]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/ubi/attach.c
UBI: fastmap: fix backward compatibility with image_seq
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / attach.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
fbd0107f 22 * UBI attaching sub-system.
801c135c 23 *
fbd0107f
AB
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
801c135c 26 *
a4e6042f 27 * The attaching information is represented by a &struct ubi_attach_info'
fbd0107f
AB
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
801c135c 31 *
fbd0107f
AB
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
36 * per-LEB objects.
801c135c
AB
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
0525dac9 41 *
fef2deb3
AB
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
44 *
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
49 *
0525dac9 50 * UBI tries to distinguish between 2 types of corruptions.
fef2deb3
AB
51 *
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
fbd0107f
AB
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
fef2deb3
AB
58 *
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
0525dac9
AB
62 *
63 * 2. Unexpected corruptions which are not caused by power cuts. During
fbd0107f 64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
fef2deb3
AB
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
45aafd32
AB
68 *
69 * However, it is difficult to reliably distinguish between these types of
fbd0107f
AB
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
75 * are as follows.
76 * o If the data area contains only 0xFFs, there are no data, and it is safe
fef2deb3
AB
77 * to just erase this PEB - this is corruption type 1.
78 * o If the data area has bit-flips or data integrity errors (ECC errors on
45aafd32 79 * NAND), it is probably a PEB which was being erased when power cut
fef2deb3
AB
80 * happened, so this is corruption type 1. However, this is just a guess,
81 * which might be wrong.
55393ba1 82 * o Otherwise this is corruption type 2.
801c135c
AB
83 */
84
85#include <linux/err.h>
5a0e3ad6 86#include <linux/slab.h>
801c135c 87#include <linux/crc32.h>
3013ee31 88#include <linux/math64.h>
095751a6 89#include <linux/random.h>
801c135c
AB
90#include "ubi.h"
91
a4e6042f 92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
801c135c
AB
93
94/* Temporary variables used during scanning */
95static struct ubi_ec_hdr *ech;
96static struct ubi_vid_hdr *vidh;
97
941dfb07 98/**
78d87c95 99 * add_to_list - add physical eraseblock to a list.
a4e6042f 100 * @ai: attaching information
78d87c95 101 * @pnum: physical eraseblock number to add
6dd3bc7e
JR
102 * @vol_id: the last used volume id for the PEB
103 * @lnum: the last used LEB number for the PEB
78d87c95 104 * @ec: erase counter of the physical eraseblock
0525dac9 105 * @to_head: if not zero, add to the head of the list
78d87c95
AB
106 * @list: the list to add to
107 *
fbd0107f
AB
108 * This function allocates a 'struct ubi_ainf_peb' object for physical
109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
6dd3bc7e
JR
110 * It stores the @lnum and @vol_id alongside, which can both be
111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
0525dac9
AB
112 * If @to_head is not zero, PEB will be added to the head of the list, which
113 * basically means it will be processed first later. E.g., we add corrupted
114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
115 * sure we erase them first and get rid of corruptions ASAP. This function
116 * returns zero in case of success and a negative error code in case of
3fb34124 117 * failure.
78d87c95 118 */
6dd3bc7e
JR
119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 int lnum, int ec, int to_head, struct list_head *list)
801c135c 121{
2c5ec5ce 122 struct ubi_ainf_peb *aeb;
801c135c 123
a4e6042f 124 if (list == &ai->free) {
801c135c 125 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
a4e6042f 126 } else if (list == &ai->erase) {
801c135c 127 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
a4e6042f 128 } else if (list == &ai->alien) {
801c135c 129 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
a4e6042f 130 ai->alien_peb_count += 1;
33789fb9 131 } else
801c135c
AB
132 BUG();
133
1fc2e3e5 134 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 135 if (!aeb)
801c135c
AB
136 return -ENOMEM;
137
2c5ec5ce 138 aeb->pnum = pnum;
6dd3bc7e
JR
139 aeb->vol_id = vol_id;
140 aeb->lnum = lnum;
2c5ec5ce 141 aeb->ec = ec;
0525dac9 142 if (to_head)
2c5ec5ce 143 list_add(&aeb->u.list, list);
0525dac9 144 else
2c5ec5ce 145 list_add_tail(&aeb->u.list, list);
801c135c
AB
146 return 0;
147}
148
3fb34124
AB
149/**
150 * add_corrupted - add a corrupted physical eraseblock.
a4e6042f 151 * @ai: attaching information
3fb34124
AB
152 * @pnum: physical eraseblock number to add
153 * @ec: erase counter of the physical eraseblock
154 *
fbd0107f
AB
155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
157 * was presumably not caused by a power cut. Returns zero in case of success
158 * and a negative error code in case of failure.
3fb34124 159 */
a4e6042f 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
3fb34124 161{
2c5ec5ce 162 struct ubi_ainf_peb *aeb;
3fb34124
AB
163
164 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165
1fc2e3e5 166 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 167 if (!aeb)
3fb34124
AB
168 return -ENOMEM;
169
a4e6042f 170 ai->corr_peb_count += 1;
2c5ec5ce
AB
171 aeb->pnum = pnum;
172 aeb->ec = ec;
a4e6042f 173 list_add(&aeb->u.list, &ai->corr);
3fb34124
AB
174 return 0;
175}
176
801c135c 177/**
ebaaf1af 178 * validate_vid_hdr - check volume identifier header.
801c135c 179 * @vid_hdr: the volume identifier header to check
517af48c 180 * @av: information about the volume this logical eraseblock belongs to
801c135c
AB
181 * @pnum: physical eraseblock number the VID header came from
182 *
183 * This function checks that data stored in @vid_hdr is consistent. Returns
184 * non-zero if an inconsistency was found and zero if not.
185 *
186 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 187 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
188 * information in the VID header is consistent to the information in other VID
189 * headers of the same volume.
190 */
191static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
517af48c 192 const struct ubi_ainf_volume *av, int pnum)
801c135c
AB
193{
194 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
195 int vol_id = be32_to_cpu(vid_hdr->vol_id);
196 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c 198
517af48c
AB
199 if (av->leb_count != 0) {
200 int av_vol_type;
801c135c
AB
201
202 /*
203 * This is not the first logical eraseblock belonging to this
204 * volume. Ensure that the data in its VID header is consistent
205 * to the data in previous logical eraseblock headers.
206 */
207
517af48c 208 if (vol_id != av->vol_id) {
e2986827 209 ubi_err("inconsistent vol_id");
801c135c
AB
210 goto bad;
211 }
212
517af48c
AB
213 if (av->vol_type == UBI_STATIC_VOLUME)
214 av_vol_type = UBI_VID_STATIC;
801c135c 215 else
517af48c 216 av_vol_type = UBI_VID_DYNAMIC;
801c135c 217
517af48c 218 if (vol_type != av_vol_type) {
e2986827 219 ubi_err("inconsistent vol_type");
801c135c
AB
220 goto bad;
221 }
222
517af48c 223 if (used_ebs != av->used_ebs) {
e2986827 224 ubi_err("inconsistent used_ebs");
801c135c
AB
225 goto bad;
226 }
227
517af48c 228 if (data_pad != av->data_pad) {
e2986827 229 ubi_err("inconsistent data_pad");
801c135c
AB
230 goto bad;
231 }
232 }
233
234 return 0;
235
236bad:
237 ubi_err("inconsistent VID header at PEB %d", pnum);
a904e3f1 238 ubi_dump_vid_hdr(vid_hdr);
517af48c 239 ubi_dump_av(av);
801c135c
AB
240 return -EINVAL;
241}
242
243/**
a4e6042f
AB
244 * add_volume - add volume to the attaching information.
245 * @ai: attaching information
801c135c
AB
246 * @vol_id: ID of the volume to add
247 * @pnum: physical eraseblock number
248 * @vid_hdr: volume identifier header
249 *
250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
a4e6042f
AB
251 * present in the attaching information, this function does nothing. Otherwise
252 * it adds corresponding volume to the attaching information. Returns a pointer
fbd0107f
AB
253 * to the allocated "av" object in case of success and a negative error code in
254 * case of failure.
