]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/spi-nor/spi-nor.c
mtd: spi-nor: add a stateless method to support memory size above 128Mib
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / spi-nor / spi-nor.c
CommitLineData
b199489d 1/*
8eabdd1e
HS
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
b199489d
HS
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
09b6a377 19#include <linux/sizes.h>
b199489d 20
b199489d
HS
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
09b6a377
FS
27
28/*
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
31 */
32#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
33
34/*
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
36 * for larger flash
37 */
38#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
b199489d 39
d928a259 40#define SPI_NOR_MAX_ID_LEN 6
c67cbb83 41#define SPI_NOR_MAX_ADDR_WIDTH 4
d928a259
HS
42
43struct flash_info {
06bb6f5a
RM
44 char *name;
45
d928a259
HS
46 /*
47 * This array stores the ID bytes.
48 * The first three bytes are the JEDIC ID.
49 * JEDEC ID zero means "no ID" (mostly older chips).
50 */
51 u8 id[SPI_NOR_MAX_ID_LEN];
52 u8 id_len;
53
54 /* The size listed here is what works with SPINOR_OP_SE, which isn't
55 * necessarily called a "sector" by the vendor.
56 */
57 unsigned sector_size;
58 u16 n_sectors;
59
60 u16 page_size;
61 u16 addr_width;
62
63 u16 flags;
0618114e
BN
64#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
65#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
66#define SST_WRITE BIT(2) /* use SST byte programming */
67#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
68#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
69#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
70#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
71#define USE_FSR BIT(7) /* use flag status register */
76a4707d 72#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
3dd8012a
BN
73#define SPI_NOR_HAS_TB BIT(9) /*
74 * Flash SR has Top/Bottom (TB) protect
75 * bit. Must be used with
76 * SPI_NOR_HAS_LOCK.
77 */
e99ca98f
RRD
78#define SPI_S3AN BIT(10) /*
79 * Xilinx Spartan 3AN In-System Flash
80 * (MFR cannot be used for probing
81 * because it has the same value as
82 * ATMEL flashes)
83 */
ba3ae6a1
CP
84#define SPI_NOR_4B_OPCODES BIT(11) /*
85 * Use dedicated 4byte address op codes
86 * to support memory size above 128Mib.
87 */
d928a259
HS
88};
89
90#define JEDEC_MFR(info) ((info)->id[0])
b199489d 91
06bb6f5a 92static const struct flash_info *spi_nor_match_id(const char *name);
70f3ce05 93
b199489d
HS
94/*
95 * Read the status register, returning its value in the location
96 * Return the status register value.
97 * Returns negative if error occurred.
98 */
99static int read_sr(struct spi_nor *nor)
100{
101 int ret;
102 u8 val;
103
b02e7f3e 104 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
b199489d
HS
105 if (ret < 0) {
106 pr_err("error %d reading SR\n", (int) ret);
107 return ret;
108 }
109
110 return val;
111}
112
c14dedde 113/*
114 * Read the flag status register, returning its value in the location
115 * Return the status register value.
116 * Returns negative if error occurred.
117 */
118static int read_fsr(struct spi_nor *nor)
119{
120 int ret;
121 u8 val;
122
123 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
124 if (ret < 0) {
125 pr_err("error %d reading FSR\n", ret);
126 return ret;
127 }
128
129 return val;
130}
131
b199489d
HS
132/*
133 * Read configuration register, returning its value in the
134 * location. Return the configuration register value.
135 * Returns negative if error occured.
136 */
137static int read_cr(struct spi_nor *nor)
138{
139 int ret;
140 u8 val;
141
b02e7f3e 142 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
b199489d
HS
143 if (ret < 0) {
144 dev_err(nor->dev, "error %d reading CR\n", ret);
145 return ret;
146 }
147
148 return val;
149}
150
151/*
152 * Dummy Cycle calculation for different type of read.
153 * It can be used to support more commands with
154 * different dummy cycle requirements.
155 */
156static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
157{
158 switch (nor->flash_read) {
159 case SPI_NOR_FAST:
160 case SPI_NOR_DUAL:
161 case SPI_NOR_QUAD:
0b78a2cf 162 return 8;
b199489d
HS
163 case SPI_NOR_NORMAL:
164 return 0;
165 }
166 return 0;
167}
168
169/*
170 * Write status register 1 byte
171 * Returns negative if error occurred.
172 */
173static inline int write_sr(struct spi_nor *nor, u8 val)
174{
175 nor->cmd_buf[0] = val;
f9f3ce83 176 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
b199489d
HS
177}
178
179/*
180 * Set write enable latch with Write Enable command.
181 * Returns negative if error occurred.
182 */
183static inline int write_enable(struct spi_nor *nor)
184{
f9f3ce83 185 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
b199489d
HS
186}
187
188/*
189 * Send write disble instruction to the chip.
