]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/mtd/spi-nor/spi-nor.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
CommitLineData
b199489d 1/*
8eabdd1e
HS
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
b199489d
HS
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
09b6a377 19#include <linux/sizes.h>
b199489d 20
b199489d
HS
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
09b6a377
FS
27
28/*
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
31 */
32#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
33
34/*
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
36 * for larger flash
37 */
38#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
b199489d 39
d928a259 40#define SPI_NOR_MAX_ID_LEN 6
c67cbb83 41#define SPI_NOR_MAX_ADDR_WIDTH 4
d928a259
HS
42
43struct flash_info {
06bb6f5a
RM
44 char *name;
45
d928a259
HS
46 /*
47 * This array stores the ID bytes.
48 * The first three bytes are the JEDIC ID.
49 * JEDEC ID zero means "no ID" (mostly older chips).
50 */
51 u8 id[SPI_NOR_MAX_ID_LEN];
52 u8 id_len;
53
54 /* The size listed here is what works with SPINOR_OP_SE, which isn't
55 * necessarily called a "sector" by the vendor.
56 */
57 unsigned sector_size;
58 u16 n_sectors;
59
60 u16 page_size;
61 u16 addr_width;
62
63 u16 flags;
0618114e
BN
64#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
65#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
66#define SST_WRITE BIT(2) /* use SST byte programming */
67#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
68#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
69#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
70#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
71#define USE_FSR BIT(7) /* use flag status register */
76a4707d 72#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
3dd8012a
BN
73#define SPI_NOR_HAS_TB BIT(9) /*
74 * Flash SR has Top/Bottom (TB) protect
75 * bit. Must be used with
76 * SPI_NOR_HAS_LOCK.
77 */
e99ca98f
RRD
78#define SPI_S3AN BIT(10) /*
79 * Xilinx Spartan 3AN In-System Flash
80 * (MFR cannot be used for probing
81 * because it has the same value as
82 * ATMEL flashes)
83 */
ba3ae6a1
CP
84#define SPI_NOR_4B_OPCODES BIT(11) /*
85 * Use dedicated 4byte address op codes
86 * to support memory size above 128Mib.
87 */
d928a259
HS
88};
89
90#define JEDEC_MFR(info) ((info)->id[0])
b199489d 91
06bb6f5a 92static const struct flash_info *spi_nor_match_id(const char *name);
70f3ce05 93
b199489d
HS
94/*
95 * Read the status register, returning its value in the location
96 * Return the status register value.
97 * Returns negative if error occurred.
98 */
99static int read_sr(struct spi_nor *nor)
100{
101 int ret;
102 u8 val;
103
b02e7f3e 104 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
b199489d
HS
105 if (ret < 0) {
106 pr_err("error %d reading SR\n", (int) ret);
107 return ret;
108 }
109
110 return val;
111}
112
c14dedde 113/*
114 * Read the flag status register, returning its value in the location
115 * Return the status register value.
116 * Returns negative if error occurred.
117 */
118static int read_fsr(struct spi_nor *nor)
119{
120 int ret;
121 u8 val;
122
123 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
124 if (ret < 0) {
125 pr_err("error %d reading FSR\n", ret);
126 return ret;
127 }
128
129 return val;
130}
131
b199489d
HS
132/*
133 * Read configuration register, returning its value in the
134 * location. Return the configuration register value.
5d708ecc 135 * Returns negative if error occurred.
b199489d
HS
136 */
137static int read_cr(struct spi_nor *nor)
138{
139 int ret;
140 u8 val;
141
b02e7f3e 142 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
b199489d
HS
143 if (ret < 0) {
144 dev_err(nor->dev, "error %d reading CR\n", ret);
145 return ret;
146 }
147
148 return val;
149}
150
151/*
152 * Dummy Cycle calculation for different type of read.
153 * It can be used to support more commands with
154 * different dummy cycle requirements.
155 */
156static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
157{
158 switch (nor->flash_read) {
159 case SPI_NOR_FAST:
160 case SPI_NOR_DUAL:
161 case SPI_NOR_QUAD:
0b78a2cf 162 return 8;
b199489d
HS
163 case SPI_NOR_NORMAL:
164 return 0;
165 }
166 return 0;
167}
168
169/*
170 * Write status register 1 byte
171 * Returns negative if error occurred.
172 */
173static inline int write_sr(struct spi_nor *nor, u8 val)
174{
175 nor->cmd_buf[0] = val;
f9f3ce83 176 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
b199489d
HS
177}
178
179/*
180 * Set write enable latch with Write Enable command.
181 * Returns negative if error occurred.
182 */
183static inline int write_enable(struct spi_nor *nor)
184{
f9f3ce83 185 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
b199489d
HS
186}
187
188/*
8a1115ff 189 * Send write disable instruction to the chip.