801c135c 255 */
a4e6042f 256static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
afc15a81 257 int vol_id, int pnum,
801c135c
AB
258 const struct ubi_vid_hdr *vid_hdr)
259{
517af48c 260 struct ubi_ainf_volume *av;
a4e6042f 261 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
801c135c 262
3261ebd7 263 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
264
265 /* Walk the volume RB-tree to look if this volume is already present */
266 while (*p) {
267 parent = *p;
517af48c 268 av = rb_entry(parent, struct ubi_ainf_volume, rb);
801c135c 269
517af48c
AB
270 if (vol_id == av->vol_id)
271 return av;
801c135c 272
517af48c 273 if (vol_id > av->vol_id)
801c135c
AB
274 p = &(*p)->rb_left;
275 else
276 p = &(*p)->rb_right;
277 }
278
279 /* The volume is absent - add it */
517af48c
AB
280 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281 if (!av)
801c135c
AB
282 return ERR_PTR(-ENOMEM);
283
517af48c
AB
284 av->highest_lnum = av->leb_count = 0;
285 av->vol_id = vol_id;
286 av->root = RB_ROOT;
287 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289 av->compat = vid_hdr->compat;
290 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
801c135c 291 : UBI_STATIC_VOLUME;
a4e6042f
AB
292 if (vol_id > ai->highest_vol_id)
293 ai->highest_vol_id = vol_id;
801c135c 294
517af48c
AB
295 rb_link_node(&av->rb, parent, p);
296 rb_insert_color(&av->rb, &ai->volumes);
a4e6042f 297 ai->vols_found += 1;
801c135c 298 dbg_bld("added volume %d", vol_id);
517af48c 299 return av;
801c135c
AB
300}
301
302/**
dac6e208 303 * ubi_compare_lebs - find out which logical eraseblock is newer.
801c135c 304 * @ubi: UBI device description object
2c5ec5ce 305 * @aeb: first logical eraseblock to compare
801c135c
AB
306 * @pnum: physical eraseblock number of the second logical eraseblock to
307 * compare
308 * @vid_hdr: volume identifier header of the second logical eraseblock
309 *
310 * This function compares 2 copies of a LEB and informs which one is newer. In
311 * case of success this function returns a positive value, in case of failure, a
312 * negative error code is returned. The success return codes use the following
313 * bits:
2c5ec5ce 314 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
801c135c
AB
315 * second PEB (described by @pnum and @vid_hdr);
316 * o bit 0 is set: the second PEB is newer;
317 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318 * o bit 1 is set: bit-flips were detected in the newer LEB;
319 * o bit 2 is cleared: the older LEB is not corrupted;
320 * o bit 2 is set: the older LEB is corrupted.
321 */
dac6e208 322int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
e88d6e10 323 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c 324{
801c135c
AB
325 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
326 uint32_t data_crc, crc;
8bc22961 327 struct ubi_vid_hdr *vh = NULL;
3261ebd7 328 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c 329
2c5ec5ce 330 if (sqnum2 == aeb->sqnum) {
801c135c 331 /*
9869cd80
AB
332 * This must be a really ancient UBI image which has been
333 * created before sequence numbers support has been added. At
334 * that times we used 32-bit LEB versions stored in logical
335 * eraseblocks. That was before UBI got into mainline. We do not
0525dac9
AB
336 * support these images anymore. Well, those images still work,
337 * but only if no unclean reboots happened.
801c135c 338 */
dac6e208 339 ubi_err("unsupported on-flash UBI format");
9869cd80
AB
340 return -EINVAL;
341 }
64203195 342
9869cd80 343 /* Obviously the LEB with lower sequence counter is older */
2c5ec5ce 344 second_is_newer = (sqnum2 > aeb->sqnum);
801c135c
AB
345
346 /*
347 * Now we know which copy is newer. If the copy flag of the PEB with
348 * newer version is not set, then we just return, otherwise we have to
349 * check data CRC. For the second PEB we already have the VID header,
350 * for the first one - we'll need to re-read it from flash.
351 *
9869cd80 352 * Note: this may be optimized so that we wouldn't read twice.
801c135c
AB
353 */
354
355 if (second_is_newer) {
356 if (!vid_hdr->copy_flag) {
357 /* It is not a copy, so it is newer */
358 dbg_bld("second PEB %d is newer, copy_flag is unset",
359 pnum);
360 return 1;
361 }
362 } else {
2c5ec5ce 363 if (!aeb->copy_flag) {
fb22b59b
AB
364 /* It is not a copy, so it is newer */
365 dbg_bld("first PEB %d is newer, copy_flag is unset",
366 pnum);
367 return bitflips << 1;
368 }
801c135c 369
33818bbb 370 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 371 if (!vh)
801c135c
AB
372 return -ENOMEM;
373
2c5ec5ce 374 pnum = aeb->pnum;
8bc22961 375 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
376 if (err) {
377 if (err == UBI_IO_BITFLIPS)
378 bitflips = 1;
379 else {
049333ce
AB
380 ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
381 pnum, err);
801c135c
AB
382 if (err > 0)
383 err = -EIO;
384
385 goto out_free_vidh;
386 }
387 }
388
8bc22961 389 vid_hdr = vh;
801c135c
AB
390 }
391
392 /* Read the data of the copy and check the CRC */
393
3261ebd7 394 len = be32_to_cpu(vid_hdr->data_size);
801c135c 395
d125a753
AB
396 mutex_lock(&ubi->buf_mutex);
397 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
d57f4054 398 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
d125a753 399 goto out_unlock;
801c135c 400
3261ebd7 401 data_crc = be32_to_cpu(vid_hdr->data_crc);
d125a753 402 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
801c135c
AB
403 if (crc != data_crc) {
404 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
405 pnum, crc, data_crc);
406 corrupted = 1;
407 bitflips = 0;
408 second_is_newer = !second_is_newer;
409 } else {
410 dbg_bld("PEB %d CRC is OK", pnum);
411 bitflips = !!err;
412 }
d125a753 413 mutex_unlock(&ubi->buf_mutex);
801c135c 414
8bc22961 415 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
416
417 if (second_is_newer)
418 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
419 else
420 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
421
422 return second_is_newer | (bitflips << 1) | (corrupted << 2);
423
d125a753
AB
424out_unlock:
425 mutex_unlock(&ubi->buf_mutex);
801c135c 426out_free_vidh:
8bc22961 427 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
428 return err;
429}
430
431/**
fbd0107f 432 * ubi_add_to_av - add used physical eraseblock to the attaching information.
801c135c 433 * @ubi: UBI device description object
a4e6042f 434 * @ai: attaching information
801c135c
AB
435 * @pnum: the physical eraseblock number
436 * @ec: erase counter
437 * @vid_hdr: the volume identifier header
438 * @bitflips: if bit-flips were detected when this physical eraseblock was read
439 *
79b510c0
AB
440 * This function adds information about a used physical eraseblock to the
441 * 'used' tree of the corresponding volume. The function is rather complex
442 * because it has to handle cases when this is not the first physical
443 * eraseblock belonging to the same logical eraseblock, and the newer one has
444 * to be picked, while the older one has to be dropped. This function returns
445 * zero in case of success and a negative error code in case of failure.
801c135c 446 */
3561188a
AB
447int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
448 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
801c135c
AB
449{
450 int err, vol_id, lnum;
801c135c 451 unsigned long long sqnum;
517af48c 452 struct ubi_ainf_volume *av;
2c5ec5ce 453 struct ubi_ainf_peb *aeb;
801c135c
AB
454 struct rb_node **p, *parent = NULL;
455
3261ebd7
CH
456 vol_id = be32_to_cpu(vid_hdr->vol_id);
457 lnum = be32_to_cpu(vid_hdr->lnum);
458 sqnum = be64_to_cpu(vid_hdr->sqnum);
801c135c 459
9869cd80
AB
460 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
461 pnum, vol_id, lnum, ec, sqnum, bitflips);
801c135c 462
517af48c
AB
463 av = add_volume(ai, vol_id, pnum, vid_hdr);
464 if (IS_ERR(av))
465 return PTR_ERR(av);
801c135c 466
a4e6042f
AB
467 if (ai->max_sqnum < sqnum)
468 ai->max_sqnum = sqnum;
76eafe47 469
801c135c
AB
470 /*
471 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
472 * if this is the first instance of this logical eraseblock or not.
