 WARN_ONCE(page_offset,
1159 "Writing at offset %zu into a NOR page. Writing partial pages may decrease reliability and increase wear of NOR flash.",
1160 page_offset);
b199489d 1161 /* the size of data remaining on the first page */
e5d05cbd
MS
1162 page_remain = min_t(size_t,
1163 nor->page_size - page_offset, len - i);
1164
1165 write_enable(nor);
1166 ret = nor->write(nor, to + i, page_remain, buf + i);
0bad7b93
MS
1167 if (ret < 0)
1168 goto write_err;
e5d05cbd 1169 written = ret;
1d61dcb3 1170
e5d05cbd
MS
1171 ret = spi_nor_wait_till_ready(nor);
1172 if (ret)
1173 goto write_err;
1174 *retlen += written;
1175 i += written;
1176 if (written != page_remain) {
1177 dev_err(nor->dev,
1178 "While writing %zu bytes written %zd bytes\n",
1179 page_remain, written);
1180 ret = -EIO;
1181 goto write_err;
b199489d
HS
1182 }
1183 }
1184
1185write_err:
1186 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1d61dcb3 1187 return ret;
b199489d
HS
1188}
1189
1190static int macronix_quad_enable(struct spi_nor *nor)
1191{
1192 int ret, val;
1193
1194 val = read_sr(nor);
f49289ce
FE
1195 if (val < 0)
1196 return val;
b199489d
HS
1197 write_enable(nor);
1198
fd725234 1199 write_sr(nor, val | SR_QUAD_EN_MX);
b199489d 1200
b94ed087 1201 if (spi_nor_wait_till_ready(nor))
b199489d
HS
1202 return 1;
1203
1204 ret = read_sr(nor);
1205 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1206 dev_err(nor->dev, "Macronix Quad bit not set\n");
1207 return -EINVAL;
1208 }
1209
1210 return 0;
1211}
1212
1213/*
1214 * Write status Register and configuration register with 2 bytes
1215 * The first byte will be written to the status register, while the
1216 * second byte will be written to the configuration register.
1217 * Return negative if error occured.
1218 */
1219static int write_sr_cr(struct spi_nor *nor, u16 val)
1220{
1221 nor->cmd_buf[0] = val & 0xff;
1222 nor->cmd_buf[1] = (val >> 8);
1223
f9f3ce83 1224 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
b199489d
HS
1225}
1226
1227static int spansion_quad_enable(struct spi_nor *nor)
1228{
1229 int ret;
1230 int quad_en = CR_QUAD_EN_SPAN << 8;
1231
1232 write_enable(nor);
1233
1234 ret = write_sr_cr(nor, quad_en);
1235 if (ret < 0) {
1236 dev_err(nor->dev,
1237 "error while writing configuration register\n");
1238 return -EINVAL;
1239 }
1240
1241 /* read back and check it */
1242 ret = read_cr(nor);
1243 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1244 dev_err(nor->dev, "Spansion Quad bit not set\n");
1245 return -EINVAL;
1246 }
1247
1248 return 0;
1249}
1250
06bb6f5a 1251static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
b199489d
HS
1252{
1253 int status;
1254
d928a259 1255 switch (JEDEC_MFR(info)) {
f0d2448e 1256 case SNOR_MFR_MACRONIX:
b199489d
HS
1257 status = macronix_quad_enable(nor);
1258 if (status) {
1259 dev_err(nor->dev, "Macronix quad-read not enabled\n");
1260 return -EINVAL;
1261 }
1262 return status;
f0d2448e 1263 case SNOR_MFR_MICRON:
3b5394a3 1264 return 0;
b199489d
HS
1265 default:
1266 status = spansion_quad_enable(nor);
1267 if (status) {
1268 dev_err(nor->dev, "Spansion quad-read not enabled\n");
1269 return -EINVAL;
1270 }
1271 return status;
1272 }
1273}
1274
1275static int spi_nor_check(struct spi_nor *nor)
1276{
1277 if (!nor->dev || !nor->read || !nor->write ||
c67cbb83 1278 !nor->read_reg || !nor->write_reg) {
b199489d
HS
1279 pr_err("spi-nor: please fill all the necessary fields!\n");
1280 return -EINVAL;
1281 }
1282
b199489d
HS
1283 return 0;
1284}
1285
70f3ce05 1286int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
b199489d 1287{
06bb6f5a 1288 const struct flash_info *info = NULL;
b199489d 1289 struct device *dev = nor->dev;
19763671 1290 struct mtd_info *mtd = &nor->mtd;
9c7d7875 1291 struct device_node *np = spi_nor_get_flash_node(nor);
b199489d
HS
1292 int ret;
1293 int i;
1294
1295 ret = spi_nor_check(nor);
1296 if (ret)
1297 return ret;
1298
43163022 1299 if (name)
06bb6f5a 1300 info = spi_nor_match_id(name);
43163022 1301 /* Try to auto-detect if chip name wasn't specified or not found */
06bb6f5a
RM
1302 if (!info)
1303 info = spi_nor_read_id(nor);
1304 if (IS_ERR_OR_NULL(info))
70f3ce05
BH
1305 return -ENOENT;
1306
58c81957
RM
1307 /*
1308 * If caller has specified name of flash model that can normally be
1309 * detected using JEDEC, let's verify it.