b199489d
HS
190 */
191static inline int write_disable(struct spi_nor *nor)
192{
f9f3ce83 193 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
b199489d
HS
194}
195
196static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
197{
198 return mtd->priv;
199}
200
ba3ae6a1
CP
201
202static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
203{
204 size_t i;
205
206 for (i = 0; i < size; i++)
207 if (table[i][0] == opcode)
208 return table[i][1];
209
210 /* No conversion found, keep input op code. */
211 return opcode;
212}
213
214static inline u8 spi_nor_convert_3to4_read(u8 opcode)
215{
216 static const u8 spi_nor_3to4_read[][2] = {
217 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
218 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
219 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
220 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
221 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
222 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
223 };
224
225 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
226 ARRAY_SIZE(spi_nor_3to4_read));
227}
228
229static inline u8 spi_nor_convert_3to4_program(u8 opcode)
230{
231 static const u8 spi_nor_3to4_program[][2] = {
232 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
233 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
234 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
235 };
236
237 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
238 ARRAY_SIZE(spi_nor_3to4_program));
239}
240
241static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
242{
243 static const u8 spi_nor_3to4_erase[][2] = {
244 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
245 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
246 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
247 };
248
249 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
250 ARRAY_SIZE(spi_nor_3to4_erase));
251}
252
253static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
254 const struct flash_info *info)
255{
256 /* Do some manufacturer fixups first */
257 switch (JEDEC_MFR(info)) {
258 case SNOR_MFR_SPANSION:
259 /* No small sector erase for 4-byte command set */
260 nor->erase_opcode = SPINOR_OP_SE;
261 nor->mtd.erasesize = info->sector_size;
262 break;
263
264 default:
265 break;
266 }
267
268 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
269 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
270 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
271}
272
b199489d 273/* Enable/disable 4-byte addressing mode. */
06bb6f5a 274static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
d928a259 275 int enable)
b199489d
HS
276{
277 int status;
278 bool need_wren = false;
279 u8 cmd;
280
d928a259 281 switch (JEDEC_MFR(info)) {
f0d2448e 282 case SNOR_MFR_MICRON:
b199489d
HS
283 /* Some Micron need WREN command; all will accept it */
284 need_wren = true;
f0d2448e
BN
285 case SNOR_MFR_MACRONIX:
286 case SNOR_MFR_WINBOND:
b199489d
HS
287 if (need_wren)
288 write_enable(nor);
289
b02e7f3e 290 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
f9f3ce83 291 status = nor->write_reg(nor, cmd, NULL, 0);
b199489d
HS
292 if (need_wren)
293 write_disable(nor);
294
295 return status;
296 default:
297 /* Spansion style */
298 nor->cmd_buf[0] = enable << 7;
f9f3ce83 299 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
b199489d
HS
300 }
301}
e99ca98f
RRD
302
303static int s3an_sr_ready(struct spi_nor *nor)
304{
305 int ret;
306 u8 val;
307
308 ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
309 if (ret < 0) {
310 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
311 return ret;
312 }
313
314 return !!(val & XSR_RDY);
315}
316
51983b7d 317static inline int spi_nor_sr_ready(struct spi_nor *nor)
b199489d 318{
51983b7d
BN
319 int sr = read_sr(nor);
320 if (sr < 0)
321 return sr;
322 else
323 return !(sr & SR_WIP);
324}
b199489d 325
51983b7d
BN
326static inline int spi_nor_fsr_ready(struct spi_nor *nor)
327{
328 int fsr = read_fsr(nor);
329 if (fsr < 0)
330 return fsr;
331 else
332 return fsr & FSR_READY;
333}
b199489d 334
51983b7d
BN
335static int spi_nor_ready(struct spi_nor *nor)
336{
337 int sr, fsr;
e99ca98f
RRD
338
339 if (nor->flags & SNOR_F_READY_XSR_RDY)
340 sr = s3an_sr_ready(nor);
341 else
342 sr = spi_nor_sr_ready(nor);
51983b7d
BN
343 if (sr < 0)
344 return sr;
345 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
346 if (fsr < 0)
347 return fsr;
348 return sr && fsr;
b199489d
HS
349}
350
b94ed087
BN
351/*
352 * Service routine to read status register until ready, or timeout occurs.
353 * Returns non-zero if error.
354 */
09b6a377
FS
355static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
356 unsigned long timeout_jiffies)
c14dedde 357{
358 unsigned long deadline;
a95ce92e 359 int timeout = 0, ret;
c14dedde 360
09b6a377 361 deadline = jiffies + timeout_jiffies;
c14dedde 362
a95ce92e
BN
363 while (!timeout) {
364 if (time_after_eq(jiffies, deadline))
365 timeout = 1;
c14dedde 366
51983b7d
BN
367 ret = spi_nor_ready(nor);
368 if (ret < 0)
369 return ret;
370 if (ret)
371 return 0;
a95ce92e
BN
372
373 cond_resched();
374 }
375
376 dev_err(nor->dev, "flash operation timed out\n");
c14dedde 377
378 return -ETIMEDOUT;
379}
380
09b6a377
FS
381static int spi_nor_wait_till_ready(struct spi_nor *nor)
382{
383 return spi_nor_wait_till_ready_with_timeout(nor,
384 DEFAULT_READY_WAIT_JIFFIES);
385}
386
b199489d
HS
387/*
388 * Erase the whole flash memory
389 *
390 * Returns 0 if successful, non-zero otherwise.
391 */
392static int erase_chip(struct spi_nor *nor)
393{
19763671 394 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
b199489d 395
f9f3ce83 396 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
b199489d
HS
397}
398
399static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
400{
401 int ret = 0;
402
403 mutex_lock(&nor->lock);
404
405 if (nor->prepare) {
406 ret = nor->prepare(nor, ops);
407 if (ret) {
408 dev_err(nor->dev, "failed in the preparation.\n");
409 mutex_unlock(&nor->lock);
410 return ret;
411 }
412 }
413 return ret;
414}
415
416static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
417{
418 if (nor->unprepare)
419 nor->unprepare(nor, ops);
420 mutex_unlock(&nor->lock);
421}
422
e99ca98f
RRD
423/*
424 * This code converts an address to the Default Address Mode, that has non
425 * power of two page sizes. We must support this mode because it is the default
426 * mode supported by Xilinx tools, it can access the whole flash area and
427 * changing over to the Power-of-two mode is irreversible and corrupts the
428 * original data.
429 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
430 * 4 MiB.
431 */
432static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
433{
56c5c328
RRD
434 unsigned int offset;
435 unsigned int page;
e99ca98f 436
56c5c328
RRD
437 offset = addr % nor->page_size;
438 page = addr / nor->page_size;
439 page <<= (nor->page_size > 512) ? 10 : 9;
e99ca98f 440
56c5c328 441 return page | offset;
e99ca98f
RRD
442}
443
c67cbb83
BN
444/*
445 * Initiate the erasure of a single sector
446 */
447static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
448{
449 u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
450 int i;
451
e99ca98f
RRD
452 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
453 addr = spi_nor_s3an_addr_convert(nor, addr);
454
c67cbb83
BN
455 if (nor->erase)
456 return nor->erase(nor, addr);
457
458 /*
459 * Default implementation, if driver doesn't have a specialized HW
460 * control
461 */
462 for (i = nor->addr_width - 1; i >= 0; i--) {
463 buf[i] = addr & 0xff;
464 addr >>= 8;
465 }
466
467 return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
468}
469
b199489d
HS
470/*
471 * Erase an address range on the nor chip. The address range may extend
472 * one or more erase sectors. Return an error is there is a problem erasing.
473 */
474static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
475{
476 struct spi_nor *nor = mtd_to_spi_nor(mtd);
477 u32 addr, len;
478 uint32_t rem;
479 int ret;
480
481 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
482 (long long)instr->len);
483
484 div_u64_rem(instr->len, mtd->erasesize, &rem);
485 if (rem)
486 return -EINVAL;
487
488 addr = instr->addr;
489 len = instr->len;
490
491 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
492 if (ret)
493 return ret;
494
495 /* whole-chip erase? */
e99ca98f 496 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
09b6a377
FS
497 unsigned long timeout;
498
05241aea
BN
499 write_enable(nor);
500
b199489d
HS
501 if (erase_chip(nor)) {
502 ret = -EIO;
503 goto erase_err;
504 }
505
09b6a377
FS
506 /*
507 * Scale the timeout linearly with the size of the flash, with
508 * a minimum calibrated to an old 2MB flash. We could try to
509 * pull these from CFI/SFDP, but these values should be good
510 * enough for now.