473 */
517af48c 474 p = &av->root.rb_node;
801c135c
AB
475 while (*p) {
476 int cmp_res;
477
478 parent = *p;
2c5ec5ce
AB
479 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
480 if (lnum != aeb->lnum) {
481 if (lnum < aeb->lnum)
801c135c
AB
482 p = &(*p)->rb_left;
483 else
484 p = &(*p)->rb_right;
485 continue;
486 }
487
488 /*
489 * There is already a physical eraseblock describing the same
490 * logical eraseblock present.
491 */
492
2c5ec5ce
AB
493 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
494 aeb->pnum, aeb->sqnum, aeb->ec);
801c135c
AB
495
496 /*
497 * Make sure that the logical eraseblocks have different
498 * sequence numbers. Otherwise the image is bad.
499 *
9869cd80
AB
500 * However, if the sequence number is zero, we assume it must
501 * be an ancient UBI image from the era when UBI did not have
502 * sequence numbers. We still can attach these images, unless
503 * there is a need to distinguish between old and new
504 * eraseblocks, in which case we'll refuse the image in
dac6e208 505 * 'ubi_compare_lebs()'. In other words, we attach old clean
9869cd80
AB
506 * images, but refuse attaching old images with duplicated
507 * logical eraseblocks because there was an unclean reboot.
801c135c 508 */
2c5ec5ce 509 if (aeb->sqnum == sqnum && sqnum != 0) {
801c135c
AB
510 ubi_err("two LEBs with same sequence number %llu",
511 sqnum);
2c5ec5ce 512 ubi_dump_aeb(aeb, 0);
a904e3f1 513 ubi_dump_vid_hdr(vid_hdr);
801c135c
AB
514 return -EINVAL;
515 }
516
517 /*
518 * Now we have to drop the older one and preserve the newer
519 * one.
520 */
dac6e208 521 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
801c135c
AB
522 if (cmp_res < 0)
523 return cmp_res;
524
525 if (cmp_res & 1) {
526 /*
3f502622 527 * This logical eraseblock is newer than the one
801c135c
AB
528 * found earlier.
529 */
517af48c 530 err = validate_vid_hdr(vid_hdr, av, pnum);
801c135c
AB
531 if (err)
532 return err;
533
6dd3bc7e
JR
534 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
535 aeb->lnum, aeb->ec, cmp_res & 4,
a4e6042f 536 &ai->erase);
801c135c
AB
537 if (err)
538 return err;
539
2c5ec5ce
AB
540 aeb->ec = ec;
541 aeb->pnum = pnum;
6dd3bc7e
JR
542 aeb->vol_id = vol_id;
543 aeb->lnum = lnum;
2c5ec5ce
AB
544 aeb->scrub = ((cmp_res & 2) || bitflips);
545 aeb->copy_flag = vid_hdr->copy_flag;
546 aeb->sqnum = sqnum;
801c135c 547
517af48c
AB
548 if (av->highest_lnum == lnum)
549 av->last_data_size =
3261ebd7 550 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
551
552 return 0;
553 } else {
554 /*
025dfdaf 555 * This logical eraseblock is older than the one found
801c135c
AB
556 * previously.
557 */
6dd3bc7e
JR
558 return add_to_list(ai, pnum, vol_id, lnum, ec,
559 cmp_res & 4, &ai->erase);
801c135c
AB
560 }
561 }
562
563 /*
564 * We've met this logical eraseblock for the first time, add it to the
a4e6042f 565 * attaching information.
801c135c
AB
566 */
567
517af48c 568 err = validate_vid_hdr(vid_hdr, av, pnum);
801c135c
AB
569 if (err)
570 return err;
571
1fc2e3e5 572 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 573 if (!aeb)
801c135c
AB
574 return -ENOMEM;
575
2c5ec5ce
AB
576 aeb->ec = ec;
577 aeb->pnum = pnum;
6dd3bc7e 578 aeb->vol_id = vol_id;
2c5ec5ce
AB
579 aeb->lnum = lnum;
580 aeb->scrub = bitflips;
581 aeb->copy_flag = vid_hdr->copy_flag;
582 aeb->sqnum = sqnum;
801c135c 583
517af48c
AB
584 if (av->highest_lnum <= lnum) {
585 av->highest_lnum = lnum;
586 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
587 }
588
517af48c 589 av->leb_count += 1;
2c5ec5ce 590 rb_link_node(&aeb->u.rb, parent, p);
517af48c 591 rb_insert_color(&aeb->u.rb, &av->root);
801c135c
AB
592 return 0;
593}
594
595/**
dcd85fdd 596 * ubi_find_av - find volume in the attaching information.
a4e6042f 597 * @ai: attaching information
801c135c
AB
598 * @vol_id: the requested volume ID
599 *
600 * This function returns a pointer to the volume description or %NULL if there
a4e6042f 601 * are no data about this volume in the attaching information.
801c135c 602 */
dcd85fdd
AB
603struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
604 int vol_id)
801c135c 605{
517af48c 606 struct ubi_ainf_volume *av;
a4e6042f 607 struct rb_node *p = ai->volumes.rb_node;
801c135c
AB
608
609 while (p) {
517af48c 610 av = rb_entry(p, struct ubi_ainf_volume, rb);
801c135c 611
517af48c
AB
612 if (vol_id == av->vol_id)
613 return av;
801c135c 614
517af48c 615 if (vol_id > av->vol_id)
801c135c
AB
616 p = p->rb_left;
617 else
618 p = p->rb_right;
619 }
620
621 return NULL;
622}
623
801c135c 624/**
d717dc2f 625 * ubi_remove_av - delete attaching information about a volume.
a4e6042f 626 * @ai: attaching information
517af48c 627 * @av: the volume attaching information to delete
801c135c 628 */
d717dc2f 629void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
801c135c
AB
630{
631 struct rb_node *rb;
2c5ec5ce 632 struct ubi_ainf_peb *aeb;
801c135c 633
517af48c 634 dbg_bld("remove attaching information about volume %d", av->vol_id);
801c135c 635
517af48c 636 while ((rb = rb_first(&av->root))) {
2c5ec5ce 637 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
517af48c 638 rb_erase(&aeb->u.rb, &av->root);
a4e6042f 639 list_add_tail(&aeb->u.list, &ai->erase);
801c135c
AB
640 }
641
517af48c
AB
642 rb_erase(&av->rb, &ai->volumes);
643 kfree(av);
a4e6042f 644 ai->vols_found -= 1;
801c135c
AB
645}
646
647/**
13d33dad 648 * early_erase_peb - erase a physical eraseblock.
801c135c 649 * @ubi: UBI device description object
a4e6042f 650 * @ai: attaching information
801c135c 651 * @pnum: physical eraseblock number to erase;
9c47fb2f 652 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
801c135c
AB
653 *
654 * This function erases physical eraseblock 'pnum', and writes the erase
655 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
656 * initialization stages, when the EBA sub-system had not been yet initialized.
657 * This function returns zero in case of success and a negative error code in
658 * case of failure.
801c135c 659 */
13d33dad
AB
660static int early_erase_peb(struct ubi_device *ubi,
661 const struct ubi_attach_info *ai, int pnum, int ec)
801c135c
AB
662{
663 int err;
664 struct ubi_ec_hdr *ec_hdr;
665
801c135c
AB
666 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
667 /*
668 * Erase counter overflow. Upgrade UBI and use 64-bit
669 * erase counters internally.
