]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/spi-nor/spi-nor.c
mtd: nand: pxa3xx_nand: fix dmaengine initialization
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
CommitLineData
b199489d 1/*
8eabdd1e
HS
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
b199489d
HS
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
09b6a377 19#include <linux/sizes.h>
b199489d 20
b199489d
HS
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
09b6a377
FS
27
28/*
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
31 */
32#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
33
34/*
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
36 * for larger flash
37 */
38#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
b199489d 39
d928a259 40#define SPI_NOR_MAX_ID_LEN 6
c67cbb83 41#define SPI_NOR_MAX_ADDR_WIDTH 4
d928a259
HS
42
43struct flash_info {
06bb6f5a
RM
44 char *name;
45
d928a259
HS
46 /*
47 * This array stores the ID bytes.
48 * The first three bytes are the JEDIC ID.
49 * JEDEC ID zero means "no ID" (mostly older chips).
50 */
51 u8 id[SPI_NOR_MAX_ID_LEN];
52 u8 id_len;
53
54 /* The size listed here is what works with SPINOR_OP_SE, which isn't
55 * necessarily called a "sector" by the vendor.
56 */
57 unsigned sector_size;
58 u16 n_sectors;
59
60 u16 page_size;
61 u16 addr_width;
62
63 u16 flags;
64#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
65#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
66#define SST_WRITE 0x04 /* use SST byte programming */
67#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
68#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
69#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
70#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
71#define USE_FSR 0x80 /* use flag status register */
72};
73
74#define JEDEC_MFR(info) ((info)->id[0])
b199489d 75
06bb6f5a 76static const struct flash_info *spi_nor_match_id(const char *name);
70f3ce05 77
b199489d
HS
78/*
79 * Read the status register, returning its value in the location
80 * Return the status register value.
81 * Returns negative if error occurred.
82 */
83static int read_sr(struct spi_nor *nor)
84{
85 int ret;
86 u8 val;
87
b02e7f3e 88 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
b199489d
HS
89 if (ret < 0) {
90 pr_err("error %d reading SR\n", (int) ret);
91 return ret;
92 }
93
94 return val;
95}
96
c14dedde 97/*
98 * Read the flag status register, returning its value in the location
99 * Return the status register value.
100 * Returns negative if error occurred.
101 */
102static int read_fsr(struct spi_nor *nor)
103{
104 int ret;
105 u8 val;
106
107 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
108 if (ret < 0) {
109 pr_err("error %d reading FSR\n", ret);
110 return ret;
111 }
112
113 return val;
114}
115
b199489d
HS
116/*
117 * Read configuration register, returning its value in the
118 * location. Return the configuration register value.
119 * Returns negative if error occured.
120 */
121static int read_cr(struct spi_nor *nor)
122{
123 int ret;
124 u8 val;
125
b02e7f3e 126 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
b199489d
HS
127 if (ret < 0) {
128 dev_err(nor->dev, "error %d reading CR\n", ret);
129 return ret;
130 }
131
132 return val;
133}
134
135/*
136 * Dummy Cycle calculation for different type of read.
137 * It can be used to support more commands with
138 * different dummy cycle requirements.
139 */
140static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
141{
142 switch (nor->flash_read) {
143 case SPI_NOR_FAST:
144 case SPI_NOR_DUAL:
145 case SPI_NOR_QUAD:
0b78a2cf 146 return 8;
b199489d
HS
147 case SPI_NOR_NORMAL:
148 return 0;
149 }
150 return 0;
151}
152
153/*
154 * Write status register 1 byte
155 * Returns negative if error occurred.
156 */
157static inline int write_sr(struct spi_nor *nor, u8 val)
158{
159 nor->cmd_buf[0] = val;
f9f3ce83 160 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
b199489d
HS
161}
162
163/*
164 * Set write enable latch with Write Enable command.
165 * Returns negative if error occurred.
166 */
167static inline int write_enable(struct spi_nor *nor)
168{
f9f3ce83 169 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
b199489d
HS
170}
171
172/*
173 * Send write disble instruction to the chip.
