]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/ubi/io.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
85c6e6e2 23 * UBI input/output sub-system.
801c135c 24 *
85c6e6e2
AB
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
801c135c
AB
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
85c6e6e2
AB
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
801c135c
AB
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
be436f62
SK
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
801c135c
AB
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
85c6e6e2
AB
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
801c135c
AB
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
5a0e3ad6 91#include <linux/slab.h>
801c135c
AB
92#include "ubi.h"
93
8056eb4a
AB
94static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
97d6104b
AB
101static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 int offset, int len);
801c135c
AB
103
104/**
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
111 *
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
114 * possible:
115 *
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
801c135c
AB
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
125 */
126int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 int len)
128{
129 int err, retries = 0;
130 size_t read;
131 loff_t addr;
132
133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134
135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 ubi_assert(len > 0);
138
8056eb4a 139 err = self_check_not_bad(ubi, pnum);
801c135c 140 if (err)
adbf05e3 141 return err;
801c135c 142
276832d8
AB
143 /*
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
153 *
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
158 * correct.
159 *
160 * Try to prevent this situation by changing the first byte of the
161 * buffer.
162 */
163 *((uint8_t *)buf) ^= 0xFF;
164
801c135c
AB
165 addr = (loff_t)pnum * ubi->peb_size + offset;
166retry:
329ad399 167 err = mtd_read(ubi->mtd, addr, len, &read, buf);
801c135c 168 if (err) {
d57f4054 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
1a49af2c 170
d57f4054 171 if (mtd_is_bitflip(err)) {
801c135c
AB
172 /*
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
8c1e6ee1
AB
175 *
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
801c135c 179 */
719bb840 180 ubi_msg("fixable bit-flip detected at PEB %d", pnum);
801c135c
AB
181 ubi_assert(len == read);
182 return UBI_IO_BITFLIPS;
183 }
184
a87f29cb 185 if (retries++ < UBI_IO_RETRIES) {
049333ce 186 ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
f01e2d16 187 err, errstr, len, pnum, offset, read);
801c135c
AB
188 yield();
189 goto retry;
190 }
191
049333ce
AB
192 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
193 err, errstr, len, pnum, offset, read);
25886a36 194 dump_stack();
2362a53e
AB
195
196 /*
197 * The driver should never return -EBADMSG if it failed to read
198 * all the requested data. But some buggy drivers might do
199 * this, so we change it to -EIO.
200 */
d57f4054 201 if (read != len && mtd_is_eccerr(err)) {
2362a53e
AB
202 ubi_assert(0);
203 err = -EIO;
204 }
801c135c
AB
205 } else {
206 ubi_assert(len == read);
207
27a0f2a3 208 if (ubi_dbg_is_bitflip(ubi)) {
c8566350 209 dbg_gen("bit-flip (emulated)");
801c135c
AB
210 err = UBI_IO_BITFLIPS;
211 }
212 }
213
214 return err;
215}
216
217/**
218 * ubi_io_write - write data to a physical eraseblock.
219 * @ubi: UBI device description object
220 * @buf: buffer with the data to write
221 * @pnum: physical eraseblock number to write to
222 * @offset: offset within the physical eraseblock where to write
223 * @len: how many bytes to write
224 *
225 * This function writes @len bytes of data from buffer @buf to offset @offset
226 * of physical eraseblock @pnum. If all the data were successfully written,
227 * zero is returned. If an error occurred, this function returns a negative
228 * error code. If %-EIO is returned, the physical eraseblock most probably went
229 * bad.
230 *
231 * Note, in case of an error, it is possible that something was still written
232 * to the flash media, but may be some garbage.
233 */
e88d6e10
AB
234int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
235 int len)
801c135c
AB
236{
237 int err;
238 size_t written;
239 loff_t addr;
240
241 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
242
243 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
244 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
245 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
246 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
247
248 if (ubi->ro_mode) {
249 ubi_err("read-only mode");
250 return -EROFS;
251 }
252
8056eb4a 253 err = self_check_not_bad(ubi, pnum);
801c135c 254 if (err)
adbf05e3 255 return err;
801c135c
AB
256
257 /* The area we are writing to has to contain all 0xFF bytes */
97d6104b 258 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
801c135c 259 if (err)
adbf05e3 260 return err;
801c135c
AB
261
262 if (offset >= ubi->leb_start) {
263 /*
264 * We write to the data area of the physical eraseblock. Make
265 * sure it has valid EC and VID headers.