511 */
512 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
513 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
514 (unsigned long)(mtd->size / SZ_2M));
515 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
dfa9c0cb
BN
516 if (ret)
517 goto erase_err;
518
b199489d 519 /* REVISIT in some cases we could speed up erasing large regions
b02e7f3e 520 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
b199489d
HS
521 * to use "small sector erase", but that's not always optimal.
522 */
523
524 /* "sector"-at-a-time erase */
525 } else {
526 while (len) {
05241aea
BN
527 write_enable(nor);
528
c67cbb83
BN
529 ret = spi_nor_erase_sector(nor, addr);
530 if (ret)
b199489d 531 goto erase_err;
b199489d
HS
532
533 addr += mtd->erasesize;
534 len -= mtd->erasesize;
dfa9c0cb
BN
535
536 ret = spi_nor_wait_till_ready(nor);
537 if (ret)
538 goto erase_err;
b199489d
HS
539 }
540 }
541
05241aea
BN
542 write_disable(nor);
543
d6af2694 544erase_err:
b199489d
HS
545 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
546
d6af2694 547 instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
b199489d
HS
548 mtd_erase_callback(instr);
549
550 return ret;
b199489d
HS
551}
552
62593cf4
BN
553static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
554 uint64_t *len)
555{
556 struct mtd_info *mtd = &nor->mtd;
557 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
558 int shift = ffs(mask) - 1;
559 int pow;
560
561 if (!(sr & mask)) {
562 /* No protection */
563 *ofs = 0;
564 *len = 0;
565 } else {
566 pow = ((sr & mask) ^ mask) >> shift;
567 *len = mtd->size >> pow;
3dd8012a
BN
568 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
569 *ofs = 0;
570 else
571 *ofs = mtd->size - *len;
62593cf4
BN
572 }
573}
574
575/*
f8860802
BN
576 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
577 * @locked is false); 0 otherwise
62593cf4 578 */
f8860802
BN
579static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
580 u8 sr, bool locked)
62593cf4
BN
581{
582 loff_t lock_offs;
583 uint64_t lock_len;
584
f8860802
BN
585 if (!len)
586 return 1;
587
62593cf4
BN
588 stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
589
f8860802
BN
590 if (locked)
591 /* Requested range is a sub-range of locked range */
592 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
593 else
594 /* Requested range does not overlap with locked range */
595 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
596}
597
598static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
599 u8 sr)
600{
601 return stm_check_lock_status_sr(nor, ofs, len, sr, true);
602}
603
604static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
605 u8 sr)
606{
607 return stm_check_lock_status_sr(nor, ofs, len, sr, false);
62593cf4
BN
608}
609
610/*
611 * Lock a region of the flash. Compatible with ST Micro and similar flash.
3dd8012a 612 * Supports the block protection bits BP{0,1,2} in the status register
62593cf4 613 * (SR). Does not support these features found in newer SR bitfields:
62593cf4
BN
614 * - SEC: sector/block protect - only handle SEC=0 (block protect)
615 * - CMP: complement protect - only support CMP=0 (range is not complemented)
616 *
3dd8012a
BN
617 * Support for the following is provided conditionally for some flash:
618 * - TB: top/bottom protect
619 *
62593cf4
BN
620 * Sample table portion for 8MB flash (Winbond w25q64fw):
621 *
622 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
623 * --------------------------------------------------------------------------
624 * X | X | 0 | 0 | 0 | NONE | NONE
625 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
626 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
627 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
628 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
629 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
630 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
631 * X | X | 1 | 1 | 1 | 8 MB | ALL
3dd8012a
BN
632 * ------|-------|-------|-------|-------|---------------|-------------------
633 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
634 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
635 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
636 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
637 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
638 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
62593cf4
BN
639 *
640 * Returns negative on errors, 0 on success.
641 */
8cc7f33a 642static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 643{
19763671 644 struct mtd_info *mtd = &nor->mtd;
f49289ce 645 int status_old, status_new;
62593cf4
BN
646 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
647 u8 shift = ffs(mask) - 1, pow, val;
f8860802 648 loff_t lock_len;
3dd8012a
BN
649 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
650 bool use_top;
32321e95 651 int ret;
b199489d 652
b199489d 653 status_old = read_sr(nor);
f49289ce
FE
654 if (status_old < 0)
655 return status_old;
b199489d 656
f8860802
BN
657 /* If nothing in our range is unlocked, we don't need to do anything */
658 if (stm_is_locked_sr(nor, ofs, len, status_old))
659 return 0;
660
3dd8012a
BN
661 /* If anything below us is unlocked, we can't use 'bottom' protection */
662 if (!stm_is_locked_sr(nor, 0, ofs, status_old))
663 can_be_bottom = false;
664
f8860802
BN
665 /* If anything above us is unlocked, we can't use 'top' protection */
666 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
667 status_old))
3dd8012a
BN
668 can_be_top = false;
669
670 if (!can_be_bottom && !can_be_top)
f8860802
BN
671 return -EINVAL;
672
3dd8012a
BN
673 /* Prefer top, if both are valid */
674 use_top = can_be_top;
675
f8860802 676 /* lock_len: length of region that should end up locked */
3dd8012a
BN
677 if (use_top)
678 lock_len = mtd->size - ofs;
679 else
680 lock_len = ofs + len;
62593cf4
BN
681
682 /*
683 * Need smallest pow such that:
684 *
685 * 1 / (2^pow) <= (len / size)
686 *
687 * so (assuming power-of-2 size) we do:
688 *
689 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
690 */
f8860802 691 pow = ilog2(mtd->size) - ilog2(lock_len);
62593cf4
BN
692 val = mask - (pow << shift);
693 if (val & ~mask)
694 return -EINVAL;
695 /* Don't "lock" with no region! */
696 if (!(val & mask))
697 return -EINVAL;
698
3dd8012a 699 status_new = (status_old & ~mask & ~SR_TB) | val;
b199489d 700
47b8edbf
BN
701 /* Disallow further writes if WP pin is asserted */
702 status_new |= SR_SRWD;
703
3dd8012a
BN
704 if (!use_top)
705 status_new |= SR_TB;
706
4c0dba44
BN
707 /* Don't bother if they're the same */
708 if (status_new == status_old)
709 return 0;
710
b199489d 711 /* Only modify protection if it will not unlock other areas */
4c0dba44 712 if ((status_new & mask) < (status_old & mask))
62593cf4 713 return -EINVAL;
b199489d 714
62593cf4 715 write_enable(nor);
32321e95
EG
716 ret = write_sr(nor, status_new);
717 if (ret)
718 return ret;
719 return spi_nor_wait_till_ready(nor);
b199489d
HS
720}
721
62593cf4
BN
722/*
723 * Unlock a region of the flash. See stm_lock() for more info
724 *
725 * Returns negative on errors, 0 on success.