174 */
175static inline int write_disable(struct spi_nor *nor)
176{
f9f3ce83 177 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
b199489d
HS
178}
179
180static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
181{
182 return mtd->priv;
183}
184
185/* Enable/disable 4-byte addressing mode. */
06bb6f5a 186static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
d928a259 187 int enable)
b199489d
HS
188{
189 int status;
190 bool need_wren = false;
191 u8 cmd;
192
d928a259 193 switch (JEDEC_MFR(info)) {
f0d2448e 194 case SNOR_MFR_MICRON:
b199489d
HS
195 /* Some Micron need WREN command; all will accept it */
196 need_wren = true;
f0d2448e
BN
197 case SNOR_MFR_MACRONIX:
198 case SNOR_MFR_WINBOND:
b199489d
HS
199 if (need_wren)
200 write_enable(nor);
201
b02e7f3e 202 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
f9f3ce83 203 status = nor->write_reg(nor, cmd, NULL, 0);
b199489d
HS
204 if (need_wren)
205 write_disable(nor);
206
207 return status;
208 default:
209 /* Spansion style */
210 nor->cmd_buf[0] = enable << 7;
f9f3ce83 211 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
b199489d
HS
212 }
213}
51983b7d 214static inline int spi_nor_sr_ready(struct spi_nor *nor)
b199489d 215{
51983b7d
BN
216 int sr = read_sr(nor);
217 if (sr < 0)
218 return sr;
219 else
220 return !(sr & SR_WIP);
221}
b199489d 222
51983b7d
BN
223static inline int spi_nor_fsr_ready(struct spi_nor *nor)
224{
225 int fsr = read_fsr(nor);
226 if (fsr < 0)
227 return fsr;
228 else
229 return fsr & FSR_READY;
230}
b199489d 231
51983b7d
BN
232static int spi_nor_ready(struct spi_nor *nor)
233{
234 int sr, fsr;
235 sr = spi_nor_sr_ready(nor);
236 if (sr < 0)
237 return sr;
238 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
239 if (fsr < 0)
240 return fsr;
241 return sr && fsr;
b199489d
HS
242}
243
b94ed087
BN
244/*
245 * Service routine to read status register until ready, or timeout occurs.
246 * Returns non-zero if error.
247 */
09b6a377
FS
248static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
249 unsigned long timeout_jiffies)
c14dedde 250{
251 unsigned long deadline;
a95ce92e 252 int timeout = 0, ret;
c14dedde 253
09b6a377 254 deadline = jiffies + timeout_jiffies;
c14dedde 255
a95ce92e
BN
256 while (!timeout) {
257 if (time_after_eq(jiffies, deadline))
258 timeout = 1;
c14dedde 259
51983b7d
BN
260 ret = spi_nor_ready(nor);
261 if (ret < 0)
262 return ret;
263 if (ret)
264 return 0;
a95ce92e
BN
265
266 cond_resched();
267 }
268
269 dev_err(nor->dev, "flash operation timed out\n");
c14dedde 270
271 return -ETIMEDOUT;
272}
273
09b6a377
FS
274static int spi_nor_wait_till_ready(struct spi_nor *nor)
275{
276 return spi_nor_wait_till_ready_with_timeout(nor,
277 DEFAULT_READY_WAIT_JIFFIES);
278}
279
b199489d
HS
280/*
281 * Erase the whole flash memory
282 *
283 * Returns 0 if successful, non-zero otherwise.
284 */
285static int erase_chip(struct spi_nor *nor)
286{
19763671 287 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
b199489d 288
f9f3ce83 289 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
b199489d
HS
290}
291
292static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
293{
294 int ret = 0;
295
296 mutex_lock(&nor->lock);
297
298 if (nor->prepare) {
299 ret = nor->prepare(nor, ops);
300 if (ret) {
301 dev_err(nor->dev, "failed in the preparation.\n");
302 mutex_unlock(&nor->lock);
303 return ret;
304 }
305 }
306 return ret;
307}
308
309static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
310{
311 if (nor->unprepare)
312 nor->unprepare(nor, ops);
313 mutex_unlock(&nor->lock);
314}
315
c67cbb83
BN
316/*
317 * Initiate the erasure of a single sector
318 */
319static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
320{
321 u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
322 int i;
323
324 if (nor->erase)
325 return nor->erase(nor, addr);
326
327 /*
328 * Default implementation, if driver doesn't have a specialized HW
329 * control
330 */
331 for (i = nor->addr_width - 1; i >= 0; i--) {
332 buf[i] = addr & 0xff;
333 addr >>= 8;
334 }
335
336 return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
337}
338
b199489d
HS
339/*
340 * Erase an address range on the nor chip. The address range may extend
341 * one or more erase sectors. Return an error is there is a problem erasing.
342 */
343static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
344{
345 struct spi_nor *nor = mtd_to_spi_nor(mtd);
346 u32 addr, len;
347 uint32_t rem;
348 int ret;
349
350 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
351 (long long)instr->len);
352
353 div_u64_rem(instr->len, mtd->erasesize, &rem);
354 if (rem)
355 return -EINVAL;
356
357 addr = instr->addr;
358 len = instr->len;
359
360 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
361 if (ret)
362 return ret;
363
364 /* whole-chip erase? */
365 if (len == mtd->size) {
09b6a377
FS
366 unsigned long timeout;
367
05241aea
BN
368 write_enable(nor);
369
b199489d
HS
370 if (erase_chip(nor)) {
371 ret = -EIO;
372 goto erase_err;
373 }
374
09b6a377
FS
375 /*
376 * Scale the timeout linearly with the size of the flash, with
377 * a minimum calibrated to an old 2MB flash. We could try to
378 * pull these from CFI/SFDP, but these values should be good
379 * enough for now.
380 */
381 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
382 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
383 (unsigned long)(mtd->size / SZ_2M));
384 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
dfa9c0cb
BN
385 if (ret)
386 goto erase_err;
387
b199489d 388 /* REVISIT in some cases we could speed up erasing large regions
b02e7f3e 389 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
b199489d
HS
390 * to use "small sector erase", but that's not always optimal.