266 */
8056eb4a 267 err = self_check_peb_ec_hdr(ubi, pnum);
801c135c 268 if (err)
adbf05e3 269 return err;
8056eb4a 270 err = self_check_peb_vid_hdr(ubi, pnum);
801c135c 271 if (err)
adbf05e3 272 return err;
801c135c
AB
273 }
274
27a0f2a3 275 if (ubi_dbg_is_write_failure(ubi)) {
049333ce
AB
276 ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
277 len, pnum, offset);
25886a36 278 dump_stack();
801c135c
AB
279 return -EIO;
280 }
281
282 addr = (loff_t)pnum * ubi->peb_size + offset;
eda95cbf 283 err = mtd_write(ubi->mtd, addr, len, &written, buf);
801c135c 284 if (err) {
049333ce
AB
285 ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
286 err, len, pnum, offset, written);
25886a36 287 dump_stack();
ef7088e7 288 ubi_dump_flash(ubi, pnum, offset, len);
801c135c
AB
289 } else
290 ubi_assert(written == len);
291
6e9065d7 292 if (!err) {
97d6104b 293 err = self_check_write(ubi, buf, pnum, offset, len);
6e9065d7
AB
294 if (err)
295 return err;
296
297 /*
298 * Since we always write sequentially, the rest of the PEB has
299 * to contain only 0xFF bytes.
300 */
301 offset += len;
302 len = ubi->peb_size - offset;
303 if (len)
97d6104b 304 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
6e9065d7
AB
305 }
306
801c135c
AB
307 return err;
308}
309
310/**
311 * erase_callback - MTD erasure call-back.
312 * @ei: MTD erase information object.
313 *
314 * Note, even though MTD erase interface is asynchronous, all the current
315 * implementations are synchronous anyway.
316 */
317static void erase_callback(struct erase_info *ei)
318{
319 wake_up_interruptible((wait_queue_head_t *)ei->priv);
320}
321
322/**
323 * do_sync_erase - synchronously erase a physical eraseblock.
324 * @ubi: UBI device description object
325 * @pnum: the physical eraseblock number to erase
326 *
327 * This function synchronously erases physical eraseblock @pnum and returns
328 * zero in case of success and a negative error code in case of failure. If
329 * %-EIO is returned, the physical eraseblock most probably went bad.
330 */
e88d6e10 331static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
332{
333 int err, retries = 0;
334 struct erase_info ei;
335 wait_queue_head_t wq;
336
337 dbg_io("erase PEB %d", pnum);
3efe5090
AB
338 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
339
340 if (ubi->ro_mode) {
341 ubi_err("read-only mode");
342 return -EROFS;
343 }
801c135c
AB
344
345retry:
346 init_waitqueue_head(&wq);
347 memset(&ei, 0, sizeof(struct erase_info));
348
349 ei.mtd = ubi->mtd;
2f176f79 350 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
351 ei.len = ubi->peb_size;
352 ei.callback = erase_callback;
353 ei.priv = (unsigned long)&wq;
354
7e1f0dc0 355 err = mtd_erase(ubi->mtd, &ei);
801c135c
AB
356 if (err) {
357 if (retries++ < UBI_IO_RETRIES) {
f01e2d16
AB
358 ubi_warn("error %d while erasing PEB %d, retry",
359 err, pnum);
801c135c
AB
360 yield();
361 goto retry;
362 }
363 ubi_err("cannot erase PEB %d, error %d", pnum, err);
25886a36 364 dump_stack();
801c135c
AB
365 return err;
366 }
367
368 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
369 ei.state == MTD_ERASE_FAILED);
370 if (err) {
371 ubi_err("interrupted PEB %d erasure", pnum);
372 return -EINTR;
373 }
374
375 if (ei.state == MTD_ERASE_FAILED) {
376 if (retries++ < UBI_IO_RETRIES) {
f01e2d16 377 ubi_warn("error while erasing PEB %d, retry", pnum);
801c135c
AB
378 yield();
379 goto retry;
380 }
381 ubi_err("cannot erase PEB %d", pnum);
25886a36 382 dump_stack();
801c135c
AB
383 return -EIO;
384 }
385
97d6104b 386 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
801c135c 387 if (err)
adbf05e3 388 return err;
801c135c 389
27a0f2a3 390 if (ubi_dbg_is_erase_failure(ubi)) {
e2986827 391 ubi_err("cannot erase PEB %d (emulated)", pnum);
801c135c
AB
392 return -EIO;
393 }
394
395 return 0;
396}
397
801c135c
AB
398/* Patterns to write to a physical eraseblock when torturing it */
399static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
400
401/**
402 * torture_peb - test a supposedly bad physical eraseblock.