726 */
8cc7f33a 727static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 728{
19763671 729 struct mtd_info *mtd = &nor->mtd;
f49289ce 730 int status_old, status_new;
62593cf4
BN
731 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
732 u8 shift = ffs(mask) - 1, pow, val;
f8860802 733 loff_t lock_len;
3dd8012a
BN
734 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
735 bool use_top;
32321e95 736 int ret;
b199489d 737
b199489d 738 status_old = read_sr(nor);
f49289ce
FE
739 if (status_old < 0)
740 return status_old;
b199489d 741
f8860802
BN
742 /* If nothing in our range is locked, we don't need to do anything */
743 if (stm_is_unlocked_sr(nor, ofs, len, status_old))
744 return 0;
745
746 /* If anything below us is locked, we can't use 'top' protection */
747 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
3dd8012a
BN
748 can_be_top = false;
749
750 /* If anything above us is locked, we can't use 'bottom' protection */
751 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
752 status_old))
753 can_be_bottom = false;
754
755 if (!can_be_bottom && !can_be_top)
62593cf4 756 return -EINVAL;
b199489d 757
3dd8012a
BN
758 /* Prefer top, if both are valid */
759 use_top = can_be_top;
760
f8860802 761 /* lock_len: length of region that should remain locked */
3dd8012a
BN
762 if (use_top)
763 lock_len = mtd->size - (ofs + len);
764 else
765 lock_len = ofs;
f8860802 766
62593cf4
BN
767 /*
768 * Need largest pow such that:
769 *
770 * 1 / (2^pow) >= (len / size)
771 *
772 * so (assuming power-of-2 size) we do:
773 *
774 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
775 */
f8860802
BN
776 pow = ilog2(mtd->size) - order_base_2(lock_len);
777 if (lock_len == 0) {
62593cf4
BN
778 val = 0; /* fully unlocked */
779 } else {
780 val = mask - (pow << shift);
781 /* Some power-of-two sizes are not supported */
782 if (val & ~mask)
783 return -EINVAL;
b199489d
HS
784 }
785
3dd8012a 786 status_new = (status_old & ~mask & ~SR_TB) | val;
62593cf4 787
47b8edbf 788 /* Don't protect status register if we're fully unlocked */
06586204 789 if (lock_len == 0)
47b8edbf
BN
790 status_new &= ~SR_SRWD;
791
3dd8012a
BN
792 if (!use_top)
793 status_new |= SR_TB;
794
4c0dba44
BN
795 /* Don't bother if they're the same */
796 if (status_new == status_old)
797 return 0;
798
62593cf4 799 /* Only modify protection if it will not lock other areas */
4c0dba44 800 if ((status_new & mask) > (status_old & mask))
62593cf4
BN
801 return -EINVAL;
802
803 write_enable(nor);
32321e95
EG
804 ret = write_sr(nor, status_new);
805 if (ret)
806 return ret;
807 return spi_nor_wait_till_ready(nor);
8cc7f33a
BN
808}
809
5bf0e69b
BN
810/*
811 * Check if a region of the flash is (completely) locked. See stm_lock() for
812 * more info.
813 *
814 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
815 * negative on errors.
816 */
817static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
818{
819 int status;
820
821 status = read_sr(nor);
822 if (status < 0)
823 return status;
824
825 return stm_is_locked_sr(nor, ofs, len, status);
826}
827
8cc7f33a
BN
828static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
829{
830 struct spi_nor *nor = mtd_to_spi_nor(mtd);
831 int ret;
832
833 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
834 if (ret)
835 return ret;
836
837 ret = nor->flash_lock(nor, ofs, len);
838
b199489d
HS
839 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
840 return ret;
841}
842
8cc7f33a
BN
843static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
844{
845 struct spi_nor *nor = mtd_to_spi_nor(mtd);
846 int ret;
847
848 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
849 if (ret)
850 return ret;
851
852 ret = nor->flash_unlock(nor, ofs, len);
853
854 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
855 return ret;
856}
857
5bf0e69b
BN
858static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
859{
860 struct spi_nor *nor = mtd_to_spi_nor(mtd);
861 int ret;
862
863 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
864 if (ret)
865 return ret;
866
867 ret = nor->flash_is_locked(nor, ofs, len);
868
869 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
870 return ret;
871}
872
09ffafb6 873/* Used when the "_ext_id" is two bytes at most */
b199489d 874#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
09ffafb6
HS
875 .id = { \
876 ((_jedec_id) >> 16) & 0xff, \
877 ((_jedec_id) >> 8) & 0xff, \
878 (_jedec_id) & 0xff, \
879 ((_ext_id) >> 8) & 0xff, \
880 (_ext_id) & 0xff, \
881 }, \
882 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
b199489d
HS
883 .sector_size = (_sector_size), \
884 .n_sectors = (_n_sectors), \
885 .page_size = 256, \
06bb6f5a 886 .flags = (_flags),
b199489d 887
6d7604e5 888#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
6d7604e5
HS
889 .id = { \
890 ((_jedec_id) >> 16) & 0xff, \
891 ((_jedec_id) >> 8) & 0xff, \
892 (_jedec_id) & 0xff, \
893 ((_ext_id) >> 16) & 0xff, \
894 ((_ext_id) >> 8) & 0xff, \
895 (_ext_id) & 0xff, \
896 }, \
897 .id_len = 6, \
898 .sector_size = (_sector_size), \
899 .n_sectors = (_n_sectors), \
900 .page_size = 256, \
06bb6f5a 901 .flags = (_flags),
6d7604e5 902
b199489d 903#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
b199489d
HS
904 .sector_size = (_sector_size), \
905 .n_sectors = (_n_sectors), \
906 .page_size = (_page_size), \
907 .addr_width = (_addr_width), \
06bb6f5a 908 .flags = (_flags),
b199489d 909
e99ca98f
RRD
910#define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
911 .id = { \
912 ((_jedec_id) >> 16) & 0xff, \
913 ((_jedec_id) >> 8) & 0xff, \
914 (_jedec_id) & 0xff \
915 }, \
916 .id_len = 3, \
917 .sector_size = (8*_page_size), \
918 .n_sectors = (_n_sectors), \
919 .page_size = _page_size, \
920 .addr_width = 3, \
921 .flags = SPI_NOR_NO_FR | SPI_S3AN,
922
b199489d
HS
923/* NOTE: double check command sets and memory organization when you add
924 * more nor chips. This current list focusses on newer chips, which
925 * have been converging on command sets which including JEDEC ID.