670 */
671 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
672 return -EINVAL;
673 }
674
dcec4c3b
FM
675 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
676 if (!ec_hdr)
677 return -ENOMEM;
678
3261ebd7 679 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
680
681 err = ubi_io_sync_erase(ubi, pnum, 0);
682 if (err < 0)
683 goto out_free;
684
685 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
686
687out_free:
688 kfree(ec_hdr);
689 return err;
690}
691
692/**
c87fbd7d 693 * ubi_early_get_peb - get a free physical eraseblock.
801c135c 694 * @ubi: UBI device description object
a4e6042f 695 * @ai: attaching information
801c135c
AB
696 *
697 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
698 * called on the UBI initialization stages when the wear-leveling sub-system is
699 * not initialized yet. This function picks a physical eraseblocks from one of
700 * the lists, writes the EC header if it is needed, and removes it from the
701 * list.
801c135c 702 *
fbd0107f
AB
703 * This function returns a pointer to the "aeb" of the found free PEB in case
704 * of success and an error code in case of failure.
801c135c 705 */
c87fbd7d
AB
706struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
707 struct ubi_attach_info *ai)
801c135c 708{
5fc01ab6 709 int err = 0;
2c5ec5ce 710 struct ubi_ainf_peb *aeb, *tmp_aeb;
801c135c 711
a4e6042f
AB
712 if (!list_empty(&ai->free)) {
713 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
2c5ec5ce
AB
714 list_del(&aeb->u.list);
715 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
716 return aeb;
801c135c
AB
717 }
718
5fc01ab6
AB
719 /*
720 * We try to erase the first physical eraseblock from the erase list
721 * and pick it if we succeed, or try to erase the next one if not. And
722 * so forth. We don't want to take care about bad eraseblocks here -
723 * they'll be handled later.
724 */
a4e6042f 725 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
9c47fb2f 726 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 727 aeb->ec = ai->mean_ec;
801c135c 728
13d33dad 729 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
5fc01ab6
AB
730 if (err)
731 continue;
801c135c 732
2c5ec5ce
AB
733 aeb->ec += 1;
734 list_del(&aeb->u.list);
735 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
736 return aeb;
801c135c
AB
737 }
738
5fc01ab6 739 ubi_err("no free eraseblocks");
801c135c
AB
740 return ERR_PTR(-ENOSPC);
741}
742
feeba4b8 743/**
45aafd32 744 * check_corruption - check the data area of PEB.
feeba4b8 745 * @ubi: UBI device description object
dac6e208 746 * @vid_hdr: the (corrupted) VID header of this PEB
feeba4b8
AB
747 * @pnum: the physical eraseblock number to check
748 *
749 * This is a helper function which is used to distinguish between VID header
750 * corruptions caused by power cuts and other reasons. If the PEB contains only
45aafd32 751 * 0xFF bytes in the data area, the VID header is most probably corrupted
feeba4b8 752 * because of a power cut (%0 is returned in this case). Otherwise, it was
45aafd32
AB
753 * probably corrupted for some other reasons (%1 is returned in this case). A
754 * negative error code is returned if a read error occurred.
feeba4b8
AB
755 *
756 * If the corruption reason was a power cut, UBI can safely erase this PEB.
757 * Otherwise, it should preserve it to avoid possibly destroying important
758 * information.
759 */
45aafd32
AB
760static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
761 int pnum)
feeba4b8
AB
762{
763 int err;
764
765 mutex_lock(&ubi->buf_mutex);
0ca39d74 766 memset(ubi->peb_buf, 0x00, ubi->leb_size);
feeba4b8 767
0ca39d74 768 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
feeba4b8 769 ubi->leb_size);
d57f4054 770 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
45aafd32
AB
771 /*
772 * Bit-flips or integrity errors while reading the data area.
773 * It is difficult to say for sure what type of corruption is
774 * this, but presumably a power cut happened while this PEB was
775 * erased, so it became unstable and corrupted, and should be
776 * erased.
777 */
1b1d76e2
DC
778 err = 0;
779 goto out_unlock;
45aafd32
AB
780 }
781
782 if (err)
1b1d76e2 783 goto out_unlock;
feeba4b8 784
0ca39d74 785 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
1b1d76e2 786 goto out_unlock;
feeba4b8 787
049333ce
AB
788 ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
789 pnum);
790 ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
a904e3f1 791 ubi_dump_vid_hdr(vid_hdr);
719bb840
AB
792 pr_err("hexdump of PEB %d offset %d, length %d",
793 pnum, ubi->leb_start, ubi->leb_size);
feeba4b8 794 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
0ca39d74 795 ubi->peb_buf, ubi->leb_size, 1);
1b1d76e2
DC
796 err = 1;
797
798out_unlock:
feeba4b8 799 mutex_unlock(&ubi->buf_mutex);
1b1d76e2 800 return err;
feeba4b8
AB
801}
802
801c135c 803/**
fbd0107f 804 * scan_peb - scan and process UBI headers of a PEB.
801c135c 805 * @ubi: UBI device description object
a4e6042f 806 * @ai: attaching information
801c135c 807 * @pnum: the physical eraseblock number
dac6e208
RW
808 * @vid: The volume ID of the found volume will be stored in this pointer
809 * @sqnum: The sqnum of the found volume will be stored in this pointer
801c135c 810 *
fbd0107f
AB
811 * This function reads UBI headers of PEB @pnum, checks them, and adds
812 * information about this PEB to the corresponding list or RB-tree in the
813 * "attaching info" structure. Returns zero if the physical eraseblock was
814 * successfully handled and a negative error code in case of failure.
801c135c 815 */
fbd0107f 816static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
dac6e208 817 int pnum, int *vid, unsigned long long *sqnum)
801c135c 818{
c18a8418 819 long long uninitialized_var(ec);
dac6e208 820 int err, bitflips = 0, vol_id = -1, ec_err = 0;
801c135c
AB
821
822 dbg_bld("scan PEB %d", pnum);
823
824 /* Skip bad physical eraseblocks */
825 err = ubi_io_is_bad(ubi, pnum);
826 if (err < 0)
827 return err;
828 else if (err) {
a4e6042f 829 ai->bad_peb_count += 1;
801c135c
AB
830 return 0;
831 }
832
833 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
834 if (err < 0)
835 return err;
b3321508
AB
836 switch (err) {
837 case 0:
838 break;
839 case UBI_IO_BITFLIPS:
801c135c 840 bitflips = 1;
b3321508
AB
841 break;
842 case UBI_IO_FF:
a4e6042f 843 ai->empty_peb_count += 1;
6dd3bc7e
JR
844 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
845 UBI_UNKNOWN, 0, &ai->erase);
b3321508 846 case UBI_IO_FF_BITFLIPS:
a4e6042f 847 ai->empty_peb_count += 1;
6dd3bc7e
JR
848 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
849 UBI_UNKNOWN, 1, &ai->erase);
b3321508 850 case UBI_IO_BAD_HDR_EBADMSG:
b3321508 851 case UBI_IO_BAD_HDR:
801c135c
AB
852 /*
853 * We have to also look at the VID header, possibly it is not
854 * corrupted. Set %bitflips flag in order to make this PEB be
855 * moved and EC be re-created.
856 */
e0e718c2 857 ec_err = err;
9c47fb2f 858 ec = UBI_UNKNOWN;
801c135c 859 bitflips = 1;
b3321508
AB
860 break;
861 default:
862 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
863 return -EINVAL;
801c135c
AB
864 }
865
e0e718c2 866 if (!ec_err) {
fe96efc1
AB
867 int image_seq;
868
801c135c
AB
869 /* Make sure UBI version is OK */
870 if (ech->version != UBI_VERSION) {
871 ubi_err("this UBI version is %d, image version is %d",
872 UBI_VERSION, (int)ech->version);
873 return -EINVAL;
874 }
875
3261ebd7 876 ec = be64_to_cpu(ech->ec);
801c135c
AB
877 if (ec > UBI_MAX_ERASECOUNTER) {
878 /*
879 * Erase counter overflow. The EC headers have 64 bits
880 * reserved, but we anyway make use of only 31 bit
881 * values, as this seems to be enough for any existing
882 * flash. Upgrade UBI and use 64-bit erase counters
883 * internally.