190 */
191static inline int write_disable(struct spi_nor *nor)
192{
f9f3ce83 193 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
b199489d
HS
194}
195
196static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
197{
198 return mtd->priv;
199}
200
ba3ae6a1
CP
201
202static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
203{
204 size_t i;
205
206 for (i = 0; i < size; i++)
207 if (table[i][0] == opcode)
208 return table[i][1];
209
210 /* No conversion found, keep input op code. */
211 return opcode;
212}
213
214static inline u8 spi_nor_convert_3to4_read(u8 opcode)
215{
216 static const u8 spi_nor_3to4_read[][2] = {
217 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
218 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
219 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
220 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
221 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
222 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
223 };
224
225 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
226 ARRAY_SIZE(spi_nor_3to4_read));
227}
228
229static inline u8 spi_nor_convert_3to4_program(u8 opcode)
230{
231 static const u8 spi_nor_3to4_program[][2] = {
232 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
233 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
234 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
235 };
236
237 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
238 ARRAY_SIZE(spi_nor_3to4_program));
239}
240
241static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
242{
243 static const u8 spi_nor_3to4_erase[][2] = {
244 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
245 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
246 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
247 };
248
249 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
250 ARRAY_SIZE(spi_nor_3to4_erase));
251}
252
253static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
254 const struct flash_info *info)
255{
256 /* Do some manufacturer fixups first */
257 switch (JEDEC_MFR(info)) {
258 case SNOR_MFR_SPANSION:
259 /* No small sector erase for 4-byte command set */
260 nor->erase_opcode = SPINOR_OP_SE;
261 nor->mtd.erasesize = info->sector_size;
262 break;
263
264 default:
265 break;
266 }
267
268 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
269 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
270 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
271}
272
b199489d 273/* Enable/disable 4-byte addressing mode. */
06bb6f5a 274static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
d928a259 275 int enable)
b199489d
HS
276{
277 int status;
278 bool need_wren = false;
279 u8 cmd;
280
d928a259 281 switch (JEDEC_MFR(info)) {
f0d2448e 282 case SNOR_MFR_MICRON:
b199489d
HS
283 /* Some Micron need WREN command; all will accept it */
284 need_wren = true;
f0d2448e
BN
285 case SNOR_MFR_MACRONIX:
286 case SNOR_MFR_WINBOND:
b199489d
HS
287 if (need_wren)
288 write_enable(nor);
289
b02e7f3e 290 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
f9f3ce83 291 status = nor->write_reg(nor, cmd, NULL, 0);
b199489d
HS
292 if (need_wren)
293 write_disable(nor);
294
295 return status;
296 default:
297 /* Spansion style */
298 nor->cmd_buf[0] = enable << 7;
f9f3ce83 299 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
b199489d
HS
300 }
301}
e99ca98f
RRD
302
303static int s3an_sr_ready(struct spi_nor *nor)
304{
305 int ret;
306 u8 val;
307
308 ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
309 if (ret < 0) {
310 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
311 return ret;
312 }
313
314 return !!(val & XSR_RDY);
315}
316
51983b7d 317static inline int spi_nor_sr_ready(struct spi_nor *nor)
b199489d 318{
51983b7d
BN
319 int sr = read_sr(nor);
320 if (sr < 0)
321 return sr;
322 else
323 return !(sr & SR_WIP);
324}
b199489d 325
51983b7d
BN
326static inline int spi_nor_fsr_ready(struct spi_nor *nor)
327{
328 int fsr = read_fsr(nor);
329 if (fsr < 0)
330 return fsr;
331 else
332 return fsr & FSR_READY;
333}
b199489d 334
51983b7d
BN
335static int spi_nor_ready(struct spi_nor *nor)
336{
337 int sr, fsr;
e99ca98f
RRD
338
339 if (nor->flags & SNOR_F_READY_XSR_RDY)
340 sr = s3an_sr_ready(nor);
341 else
342 sr = spi_nor_sr_ready(nor);
51983b7d
BN
343 if (sr < 0)
344 return sr;
345 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
346 if (fsr < 0)
347 return fsr;
348 return sr && fsr;
b199489d
HS
349}
350
b94ed087
BN
351/*
352 * Service routine to read status register until ready, or timeout occurs.
353 * Returns non-zero if error.
354 */
09b6a377
FS
355static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
356 unsigned long timeout_jiffies)
c14dedde 357{
358 unsigned long deadline;
a95ce92e 359 int timeout = 0, ret;
c14dedde 360
09b6a377 361 deadline = jiffies + timeout_jiffies;
c14dedde 362
a95ce92e
BN
363 while (!timeout) {
364 if (time_after_eq(jiffies, deadline))
365 timeout = 1;
c14dedde 366
51983b7d
BN
367 ret = spi_nor_ready(nor);
368 if (ret < 0)
369 return ret;
370 if (ret)
371 return 0;
a95ce92e
BN
372
373 cond_resched();
374 }
375
376 dev_err(nor->dev, "flash operation timed out\n");
c14dedde 377
378 return -ETIMEDOUT;
379}
380
09b6a377
FS
381static int spi_nor_wait_till_ready(struct spi_nor *nor)
382{
383 return spi_nor_wait_till_ready_with_timeout(nor,
384 DEFAULT_READY_WAIT_JIFFIES);
385}
386
b199489d
HS
387/*
388 * Erase the whole flash memory
389 *
390 * Returns 0 if successful, non-zero otherwise.
391 */
392static int erase_chip(struct spi_nor *nor)
393{
19763671 394 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
b199489d 395
f9f3ce83 396 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
b199489d
HS
397}
398
399static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
400{
401 int ret = 0;
402
403 mutex_lock(&nor->lock);
404
405 if (nor->prepare) {
406 ret = nor->prepare(nor, ops);
407 if (ret) {
408 dev_err(nor->dev, "failed in the preparation.\n");
409 mutex_unlock(&nor->lock);
410 return ret;
411 }
412 }
413 return ret;
414}
415
416static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
417{
418 if (nor->unprepare)
419 nor->unprepare(nor, ops);
420 mutex_unlock(&nor->lock);
421}
422
e99ca98f
RRD
423/*
424 * This code converts an address to the Default Address Mode, that has non
425 * power of two page sizes. We must support this mode because it is the default
426 * mode supported by Xilinx tools, it can access the whole flash area and
427 * changing over to the Power-of-two mode is irreversible and corrupts the
428 * original data.
429 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
430 * 4 MiB.
431 */
432static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
433{
434 unsigned int offset = addr;
435
436 offset %= nor->page_size;
437
438 return ((addr - offset) << 1) | offset;
439}
440
c67cbb83
BN
441/*
442 * Initiate the erasure of a single sector
443 */
444static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
445{
446 u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
447 int i;
448
e99ca98f
RRD
449 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
450 addr = spi_nor_s3an_addr_convert(nor, addr);
451
c67cbb83
BN
452 if (nor->erase)
453 return nor->erase(nor, addr);
454
455 /*
456 * Default implementation, if driver doesn't have a specialized HW
457 * control
458 */
459 for (i = nor->addr_width - 1; i >= 0; i--) {
460 buf[i] = addr & 0xff;
461 addr >>= 8;
462 }
463
464 return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
465}
466
b199489d
HS
467/*
468 * Erase an address range on the nor chip. The address range may extend
469 * one or more erase sectors. Return an error is there is a problem erasing.
470 */
471static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
472{
473 struct spi_nor *nor = mtd_to_spi_nor(mtd);
474 u32 addr, len;
475 uint32_t rem;
476 int ret;
477
478 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
479 (long long)instr->len);
480
481 div_u64_rem(instr->len, mtd->erasesize, &rem);
482 if (rem)
483 return -EINVAL;
484
485 addr = instr->addr;
486 len = instr->len;
487
488 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
489 if (ret)
490 return ret;
491
492 /* whole-chip erase? */
e99ca98f 493 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
09b6a377
FS
494 unsigned long timeout;
495
05241aea
BN
496 write_enable(nor);
497
b199489d
HS
498 if (erase_chip(nor)) {
499 ret = -EIO;
500 goto erase_err;
501 }
502
09b6a377
FS
503 /*
504 * Scale the timeout linearly with the size of the flash, with
505 * a minimum calibrated to an old 2MB flash. We could try to
506 * pull these from CFI/SFDP, but these values should be good
507 * enough for now.