c19900ed
RM
926 *
927 * All newly added entries should describe *hardware* and should use SECT_4K
928 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
929 * scenarios excluding small sectors there is config option that can be
930 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
931 * For historical (and compatibility) reasons (before we got above config) some
932 * old entries may be missing 4K flag.
b199489d 933 */
06bb6f5a 934static const struct flash_info spi_nor_ids[] = {
b199489d
HS
935 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
936 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
937 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
938
939 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
b08618c9 940 { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
b199489d
HS
941 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
942 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
943
944 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
945 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
946 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
947 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
948
949 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
950
951 /* EON -- en25xxx */
952 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
953 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
954 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
955 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
956 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
a41595b3 957 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
b199489d 958 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
c19900ed 959 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
960
961 /* ESMT */
fcf690a2 962 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
b199489d
HS
963
964 /* Everspin */
965 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
966 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
edd0c8f4 967 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
b199489d 968
ce56ce7d
RL
969 /* Fujitsu */
970 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
971
b199489d 972 /* GigaDevice */
e9cf64de
KD
973 {
974 "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
975 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
976 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
977 },
595f0e10
BN
978 {
979 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
980 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
981 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
982 },
983 {
984 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
985 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
986 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
987 },
988 {
989 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
990 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
991 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
992 },
993 {
994 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
995 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
996 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
997 },
b199489d
HS
998
999 /* Intel/Numonyx -- xxxs33b */
1000 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
1001 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
1002 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
1003
b79c332f
GJ
1004 /* ISSI */
1005 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
1006
b199489d 1007 /* Macronix */
660b5b07 1008 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
1009 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
1010 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
1011 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
1012 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
0501f2e5 1013 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
b199489d 1014 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
0501f2e5 1015 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
81a1209c 1016 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
1017 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
1018 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1019 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
355445b8 1020 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K) },
b199489d
HS
1021 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1022 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
1023 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
1024
1025 /* Micron */
61e46118 1026 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
548cd3ab 1027 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
f9bcb6dc 1028 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
0db7fae2 1029 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2a06c7b1 1030 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
4607777c
EG
1031 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
1032 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
548cd3ab
BH
1033 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
1034 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1035 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1036 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
cebc1fd0 1037 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
b199489d
HS
1038
1039 /* PMC */
1040 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
1041 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
1042 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
1043
1044 /* Spansion -- single (large) sector size only, at least
1045 * for the chips listed here (without boot sectors).
1046 */
9ab86995 1047 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
0f12a27b 1048 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
1049 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
1050 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1051 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1052 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
1053 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
1054 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
4287916d 1055 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
c1752086
JG
1056 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1057 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
1058 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
1059 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
1060 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
1061 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
1062 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
7c748f57 1063 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
adf508c3
JE
1064 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1065 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d 1066 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
c0826679 1067 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
c19900ed 1068 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
413780d7 1069 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
aada20cd 1070 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
022a400f 1071 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
b199489d
HS
1072
1073 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
1074 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
1075 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1076 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
1077 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
1078 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
1079 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
1080 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
1081 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
a1d97ef9 1082 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
c887be71 1083 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
b199489d 1084 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
f02985b7 1085 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
b199489d
HS
1086
1087 /* ST Microelectronics -- newer production may have feature updates */
1088 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
1089 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
1090 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
1091 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
1092 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
1093 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
1094 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
1095 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
1096 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
b199489d
HS
1097
1098 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
1099 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
1100 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
1101 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
1102 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
1103 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
1104 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
1105 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
1106 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
1107
1108 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
1109 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
1110 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
1111
1112 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
1113 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
1114 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
1115
1116 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
1117 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
1118 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