391 */
392
393 /* "sector"-at-a-time erase */
394 } else {
395 while (len) {
05241aea
BN
396 write_enable(nor);
397
c67cbb83
BN
398 ret = spi_nor_erase_sector(nor, addr);
399 if (ret)
b199489d 400 goto erase_err;
b199489d
HS
401
402 addr += mtd->erasesize;
403 len -= mtd->erasesize;
dfa9c0cb
BN
404
405 ret = spi_nor_wait_till_ready(nor);
406 if (ret)
407 goto erase_err;
b199489d
HS
408 }
409 }
410
05241aea
BN
411 write_disable(nor);
412
d6af2694 413erase_err:
b199489d
HS
414 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
415
d6af2694 416 instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
b199489d
HS
417 mtd_erase_callback(instr);
418
419 return ret;
b199489d
HS
420}
421
62593cf4
BN
422static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
423 uint64_t *len)
424{
425 struct mtd_info *mtd = &nor->mtd;
426 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
427 int shift = ffs(mask) - 1;
428 int pow;
429
430 if (!(sr & mask)) {
431 /* No protection */
432 *ofs = 0;
433 *len = 0;
434 } else {
435 pow = ((sr & mask) ^ mask) >> shift;
436 *len = mtd->size >> pow;
437 *ofs = mtd->size - *len;
438 }
439}
440
441/*
442 * Return 1 if the entire region is locked, 0 otherwise
443 */
444static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
445 u8 sr)
446{
447 loff_t lock_offs;
448 uint64_t lock_len;
449
450 stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
451
452 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
453}
454
455/*
456 * Lock a region of the flash. Compatible with ST Micro and similar flash.
457 * Supports only the block protection bits BP{0,1,2} in the status register
458 * (SR). Does not support these features found in newer SR bitfields:
459 * - TB: top/bottom protect - only handle TB=0 (top protect)
460 * - SEC: sector/block protect - only handle SEC=0 (block protect)
461 * - CMP: complement protect - only support CMP=0 (range is not complemented)
462 *
463 * Sample table portion for 8MB flash (Winbond w25q64fw):
464 *
465 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
466 * --------------------------------------------------------------------------
467 * X | X | 0 | 0 | 0 | NONE | NONE
468 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
469 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
470 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
471 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
472 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
473 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
474 * X | X | 1 | 1 | 1 | 8 MB | ALL
475 *
476 * Returns negative on errors, 0 on success.
477 */
8cc7f33a 478static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 479{
19763671 480 struct mtd_info *mtd = &nor->mtd;
f49289ce 481 int status_old, status_new;
62593cf4
BN
482 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
483 u8 shift = ffs(mask) - 1, pow, val;
32321e95 484 int ret;
b199489d 485
b199489d 486 status_old = read_sr(nor);
f49289ce
FE
487 if (status_old < 0)
488 return status_old;
b199489d 489
62593cf4
BN
490 /* SPI NOR always locks to the end */
491 if (ofs + len != mtd->size) {
492 /* Does combined region extend to end? */
493 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len,
494 status_old))
495 return -EINVAL;
496 len = mtd->size - ofs;
497 }
498
499 /*
500 * Need smallest pow such that:
501 *
502 * 1 / (2^pow) <= (len / size)
503 *
504 * so (assuming power-of-2 size) we do:
505 *
506 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
507 */
508 pow = ilog2(mtd->size) - ilog2(len);
509 val = mask - (pow << shift);
510 if (val & ~mask)
511 return -EINVAL;
512 /* Don't "lock" with no region! */
513 if (!(val & mask))
514 return -EINVAL;
515
516 status_new = (status_old & ~mask) | val;
b199489d
HS
517
518 /* Only modify protection if it will not unlock other areas */
62593cf4
BN
519 if ((status_new & mask) <= (status_old & mask))
520 return -EINVAL;
b199489d 521
62593cf4 522 write_enable(nor);
32321e95
EG
523 ret = write_sr(nor, status_new);
524 if (ret)
525 return ret;
526 return spi_nor_wait_till_ready(nor);
b199489d
HS
527}
528
62593cf4
BN
529/*
530 * Unlock a region of the flash. See stm_lock() for more info
531 *
532 * Returns negative on errors, 0 on success.