1310 */
1311 if (name && info->id_len) {
06bb6f5a 1312 const struct flash_info *jinfo;
b199489d 1313
06bb6f5a
RM
1314 jinfo = spi_nor_read_id(nor);
1315 if (IS_ERR(jinfo)) {
1316 return PTR_ERR(jinfo);
1317 } else if (jinfo != info) {
b199489d
HS
1318 /*
1319 * JEDEC knows better, so overwrite platform ID. We
1320 * can't trust partitions any longer, but we'll let
1321 * mtd apply them anyway, since some partitions may be
1322 * marked read-only, and we don't want to lose that
1323 * information, even if it's not 100% accurate.
1324 */
1325 dev_warn(dev, "found %s, expected %s\n",
06bb6f5a
RM
1326 jinfo->name, info->name);
1327 info = jinfo;
b199489d
HS
1328 }
1329 }
1330
1331 mutex_init(&nor->lock);
1332
1333 /*
c6fc2171
BN
1334 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1335 * with the software protection bits set
b199489d
HS
1336 */
1337
f0d2448e
BN
1338 if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
1339 JEDEC_MFR(info) == SNOR_MFR_INTEL ||
76a4707d
BN
1340 JEDEC_MFR(info) == SNOR_MFR_SST ||
1341 info->flags & SPI_NOR_HAS_LOCK) {
b199489d
HS
1342 write_enable(nor);
1343 write_sr(nor, 0);
edf891ef 1344 spi_nor_wait_till_ready(nor);
b199489d
HS
1345 }
1346
32f1b7c8 1347 if (!mtd->name)
b199489d 1348 mtd->name = dev_name(dev);
c9ec3900 1349 mtd->priv = nor;
b199489d
HS
1350 mtd->type = MTD_NORFLASH;
1351 mtd->writesize = 1;
1352 mtd->flags = MTD_CAP_NORFLASH;
1353 mtd->size = info->sector_size * info->n_sectors;
1354 mtd->_erase = spi_nor_erase;
1355 mtd->_read = spi_nor_read;
1356
357ca38d 1357 /* NOR protection support for STmicro/Micron chips and similar */
76a4707d
BN
1358 if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
1359 info->flags & SPI_NOR_HAS_LOCK) {
8cc7f33a
BN
1360 nor->flash_lock = stm_lock;
1361 nor->flash_unlock = stm_unlock;
5bf0e69b 1362 nor->flash_is_locked = stm_is_locked;
8cc7f33a
BN
1363 }
1364
5bf0e69b 1365 if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
b199489d
HS
1366 mtd->_lock = spi_nor_lock;
1367 mtd->_unlock = spi_nor_unlock;
5bf0e69b 1368 mtd->_is_locked = spi_nor_is_locked;
b199489d
HS
1369 }
1370
1371 /* sst nor chips use AAI word program */
1372 if (info->flags & SST_WRITE)
1373 mtd->_write = sst_write;
1374 else
1375 mtd->_write = spi_nor_write;
1376
51983b7d
BN
1377 if (info->flags & USE_FSR)
1378 nor->flags |= SNOR_F_USE_FSR;
3dd8012a
BN
1379 if (info->flags & SPI_NOR_HAS_TB)
1380 nor->flags |= SNOR_F_HAS_SR_TB;
c14dedde 1381
57cf26c1 1382#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
b199489d
HS
1383 /* prefer "small sector" erase if possible */
1384 if (info->flags & SECT_4K) {
b02e7f3e 1385 nor->erase_opcode = SPINOR_OP_BE_4K;
b199489d
HS
1386 mtd->erasesize = 4096;
1387 } else if (info->flags & SECT_4K_PMC) {
b02e7f3e 1388 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
b199489d 1389 mtd->erasesize = 4096;
57cf26c1
RM
1390 } else
1391#endif
1392 {
b02e7f3e 1393 nor->erase_opcode = SPINOR_OP_SE;
b199489d
HS
1394 mtd->erasesize = info->sector_size;
1395 }
1396
1397 if (info->flags & SPI_NOR_NO_ERASE)
1398 mtd->flags |= MTD_NO_ERASE;
1399
1400 mtd->dev.parent = dev;
1401 nor->page_size = info->page_size;
1402 mtd->writebufsize = nor->page_size;
1403
1404 if (np) {
1405 /* If we were instantiated by DT, use it */
1406 if (of_property_read_bool(np, "m25p,fast-read"))
1407 nor->flash_read = SPI_NOR_FAST;
1408 else
1409 nor->flash_read = SPI_NOR_NORMAL;
1410 } else {
1411 /* If we weren't instantiated by DT, default to fast-read */
1412 nor->flash_read = SPI_NOR_FAST;
1413 }
1414
1415 /* Some devices cannot do fast-read, no matter what DT tells us */
1416 if (info->flags & SPI_NOR_NO_FR)
1417 nor->flash_read = SPI_NOR_NORMAL;
1418