1119 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
1120 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
f2fabe16 1121 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
b199489d
HS
1122
1123 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
40d19ab6 1124 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
1125 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
1126 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
1127 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
1128 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
1129 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
1130 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
1131 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
9648388f
BN
1132 {
1133 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
1134 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1135 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1136 },
b199489d
HS
1137 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1138 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
9648388f
BN
1139 {
1140 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
1141 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1142 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1143 },
1144 {
1145 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
1146 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1147 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1148 },
b199489d
HS
1149 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
1150 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
1151 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1152 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
1153
1154 /* Catalyst / On Semiconductor -- non-JEDEC */
1155 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1156 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1157 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1158 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1159 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
e99ca98f
RRD
1160
1161 /* Xilinx S3AN Internal Flash */
1162 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
1163 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
1164 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
1165 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
1166 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
b199489d
HS
1167 { },
1168};
1169
06bb6f5a 1170static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
b199489d
HS
1171{
1172 int tmp;
09ffafb6 1173 u8 id[SPI_NOR_MAX_ID_LEN];
06bb6f5a 1174 const struct flash_info *info;
b199489d 1175
09ffafb6 1176 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
b199489d 1177 if (tmp < 0) {
20625dfe 1178 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
b199489d
HS
1179 return ERR_PTR(tmp);
1180 }
b199489d
HS
1181
1182 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
06bb6f5a 1183 info = &spi_nor_ids[tmp];
09ffafb6
HS
1184 if (info->id_len) {
1185 if (!memcmp(info->id, id, info->id_len))
b199489d
HS
1186 return &spi_nor_ids[tmp];
1187 }
1188 }
9b9f1033 1189 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
09ffafb6 1190 id[0], id[1], id[2]);
b199489d
HS
1191 return ERR_PTR(-ENODEV);
1192}
1193
b199489d
HS
1194static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1195 size_t *retlen, u_char *buf)
1196{
1197 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1198 int ret;
1199
1200 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1201
1202 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
1203 if (ret)
1204 return ret;
1205
26f9bcad 1206 while (len) {
e99ca98f
RRD
1207 loff_t addr = from;
1208
1209 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
1210 addr = spi_nor_s3an_addr_convert(nor, addr);
1211
1212 ret = nor->read(nor, addr, len, buf);
26f9bcad
MS
1213 if (ret == 0) {
1214 /* We shouldn't see 0-length reads */
1215 ret = -EIO;
1216 goto read_err;
1217 }
1218 if (ret < 0)
1219 goto read_err;
b199489d 1220
26f9bcad
MS
1221 WARN_ON(ret > len);
1222 *retlen += ret;
1223 buf += ret;
1224 from += ret;
1225 len -= ret;
1226 }
1227 ret = 0;
59451e12 1228
26f9bcad
MS
1229read_err:
1230 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
1231 return ret;
b199489d
HS
1232}
1233
1234static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1235 size_t *retlen, const u_char *buf)
1236{
1237 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1238 size_t actual;
1239 int ret;
1240
1241 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1242
1243 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1244 if (ret)
1245 return ret;
1246
b199489d
HS
1247 write_enable(nor);
1248
1249 nor->sst_write_second = false;
1250
1251 actual = to % 2;
1252 /* Start write from odd address. */
1253 if (actual) {
b02e7f3e 1254 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
1255
1256 /* write one byte. */
2dd087b1 1257 ret = nor->write(nor, to, 1, buf);
0bad7b93
MS
1258 if (ret < 0)
1259 goto sst_write_err;
1260 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1261 (int)ret);
b94ed087 1262 ret = spi_nor_wait_till_ready(nor);
b199489d 1263 if (ret)
0bad7b93 1264 goto sst_write_err;
b199489d
HS
1265 }
1266 to += actual;
1267
1268 /* Write out most of the data here. */
1269 for (; actual < len - 1; actual += 2) {
b02e7f3e 1270 nor->program_opcode = SPINOR_OP_AAI_WP;
b199489d
HS
1271
1272 /* write two bytes. */
2dd087b1 1273 ret = nor->write(nor, to, 2, buf + actual);
0bad7b93
MS
1274 if (ret < 0)
1275 goto sst_write_err;
1276 WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
1277 (int)ret);
b94ed087 1278 ret = spi_nor_wait_till_ready(nor);
b199489d 1279 if (ret)
0bad7b93 1280 goto sst_write_err;
b199489d
HS
1281 to += 2;
1282 nor->sst_write_second = true;
1283 }
1284 nor->sst_write_second = false;
1285
1286 write_disable(nor);
b94ed087 1287 ret = spi_nor_wait_till_ready(nor);
b199489d 1288 if (ret)
0bad7b93 1289 goto sst_write_err;
b199489d
HS
1290
1291 /* Write out trailing byte if it exists. */
1292 if (actual != len) {
1293 write_enable(nor);
1294
b02e7f3e 1295 nor->program_opcode = SPINOR_OP_BP;
2dd087b1 1296 ret = nor->write(nor, to, 1, buf + actual);
0bad7b93
MS
1297 if (ret < 0)
1298 goto sst_write_err;
1299 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1300 (int)ret);
b94ed087 1301 ret = spi_nor_wait_till_ready(nor);
b199489d 1302 if (ret)
0bad7b93 1303 goto sst_write_err;
b199489d 1304 write_disable(nor);
2dd087b1 1305 actual += 1;
b199489d 1306 }
0bad7b93 1307sst_write_err:
2dd087b1 1308 *retlen += actual;
b199489d
HS
1309 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1310 return ret;
1311}
1312
1313/*
1314 * Write an address range to the nor chip. Data must be written in
1315 * FLASH_PAGESIZE chunks. The address range may be any size provided
1316 * it is within the physical boundaries.
1317 */
1318static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1319 size_t *retlen, const u_char *buf)
1320{
1321 struct spi_nor *nor = mtd_to_spi_nor(mtd);
e5d05cbd
MS
1322 size_t page_offset, page_remain, i;
1323 ssize_t ret;
b199489d
HS
1324
1325 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1326
1327 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1328 if (ret)
1329 return ret;
1330
e5d05cbd
MS
1331 for (i = 0; i < len; ) {
1332 ssize_t written;
e99ca98f 1333 loff_t addr = to + i;
b199489d 1334
e99ca98f
RRD
1335 /*
1336 * If page_size is a power of two, the offset can be quickly
1337 * calculated with an AND operation. On the other cases we
1338 * need to do a modulus operation (more expensive).
1339 * Power of two numbers have only one bit set and we can use
1340 * the instruction hweight32 to detect if we need to do a
1341 * modulus (do_div()) or not.
1342 */
1343 if (hweight32(nor->page_size) == 1) {
1344 page_offset = addr & (nor->page_size - 1);
1345 } else {
1346 uint64_t aux = addr;
b199489d 1347
e99ca98f
RRD
1348 page_offset = do_div(aux, nor->page_size);
1349 }
b199489d 1350 /* the size of data remaining on the first page */
e5d05cbd
MS
1351 page_remain = min_t(size_t,
1352 nor->page_size - page_offset, len - i);
1353
e99ca98f
RRD
1354 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
1355 addr = spi_nor_s3an_addr_convert(nor, addr);
1356
e5d05cbd 1357 write_enable(nor);
e99ca98f 1358 ret = nor->write(nor, addr, page_remain, buf + i);
0bad7b93
MS
1359 if (ret < 0)
1360 goto write_err;
e5d05cbd 1361 written = ret;
1d61dcb3 1362
e5d05cbd
MS
1363 ret = spi_nor_wait_till_ready(nor);
1364 if (ret)
1365 goto write_err;
1366 *retlen += written;
1367 i += written;
1368 if (written != page_remain) {
1369 dev_err(nor->dev,
1370 "While writing %zu bytes written %zd bytes\n",
1371 page_remain, written);
1372 ret = -EIO;
1373 goto write_err;
b199489d
HS
1374 }
1375 }
1376
1377write_err:
1378 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1d61dcb3 1379 return ret;
b199489d
HS
1380}
1381
1382static int macronix_quad_enable(struct spi_nor *nor)
1383{
1384 int ret, val;
1385
1386 val = read_sr(nor);
f49289ce
FE
1387 if (val < 0)
1388 return val;
32c90f16
CP
1389 if (val & SR_QUAD_EN_MX)
1390 return 0;
1391
b199489d
HS
1392 write_enable(nor);
1393
fd725234 1394 write_sr(nor, val | SR_QUAD_EN_MX);
b199489d 1395
b94ed087 1396 if (spi_nor_wait_till_ready(nor))
b199489d
HS
1397 return 1;
1398
1399 ret = read_sr(nor);
1400 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1401 dev_err(nor->dev, "Macronix Quad bit not set\n");
1402 return -EINVAL;
1403 }
1404
1405 return 0;
1406}
1407
1408/*
1409 * Write status Register and configuration register with 2 bytes
1410 * The first byte will be written to the status register, while the
1411 * second byte will be written to the configuration register.