508 */
509 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
510 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
511 (unsigned long)(mtd->size / SZ_2M));
512 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
dfa9c0cb
BN
513 if (ret)
514 goto erase_err;
515
b199489d 516 /* REVISIT in some cases we could speed up erasing large regions
b02e7f3e 517 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
b199489d
HS
518 * to use "small sector erase", but that's not always optimal.
519 */
520
521 /* "sector"-at-a-time erase */
522 } else {
523 while (len) {
05241aea
BN
524 write_enable(nor);
525
c67cbb83
BN
526 ret = spi_nor_erase_sector(nor, addr);
527 if (ret)
b199489d 528 goto erase_err;
b199489d
HS
529
530 addr += mtd->erasesize;
531 len -= mtd->erasesize;
dfa9c0cb
BN
532
533 ret = spi_nor_wait_till_ready(nor);
534 if (ret)
535 goto erase_err;
b199489d
HS
536 }
537 }
538
05241aea
BN
539 write_disable(nor);
540
d6af2694 541erase_err:
b199489d
HS
542 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
543
d6af2694 544 instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
b199489d
HS
545 mtd_erase_callback(instr);
546
547 return ret;
b199489d
HS
548}
549
62593cf4
BN
550static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
551 uint64_t *len)
552{
553 struct mtd_info *mtd = &nor->mtd;
554 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
555 int shift = ffs(mask) - 1;
556 int pow;
557
558 if (!(sr & mask)) {
559 /* No protection */
560 *ofs = 0;
561 *len = 0;
562 } else {
563 pow = ((sr & mask) ^ mask) >> shift;
564 *len = mtd->size >> pow;
3dd8012a
BN
565 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
566 *ofs = 0;
567 else
568 *ofs = mtd->size - *len;
62593cf4
BN
569 }
570}
571
572/*
f8860802
BN
573 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
574 * @locked is false); 0 otherwise
62593cf4 575 */
f8860802
BN
576static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
577 u8 sr, bool locked)
62593cf4
BN
578{
579 loff_t lock_offs;
580 uint64_t lock_len;
581
f8860802
BN
582 if (!len)
583 return 1;
584
62593cf4
BN
585 stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
586
f8860802
BN
587 if (locked)
588 /* Requested range is a sub-range of locked range */
589 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
590 else
591 /* Requested range does not overlap with locked range */
592 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
593}
594
595static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
596 u8 sr)
597{
598 return stm_check_lock_status_sr(nor, ofs, len, sr, true);
599}
600
601static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
602 u8 sr)
603{
604 return stm_check_lock_status_sr(nor, ofs, len, sr, false);
62593cf4
BN
605}
606
607/*
608 * Lock a region of the flash. Compatible with ST Micro and similar flash.
3dd8012a 609 * Supports the block protection bits BP{0,1,2} in the status register
62593cf4 610 * (SR). Does not support these features found in newer SR bitfields:
62593cf4
BN
611 * - SEC: sector/block protect - only handle SEC=0 (block protect)
612 * - CMP: complement protect - only support CMP=0 (range is not complemented)
613 *
3dd8012a
BN
614 * Support for the following is provided conditionally for some flash:
615 * - TB: top/bottom protect
616 *
62593cf4
BN
617 * Sample table portion for 8MB flash (Winbond w25q64fw):
618 *
619 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
620 * --------------------------------------------------------------------------
621 * X | X | 0 | 0 | 0 | NONE | NONE
622 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
623 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
624 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
625 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
626 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
627 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
628 * X | X | 1 | 1 | 1 | 8 MB | ALL
3dd8012a
BN
629 * ------|-------|-------|-------|-------|---------------|-------------------
630 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
631 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
632 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
633 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
634 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
635 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
62593cf4
BN
636 *
637 * Returns negative on errors, 0 on success.
638 */
8cc7f33a 639static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 640{
19763671 641 struct mtd_info *mtd = &nor->mtd;
f49289ce 642 int status_old, status_new;
62593cf4
BN
643 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
644 u8 shift = ffs(mask) - 1, pow, val;
f8860802 645 loff_t lock_len;
3dd8012a
BN
646 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
647 bool use_top;
32321e95 648 int ret;
b199489d 649
b199489d 650 status_old = read_sr(nor);
f49289ce
FE
651 if (status_old < 0)
652 return status_old;
b199489d 653
f8860802
BN
654 /* If nothing in our range is unlocked, we don't need to do anything */
655 if (stm_is_locked_sr(nor, ofs, len, status_old))
656 return 0;
657
3dd8012a
BN
658 /* If anything below us is unlocked, we can't use 'bottom' protection */
659 if (!stm_is_locked_sr(nor, 0, ofs, status_old))
660 can_be_bottom = false;
661
f8860802
BN
662 /* If anything above us is unlocked, we can't use 'top' protection */
663 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
664 status_old))
3dd8012a
BN
665 can_be_top = false;
666
667 if (!can_be_bottom && !can_be_top)
f8860802
BN
668 return -EINVAL;
669
3dd8012a
BN
670 /* Prefer top, if both are valid */
671 use_top = can_be_top;
672
f8860802 673 /* lock_len: length of region that should end up locked */
3dd8012a
BN
674 if (use_top)
675 lock_len = mtd->size - ofs;
676 else
677 lock_len = ofs + len;
62593cf4
BN
678
679 /*
680 * Need smallest pow such that:
681 *
682 * 1 / (2^pow) <= (len / size)
683 *
684 * so (assuming power-of-2 size) we do:
685 *
686 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
687 */
f8860802 688 pow = ilog2(mtd->size) - ilog2(lock_len);
62593cf4
BN
689 val = mask - (pow << shift);
690 if (val & ~mask)
691 return -EINVAL;
692 /* Don't "lock" with no region! */
693 if (!(val & mask))
694 return -EINVAL;
695
3dd8012a 696 status_new = (status_old & ~mask & ~SR_TB) | val;
b199489d 697
47b8edbf
BN
698 /* Disallow further writes if WP pin is asserted */
699 status_new |= SR_SRWD;
700
3dd8012a
BN
701 if (!use_top)
702 status_new |= SR_TB;
703
4c0dba44
BN
704 /* Don't bother if they're the same */
705 if (status_new == status_old)
706 return 0;
707
b199489d 708 /* Only modify protection if it will not unlock other areas */
4c0dba44 709 if ((status_new & mask) < (status_old & mask))
62593cf4 710 return -EINVAL;
b199489d 711
62593cf4 712 write_enable(nor);
32321e95
EG
713 ret = write_sr(nor, status_new);
714 if (ret)
715 return ret;
716 return spi_nor_wait_till_ready(nor);
b199489d
HS
717}
718
62593cf4
BN
719/*
720 * Unlock a region of the flash. See stm_lock() for more info
721 *
722 * Returns negative on errors, 0 on success.