533 */
8cc7f33a 534static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 535{
19763671 536 struct mtd_info *mtd = &nor->mtd;
f49289ce 537 int status_old, status_new;
62593cf4
BN
538 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
539 u8 shift = ffs(mask) - 1, pow, val;
32321e95 540 int ret;
b199489d 541
b199489d 542 status_old = read_sr(nor);
f49289ce
FE
543 if (status_old < 0)
544 return status_old;
b199489d 545
62593cf4 546 /* Cannot unlock; would unlock larger region than requested */
a32d5b72
BN
547 if (stm_is_locked_sr(nor, ofs - mtd->erasesize, mtd->erasesize,
548 status_old))
62593cf4 549 return -EINVAL;
b199489d 550
62593cf4
BN
551 /*
552 * Need largest pow such that:
553 *
554 * 1 / (2^pow) >= (len / size)
555 *
556 * so (assuming power-of-2 size) we do:
557 *
558 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
559 */
560 pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len));
561 if (ofs + len == mtd->size) {
562 val = 0; /* fully unlocked */
563 } else {
564 val = mask - (pow << shift);
565 /* Some power-of-two sizes are not supported */
566 if (val & ~mask)
567 return -EINVAL;
b199489d
HS
568 }
569
62593cf4
BN
570 status_new = (status_old & ~mask) | val;
571
572 /* Only modify protection if it will not lock other areas */
573 if ((status_new & mask) >= (status_old & mask))
574 return -EINVAL;
575
576 write_enable(nor);
32321e95
EG
577 ret = write_sr(nor, status_new);
578 if (ret)
579 return ret;
580 return spi_nor_wait_till_ready(nor);
8cc7f33a
BN
581}
582
5bf0e69b
BN
583/*
584 * Check if a region of the flash is (completely) locked. See stm_lock() for
585 * more info.
586 *
587 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
588 * negative on errors.
589 */
590static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
591{
592 int status;
593
594 status = read_sr(nor);
595 if (status < 0)
596 return status;
597
598 return stm_is_locked_sr(nor, ofs, len, status);
599}
600
8cc7f33a
BN
601static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
602{
603 struct spi_nor *nor = mtd_to_spi_nor(mtd);
604 int ret;
605
606 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
607 if (ret)
608 return ret;
609
610 ret = nor->flash_lock(nor, ofs, len);
611
b199489d
HS
612 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
613 return ret;
614}
615
8cc7f33a
BN
616static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
617{
618 struct spi_nor *nor = mtd_to_spi_nor(mtd);
619 int ret;
620
621 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
622 if (ret)
623 return ret;
624
625 ret = nor->flash_unlock(nor, ofs, len);
626
627 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
628 return ret;
629}
630
5bf0e69b
BN
631static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
632{
633 struct spi_nor *nor = mtd_to_spi_nor(mtd);
634 int ret;
635
636 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
637 if (ret)
638 return ret;
639
640 ret = nor->flash_is_locked(nor, ofs, len);
641
642 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
643 return ret;
644}
645
09ffafb6 646/* Used when the "_ext_id" is two bytes at most */
b199489d 647#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
09ffafb6
HS
648 .id = { \
649 ((_jedec_id) >> 16) & 0xff, \
650 ((_jedec_id) >> 8) & 0xff, \
651 (_jedec_id) & 0xff, \
652 ((_ext_id) >> 8) & 0xff, \
653 (_ext_id) & 0xff, \
654 }, \
655 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
b199489d
HS
656 .sector_size = (_sector_size), \
657 .n_sectors = (_n_sectors), \
658 .page_size = 256, \
06bb6f5a 659 .flags = (_flags),
b199489d 660
6d7604e5 661#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
6d7604e5
HS
662 .id = { \
663 ((_jedec_id) >> 16) & 0xff, \
664 ((_jedec_id) >> 8) & 0xff, \
665 (_jedec_id) & 0xff, \
666 ((_ext_id) >> 16) & 0xff, \
667 ((_ext_id) >> 8) & 0xff, \
668 (_ext_id) & 0xff, \
669 }, \
670 .id_len = 6, \
671 .sector_size = (_sector_size), \
672 .n_sectors = (_n_sectors), \
673 .page_size = 256, \
06bb6f5a 674 .flags = (_flags),
6d7604e5 675
b199489d 676#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
b199489d
HS
677 .sector_size = (_sector_size), \
678 .n_sectors = (_n_sectors), \
679 .page_size = (_page_size), \
680 .addr_width = (_addr_width), \
06bb6f5a 681 .flags = (_flags),
b199489d
HS
682
683/* NOTE: double check command sets and memory organization when you add
684 * more nor chips. This current list focusses on newer chips, which
685 * have been converging on command sets which including JEDEC ID.
c19900ed
RM
686 *
687 * All newly added entries should describe *hardware* and should use SECT_4K
688 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
689 * scenarios excluding small sectors there is config option that can be
690 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
691 * For historical (and compatibility) reasons (before we got above config) some
692 * old entries may be missing 4K flag.