884 */
885 ubi_err("erase counter overflow, max is %d",
886 UBI_MAX_ERASECOUNTER);
a904e3f1 887 ubi_dump_ec_hdr(ech);
801c135c
AB
888 return -EINVAL;
889 }
fe96efc1 890
32bc4820
AH
891 /*
892 * Make sure that all PEBs have the same image sequence number.
893 * This allows us to detect situations when users flash UBI
894 * images incorrectly, so that the flash has the new UBI image
895 * and leftovers from the old one. This feature was added
896 * relatively recently, and the sequence number was always
897 * zero, because old UBI implementations always set it to zero.
898 * For this reasons, we do not panic if some PEBs have zero
899 * sequence number, while other PEBs have non-zero sequence
900 * number.
901 */
3dc948da 902 image_seq = be32_to_cpu(ech->image_seq);
2eadaad6 903 if (!ubi->image_seq && image_seq)
fe96efc1 904 ubi->image_seq = image_seq;
2eadaad6
AB
905 if (ubi->image_seq && image_seq &&
906 ubi->image_seq != image_seq) {
049333ce
AB
907 ubi_err("bad image sequence number %d in PEB %d, expected %d",
908 image_seq, pnum, ubi->image_seq);
a904e3f1 909 ubi_dump_ec_hdr(ech);
fe96efc1
AB
910 return -EINVAL;
911 }
801c135c
AB
912 }
913
914 /* OK, we've done with the EC header, let's look at the VID header */
915
916 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
917 if (err < 0)
918 return err;
b3321508
AB
919 switch (err) {
920 case 0:
921 break;
922 case UBI_IO_BITFLIPS:
801c135c 923 bitflips = 1;
b3321508
AB
924 break;
925 case UBI_IO_BAD_HDR_EBADMSG:
0525dac9
AB
926 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
927 /*
928 * Both EC and VID headers are corrupted and were read
929 * with data integrity error, probably this is a bad
930 * PEB, bit it is not marked as bad yet. This may also
931 * be a result of power cut during erasure.
932 */
a4e6042f 933 ai->maybe_bad_peb_count += 1;
b3321508 934 case UBI_IO_BAD_HDR:
feeba4b8
AB
935 if (ec_err)
936 /*
937 * Both headers are corrupted. There is a possibility
938 * that this a valid UBI PEB which has corresponding
939 * LEB, but the headers are corrupted. However, it is
940 * impossible to distinguish it from a PEB which just
45aafd32 941 * contains garbage because of a power cut during erase
feeba4b8 942 * operation. So we just schedule this PEB for erasure.
7ac760c2 943 *
25985edc 944 * Besides, in case of NOR flash, we deliberately
7ac760c2
AB
945 * corrupt both headers because NOR flash erasure is
946 * slow and can start from the end.
feeba4b8
AB
947 */
948 err = 0;
949 else
950 /*
951 * The EC was OK, but the VID header is corrupted. We
952 * have to check what is in the data area.
953 */
45aafd32 954 err = check_corruption(ubi, vidh, pnum);
df3fca4c
AB
955
956 if (err < 0)
957 return err;
958 else if (!err)
feeba4b8 959 /* This corruption is caused by a power cut */
6dd3bc7e
JR
960 err = add_to_list(ai, pnum, UBI_UNKNOWN,
961 UBI_UNKNOWN, ec, 1, &ai->erase);
feeba4b8
AB
962 else
963 /* This is an unexpected corruption */
a4e6042f 964 err = add_corrupted(ai, pnum, ec);
feeba4b8
AB
965 if (err)
966 return err;
967 goto adjust_mean_ec;
b3321508 968 case UBI_IO_FF_BITFLIPS:
6dd3bc7e
JR
969 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
970 ec, 1, &ai->erase);
801c135c
AB
971 if (err)
972 return err;
973 goto adjust_mean_ec;
b3321508 974 case UBI_IO_FF:
193819cf 975 if (ec_err || bitflips)
6dd3bc7e
JR
976 err = add_to_list(ai, pnum, UBI_UNKNOWN,
977 UBI_UNKNOWN, ec, 1, &ai->erase);
b3321508 978 else
6dd3bc7e
JR
979 err = add_to_list(ai, pnum, UBI_UNKNOWN,
980 UBI_UNKNOWN, ec, 0, &ai->free);
801c135c
AB
981 if (err)
982 return err;
983 goto adjust_mean_ec;
b3321508
AB
984 default:
985 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
986 err);
987 return -EINVAL;
801c135c
AB
988 }
989
3261ebd7 990 vol_id = be32_to_cpu(vidh->vol_id);
dac6e208
RW
991 if (vid)
992 *vid = vol_id;
993 if (sqnum)
994 *sqnum = be64_to_cpu(vidh->sqnum);
91f2d53c 995 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 996 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
997
998 /* Unsupported internal volume */
999 switch (vidh->compat) {
1000 case UBI_COMPAT_DELETE:
dac6e208
RW
1001 if (vol_id != UBI_FM_SB_VOLUME_ID
1002 && vol_id != UBI_FM_DATA_VOLUME_ID) {
1003 ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1004 vol_id, lnum);
1005 }
6dd3bc7e
JR
1006 err = add_to_list(ai, pnum, vol_id, lnum,
1007 ec, 1, &ai->erase);
801c135c
AB
1008 if (err)
1009 return err;
158132c9 1010 return 0;
801c135c
AB
1011
1012 case UBI_COMPAT_RO:
049333ce 1013 ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
801c135c
AB
1014 vol_id, lnum);
1015 ubi->ro_mode = 1;
1016 break;
1017
1018 case UBI_COMPAT_PRESERVE:
049333ce
AB
1019 ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1020 vol_id, lnum);
6dd3bc7e
JR
1021 err = add_to_list(ai, pnum, vol_id, lnum,
1022 ec, 0, &ai->alien);
801c135c
AB
1023 if (err)
1024 return err;
801c135c
AB
1025 return 0;
1026
1027 case UBI_COMPAT_REJECT:
1028 ubi_err("incompatible internal volume %d:%d found",
1029 vol_id, lnum);
1030 return -EINVAL;
1031 }
1032 }
1033
e0e718c2 1034 if (ec_err)
29a88c99
AB
1035 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1036 pnum);
3561188a 1037 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
801c135c
AB
1038 if (err)
1039 return err;
1040
1041adjust_mean_ec:
e0e718c2 1042 if (!ec_err) {
a4e6042f
AB
1043 ai->ec_sum += ec;
1044 ai->ec_count += 1;
1045 if (ec > ai->max_ec)
1046 ai->max_ec = ec;
1047 if (ec < ai->min_ec)
1048 ai->min_ec = ec;
801c135c
AB
1049 }
1050
1051 return 0;
1052}
1053
0798cea8 1054/**
fbd0107f 1055 * late_analysis - analyze the overall situation with PEB.
0798cea8 1056 * @ubi: UBI device description object
a4e6042f 1057 * @ai: attaching information
0798cea8 1058 *
fbd0107f
AB
1059 * This is a helper function which takes a look what PEBs we have after we
1060 * gather information about all of them ("ai" is compete). It decides whether
1061 * the flash is empty and should be formatted of whether there are too many
1062 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1063 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
0798cea8 1064 */
fbd0107f 1065static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
0798cea8 1066{
2c5ec5ce 1067 struct ubi_ainf_peb *aeb;
0525dac9 1068 int max_corr, peb_count;
0798cea8 1069
a4e6042f 1070 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
0525dac9 1071 max_corr = peb_count / 20 ?: 8;
0798cea8
AB
1072
1073 /*
0525dac9 1074 * Few corrupted PEBs is not a problem and may be just a result of
0798cea8
AB
1075 * unclean reboots. However, many of them may indicate some problems
1076 * with the flash HW or driver.