723 */
8cc7f33a 724static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
b199489d 725{
19763671 726 struct mtd_info *mtd = &nor->mtd;
f49289ce 727 int status_old, status_new;
62593cf4
BN
728 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
729 u8 shift = ffs(mask) - 1, pow, val;
f8860802 730 loff_t lock_len;
3dd8012a
BN
731 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
732 bool use_top;
32321e95 733 int ret;
b199489d 734
b199489d 735 status_old = read_sr(nor);
f49289ce
FE
736 if (status_old < 0)
737 return status_old;
b199489d 738
f8860802
BN
739 /* If nothing in our range is locked, we don't need to do anything */
740 if (stm_is_unlocked_sr(nor, ofs, len, status_old))
741 return 0;
742
743 /* If anything below us is locked, we can't use 'top' protection */
744 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
3dd8012a
BN
745 can_be_top = false;
746
747 /* If anything above us is locked, we can't use 'bottom' protection */
748 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
749 status_old))
750 can_be_bottom = false;
751
752 if (!can_be_bottom && !can_be_top)
62593cf4 753 return -EINVAL;
b199489d 754
3dd8012a
BN
755 /* Prefer top, if both are valid */
756 use_top = can_be_top;
757
f8860802 758 /* lock_len: length of region that should remain locked */
3dd8012a
BN
759 if (use_top)
760 lock_len = mtd->size - (ofs + len);
761 else
762 lock_len = ofs;
f8860802 763
62593cf4
BN
764 /*
765 * Need largest pow such that:
766 *
767 * 1 / (2^pow) >= (len / size)
768 *
769 * so (assuming power-of-2 size) we do:
770 *
771 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
772 */
f8860802
BN
773 pow = ilog2(mtd->size) - order_base_2(lock_len);
774 if (lock_len == 0) {
62593cf4
BN
775 val = 0; /* fully unlocked */
776 } else {
777 val = mask - (pow << shift);
778 /* Some power-of-two sizes are not supported */
779 if (val & ~mask)
780 return -EINVAL;
b199489d
HS
781 }
782
3dd8012a 783 status_new = (status_old & ~mask & ~SR_TB) | val;
62593cf4 784
47b8edbf 785 /* Don't protect status register if we're fully unlocked */
06586204 786 if (lock_len == 0)
47b8edbf
BN
787 status_new &= ~SR_SRWD;
788
3dd8012a
BN
789 if (!use_top)
790 status_new |= SR_TB;
791
4c0dba44
BN
792 /* Don't bother if they're the same */
793 if (status_new == status_old)
794 return 0;
795
62593cf4 796 /* Only modify protection if it will not lock other areas */
4c0dba44 797 if ((status_new & mask) > (status_old & mask))
62593cf4
BN
798 return -EINVAL;
799
800 write_enable(nor);
32321e95
EG
801 ret = write_sr(nor, status_new);
802 if (ret)
803 return ret;
804 return spi_nor_wait_till_ready(nor);
8cc7f33a
BN
805}
806
5bf0e69b
BN
807/*
808 * Check if a region of the flash is (completely) locked. See stm_lock() for
809 * more info.
810 *
811 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
812 * negative on errors.
813 */
814static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
815{
816 int status;
817
818 status = read_sr(nor);
819 if (status < 0)
820 return status;
821
822 return stm_is_locked_sr(nor, ofs, len, status);
823}
824
8cc7f33a
BN
825static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
826{
827 struct spi_nor *nor = mtd_to_spi_nor(mtd);
828 int ret;
829
830 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
831 if (ret)
832 return ret;
833
834 ret = nor->flash_lock(nor, ofs, len);
835
b199489d
HS
836 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
837 return ret;
838}
839
8cc7f33a
BN
840static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
841{
842 struct spi_nor *nor = mtd_to_spi_nor(mtd);
843 int ret;
844
845 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
846 if (ret)
847 return ret;
848
849 ret = nor->flash_unlock(nor, ofs, len);
850
851 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
852 return ret;
853}
854
5bf0e69b
BN
855static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
856{
857 struct spi_nor *nor = mtd_to_spi_nor(mtd);
858 int ret;
859
860 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
861 if (ret)
862 return ret;
863
864 ret = nor->flash_is_locked(nor, ofs, len);
865
866 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
867 return ret;
868}
869
09ffafb6 870/* Used when the "_ext_id" is two bytes at most */
b199489d 871#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
09ffafb6
HS
872 .id = { \
873 ((_jedec_id) >> 16) & 0xff, \
874 ((_jedec_id) >> 8) & 0xff, \
875 (_jedec_id) & 0xff, \
876 ((_ext_id) >> 8) & 0xff, \
877 (_ext_id) & 0xff, \
878 }, \
879 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
b199489d
HS
880 .sector_size = (_sector_size), \
881 .n_sectors = (_n_sectors), \
882 .page_size = 256, \
06bb6f5a 883 .flags = (_flags),
b199489d 884
6d7604e5 885#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
6d7604e5
HS
886 .id = { \
887 ((_jedec_id) >> 16) & 0xff, \
888 ((_jedec_id) >> 8) & 0xff, \
889 (_jedec_id) & 0xff, \
890 ((_ext_id) >> 16) & 0xff, \
891 ((_ext_id) >> 8) & 0xff, \
892 (_ext_id) & 0xff, \
893 }, \
894 .id_len = 6, \
895 .sector_size = (_sector_size), \
896 .n_sectors = (_n_sectors), \
897 .page_size = 256, \
06bb6f5a 898 .flags = (_flags),
6d7604e5 899
b199489d 900#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
b199489d
HS
901 .sector_size = (_sector_size), \
902 .n_sectors = (_n_sectors), \
903 .page_size = (_page_size), \
904 .addr_width = (_addr_width), \
06bb6f5a 905 .flags = (_flags),
b199489d 906
e99ca98f
RRD
907#define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
908 .id = { \
909 ((_jedec_id) >> 16) & 0xff, \
910 ((_jedec_id) >> 8) & 0xff, \
911 (_jedec_id) & 0xff \
912 }, \
913 .id_len = 3, \
914 .sector_size = (8*_page_size), \
915 .n_sectors = (_n_sectors), \
916 .page_size = _page_size, \
917 .addr_width = 3, \
918 .flags = SPI_NOR_NO_FR | SPI_S3AN,
919
b199489d
HS
920/* NOTE: double check command sets and memory organization when you add
921 * more nor chips. This current list focusses on newer chips, which
922 * have been converging on command sets which including JEDEC ID.