5d708ecc 1412 * Return negative if error occurred.
b199489d
HS
1413 */
1414static int write_sr_cr(struct spi_nor *nor, u16 val)
1415{
1416 nor->cmd_buf[0] = val & 0xff;
1417 nor->cmd_buf[1] = (val >> 8);
1418
f9f3ce83 1419 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
b199489d
HS
1420}
1421
1422static int spansion_quad_enable(struct spi_nor *nor)
1423{
1424 int ret;
1425 int quad_en = CR_QUAD_EN_SPAN << 8;
1426
1427 write_enable(nor);
1428
1429 ret = write_sr_cr(nor, quad_en);
1430 if (ret < 0) {
1431 dev_err(nor->dev,
1432 "error while writing configuration register\n");
1433 return -EINVAL;
1434 }
1435
807c1625
JE
1436 ret = spi_nor_wait_till_ready(nor);
1437 if (ret) {
1438 dev_err(nor->dev,
1439 "timeout while writing configuration register\n");
1440 return ret;
1441 }
1442
b199489d
HS
1443 /* read back and check it */
1444 ret = read_cr(nor);
1445 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1446 dev_err(nor->dev, "Spansion Quad bit not set\n");
1447 return -EINVAL;
1448 }
1449
1450 return 0;
1451}
1452
06bb6f5a 1453static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
b199489d
HS
1454{
1455 int status;
1456
d928a259 1457 switch (JEDEC_MFR(info)) {
f0d2448e 1458 case SNOR_MFR_MACRONIX:
b199489d
HS
1459 status = macronix_quad_enable(nor);
1460 if (status) {
1461 dev_err(nor->dev, "Macronix quad-read not enabled\n");
1462 return -EINVAL;
1463 }
1464 return status;
f0d2448e 1465 case SNOR_MFR_MICRON:
3b5394a3 1466 return 0;
b199489d
HS
1467 default:
1468 status = spansion_quad_enable(nor);
1469 if (status) {
1470 dev_err(nor->dev, "Spansion quad-read not enabled\n");
1471 return -EINVAL;
1472 }
1473 return status;
1474 }
1475}
1476
1477static int spi_nor_check(struct spi_nor *nor)
1478{
1479 if (!nor->dev || !nor->read || !nor->write ||
c67cbb83 1480 !nor->read_reg || !nor->write_reg) {
b199489d
HS
1481 pr_err("spi-nor: please fill all the necessary fields!\n");
1482 return -EINVAL;
1483 }
1484
b199489d
HS
1485 return 0;
1486}
1487
e99ca98f
RRD
1488static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
1489{
1490 int ret;
1491 u8 val;
1492
1493 ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
1494 if (ret < 0) {
1495 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
1496 return ret;
1497 }
1498
1499 nor->erase_opcode = SPINOR_OP_XSE;
1500 nor->program_opcode = SPINOR_OP_XPP;
1501 nor->read_opcode = SPINOR_OP_READ;
1502 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
1503
1504 /*
1505 * This flashes have a page size of 264 or 528 bytes (known as
1506 * Default addressing mode). It can be changed to a more standard
1507 * Power of two mode where the page size is 256/512. This comes
1508 * with a price: there is 3% less of space, the data is corrupted
1509 * and the page size cannot be changed back to default addressing
1510 * mode.
1511 *
1512 * The current addressing mode can be read from the XRDSR register
1513 * and should not be changed, because is a destructive operation.
1514 */
1515 if (val & XSR_PAGESIZE) {
1516 /* Flash in Power of 2 mode */
1517 nor->page_size = (nor->page_size == 264) ? 256 : 512;
1518 nor->mtd.writebufsize = nor->page_size;
1519 nor->mtd.size = 8 * nor->page_size * info->n_sectors;
1520 nor->mtd.erasesize = 8 * nor->page_size;
1521 } else {
1522 /* Flash in Default addressing mode */
1523 nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
1524 }
1525
1526 return 0;
1527}
1528
70f3ce05 1529int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
b199489d 1530{
06bb6f5a 1531 const struct flash_info *info = NULL;
b199489d 1532 struct device *dev = nor->dev;
19763671 1533 struct mtd_info *mtd = &nor->mtd;
9c7d7875 1534 struct device_node *np = spi_nor_get_flash_node(nor);
b199489d
HS
1535 int ret;
1536 int i;
1537
1538 ret = spi_nor_check(nor);
1539 if (ret)
1540 return ret;
1541
43163022 1542 if (name)
06bb6f5a 1543 info = spi_nor_match_id(name);
43163022 1544 /* Try to auto-detect if chip name wasn't specified or not found */
06bb6f5a
RM
1545 if (!info)
1546 info = spi_nor_read_id(nor);
1547 if (IS_ERR_OR_NULL(info))
70f3ce05
BH
1548 return -ENOENT;
1549
58c81957
RM
1550 /*
1551 * If caller has specified name of flash model that can normally be
1552 * detected using JEDEC, let's verify it.
1553 */
1554 if (name && info->id_len) {
06bb6f5a 1555 const struct flash_info *jinfo;
b199489d 1556
06bb6f5a
RM
1557 jinfo = spi_nor_read_id(nor);
1558 if (IS_ERR(jinfo)) {
1559 return PTR_ERR(jinfo);
1560 } else if (jinfo != info) {
b199489d
HS
1561 /*
1562 * JEDEC knows better, so overwrite platform ID. We
1563 * can't trust partitions any longer, but we'll let
1564 * mtd apply them anyway, since some partitions may be
1565 * marked read-only, and we don't want to lose that
1566 * information, even if it's not 100% accurate.