1077 */
a4e6042f 1078 if (ai->corr_peb_count) {
0525dac9 1079 ubi_err("%d PEBs are corrupted and preserved",
a4e6042f 1080 ai->corr_peb_count);
e28453bb 1081 pr_err("Corrupted PEBs are:");
a4e6042f 1082 list_for_each_entry(aeb, &ai->corr, u.list)
e28453bb
AB
1083 pr_cont(" %d", aeb->pnum);
1084 pr_cont("\n");
0798cea8
AB
1085
1086 /*
1087 * If too many PEBs are corrupted, we refuse attaching,
1088 * otherwise, only print a warning.
1089 */
a4e6042f 1090 if (ai->corr_peb_count >= max_corr) {
feddbb34 1091 ubi_err("too many corrupted PEBs, refusing");
0798cea8
AB
1092 return -EINVAL;
1093 }
1094 }
1095
a4e6042f 1096 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
0525dac9
AB
1097 /*
1098 * All PEBs are empty, or almost all - a couple PEBs look like
1099 * they may be bad PEBs which were not marked as bad yet.
1100 *
1101 * This piece of code basically tries to distinguish between
1102 * the following situations:
1103 *
1104 * 1. Flash is empty, but there are few bad PEBs, which are not
1105 * marked as bad so far, and which were read with error. We
1106 * want to go ahead and format this flash. While formatting,
1107 * the faulty PEBs will probably be marked as bad.
1108 *
1109 * 2. Flash contains non-UBI data and we do not want to format
1110 * it and destroy possibly important information.
1111 */
a4e6042f
AB
1112 if (ai->maybe_bad_peb_count <= 2) {
1113 ai->is_empty = 1;
0798cea8 1114 ubi_msg("empty MTD device detected");
0525dac9
AB
1115 get_random_bytes(&ubi->image_seq,
1116 sizeof(ubi->image_seq));
0798cea8 1117 } else {
049333ce 1118 ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
0798cea8
AB
1119 return -EINVAL;
1120 }
0525dac9 1121
0798cea8
AB
1122 }
1123
0798cea8
AB
1124 return 0;
1125}
1126
dac6e208
RW
1127/**
1128 * destroy_av - free volume attaching information.
1129 * @av: volume attaching information
1130 * @ai: attaching information
1131 *
1132 * This function destroys the volume attaching information.
1133 */
1134static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1135{
1136 struct ubi_ainf_peb *aeb;
1137 struct rb_node *this = av->root.rb_node;
1138
1139 while (this) {
1140 if (this->rb_left)
1141 this = this->rb_left;
1142 else if (this->rb_right)
1143 this = this->rb_right;
1144 else {
1145 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1146 this = rb_parent(this);
1147 if (this) {
1148 if (this->rb_left == &aeb->u.rb)
1149 this->rb_left = NULL;
1150 else
1151 this->rb_right = NULL;
1152 }
1153
1154 kmem_cache_free(ai->aeb_slab_cache, aeb);
1155 }
1156 }
1157 kfree(av);
1158}
1159
1160/**
1161 * destroy_ai - destroy attaching information.
1162 * @ai: attaching information
1163 */
1164static void destroy_ai(struct ubi_attach_info *ai)
1165{
1166 struct ubi_ainf_peb *aeb, *aeb_tmp;
1167 struct ubi_ainf_volume *av;
1168 struct rb_node *rb;
1169
1170 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1171 list_del(&aeb->u.list);
1172 kmem_cache_free(ai->aeb_slab_cache, aeb);
1173 }
1174 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1175 list_del(&aeb->u.list);
1176 kmem_cache_free(ai->aeb_slab_cache, aeb);
1177 }
1178 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1179 list_del(&aeb->u.list);
1180 kmem_cache_free(ai->aeb_slab_cache, aeb);
1181 }
1182 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1183 list_del(&aeb->u.list);
1184 kmem_cache_free(ai->aeb_slab_cache, aeb);
1185 }
1186
1187 /* Destroy the volume RB-tree */
1188 rb = ai->volumes.rb_node;
1189 while (rb) {
1190 if (rb->rb_left)
1191 rb = rb->rb_left;
1192 else if (rb->rb_right)
1193 rb = rb->rb_right;
1194 else {
1195 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1196
1197 rb = rb_parent(rb);
1198 if (rb) {
1199 if (rb->rb_left == &av->rb)
1200 rb->rb_left = NULL;
1201 else
1202 rb->rb_right = NULL;
1203 }
1204
1205 destroy_av(ai, av);
1206 }
1207 }
1208
1209 if (ai->aeb_slab_cache)
1210 kmem_cache_destroy(ai->aeb_slab_cache);
1211
1212 kfree(ai);
1213}
1214
801c135c 1215/**
47e1ec70 1216 * scan_all - scan entire MTD device.
801c135c 1217 * @ubi: UBI device description object
dac6e208
RW
1218 * @ai: attach info object
1219 * @start: start scanning at this PEB
801c135c
AB
1220 *
1221 * This function does full scanning of an MTD device and returns complete
fbd0107f
AB
1222 * information about it in form of a "struct ubi_attach_info" object. In case
1223 * of failure, an error code is returned.
801c135c 1224 */
dac6e208
RW
1225static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1226 int start)
801c135c
AB
1227{
1228 int err, pnum;
1229 struct rb_node *rb1, *rb2;
517af48c 1230 struct ubi_ainf_volume *av;
2c5ec5ce 1231 struct ubi_ainf_peb *aeb;
801c135c
AB
1232
1233 err = -ENOMEM;
6c1e875c 1234
801c135c
AB
1235 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1236 if (!ech)
dac6e208 1237 return err;
801c135c 1238
33818bbb 1239 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
1240 if (!vidh)
1241 goto out_ech;
1242
dac6e208 1243 for (pnum = start; pnum < ubi->peb_count; pnum++) {
801c135c
AB
1244 cond_resched();
1245
c8566350 1246 dbg_gen("process PEB %d", pnum);
dac6e208 1247 err = scan_peb(ubi, ai, pnum, NULL, NULL);
801c135c
AB
1248 if (err < 0)
1249 goto out_vidh;
1250 }
1251
719bb840 1252 ubi_msg("scanning is finished");
801c135c 1253
4bc1dca4 1254 /* Calculate mean erase counter */
a4e6042f
AB
1255 if (ai->ec_count)
1256 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
801c135c 1257
fbd0107f 1258 err = late_analysis(ubi, ai);
0798cea8
AB
1259 if (err)
1260 goto out_vidh;
4a406856 1261
801c135c
AB
1262 /*
1263 * In case of unknown erase counter we use the mean erase counter
1264 * value.
1265 */
517af48c
AB
1266 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1267 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
9c47fb2f 1268 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1269 aeb->ec = ai->mean_ec;
801c135c
AB
1270 }
1271
a4e6042f 1272 list_for_each_entry(aeb, &ai->free, u.list) {
9c47fb2f 1273 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1274 aeb->ec = ai->mean_ec;
801c135c
AB
1275 }
1276
a4e6042f 1277 list_for_each_entry(aeb, &ai->corr, u.list)
9c47fb2f 1278 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1279 aeb->ec = ai->mean_ec;
801c135c 1280
a4e6042f 1281 list_for_each_entry(aeb, &ai->erase, u.list)
9c47fb2f 1282 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1283 aeb->ec = ai->mean_ec;
801c135c 1284
a4e6042f 1285 err = self_check_ai(ubi, ai);
adbf05e3 1286 if (err)
801c135c 1287 goto out_vidh;
801c135c
AB
1288
1289 ubi_free_vid_hdr(ubi, vidh);
1290 kfree(ech);
1291
dac6e208 1292 return 0;
801c135c
AB
1293
1294out_vidh:
1295 ubi_free_vid_hdr(ubi, vidh);
1296out_ech:
1297 kfree(ech);
dac6e208
RW
1298 return err;
1299}
1300
1301#ifdef CONFIG_MTD_UBI_FASTMAP
1302
1303/**
1304 * scan_fastmap - try to find a fastmap and attach from it.
1305 * @ubi: UBI device description object
1306 * @ai: attach info object
1307 *
1308 * Returns 0 on success, negative return values indicate an internal
1309 * error.