c19900ed
RM
923 *
924 * All newly added entries should describe *hardware* and should use SECT_4K
925 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
926 * scenarios excluding small sectors there is config option that can be
927 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
928 * For historical (and compatibility) reasons (before we got above config) some
929 * old entries may be missing 4K flag.
b199489d 930 */
06bb6f5a 931static const struct flash_info spi_nor_ids[] = {
b199489d
HS
932 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
933 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
934 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
935
936 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
b08618c9 937 { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
b199489d
HS
938 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
939 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
940
941 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
942 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
943 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
944 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
945
946 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
947
948 /* EON -- en25xxx */
949 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
950 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
951 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
952 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
953 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
a41595b3 954 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
b199489d 955 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
c19900ed 956 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
957
958 /* ESMT */
959 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
960
961 /* Everspin */
962 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
963 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
edd0c8f4 964 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
b199489d 965
ce56ce7d
RL
966 /* Fujitsu */
967 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
968
b199489d 969 /* GigaDevice */
595f0e10
BN
970 {
971 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
972 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
973 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
974 },
975 {
976 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
977 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
978 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
979 },
980 {
981 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
982 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
983 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
984 },
985 {
986 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
987 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
988 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
989 },
b199489d
HS
990
991 /* Intel/Numonyx -- xxxs33b */
992 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
993 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
994 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
995
b79c332f
GJ
996 /* ISSI */
997 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
998
b199489d 999 /* Macronix */
660b5b07 1000 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
1001 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
1002 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
1003 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
1004 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
0501f2e5 1005 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
b199489d 1006 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
0501f2e5 1007 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
81a1209c 1008 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
b199489d
HS
1009 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
1010 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1011 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
355445b8 1012 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K) },
b199489d
HS
1013 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1014 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
1015 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
1016
1017 /* Micron */
61e46118 1018 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
548cd3ab 1019 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
f9bcb6dc 1020 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
0db7fae2 1021 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2a06c7b1 1022 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
4607777c
EG
1023 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
1024 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
548cd3ab
BH
1025 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
1026 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1027 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1028 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
cebc1fd0 1029 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
b199489d
HS
1030
1031 /* PMC */
1032 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
1033 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
1034 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
1035
1036 /* Spansion -- single (large) sector size only, at least
1037 * for the chips listed here (without boot sectors).
1038 */
9ab86995 1039 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
0f12a27b 1040 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
1041 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
1042 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1043 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1044 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
1045 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
1046 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
4287916d 1047 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
c1752086
JG
1048 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1049 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d
HS
1050 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
1051 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
1052 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
1053 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
1054 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
7c748f57 1055 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
adf508c3
JE
1056 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1057 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
b199489d 1058 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
c0826679 1059 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
c19900ed 1060 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
413780d7 1061 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
aada20cd 1062 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
022a400f 1063 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
b199489d
HS
1064
1065 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
1066 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
1067 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1068 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
1069 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
1070 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
1071 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
1072 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
1073 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
a1d97ef9 1074 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
c887be71 1075 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
b199489d 1076 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
f02985b7 1077 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
b199489d
HS
1078
1079 /* ST Microelectronics -- newer production may have feature updates */
1080 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
1081 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
1082 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
1083 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
1084 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
1085 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
1086 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
1087 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
1088 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
b199489d
HS
1089
1090 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
1091 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
1092 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
1093 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
1094 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
1095 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
1096 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
1097 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
1098 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
1099
1100 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
1101 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
1102 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
1103
1104 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
1105 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
1106 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
1107
1108 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
1109 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
1110 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
1111 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
1112 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