b199489d 693 */
06bb6f5a 694static const struct flash_info spi_nor_ids[] = {
b199489d
HS
695 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
696 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
697 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
698
699 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
700 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
701 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
702
703 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
704 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
705 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
706 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
707
708 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
709
710 /* EON -- en25xxx */
711 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
712 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
713 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
714 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
715 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
a41595b3 716 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
b199489d 717 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
c19900ed 718 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
719
720 /* ESMT */
721 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
722
723 /* Everspin */
724 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
725 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
726
ce56ce7d
RL
727 /* Fujitsu */
728 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
729
b199489d
HS
730 /* GigaDevice */
731 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
732 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
fcc87a95 733 { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
b199489d
HS
734
735 /* Intel/Numonyx -- xxxs33b */
736 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
737 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
738 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
739
b79c332f
GJ
740 /* ISSI */
741 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
742
b199489d 743 /* Macronix */
660b5b07 744 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
745 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
746 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
747 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
748 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
0501f2e5 749 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
b199489d 750 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
0501f2e5 751 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
81a1209c 752 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
753 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
754 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
755 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
756 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
757 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
758 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
759
760 /* Micron */
548cd3ab 761 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
f9bcb6dc 762 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
0db7fae2 763 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2a06c7b1 764 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
548cd3ab
BH
765 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
766 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
767 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
768 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
769 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
770 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
b199489d
HS
771
772 /* PMC */
773 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
774 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
775 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
776
777 /* Spansion -- single (large) sector size only, at least
778 * for the chips listed here (without boot sectors).
779 */
9ab86995 780 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
0f12a27b 781 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
782 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
783 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
784 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
785 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
786 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
787 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
c19900ed 788 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
c1752086
JG
789 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
790 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
791 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
792 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
793 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
794 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
795 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
7c748f57 796 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
adf508c3
JE
797 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
798 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d 799 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
c0826679 800 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
c19900ed 801 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
413780d7 802 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
aada20cd 803 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
b199489d
HS
804
805 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
806 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
807 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
808 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
809 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
810 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
811 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
812 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
813 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
a1d97ef9 814 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
c887be71 815 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
b199489d 816 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
f02985b7 817 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
b199489d
HS
818
819 /* ST Microelectronics -- newer production may have feature updates */
820 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
821 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
822 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
823 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
824 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
825 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
826 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
827 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
828 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
b199489d
HS
829
830 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
831 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
832 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
833 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
834 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
835 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
836 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
837 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
838 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
839
840 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
841 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
842 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
843
844 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
845 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
846 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
847
848 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
849 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
850 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
851 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
852 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
f2fabe16 853 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
b199489d
HS
854
855 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
40d19ab6 856 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
857 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
858 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
859 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
860 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
861 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
862 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
863 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
a23eb341 864 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
865 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
866 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
a23eb341 867 { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
4404bd74 868 { "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
869 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
870 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
871 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
872 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
873
874 /* Catalyst / On Semiconductor -- non-JEDEC */
875 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
876 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
877 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
878 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
879 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
880 { },
881};
882
06bb6f5a 883static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
b199489d
HS
884{
885 int tmp;
09ffafb6 886 u8 id[SPI_NOR_MAX_ID_LEN];
06bb6f5a 887 const struct flash_info *info;
b199489d 888
09ffafb6 889 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
b199489d 890 if (tmp < 0) {
20625dfe 891 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
b199489d
HS
892 return ERR_PTR(tmp);
893 }
b199489d
HS
894
895 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
06bb6f5a 896 info = &spi_nor_ids[tmp];
09ffafb6
HS
897 if (info->id_len) {
898 if (!memcmp(info->id, id, info->id_len))
b199489d
HS
899 return &spi_nor_ids[tmp];
900 }
901 }
9b9f1033 902 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
09ffafb6 903 id[0], id[1], id[2]);
b199489d
HS
904 return ERR_PTR(-ENODEV);
905}
906
b199489d
HS
907static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
908 size_t *retlen, u_char *buf)
909{
910 struct spi_nor *nor = mtd_to_spi_nor(mtd);
911 int ret;
912
913 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
914
915 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
916 if (ret)
917 return ret;
918
919 ret = nor->read(nor, from, len, retlen, buf);
920
921 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
922 return ret;
923}
924
925static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
926 size_t *retlen, const u_char *buf)
927{
928 struct spi_nor *nor = mtd_to_spi_nor(mtd);
929 size_t actual;
930 int ret;
931
932 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
933
934 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
935 if (ret)
936 return ret;
937
b199489d
HS
938 write_enable(nor);
939
940 nor->sst_write_second = false;
941
942 actual = to % 2;
943 /* Start write from odd address. */
944 if (actual) {
b02e7f3e 945 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
946
947 /* write one byte. */
948 nor->write(nor, to, 1, retlen, buf);
b94ed087 949 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
950 if (ret)
951 goto time_out;
952 }
953 to += actual;
954
955 /* Write out most of the data here. */
956 for (; actual < len - 1; actual += 2) {
b02e7f3e 957 nor->program_opcode = SPINOR_OP_AAI_WP;
b199489d
HS
958
959 /* write two bytes. */
960 nor->write(nor, to, 2, retlen, buf + actual);
b94ed087 961 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
962 if (ret)
963 goto time_out;
964 to += 2;
965 nor->sst_write_second = true;
966 }
967 nor->sst_write_second = false;
968
969 write_disable(nor);
b94ed087 970 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
971 if (ret)
972 goto time_out;
973
974 /* Write out trailing byte if it exists. */
975 if (actual != len) {
976 write_enable(nor);
977
b02e7f3e 978 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
979 nor->write(nor, to, 1, retlen, buf + actual);
980
b94ed087 981 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
982 if (ret)
983 goto time_out;
984 write_disable(nor);
985 }
986time_out:
987 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
988 return ret;
989}
990
991/*
992 * Write an address range to the nor chip. Data must be written in
993 * FLASH_PAGESIZE chunks. The address range may be any size provided
994 * it is within the physical boundaries.