403 * @ubi: UBI device description object
404 * @pnum: the physical eraseblock number to test
405 *
406 * This function returns %-EIO if the physical eraseblock did not pass the
407 * test, a positive number of erase operations done if the test was
408 * successfully passed, and other negative error codes in case of other errors.
409 */
e88d6e10 410static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 411{
801c135c
AB
412 int err, i, patt_count;
413
8c1e6ee1 414 ubi_msg("run torture test for PEB %d", pnum);
801c135c
AB
415 patt_count = ARRAY_SIZE(patterns);
416 ubi_assert(patt_count > 0);
417
e88d6e10 418 mutex_lock(&ubi->buf_mutex);
801c135c
AB
419 for (i = 0; i < patt_count; i++) {
420 err = do_sync_erase(ubi, pnum);
421 if (err)
422 goto out;
423
424 /* Make sure the PEB contains only 0xFF bytes */
0ca39d74 425 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
801c135c
AB
426 if (err)
427 goto out;
428
0ca39d74 429 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
801c135c
AB
430 if (err == 0) {
431 ubi_err("erased PEB %d, but a non-0xFF byte found",
432 pnum);
433 err = -EIO;
434 goto out;
435 }
436
437 /* Write a pattern and check it */
0ca39d74
AB
438 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
439 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
801c135c
AB
440 if (err)
441 goto out;
442
0ca39d74
AB
443 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
444 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
801c135c
AB
445 if (err)
446 goto out;
447
0ca39d74 448 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
bb00e180 449 ubi->peb_size);
801c135c
AB
450 if (err == 0) {
451 ubi_err("pattern %x checking failed for PEB %d",
452 patterns[i], pnum);
453 err = -EIO;
454 goto out;
455 }
456 }
457
458 err = patt_count;
14264144 459 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
801c135c
AB
460
461out:
e88d6e10 462 mutex_unlock(&ubi->buf_mutex);
d57f4054 463 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
801c135c
AB
464 /*
465 * If a bit-flip or data integrity error was detected, the test
466 * has not passed because it happened on a freshly erased
467 * physical eraseblock which means something is wrong with it.
468 */
8d2d4011
AB
469 ubi_err("read problems on freshly erased PEB %d, must be bad",
470 pnum);
801c135c 471 err = -EIO;
8d2d4011 472 }
801c135c
AB
473 return err;
474}
475
ebf53f42
AB
476/**
477 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
478 * @ubi: UBI device description object
479 * @pnum: physical eraseblock number to prepare
480 *
481 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
482 * algorithm: the PEB is first filled with zeroes, then it is erased. And
483 * filling with zeroes starts from the end of the PEB. This was observed with
484 * Spansion S29GL512N NOR flash.
485 *
486 * This means that in case of a power cut we may end up with intact data at the
487 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
488 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
489 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
490 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
491 *
492 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
493 * magic numbers in order to invalidate them and prevent the failures. Returns
494 * zero in case of success and a negative error code in case of failure.
495 */
496static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
497{
2c7ca5cc 498 int err;
ebf53f42
AB
499 size_t written;
500 loff_t addr;
501 uint32_t data = 0;
2c7ca5cc
QW
502 struct ubi_ec_hdr ec_hdr;
503
2fff570e
AB
504 /*
505 * Note, we cannot generally define VID header buffers on stack,
506 * because of the way we deal with these buffers (see the header
507 * comment in this file). But we know this is a NOR-specific piece of
508 * code, so we can do this. But yes, this is error-prone and we should
509 * (pre-)allocate VID header buffer instead.
510 */
de75c771 511 struct ubi_vid_hdr vid_hdr;
ebf53f42 512
7ac760c2 513 /*
2c7ca5cc 514 * If VID or EC is valid, we have to corrupt them before erasing.
7ac760c2
AB
515 * It is important to first invalidate the EC header, and then the VID
516 * header. Otherwise a power cut may lead to valid EC header and
517 * invalid VID header, in which case UBI will treat this PEB as
fbd0107f 518 * corrupted and will try to preserve it, and print scary warnings.