1567 */
1568 dev_warn(dev, "found %s, expected %s\n",
06bb6f5a
RM
1569 jinfo->name, info->name);
1570 info = jinfo;
b199489d
HS
1571 }
1572 }
1573
1574 mutex_init(&nor->lock);
1575
e99ca98f
RRD
1576 /*
1577 * Make sure the XSR_RDY flag is set before calling
1578 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
1579 * with Atmel spi-nor
1580 */
1581 if (info->flags & SPI_S3AN)
1582 nor->flags |= SNOR_F_READY_XSR_RDY;
1583
b199489d 1584 /*
c6fc2171
BN
1585 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1586 * with the software protection bits set
b199489d
HS
1587 */
1588
f0d2448e
BN
1589 if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
1590 JEDEC_MFR(info) == SNOR_MFR_INTEL ||
76a4707d
BN
1591 JEDEC_MFR(info) == SNOR_MFR_SST ||
1592 info->flags & SPI_NOR_HAS_LOCK) {
b199489d
HS
1593 write_enable(nor);
1594 write_sr(nor, 0);
edf891ef 1595 spi_nor_wait_till_ready(nor);
b199489d
HS
1596 }
1597
32f1b7c8 1598 if (!mtd->name)
b199489d 1599 mtd->name = dev_name(dev);
c9ec3900 1600 mtd->priv = nor;
b199489d
HS
1601 mtd->type = MTD_NORFLASH;
1602 mtd->writesize = 1;
1603 mtd->flags = MTD_CAP_NORFLASH;
1604 mtd->size = info->sector_size * info->n_sectors;
1605 mtd->_erase = spi_nor_erase;
1606 mtd->_read = spi_nor_read;
1607
357ca38d 1608 /* NOR protection support for STmicro/Micron chips and similar */
76a4707d
BN
1609 if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
1610 info->flags & SPI_NOR_HAS_LOCK) {
8cc7f33a
BN
1611 nor->flash_lock = stm_lock;
1612 nor->flash_unlock = stm_unlock;
5bf0e69b 1613 nor->flash_is_locked = stm_is_locked;
8cc7f33a
BN
1614 }
1615
5bf0e69b 1616 if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
b199489d
HS
1617 mtd->_lock = spi_nor_lock;
1618 mtd->_unlock = spi_nor_unlock;
5bf0e69b 1619 mtd->_is_locked = spi_nor_is_locked;
b199489d
HS
1620 }
1621
1622 /* sst nor chips use AAI word program */
1623 if (info->flags & SST_WRITE)
1624 mtd->_write = sst_write;
1625 else
1626 mtd->_write = spi_nor_write;
1627
51983b7d
BN
1628 if (info->flags & USE_FSR)
1629 nor->flags |= SNOR_F_USE_FSR;
3dd8012a
BN
1630 if (info->flags & SPI_NOR_HAS_TB)
1631 nor->flags |= SNOR_F_HAS_SR_TB;
c14dedde 1632
57cf26c1 1633#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
b199489d
HS
1634 /* prefer "small sector" erase if possible */
1635 if (info->flags & SECT_4K) {
b02e7f3e 1636 nor->erase_opcode = SPINOR_OP_BE_4K;
b199489d
HS
1637 mtd->erasesize = 4096;
1638 } else if (info->flags & SECT_4K_PMC) {
b02e7f3e 1639 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
b199489d 1640 mtd->erasesize = 4096;
57cf26c1
RM
1641 } else
1642#endif
1643 {
b02e7f3e 1644 nor->erase_opcode = SPINOR_OP_SE;
b199489d
HS
1645 mtd->erasesize = info->sector_size;
1646 }
1647
1648 if (info->flags & SPI_NOR_NO_ERASE)
1649 mtd->flags |= MTD_NO_ERASE;
1650
1651 mtd->dev.parent = dev;
1652 nor->page_size = info->page_size;
1653 mtd->writebufsize = nor->page_size;
1654
1655 if (np) {
1656 /* If we were instantiated by DT, use it */
1657 if (of_property_read_bool(np, "m25p,fast-read"))
1658 nor->flash_read = SPI_NOR_FAST;
1659 else
1660 nor->flash_read = SPI_NOR_NORMAL;
1661 } else {
1662 /* If we weren't instantiated by DT, default to fast-read */
1663 nor->flash_read = SPI_NOR_FAST;
1664 }
1665
1666 /* Some devices cannot do fast-read, no matter what DT tells us */
1667 if (info->flags & SPI_NOR_NO_FR)
1668 nor->flash_read = SPI_NOR_NORMAL;
1669
1670 /* Quad/Dual-read mode takes precedence over fast/normal */
1671 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
d928a259 1672 ret = set_quad_mode(nor, info);
b199489d
HS
1673 if (ret) {
1674 dev_err(dev, "quad mode not supported\n");
1675 return ret;
1676 }
1677 nor->flash_read = SPI_NOR_QUAD;
1678 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1679 nor->flash_read = SPI_NOR_DUAL;
1680 }
1681
1682 /* Default commands */
1683 switch (nor->flash_read) {
1684 case SPI_NOR_QUAD:
58b89a1f 1685 nor->read_opcode = SPINOR_OP_READ_1_1_4;
b199489d
HS
1686 break;
1687 case SPI_NOR_DUAL:
58b89a1f 1688 nor->read_opcode = SPINOR_OP_READ_1_1_2;
b199489d
HS
1689 break;
1690 case SPI_NOR_FAST:
58b89a1f 1691 nor->read_opcode = SPINOR_OP_READ_FAST;
b199489d
HS
1692 break;
1693 case SPI_NOR_NORMAL:
58b89a1f 1694 nor->read_opcode = SPINOR_OP_READ;
b199489d
HS
1695 break;
1696 default:
1697 dev_err(dev, "No Read opcode defined\n");
1698 return -EINVAL;
1699 }
1700
b02e7f3e 1701 nor->program_opcode = SPINOR_OP_PP;
b199489d
HS
1702
1703 if (info->addr_width)
1704 nor->addr_width = info->addr_width;
1705 else if (mtd->size > 0x1000000) {
1706 /* enable 4-byte addressing if the device exceeds 16MiB */
1707 nor->addr_width = 4;
ba3ae6a1
CP
1708 if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
1709 info->flags & SPI_NOR_4B_OPCODES)
1710 spi_nor_set_4byte_opcodes(nor, info);
1711 else
d928a259 1712 set_4byte(nor, info, 1);
b199489d
HS
1713 } else {
1714 nor->addr_width = 3;
1715 }
1716
c67cbb83
BN
1717 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
1718 dev_err(dev, "address width is too large: %u\n",
1719 nor->addr_width);
1720 return -EINVAL;
1721 }
1722
b199489d
HS
1723 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1724
e99ca98f
RRD
1725 if (info->flags & SPI_S3AN) {
1726 ret = s3an_nor_scan(info, nor);
1727 if (ret)
1728 return ret;
1729 }
1730
06bb6f5a 1731 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
b199489d
HS
1732 (long long)mtd->size >> 10);
1733
1734 dev_dbg(dev,
1735 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1736 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1737 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1738 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1739
1740 if (mtd->numeraseregions)
1741 for (i = 0; i < mtd->numeraseregions; i++)
1742 dev_dbg(dev,
1743 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1744 ".erasesize = 0x%.8x (%uKiB), "
1745 ".numblocks = %d }\n",
1746 i, (long long)mtd->eraseregions[i].offset,
1747 mtd->eraseregions[i].erasesize,
1748 mtd->eraseregions[i].erasesize / 1024,
1749 mtd->eraseregions[i].numblocks);
1750 return 0;
1751}
b61834b0 1752EXPORT_SYMBOL_GPL(spi_nor_scan);
b199489d 1753
06bb6f5a 1754static const struct flash_info *spi_nor_match_id(const char *name)
0d8c11c0 1755{
06bb6f5a 1756 const struct flash_info *id = spi_nor_ids;
0d8c11c0 1757
2ff46e6f 1758 while (id->name) {
0d8c11c0
HS
1759 if (!strcmp(name, id->name))
1760 return id;
1761 id++;
1762 }
1763 return NULL;
1764}
1765
b199489d
HS
1766MODULE_LICENSE("GPL");
1767MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1768MODULE_AUTHOR("Mike Lavender");
1769MODULE_DESCRIPTION("framework for SPI NOR");