995 */
996static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
997 size_t *retlen, const u_char *buf)
998{
999 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1000 u32 page_offset, page_size, i;
1001 int ret;
1002
1003 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1004
1005 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1006 if (ret)
1007 return ret;
1008
b199489d
HS
1009 write_enable(nor);
1010
1011 page_offset = to & (nor->page_size - 1);
1012
1013 /* do all the bytes fit onto one page? */
1014 if (page_offset + len <= nor->page_size) {
1015 nor->write(nor, to, len, retlen, buf);
1016 } else {
1017 /* the size of data remaining on the first page */
1018 page_size = nor->page_size - page_offset;
1019 nor->write(nor, to, page_size, retlen, buf);
1020
1021 /* write everything in nor->page_size chunks */
1022 for (i = page_size; i < len; i += page_size) {
1023 page_size = len - i;
1024 if (page_size > nor->page_size)
1025 page_size = nor->page_size;
1026
b94ed087 1027 ret = spi_nor_wait_till_ready(nor);
1d61dcb3
BN
1028 if (ret)
1029 goto write_err;
1030
b199489d
HS
1031 write_enable(nor);
1032
1033 nor->write(nor, to + i, page_size, retlen, buf + i);
1034 }
1035 }
1036
dfa9c0cb 1037 ret = spi_nor_wait_till_ready(nor);
b199489d
HS
1038write_err:
1039 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1d61dcb3 1040 return ret;
b199489d
HS
1041}
1042
1043static int macronix_quad_enable(struct spi_nor *nor)
1044{
1045 int ret, val;
1046
1047 val = read_sr(nor);
f49289ce
FE
1048 if (val < 0)
1049 return val;
b199489d
HS
1050 write_enable(nor);
1051
fd725234 1052 write_sr(nor, val | SR_QUAD_EN_MX);
b199489d 1053
b94ed087 1054 if (spi_nor_wait_till_ready(nor))
b199489d
HS
1055 return 1;
1056
1057 ret = read_sr(nor);
1058 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1059 dev_err(nor->dev, "Macronix Quad bit not set\n");
1060 return -EINVAL;
1061 }
1062
1063 return 0;
1064}
1065
1066/*
1067 * Write status Register and configuration register with 2 bytes
1068 * The first byte will be written to the status register, while the
1069 * second byte will be written to the configuration register.
1070 * Return negative if error occured.
1071 */
1072static int write_sr_cr(struct spi_nor *nor, u16 val)
1073{
1074 nor->cmd_buf[0] = val & 0xff;
1075 nor->cmd_buf[1] = (val >> 8);
1076
f9f3ce83 1077 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
b199489d
HS
1078}
1079
1080static int spansion_quad_enable(struct spi_nor *nor)
1081{
1082 int ret;
1083 int quad_en = CR_QUAD_EN_SPAN << 8;
1084
1085 write_enable(nor);
1086
1087 ret = write_sr_cr(nor, quad_en);
1088 if (ret < 0) {
1089 dev_err(nor->dev,
1090 "error while writing configuration register\n");
1091 return -EINVAL;
1092 }
1093
1094 /* read back and check it */
1095 ret = read_cr(nor);
1096 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1097 dev_err(nor->dev, "Spansion Quad bit not set\n");
1098 return -EINVAL;
1099 }
1100
1101 return 0;
1102}
1103
06bb6f5a 1104static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
b199489d
HS
1105{
1106 int status;
1107
d928a259 1108 switch (JEDEC_MFR(info)) {
f0d2448e 1109 case SNOR_MFR_MACRONIX:
b199489d
HS
1110 status = macronix_quad_enable(nor);
1111 if (status) {
1112 dev_err(nor->dev, "Macronix quad-read not enabled\n");
1113 return -EINVAL;
1114 }
1115 return status;
f0d2448e 1116 case SNOR_MFR_MICRON:
3b5394a3 1117 return 0;
b199489d
HS
1118 default:
1119 status = spansion_quad_enable(nor);
1120 if (status) {
1121 dev_err(nor->dev, "Spansion quad-read not enabled\n");
1122 return -EINVAL;
1123 }
1124 return status;
1125 }
1126}
1127
1128static int spi_nor_check(struct spi_nor *nor)
1129{
1130 if (!nor->dev || !nor->read || !nor->write ||
c67cbb83 1131 !nor->read_reg || !nor->write_reg) {
b199489d
HS
1132 pr_err("spi-nor: please fill all the necessary fields!\n");
1133 return -EINVAL;
1134 }
1135
b199489d
HS
1136 return 0;
1137}
1138
70f3ce05 1139int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
b199489d 1140{
06bb6f5a 1141 const struct flash_info *info = NULL;
b199489d 1142 struct device *dev = nor->dev;
19763671 1143 struct mtd_info *mtd = &nor->mtd;
9c7d7875 1144 struct device_node *np = spi_nor_get_flash_node(nor);
b199489d
HS
1145 int ret;
1146 int i;
1147
1148 ret = spi_nor_check(nor);
1149 if (ret)
1150 return ret;
1151
43163022 1152 if (name)
06bb6f5a 1153 info = spi_nor_match_id(name);
43163022 1154 /* Try to auto-detect if chip name wasn't specified or not found */
06bb6f5a
RM
1155 if (!info)
1156 info = spi_nor_read_id(nor);
1157 if (IS_ERR_OR_NULL(info))
70f3ce05
BH
1158 return -ENOENT;
1159
58c81957
RM
1160 /*
1161 * If caller has specified name of flash model that can normally be
1162 * detected using JEDEC, let's verify it.