f2fabe16 1113 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
b199489d
HS
1114
1115 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
40d19ab6 1116 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
b199489d
HS
1117 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
1118 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
1119 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
1120 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
1121 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
1122 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
1123 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
9648388f
BN
1124 {
1125 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
1126 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1127 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1128 },
b199489d
HS
1129 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1130 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
9648388f
BN
1131 {
1132 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
1133 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1134 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1135 },
1136 {
1137 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
1138 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1139 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1140 },
b199489d
HS
1141 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
1142 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
1143 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1144 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
1145
1146 /* Catalyst / On Semiconductor -- non-JEDEC */
1147 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1148 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1149 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1150 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1151 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
e99ca98f
RRD
1152
1153 /* Xilinx S3AN Internal Flash */
1154 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
1155 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
1156 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
1157 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
1158 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
b199489d
HS
1159 { },
1160};
1161
06bb6f5a 1162static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
b199489d
HS
1163{
1164 int tmp;
09ffafb6 1165 u8 id[SPI_NOR_MAX_ID_LEN];
06bb6f5a 1166 const struct flash_info *info;
b199489d 1167
09ffafb6 1168 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
b199489d 1169 if (tmp < 0) {
20625dfe 1170 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
b199489d
HS
1171 return ERR_PTR(tmp);
1172 }
b199489d
HS
1173
1174 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
06bb6f5a 1175 info = &spi_nor_ids[tmp];
09ffafb6
HS
1176 if (info->id_len) {
1177 if (!memcmp(info->id, id, info->id_len))
b199489d
HS
1178 return &spi_nor_ids[tmp];
1179 }
1180 }
9b9f1033 1181 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
09ffafb6 1182 id[0], id[1], id[2]);
b199489d
HS
1183 return ERR_PTR(-ENODEV);
1184}
1185
b199489d
HS
1186static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1187 size_t *retlen, u_char *buf)
1188{
1189 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1190 int ret;
1191
1192 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1193
1194 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
1195 if (ret)
1196 return ret;
1197
26f9bcad 1198 while (len) {
e99ca98f
RRD
1199 loff_t addr = from;
1200
1201 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
1202 addr = spi_nor_s3an_addr_convert(nor, addr);
1203
1204 ret = nor->read(nor, addr, len, buf);
26f9bcad
MS
1205 if (ret == 0) {
1206 /* We shouldn't see 0-length reads */
1207 ret = -EIO;
1208 goto read_err;
1209 }
1210 if (ret < 0)
1211 goto read_err;
b199489d 1212
26f9bcad
MS
1213 WARN_ON(ret > len);
1214 *retlen += ret;
1215 buf += ret;
1216 from += ret;
1217 len -= ret;
1218 }
1219 ret = 0;
59451e12 1220
26f9bcad
MS
1221read_err:
1222 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
1223 return ret;
b199489d
HS
1224}
1225
1226static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1227 size_t *retlen, const u_char *buf)
1228{
1229 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1230 size_t actual;
1231 int ret;
1232
1233 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1234
1235 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1236 if (ret)
1237 return ret;
1238
b199489d
HS
1239 write_enable(nor);
1240
1241 nor->sst_write_second = false;
1242
1243 actual = to % 2;
1244 /* Start write from odd address. */
1245 if (actual) {
b02e7f3e 1246 nor->program_opcode = SPINOR_OP_BP;
b199489d
HS
1247
1248 /* write one byte. */
2dd087b1 1249 ret = nor->write(nor, to, 1, buf);
0bad7b93
MS
1250 if (ret < 0)
1251 goto sst_write_err;
1252 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1253 (int)ret);
b94ed087 1254 ret = spi_nor_wait_till_ready(nor);
b199489d 1255 if (ret)
0bad7b93 1256 goto sst_write_err;
b199489d
HS
1257 }
1258 to += actual;
1259
1260 /* Write out most of the data here. */
1261 for (; actual < len - 1; actual += 2) {
b02e7f3e 1262 nor->program_opcode = SPINOR_OP_AAI_WP;
b199489d
HS
1263
1264 /* write two bytes. */
2dd087b1 1265 ret = nor->write(nor, to, 2, buf + actual);
0bad7b93
MS
1266 if (ret < 0)
1267 goto sst_write_err;
1268 WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
1269 (int)ret);
b94ed087 1270 ret = spi_nor_wait_till_ready(nor);
b199489d 1271 if (ret)
0bad7b93 1272 goto sst_write_err;
b199489d
HS
1273 to += 2;
1274 nor->sst_write_second = true;
1275 }
1276 nor->sst_write_second = false;
1277
1278 write_disable(nor);
b94ed087 1279 ret = spi_nor_wait_till_ready(nor);
b199489d 1280 if (ret)
0bad7b93 1281 goto sst_write_err;
b199489d
HS
1282
1283 /* Write out trailing byte if it exists. */
1284 if (actual != len) {
1285 write_enable(nor);
1286
b02e7f3e 1287 nor->program_opcode = SPINOR_OP_BP;
2dd087b1 1288 ret = nor->write(nor, to, 1, buf + actual);
0bad7b93
MS
1289 if (ret < 0)
1290 goto sst_write_err;
1291 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
1292 (int)ret);
b94ed087 1293 ret = spi_nor_wait_till_ready(nor);
b199489d 1294 if (ret)
0bad7b93 1295 goto sst_write_err;
b199489d 1296 write_disable(nor);
2dd087b1 1297 actual += 1;
b199489d 1298 }
0bad7b93 1299sst_write_err:
2dd087b1 1300 *retlen += actual;
b199489d
HS
1301 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1302 return ret;
1303}
1304
1305/*
1306 * Write an address range to the nor chip. Data must be written in
1307 * FLASH_PAGESIZE chunks. The address range may be any size provided
1308 * it is within the physical boundaries.
1309 */
1310static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1311 size_t *retlen, const u_char *buf)
1312{
1313 struct spi_nor *nor = mtd_to_spi_nor(mtd);
e5d05cbd
MS
1314 size_t page_offset, page_remain, i;
1315 ssize_t ret;
b199489d
HS
1316
1317 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1318
1319 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
1320 if (ret)
1321 return ret;
1322
e5d05cbd
MS
1323 for (i = 0; i < len; ) {
1324 ssize_t written;
e99ca98f 1325 loff_t addr = to + i;
b199489d 1326
e99ca98f
RRD
1327 /*
1328 * If page_size is a power of two, the offset can be quickly
1329 * calculated with an AND operation. On the other cases we
1330 * need to do a modulus operation (more expensive).
1331 * Power of two numbers have only one bit set and we can use
1332 * the instruction hweight32 to detect if we need to do a
1333 * modulus (do_div()) or not.
1334 */
1335 if (hweight32(nor->page_size) == 1) {
1336 page_offset = addr & (nor->page_size - 1);
1337 } else {
1338 uint64_t aux = addr;
1339
1340 page_offset = do_div(aux, nor->page_size);
1341 }
b199489d 1342 /* the size of data remaining on the first page */
e5d05cbd
MS
1343 page_remain = min_t(size_t,
1344 nor->page_size - page_offset, len - i);
1345
e99ca98f
RRD
1346 if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
1347 addr = spi_nor_s3an_addr_convert(nor, addr);
1348
e5d05cbd 1349 write_enable(nor);
e99ca98f 1350 ret = nor->write(nor, addr, page_remain, buf + i);
0bad7b93
MS
1351 if (ret < 0)
1352 goto write_err;
e5d05cbd 1353 written = ret;
1d61dcb3 1354
e5d05cbd
MS
1355 ret = spi_nor_wait_till_ready(nor);
1356 if (ret)
1357 goto write_err;
1358 *retlen += written;
1359 i += written;
1360 if (written != page_remain) {
1361 dev_err(nor->dev,
1362 "While writing %zu bytes written %zd bytes\n",
1363 page_remain, written);
1364 ret = -EIO;
1365 goto write_err;
b199489d
HS
1366 }
1367 }
1368
1369write_err:
1370 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1d61dcb3 1371 return ret;
b199489d
HS
1372}
1373
1374static int macronix_quad_enable(struct spi_nor *nor)
1375{
1376 int ret, val;
1377
1378 val = read_sr(nor);
f49289ce
FE
1379 if (val < 0)
1380 return val;
32c90f16
CP
1381 if (val & SR_QUAD_EN_MX)
1382 return 0;
1383
b199489d
HS
1384 write_enable(nor);
1385
fd725234 1386 write_sr(nor, val | SR_QUAD_EN_MX);
b199489d 1387
b94ed087 1388 if (spi_nor_wait_till_ready(nor))
b199489d
HS
1389 return 1;
1390
1391 ret = read_sr(nor);
1392 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1393 dev_err(nor->dev, "Macronix Quad bit not set\n");
1394 return -EINVAL;
1395 }
1396
1397 return 0;
1398}
1399
1400/*
1401 * Write status Register and configuration register with 2 bytes
1402 * The first byte will be written to the status register, while the
1403 * second byte will be written to the configuration register.
1404 * Return negative if error occured.