1419 /* Quad/Dual-read mode takes precedence over fast/normal */
1420 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
d928a259 1421 ret = set_quad_mode(nor, info);
b199489d
HS
1422 if (ret) {
1423 dev_err(dev, "quad mode not supported\n");
1424 return ret;
1425 }
1426 nor->flash_read = SPI_NOR_QUAD;
1427 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1428 nor->flash_read = SPI_NOR_DUAL;
1429 }
1430
1431 /* Default commands */
1432 switch (nor->flash_read) {
1433 case SPI_NOR_QUAD:
58b89a1f 1434 nor->read_opcode = SPINOR_OP_READ_1_1_4;
b199489d
HS
1435 break;
1436 case SPI_NOR_DUAL:
58b89a1f 1437 nor->read_opcode = SPINOR_OP_READ_1_1_2;
b199489d
HS
1438 break;
1439 case SPI_NOR_FAST:
58b89a1f 1440 nor->read_opcode = SPINOR_OP_READ_FAST;
b199489d
HS
1441 break;
1442 case SPI_NOR_NORMAL:
58b89a1f 1443 nor->read_opcode = SPINOR_OP_READ;
b199489d
HS
1444 break;
1445 default:
1446 dev_err(dev, "No Read opcode defined\n");
1447 return -EINVAL;
1448 }
1449
b02e7f3e 1450 nor->program_opcode = SPINOR_OP_PP;
b199489d
HS
1451
1452 if (info->addr_width)
1453 nor->addr_width = info->addr_width;
1454 else if (mtd->size > 0x1000000) {
1455 /* enable 4-byte addressing if the device exceeds 16MiB */
1456 nor->addr_width = 4;
f0d2448e 1457 if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
b199489d
HS
1458 /* Dedicated 4-byte command set */
1459 switch (nor->flash_read) {
1460 case SPI_NOR_QUAD:
58b89a1f 1461 nor->read_opcode = SPINOR_OP_READ4_1_1_4;
b199489d
HS
1462 break;
1463 case SPI_NOR_DUAL:
58b89a1f 1464 nor->read_opcode = SPINOR_OP_READ4_1_1_2;
b199489d
HS
1465 break;
1466 case SPI_NOR_FAST:
58b89a1f 1467 nor->read_opcode = SPINOR_OP_READ4_FAST;
b199489d
HS
1468 break;
1469 case SPI_NOR_NORMAL:
58b89a1f 1470 nor->read_opcode = SPINOR_OP_READ4;
b199489d
HS
1471 break;
1472 }
b02e7f3e 1473 nor->program_opcode = SPINOR_OP_PP_4B;
b199489d 1474 /* No small sector erase for 4-byte command set */
b02e7f3e 1475 nor->erase_opcode = SPINOR_OP_SE_4B;
b199489d
HS
1476 mtd->erasesize = info->sector_size;
1477 } else
d928a259 1478 set_4byte(nor, info, 1);
b199489d
HS
1479 } else {
1480 nor->addr_width = 3;
1481 }
1482
c67cbb83
BN
1483 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
1484 dev_err(dev, "address width is too large: %u\n",
1485 nor->addr_width);
1486 return -EINVAL;
1487 }
1488
b199489d
HS
1489 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1490
06bb6f5a 1491 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
b199489d
HS
1492 (long long)mtd->size >> 10);
1493
1494 dev_dbg(dev,
1495 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1496 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1497 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1498 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1499
1500 if (mtd->numeraseregions)
1501 for (i = 0; i < mtd->numeraseregions; i++)
1502 dev_dbg(dev,
1503 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1504 ".erasesize = 0x%.8x (%uKiB), "
1505 ".numblocks = %d }\n",
1506 i, (long long)mtd->eraseregions[i].offset,
1507 mtd->eraseregions[i].erasesize,
1508 mtd->eraseregions[i].erasesize / 1024,
1509 mtd->eraseregions[i].numblocks);
1510 return 0;
1511}
b61834b0 1512EXPORT_SYMBOL_GPL(spi_nor_scan);
b199489d 1513
06bb6f5a 1514static const struct flash_info *spi_nor_match_id(const char *name)
0d8c11c0 1515{
06bb6f5a 1516 const struct flash_info *id = spi_nor_ids;
0d8c11c0 1517
2ff46e6f 1518 while (id->name) {
0d8c11c0
HS
1519 if (!strcmp(name, id->name))
1520 return id;
1521 id++;
1522 }
1523 return NULL;
1524}
1525
b199489d
HS
1526MODULE_LICENSE("GPL");
1527MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1528MODULE_AUTHOR("Mike Lavender");
1529MODULE_DESCRIPTION("framework for SPI NOR");