1163 */
1164 if (name && info->id_len) {
06bb6f5a 1165 const struct flash_info *jinfo;
b199489d 1166
06bb6f5a
RM
1167 jinfo = spi_nor_read_id(nor);
1168 if (IS_ERR(jinfo)) {
1169 return PTR_ERR(jinfo);
1170 } else if (jinfo != info) {
b199489d
HS
1171 /*
1172 * JEDEC knows better, so overwrite platform ID. We
1173 * can't trust partitions any longer, but we'll let
1174 * mtd apply them anyway, since some partitions may be
1175 * marked read-only, and we don't want to lose that
1176 * information, even if it's not 100% accurate.
1177 */
1178 dev_warn(dev, "found %s, expected %s\n",
06bb6f5a
RM
1179 jinfo->name, info->name);
1180 info = jinfo;
b199489d
HS
1181 }
1182 }
1183
1184 mutex_init(&nor->lock);
1185
1186 /*
c6fc2171
BN
1187 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1188 * with the software protection bits set
b199489d
HS
1189 */
1190
f0d2448e
BN
1191 if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
1192 JEDEC_MFR(info) == SNOR_MFR_INTEL ||
67b9bcd3 1193 JEDEC_MFR(info) == SNOR_MFR_SST) {
b199489d
HS
1194 write_enable(nor);
1195 write_sr(nor, 0);
1196 }
1197
32f1b7c8 1198 if (!mtd->name)
b199489d 1199 mtd->name = dev_name(dev);
c9ec3900 1200 mtd->priv = nor;
b199489d
HS
1201 mtd->type = MTD_NORFLASH;
1202 mtd->writesize = 1;
1203 mtd->flags = MTD_CAP_NORFLASH;
1204 mtd->size = info->sector_size * info->n_sectors;
1205 mtd->_erase = spi_nor_erase;
1206 mtd->_read = spi_nor_read;
1207
357ca38d 1208 /* NOR protection support for STmicro/Micron chips and similar */
67b9bcd3 1209 if (JEDEC_MFR(info) == SNOR_MFR_MICRON) {
8cc7f33a
BN
1210 nor->flash_lock = stm_lock;
1211 nor->flash_unlock = stm_unlock;
5bf0e69b 1212 nor->flash_is_locked = stm_is_locked;
8cc7f33a
BN
1213 }
1214
5bf0e69b 1215 if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
b199489d
HS
1216 mtd->_lock = spi_nor_lock;
1217 mtd->_unlock = spi_nor_unlock;
5bf0e69b 1218 mtd->_is_locked = spi_nor_is_locked;
b199489d
HS
1219 }
1220
1221 /* sst nor chips use AAI word program */
1222 if (info->flags & SST_WRITE)
1223 mtd->_write = sst_write;
1224 else
1225 mtd->_write = spi_nor_write;
1226
51983b7d
BN
1227 if (info->flags & USE_FSR)
1228 nor->flags |= SNOR_F_USE_FSR;
c14dedde 1229
57cf26c1 1230#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
b199489d
HS
1231 /* prefer "small sector" erase if possible */
1232 if (info->flags & SECT_4K) {
b02e7f3e 1233 nor->erase_opcode = SPINOR_OP_BE_4K;
b199489d
HS
1234 mtd->erasesize = 4096;
1235 } else if (info->flags & SECT_4K_PMC) {
b02e7f3e 1236 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
b199489d 1237 mtd->erasesize = 4096;
57cf26c1
RM
1238 } else
1239#endif
1240 {
b02e7f3e 1241 nor->erase_opcode = SPINOR_OP_SE;
b199489d
HS
1242 mtd->erasesize = info->sector_size;
1243 }
1244
1245 if (info->flags & SPI_NOR_NO_ERASE)
1246 mtd->flags |= MTD_NO_ERASE;
1247
1248 mtd->dev.parent = dev;
1249 nor->page_size = info->page_size;
1250 mtd->writebufsize = nor->page_size;
1251
1252 if (np) {
1253 /* If we were instantiated by DT, use it */
1254 if (of_property_read_bool(np, "m25p,fast-read"))
1255 nor->flash_read = SPI_NOR_FAST;
1256 else
1257 nor->flash_read = SPI_NOR_NORMAL;
1258 } else {
1259 /* If we weren't instantiated by DT, default to fast-read */
1260 nor->flash_read = SPI_NOR_FAST;
1261 }
1262
1263 /* Some devices cannot do fast-read, no matter what DT tells us */
1264 if (info->flags & SPI_NOR_NO_FR)
1265 nor->flash_read = SPI_NOR_NORMAL;
1266
1267 /* Quad/Dual-read mode takes precedence over fast/normal */
1268 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
d928a259 1269 ret = set_quad_mode(nor, info);