1405 */
1406static int write_sr_cr(struct spi_nor *nor, u16 val)
1407{
1408 nor->cmd_buf[0] = val & 0xff;
1409 nor->cmd_buf[1] = (val >> 8);
1410
f9f3ce83 1411 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
b199489d
HS
1412}
1413
1414static int spansion_quad_enable(struct spi_nor *nor)
1415{
1416 int ret;
1417 int quad_en = CR_QUAD_EN_SPAN << 8;
1418
1419 write_enable(nor);
1420
1421 ret = write_sr_cr(nor, quad_en);
1422 if (ret < 0) {
1423 dev_err(nor->dev,
1424 "error while writing configuration register\n");
1425 return -EINVAL;
1426 }
1427
807c1625
JE
1428 ret = spi_nor_wait_till_ready(nor);
1429 if (ret) {
1430 dev_err(nor->dev,
1431 "timeout while writing configuration register\n");
1432 return ret;
1433 }
1434
b199489d
HS
1435 /* read back and check it */
1436 ret = read_cr(nor);
1437 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1438 dev_err(nor->dev, "Spansion Quad bit not set\n");
1439 return -EINVAL;
1440 }
1441
1442 return 0;
1443}
1444
06bb6f5a 1445static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
b199489d
HS
1446{
1447 int status;
1448
d928a259 1449 switch (JEDEC_MFR(info)) {
f0d2448e 1450 case SNOR_MFR_MACRONIX:
b199489d
HS
1451 status = macronix_quad_enable(nor);
1452 if (status) {
1453 dev_err(nor->dev, "Macronix quad-read not enabled\n");
1454 return -EINVAL;
1455 }
1456 return status;
f0d2448e 1457 case SNOR_MFR_MICRON:
3b5394a3 1458 return 0;
b199489d
HS
1459 default:
1460 status = spansion_quad_enable(nor);
1461 if (status) {
1462 dev_err(nor->dev, "Spansion quad-read not enabled\n");
1463 return -EINVAL;
1464 }
1465 return status;
1466 }
1467}
1468
1469static int spi_nor_check(struct spi_nor *nor)
1470{
1471 if (!nor->dev || !nor->read || !nor->write ||
c67cbb83 1472 !nor->read_reg || !nor->write_reg) {
b199489d
HS
1473 pr_err("spi-nor: please fill all the necessary fields!\n");
1474 return -EINVAL;
1475 }
1476
b199489d
HS
1477 return 0;
1478}
1479
e99ca98f
RRD
1480static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
1481{
1482 int ret;
1483 u8 val;
1484
1485 ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
1486 if (ret < 0) {
1487 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
1488 return ret;
1489 }
1490
1491 nor->erase_opcode = SPINOR_OP_XSE;
1492 nor->program_opcode = SPINOR_OP_XPP;
1493 nor->read_opcode = SPINOR_OP_READ;
1494 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
1495
1496 /*
1497 * This flashes have a page size of 264 or 528 bytes (known as
1498 * Default addressing mode). It can be changed to a more standard
1499 * Power of two mode where the page size is 256/512. This comes
1500 * with a price: there is 3% less of space, the data is corrupted
1501 * and the page size cannot be changed back to default addressing
1502 * mode.
1503 *
1504 * The current addressing mode can be read from the XRDSR register
1505 * and should not be changed, because is a destructive operation.
1506 */
1507 if (val & XSR_PAGESIZE) {
1508 /* Flash in Power of 2 mode */
1509 nor->page_size = (nor->page_size == 264) ? 256 : 512;
1510 nor->mtd.writebufsize = nor->page_size;
1511 nor->mtd.size = 8 * nor->page_size * info->n_sectors;
1512 nor->mtd.erasesize = 8 * nor->page_size;
1513 } else {
1514 /* Flash in Default addressing mode */
1515 nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
1516 }
1517
1518 return 0;
1519}
1520
70f3ce05 1521int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
b199489d 1522{
06bb6f5a 1523 const struct flash_info *info = NULL;
b199489d 1524 struct device *dev = nor->dev;
19763671 1525 struct mtd_info *mtd = &nor->mtd;
9c7d7875 1526 struct device_node *np = spi_nor_get_flash_node(nor);
b199489d
HS
1527 int ret;
1528 int i;
1529
1530 ret = spi_nor_check(nor);
1531 if (ret)
1532 return ret;
1533
43163022 1534 if (name)
06bb6f5a 1535 info = spi_nor_match_id(name);
43163022 1536 /* Try to auto-detect if chip name wasn't specified or not found */
06bb6f5a
RM
1537 if (!info)
1538 info = spi_nor_read_id(nor);
1539 if (IS_ERR_OR_NULL(info))
70f3ce05
BH
1540 return -ENOENT;
1541
58c81957
RM
1542 /*
1543 * If caller has specified name of flash model that can normally be
1544 * detected using JEDEC, let's verify it.
1545 */
1546 if (name && info->id_len) {
06bb6f5a 1547 const struct flash_info *jinfo;
b199489d 1548
06bb6f5a
RM
1549 jinfo = spi_nor_read_id(nor);
1550 if (IS_ERR(jinfo)) {
1551 return PTR_ERR(jinfo);
1552 } else if (jinfo != info) {
b199489d
HS
1553 /*
1554 * JEDEC knows better, so overwrite platform ID. We
1555 * can't trust partitions any longer, but we'll let
1556 * mtd apply them anyway, since some partitions may be
1557 * marked read-only, and we don't want to lose that
1558 * information, even if it's not 100% accurate.