1310 * UBI_NO_FASTMAP denotes that no fastmap was found.
1311 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1312 */
1313static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1314{
1315 int err, pnum, fm_anchor = -1;
1316 unsigned long long max_sqnum = 0;
1317
1318 err = -ENOMEM;
1319
1320 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1321 if (!ech)
1322 goto out;
1323
1324 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1325 if (!vidh)
1326 goto out_ech;
1327
1328 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1329 int vol_id = -1;
1330 unsigned long long sqnum = -1;
1331 cond_resched();
1332
1333 dbg_gen("process PEB %d", pnum);
1334 err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1335 if (err < 0)
1336 goto out_vidh;
1337
1338 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1339 max_sqnum = sqnum;
1340 fm_anchor = pnum;
1341 }
1342 }
1343
1344 ubi_free_vid_hdr(ubi, vidh);
1345 kfree(ech);
1346
1347 if (fm_anchor < 0)
1348 return UBI_NO_FASTMAP;
1349
1350 return ubi_scan_fastmap(ubi, ai, fm_anchor);
1351
1352out_vidh:
1353 ubi_free_vid_hdr(ubi, vidh);
1354out_ech:
1355 kfree(ech);
1356out:
1357 return err;
1358}
1359
1360#endif
1361
1362static struct ubi_attach_info *alloc_ai(const char *slab_name)
1363{
1364 struct ubi_attach_info *ai;
1365
1366 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1367 if (!ai)
1368 return ai;
1369
1370 INIT_LIST_HEAD(&ai->corr);
1371 INIT_LIST_HEAD(&ai->free);
1372 INIT_LIST_HEAD(&ai->erase);
1373 INIT_LIST_HEAD(&ai->alien);
1374 ai->volumes = RB_ROOT;
1375 ai->aeb_slab_cache = kmem_cache_create(slab_name,
1376 sizeof(struct ubi_ainf_peb),
1377 0, 0, NULL);
1378 if (!ai->aeb_slab_cache) {
1379 kfree(ai);
1380 ai = NULL;
1381 }
1382
1383 return ai;
801c135c
AB
1384}
1385
47e1ec70
AB
1386/**
1387 * ubi_attach - attach an MTD device.
1388 * @ubi: UBI device descriptor
dac6e208 1389 * @force_scan: if set to non-zero attach by scanning
47e1ec70
AB
1390 *
1391 * This function returns zero in case of success and a negative error code in
1392 * case of failure.
1393 */
dac6e208 1394int ubi_attach(struct ubi_device *ubi, int force_scan)
47e1ec70
AB
1395{
1396 int err;
1397 struct ubi_attach_info *ai;
1398
dac6e208
RW
1399 ai = alloc_ai("ubi_aeb_slab_cache");
1400 if (!ai)
1401 return -ENOMEM;
1402
1403#ifdef CONFIG_MTD_UBI_FASTMAP
1404 /* On small flash devices we disable fastmap in any case. */
1405 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1406 ubi->fm_disabled = 1;
1407 force_scan = 1;
1408 }
1409
1410 if (force_scan)
1411 err = scan_all(ubi, ai, 0);
1412 else {
1413 err = scan_fast(ubi, ai);
1414 if (err > 0) {
1415 if (err != UBI_NO_FASTMAP) {
1416 destroy_ai(ai);
1417 ai = alloc_ai("ubi_aeb_slab_cache2");
1418 if (!ai)
1419 return -ENOMEM;
dac6e208 1420
4b3e0a25
RW
1421 err = scan_all(ubi, ai, 0);
1422 } else {
1423 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1424 }
dac6e208
RW
1425 }
1426 }
1427#else
1428 err = scan_all(ubi, ai, 0);
1429#endif
1430 if (err)
1431 goto out_ai;
47e1ec70
AB
1432
1433 ubi->bad_peb_count = ai->bad_peb_count;
1434 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1435 ubi->corr_peb_count = ai->corr_peb_count;
1436 ubi->max_ec = ai->max_ec;
1437 ubi->mean_ec = ai->mean_ec;
719bb840 1438 dbg_gen("max. sequence number: %llu", ai->max_sqnum);
47e1ec70
AB
1439
1440 err = ubi_read_volume_table(ubi, ai);
1441 if (err)
1442 goto out_ai;
1443
1444 err = ubi_wl_init(ubi, ai);
1445 if (err)
1446 goto out_vtbl;
1447
1448 err = ubi_eba_init(ubi, ai);
1449 if (err)
1450 goto out_wl;
1451
dac6e208 1452#ifdef CONFIG_MTD_UBI_FASTMAP
64575574 1453 if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
dac6e208
RW
1454 struct ubi_attach_info *scan_ai;
1455
1456 scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1457 if (!scan_ai)
1458 goto out_wl;
1459
1460 err = scan_all(ubi, scan_ai, 0);
1461 if (err) {
1462 destroy_ai(scan_ai);
1463 goto out_wl;
1464 }
1465
1466 err = self_check_eba(ubi, ai, scan_ai);
1467 destroy_ai(scan_ai);
1468
1469 if (err)
1470 goto out_wl;
1471 }
1472#endif
1473
1474 destroy_ai(ai);
47e1ec70
AB
1475 return 0;
1476
1477out_wl:
1478 ubi_wl_close(ubi);
1479out_vtbl:
1480 ubi_free_internal_volumes(ubi);
1481 vfree(ubi->vtbl);
1482out_ai:
dac6e208 1483 destroy_ai(ai);
47e1ec70
AB
1484 return err;
1485}
1486
801c135c 1487/**
a4e6042f 1488 * self_check_ai - check the attaching information.
801c135c 1489 * @ubi: UBI device description object
a4e6042f 1490 * @ai: attaching information
801c135c 1491 *
a4e6042f 1492 * This function returns zero if the attaching information is all right, and a
adbf05e3 1493 * negative error code if not or if an error occurred.
801c135c 1494 */
a4e6042f 1495static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
801c135c
AB
1496{
1497 int pnum, err, vols_found = 0;
1498 struct rb_node *rb1, *rb2;
517af48c 1499 struct ubi_ainf_volume *av;
2c5ec5ce 1500 struct ubi_ainf_peb *aeb, *last_aeb;
801c135c
AB
1501 uint8_t *buf;
1502
64575574 1503 if (!ubi_dbg_chk_gen(ubi))
92d124f5
AB
1504 return 0;
1505
801c135c 1506 /*
a4e6042f 1507 * At first, check that attaching information is OK.