b199489d
HS
1270 if (ret) {
1271 dev_err(dev, "quad mode not supported\n");
1272 return ret;
1273 }
1274 nor->flash_read = SPI_NOR_QUAD;
1275 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1276 nor->flash_read = SPI_NOR_DUAL;
1277 }
1278
1279 /* Default commands */
1280 switch (nor->flash_read) {
1281 case SPI_NOR_QUAD:
58b89a1f 1282 nor->read_opcode = SPINOR_OP_READ_1_1_4;
b199489d
HS
1283 break;
1284 case SPI_NOR_DUAL:
58b89a1f 1285 nor->read_opcode = SPINOR_OP_READ_1_1_2;
b199489d
HS
1286 break;
1287 case SPI_NOR_FAST:
58b89a1f 1288 nor->read_opcode = SPINOR_OP_READ_FAST;
b199489d
HS
1289 break;
1290 case SPI_NOR_NORMAL:
58b89a1f 1291 nor->read_opcode = SPINOR_OP_READ;
b199489d
HS
1292 break;
1293 default:
1294 dev_err(dev, "No Read opcode defined\n");
1295 return -EINVAL;
1296 }
1297
b02e7f3e 1298 nor->program_opcode = SPINOR_OP_PP;
b199489d
HS
1299
1300 if (info->addr_width)
1301 nor->addr_width = info->addr_width;
1302 else if (mtd->size > 0x1000000) {
1303 /* enable 4-byte addressing if the device exceeds 16MiB */
1304 nor->addr_width = 4;
f0d2448e 1305 if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
b199489d
HS
1306 /* Dedicated 4-byte command set */
1307 switch (nor->flash_read) {
1308 case SPI_NOR_QUAD:
58b89a1f 1309 nor->read_opcode = SPINOR_OP_READ4_1_1_4;
b199489d
HS
1310 break;
1311 case SPI_NOR_DUAL:
58b89a1f 1312 nor->read_opcode = SPINOR_OP_READ4_1_1_2;
b199489d
HS
1313 break;
1314 case SPI_NOR_FAST:
58b89a1f 1315 nor->read_opcode = SPINOR_OP_READ4_FAST;
b199489d
HS
1316 break;
1317 case SPI_NOR_NORMAL:
58b89a1f 1318 nor->read_opcode = SPINOR_OP_READ4;
b199489d
HS
1319 break;
1320 }
b02e7f3e 1321 nor->program_opcode = SPINOR_OP_PP_4B;
b199489d 1322 /* No small sector erase for 4-byte command set */
b02e7f3e 1323 nor->erase_opcode = SPINOR_OP_SE_4B;
b199489d
HS
1324 mtd->erasesize = info->sector_size;
1325 } else
d928a259 1326 set_4byte(nor, info, 1);
b199489d
HS
1327 } else {
1328 nor->addr_width = 3;
1329 }
1330
c67cbb83
BN
1331 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
1332 dev_err(dev, "address width is too large: %u\n",
1333 nor->addr_width);
1334 return -EINVAL;
1335 }
1336
b199489d
HS
1337 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1338
06bb6f5a 1339 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
b199489d
HS
1340 (long long)mtd->size >> 10);
1341
1342 dev_dbg(dev,
1343 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1344 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1345 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1346 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1347
1348 if (mtd->numeraseregions)
1349 for (i = 0; i < mtd->numeraseregions; i++)
1350 dev_dbg(dev,
1351 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1352 ".erasesize = 0x%.8x (%uKiB), "
1353 ".numblocks = %d }\n",
1354 i, (long long)mtd->eraseregions[i].offset,
1355 mtd->eraseregions[i].erasesize,
1356 mtd->eraseregions[i].erasesize / 1024,
1357 mtd->eraseregions[i].numblocks);
1358 return 0;
1359}
b61834b0 1360EXPORT_SYMBOL_GPL(spi_nor_scan);
b199489d 1361
06bb6f5a 1362static const struct flash_info *spi_nor_match_id(const char *name)
0d8c11c0 1363{
06bb6f5a 1364 const struct flash_info *id = spi_nor_ids;
0d8c11c0 1365
2ff46e6f 1366 while (id->name) {
0d8c11c0
HS
1367 if (!strcmp(name, id->name))
1368 return id;
1369 id++;
1370 }
1371 return NULL;
1372}
1373
b199489d
HS
1374MODULE_LICENSE("GPL");
1375MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1376MODULE_AUTHOR("Mike Lavender");
1377MODULE_DESCRIPTION("framework for SPI NOR");