1559 */
1560 dev_warn(dev, "found %s, expected %s\n",
06bb6f5a
RM
1561 jinfo->name, info->name);
1562 info = jinfo;
b199489d
HS
1563 }
1564 }
1565
1566 mutex_init(&nor->lock);
1567
e99ca98f
RRD
1568 /*
1569 * Make sure the XSR_RDY flag is set before calling
1570 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
1571 * with Atmel spi-nor
1572 */
1573 if (info->flags & SPI_S3AN)
1574 nor->flags |= SNOR_F_READY_XSR_RDY;
1575
b199489d 1576 /*
c6fc2171
BN
1577 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1578 * with the software protection bits set
b199489d
HS
1579 */
1580
f0d2448e
BN
1581 if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
1582 JEDEC_MFR(info) == SNOR_MFR_INTEL ||
76a4707d
BN
1583 JEDEC_MFR(info) == SNOR_MFR_SST ||
1584 info->flags & SPI_NOR_HAS_LOCK) {
b199489d
HS
1585 write_enable(nor);
1586 write_sr(nor, 0);
edf891ef 1587 spi_nor_wait_till_ready(nor);
b199489d
HS
1588 }
1589
32f1b7c8 1590 if (!mtd->name)
b199489d 1591 mtd->name = dev_name(dev);
c9ec3900 1592 mtd->priv = nor;
b199489d
HS
1593 mtd->type = MTD_NORFLASH;
1594 mtd->writesize = 1;
1595 mtd->flags = MTD_CAP_NORFLASH;
1596 mtd->size = info->sector_size * info->n_sectors;
1597 mtd->_erase = spi_nor_erase;
1598 mtd->_read = spi_nor_read;
1599
357ca38d 1600 /* NOR protection support for STmicro/Micron chips and similar */
76a4707d
BN
1601 if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
1602 info->flags & SPI_NOR_HAS_LOCK) {
8cc7f33a
BN
1603 nor->flash_lock = stm_lock;
1604 nor->flash_unlock = stm_unlock;
5bf0e69b 1605 nor->flash_is_locked = stm_is_locked;
8cc7f33a
BN
1606 }
1607
5bf0e69b 1608 if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
b199489d
HS
1609 mtd->_lock = spi_nor_lock;
1610 mtd->_unlock = spi_nor_unlock;
5bf0e69b 1611 mtd->_is_locked = spi_nor_is_locked;
b199489d
HS
1612 }
1613
1614 /* sst nor chips use AAI word program */
1615 if (info->flags & SST_WRITE)
1616 mtd->_write = sst_write;
1617 else
1618 mtd->_write = spi_nor_write;
1619
51983b7d
BN
1620 if (info->flags & USE_FSR)
1621 nor->flags |= SNOR_F_USE_FSR;
3dd8012a
BN
1622 if (info->flags & SPI_NOR_HAS_TB)
1623 nor->flags |= SNOR_F_HAS_SR_TB;
c14dedde 1624
57cf26c1 1625#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
b199489d
HS
1626 /* prefer "small sector" erase if possible */
1627 if (info->flags & SECT_4K) {
b02e7f3e 1628 nor->erase_opcode = SPINOR_OP_BE_4K;
b199489d
HS
1629 mtd->erasesize = 4096;
1630 } else if (info->flags & SECT_4K_PMC) {
b02e7f3e 1631 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
b199489d 1632 mtd->erasesize = 4096;
57cf26c1
RM
1633 } else
1634#endif
1635 {
b02e7f3e 1636 nor->erase_opcode = SPINOR_OP_SE;
b199489d
HS
1637 mtd->erasesize = info->sector_size;
1638 }
1639
1640 if (info->flags & SPI_NOR_NO_ERASE)
1641 mtd->flags |= MTD_NO_ERASE;
1642
1643 mtd->dev.parent = dev;
1644 nor->page_size = info->page_size;
1645 mtd->writebufsize = nor->page_size;
1646
1647 if (np) {
1648 /* If we were instantiated by DT, use it */
1649 if (of_property_read_bool(np, "m25p,fast-read"))
1650 nor->flash_read = SPI_NOR_FAST;
1651 else
1652 nor->flash_read = SPI_NOR_NORMAL;
1653 } else {
1654 /* If we weren't instantiated by DT, default to fast-read */
1655 nor->flash_read = SPI_NOR_FAST;
1656 }
1657
1658 /* Some devices cannot do fast-read, no matter what DT tells us */
1659 if (info->flags & SPI_NOR_NO_FR)
1660 nor->flash_read = SPI_NOR_NORMAL;
1661
1662 /* Quad/Dual-read mode takes precedence over fast/normal */
1663 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
d928a259 1664 ret = set_quad_mode(nor, info);
b199489d
HS
1665 if (ret) {
1666 dev_err(dev, "quad mode not supported\n");
1667 return ret;
1668 }
1669 nor->flash_read = SPI_NOR_QUAD;
1670 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1671 nor->flash_read = SPI_NOR_DUAL;
1672 }
1673
1674 /* Default commands */
1675 switch (nor->flash_read) {
1676 case SPI_NOR_QUAD:
58b89a1f 1677 nor->read_opcode = SPINOR_OP_READ_1_1_4;
b199489d
HS
1678 break;
1679 case SPI_NOR_DUAL:
58b89a1f 1680 nor->read_opcode = SPINOR_OP_READ_1_1_2;
b199489d
HS
1681 break;
1682 case SPI_NOR_FAST:
58b89a1f 1683 nor->read_opcode = SPINOR_OP_READ_FAST;
b199489d
HS
1684 break;
1685 case SPI_NOR_NORMAL:
58b89a1f 1686 nor->read_opcode = SPINOR_OP_READ;
b199489d
HS
1687 break;
1688 default:
1689 dev_err(dev, "No Read opcode defined\n");
1690 return -EINVAL;
1691 }
1692
b02e7f3e 1693 nor->program_opcode = SPINOR_OP_PP;
b199489d
HS
1694
1695 if (info->addr_width)
1696 nor->addr_width = info->addr_width;
1697 else if (mtd->size > 0x1000000) {
1698 /* enable 4-byte addressing if the device exceeds 16MiB */
1699 nor->addr_width = 4;
ba3ae6a1
CP
1700 if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
1701 info->flags & SPI_NOR_4B_OPCODES)
1702 spi_nor_set_4byte_opcodes(nor, info);
1703 else
d928a259 1704 set_4byte(nor, info, 1);
b199489d
HS
1705 } else {
1706 nor->addr_width = 3;
1707 }
1708
c67cbb83
BN
1709 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
1710 dev_err(dev, "address width is too large: %u\n",
1711 nor->addr_width);
1712 return -EINVAL;
1713 }
1714
b199489d
HS
1715 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1716
e99ca98f
RRD
1717 if (info->flags & SPI_S3AN) {
1718 ret = s3an_nor_scan(info, nor);
1719 if (ret)
1720 return ret;
1721 }
1722
06bb6f5a 1723 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
b199489d
HS
1724 (long long)mtd->size >> 10);
1725
1726 dev_dbg(dev,
1727 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1728 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1729 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1730 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1731
1732 if (mtd->numeraseregions)
1733 for (i = 0; i < mtd->numeraseregions; i++)
1734 dev_dbg(dev,
1735 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1736 ".erasesize = 0x%.8x (%uKiB), "
1737 ".numblocks = %d }\n",
1738 i, (long long)mtd->eraseregions[i].offset,
1739 mtd->eraseregions[i].erasesize,
1740 mtd->eraseregions[i].erasesize / 1024,
1741 mtd->eraseregions[i].numblocks);
1742 return 0;
1743}
b61834b0 1744EXPORT_SYMBOL_GPL(spi_nor_scan);
b199489d 1745
06bb6f5a 1746static const struct flash_info *spi_nor_match_id(const char *name)
0d8c11c0 1747{
06bb6f5a 1748 const struct flash_info *id = spi_nor_ids;
0d8c11c0 1749
2ff46e6f 1750 while (id->name) {
0d8c11c0
HS
1751 if (!strcmp(name, id->name))
1752 return id;
1753 id++;
1754 }
1755 return NULL;
1756}
1757
b199489d
HS
1758MODULE_LICENSE("GPL");
1759MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1760MODULE_AUTHOR("Mike Lavender");
1761MODULE_DESCRIPTION("framework for SPI NOR");