801c135c 1508 */
517af48c 1509 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
801c135c
AB
1510 int leb_count = 0;
1511
1512 cond_resched();
1513
1514 vols_found += 1;
1515
a4e6042f 1516 if (ai->is_empty) {
801c135c 1517 ubi_err("bad is_empty flag");
517af48c 1518 goto bad_av;
801c135c
AB
1519 }
1520
517af48c
AB
1521 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1522 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1523 av->data_pad < 0 || av->last_data_size < 0) {
801c135c 1524 ubi_err("negative values");
517af48c 1525 goto bad_av;
801c135c
AB
1526 }
1527
517af48c
AB
1528 if (av->vol_id >= UBI_MAX_VOLUMES &&
1529 av->vol_id < UBI_INTERNAL_VOL_START) {
801c135c 1530 ubi_err("bad vol_id");
517af48c 1531 goto bad_av;
801c135c
AB
1532 }
1533
517af48c 1534 if (av->vol_id > ai->highest_vol_id) {
801c135c 1535 ubi_err("highest_vol_id is %d, but vol_id %d is there",
517af48c 1536 ai->highest_vol_id, av->vol_id);
801c135c
AB
1537 goto out;
1538 }
1539
517af48c
AB
1540 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1541 av->vol_type != UBI_STATIC_VOLUME) {
801c135c 1542 ubi_err("bad vol_type");
517af48c 1543 goto bad_av;
801c135c
AB
1544 }
1545
517af48c 1546 if (av->data_pad > ubi->leb_size / 2) {
801c135c 1547 ubi_err("bad data_pad");
517af48c 1548 goto bad_av;
801c135c
AB
1549 }
1550
2c5ec5ce 1551 last_aeb = NULL;
517af48c 1552 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1553 cond_resched();
1554
2c5ec5ce 1555 last_aeb = aeb;
801c135c
AB
1556 leb_count += 1;
1557
2c5ec5ce 1558 if (aeb->pnum < 0 || aeb->ec < 0) {
801c135c 1559 ubi_err("negative values");
2c5ec5ce 1560 goto bad_aeb;
801c135c
AB
1561 }
1562
a4e6042f
AB
1563 if (aeb->ec < ai->min_ec) {
1564 ubi_err("bad ai->min_ec (%d), %d found",
1565 ai->min_ec, aeb->ec);
2c5ec5ce 1566 goto bad_aeb;
801c135c
AB
1567 }
1568
a4e6042f
AB
1569 if (aeb->ec > ai->max_ec) {
1570 ubi_err("bad ai->max_ec (%d), %d found",
1571 ai->max_ec, aeb->ec);
2c5ec5ce 1572 goto bad_aeb;
801c135c
AB
1573 }
1574
2c5ec5ce 1575 if (aeb->pnum >= ubi->peb_count) {
801c135c 1576 ubi_err("too high PEB number %d, total PEBs %d",
2c5ec5ce
AB
1577 aeb->pnum, ubi->peb_count);
1578 goto bad_aeb;
801c135c
AB
1579 }
1580
517af48c
AB
1581 if (av->vol_type == UBI_STATIC_VOLUME) {
1582 if (aeb->lnum >= av->used_ebs) {
801c135c 1583 ubi_err("bad lnum or used_ebs");
2c5ec5ce 1584 goto bad_aeb;
801c135c
AB
1585 }
1586 } else {
517af48c 1587 if (av->used_ebs != 0) {
801c135c 1588 ubi_err("non-zero used_ebs");
2c5ec5ce 1589 goto bad_aeb;
801c135c
AB
1590 }
1591 }
1592
517af48c 1593 if (aeb->lnum > av->highest_lnum) {
801c135c 1594 ubi_err("incorrect highest_lnum or lnum");
2c5ec5ce 1595 goto bad_aeb;
801c135c
AB
1596 }
1597 }
1598
517af48c 1599 if (av->leb_count != leb_count) {
801c135c
AB
1600 ubi_err("bad leb_count, %d objects in the tree",
1601 leb_count);
517af48c 1602 goto bad_av;
801c135c
AB
1603 }
1604
2c5ec5ce 1605 if (!last_aeb)
801c135c
AB
1606 continue;
1607
2c5ec5ce 1608 aeb = last_aeb;
801c135c 1609
517af48c 1610 if (aeb->lnum != av->highest_lnum) {
801c135c 1611 ubi_err("bad highest_lnum");
2c5ec5ce 1612 goto bad_aeb;
801c135c
AB
1613 }
1614 }
1615
a4e6042f
AB
1616 if (vols_found != ai->vols_found) {
1617 ubi_err("bad ai->vols_found %d, should be %d",
1618 ai->vols_found, vols_found);
801c135c
AB
1619 goto out;
1620 }
1621
a4e6042f 1622 /* Check that attaching information is correct */
517af48c 1623 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
2c5ec5ce 1624 last_aeb = NULL;
517af48c 1625 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1626 int vol_type;
1627
1628 cond_resched();
1629
2c5ec5ce 1630 last_aeb = aeb;
801c135c 1631
2c5ec5ce 1632 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
801c135c
AB
1633 if (err && err != UBI_IO_BITFLIPS) {
1634 ubi_err("VID header is not OK (%d)", err);
1635 if (err > 0)
1636 err = -EIO;
1637 return err;
1638 }
1639
1640 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1641 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
517af48c 1642 if (av->vol_type != vol_type) {
801c135c
AB
1643 ubi_err("bad vol_type");
1644 goto bad_vid_hdr;
1645 }
1646
2c5ec5ce
AB
1647 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1648 ubi_err("bad sqnum %llu", aeb->sqnum);
801c135c
AB
1649 goto bad_vid_hdr;
1650 }
1651
517af48c
AB
1652 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1653 ubi_err("bad vol_id %d", av->vol_id);
801c135c
AB
1654 goto bad_vid_hdr;
1655 }
1656
517af48c 1657 if (av->compat != vidh->compat) {
801c135c
AB
1658 ubi_err("bad compat %d", vidh->compat);
1659 goto bad_vid_hdr;
1660 }
1661
2c5ec5ce
AB
1662 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1663 ubi_err("bad lnum %d", aeb->lnum);
801c135c
AB
1664 goto bad_vid_hdr;
1665 }
1666
517af48c
AB
1667 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1668 ubi_err("bad used_ebs %d", av->used_ebs);
801c135c
AB
1669 goto bad_vid_hdr;
1670 }
1671
517af48c
AB
1672 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1673 ubi_err("bad data_pad %d", av->data_pad);
801c135c
AB
1674 goto bad_vid_hdr;
1675 }
801c135c
AB
1676 }
1677
2c5ec5ce 1678 if (!last_aeb)
801c135c
AB
1679 continue;
1680
517af48c
AB
1681 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1682 ubi_err("bad highest_lnum %d", av->highest_lnum);
801c135c
AB
1683 goto bad_vid_hdr;
1684 }
1685
517af48c
AB
1686 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1687 ubi_err("bad last_data_size %d", av->last_data_size);
801c135c
AB
1688 goto bad_vid_hdr;
1689 }
1690 }
1691
1692 /*
1693 * Make sure that all the physical eraseblocks are in one of the lists
1694 * or trees.
1695 */
d9b0744d 1696 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1697 if (!buf)
1698 return -ENOMEM;
1699
801c135c
AB
1700 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1701 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1702 if (err < 0) {
1703 kfree(buf);
801c135c 1704 return err;
9c9ec147 1705 } else if (err)
d9b0744d 1706 buf[pnum] = 1;
801c135c
AB
1707 }
1708
517af48c
AB
1709 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1710 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
2c5ec5ce 1711 buf[aeb->pnum] = 1;
801c135c 1712
a4e6042f 1713 list_for_each_entry(aeb, &ai->free, u.list)
2c5ec5ce 1714 buf[aeb->pnum] = 1;
801c135c 1715
a4e6042f 1716 list_for_each_entry(aeb, &ai->corr, u.list)
2c5ec5ce 1717 buf[aeb->pnum] = 1;
801c135c 1718
a4e6042f 1719 list_for_each_entry(aeb, &ai->erase, u.list)
2c5ec5ce 1720 buf[aeb->pnum] = 1;
801c135c 1721
a4e6042f 1722 list_for_each_entry(aeb, &ai->alien, u.list)
2c5ec5ce 1723 buf[aeb->pnum] = 1;
801c135c
AB
1724
1725 err = 0;
1726 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1727 if (!buf[pnum]) {
801c135c
AB
1728 ubi_err("PEB %d is not referred", pnum);
1729 err = 1;
1730 }
1731
1732 kfree(buf);
1733 if (err)
1734 goto out;
1735 return 0;
1736
2c5ec5ce 1737bad_aeb:
a4e6042f 1738 ubi_err("bad attaching information about LEB %d", aeb->lnum);
2c5ec5ce 1739 ubi_dump_aeb(aeb, 0);
517af48c 1740 ubi_dump_av(av);
801c135c
AB
1741 goto out;
1742
517af48c
AB
1743bad_av:
1744 ubi_err("bad attaching information about volume %d", av->vol_id);
1745 ubi_dump_av(av);
801c135c
AB
1746 goto out;
1747
1748bad_vid_hdr:
517af48c
AB
1749 ubi_err("bad attaching information about volume %d", av->vol_id);
1750 ubi_dump_av(av);
a904e3f1 1751 ubi_dump_vid_hdr(vidh);
801c135c
AB
1752
1753out:
25886a36 1754 dump_stack();
adbf05e3 1755 return -EINVAL;
801c135c 1756}