7ac760c2
AB
519 */
520 addr = (loff_t)pnum * ubi->peb_size;
2c7ca5cc
QW
521 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
522 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
523 err != UBI_IO_FF){
eda95cbf 524 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
2c7ca5cc
QW
525 if(err)
526 goto error;
ebf53f42
AB
527 }
528
2c7ca5cc
QW
529 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
530 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
531 err != UBI_IO_FF){
532 addr += ubi->vid_hdr_aloffset;
533 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
534 if (err)
535 goto error;
7ac760c2 536 }
2c7ca5cc 537 return 0;
de75c771 538
2c7ca5cc 539error:
de75c771 540 /*
2c7ca5cc
QW
541 * The PEB contains a valid VID or EC header, but we cannot invalidate
542 * it. Supposedly the flash media or the driver is screwed up, so
543 * return an error.
de75c771 544 */
2c7ca5cc 545 ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err);
ef7088e7 546 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
de75c771 547 return -EIO;
ebf53f42
AB
548}
549
801c135c
AB
550/**
551 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
552 * @ubi: UBI device description object
553 * @pnum: physical eraseblock number to erase
554 * @torture: if this physical eraseblock has to be tortured
555 *
556 * This function synchronously erases physical eraseblock @pnum. If @torture
557 * flag is not zero, the physical eraseblock is checked by means of writing
558 * different patterns to it and reading them back. If the torturing is enabled,
025dfdaf 559 * the physical eraseblock is erased more than once.
801c135c
AB
560 *
561 * This function returns the number of erasures made in case of success, %-EIO
562 * if the erasure failed or the torturing test failed, and other negative error
563 * codes in case of other errors. Note, %-EIO means that the physical
564 * eraseblock is bad.
565 */
e88d6e10 566int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
567{
568 int err, ret = 0;
569
570 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
571
8056eb4a 572 err = self_check_not_bad(ubi, pnum);
801c135c 573 if (err != 0)
adbf05e3 574 return err;
801c135c
AB
575
576 if (ubi->ro_mode) {
577 ubi_err("read-only mode");
578 return -EROFS;
579 }
580
ebf53f42
AB
581 if (ubi->nor_flash) {
582 err = nor_erase_prepare(ubi, pnum);
583 if (err)
584 return err;
585 }
586
801c135c
AB
587 if (torture) {
588 ret = torture_peb(ubi, pnum);
589 if (ret < 0)
590 return ret;
591 }
592
593 err = do_sync_erase(ubi, pnum);
594 if (err)
595 return err;
596
597 return ret + 1;
598}
599
600/**
601 * ubi_io_is_bad - check if a physical eraseblock is bad.
602 * @ubi: UBI device description object
603 * @pnum: the physical eraseblock number to check
604 *
605 * This function returns a positive number if the physical eraseblock is bad,
606 * zero if not, and a negative error code if an error occurred.
607 */
608int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
609{
610 struct mtd_info *mtd = ubi->mtd;
611
612 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
613
614 if (ubi->bad_allowed) {
615 int ret;
616
7086c19d 617 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
801c135c
AB
618 if (ret < 0)
619 ubi_err("error %d while checking if PEB %d is bad",
620 ret, pnum);
621 else if (ret)
622 dbg_io("PEB %d is bad", pnum);
623 return ret;
624 }
625
626 return 0;
627}
628
629/**
630 * ubi_io_mark_bad - mark a physical eraseblock as bad.
631 * @ubi: UBI device description object
632 * @pnum: the physical eraseblock number to mark
633 *
634 * This function returns zero in case of success and a negative error code in
635 * case of failure.
636 */
637int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
638{
639 int err;
640 struct mtd_info *mtd = ubi->mtd;
641
642 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
643
644 if (ubi->ro_mode) {
645 ubi_err("read-only mode");
646 return -EROFS;
647 }
648
649 if (!ubi->bad_allowed)
650 return 0;
651
5942ddbc 652 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
801c135c
AB
653 if (err)
654 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
655 return err;
656}
657
658/**
659 * validate_ec_hdr - validate an erase counter header.
660 * @ubi: UBI device description object
661 * @ec_hdr: the erase counter header to check
662 *
663 * This function returns zero if the erase counter header is OK, and %1 if
664 * not.
665 */
fe96efc1 666static int validate_ec_hdr(const struct ubi_device *ubi,
801c135c
AB
667 const struct ubi_ec_hdr *ec_hdr)
668{
669 long long ec;
fe96efc1 670 int vid_hdr_offset, leb_start;
801c135c 671
3261ebd7
CH
672 ec = be64_to_cpu(ec_hdr->ec);
673 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
674 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
675
676 if (ec_hdr->version != UBI_VERSION) {
049333ce 677 ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
801c135c
AB
678 UBI_VERSION, (int)ec_hdr->version);
679 goto bad;
680 }
681
682 if (vid_hdr_offset != ubi->vid_hdr_offset) {
683 ubi_err("bad VID header offset %d, expected %d",
684 vid_hdr_offset, ubi->vid_hdr_offset);
685 goto bad;
686 }
687
688 if (leb_start != ubi->leb_start) {
689 ubi_err("bad data offset %d, expected %d",
690 leb_start, ubi->leb_start);
691 goto bad;
692 }
693
694 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
695 ubi_err("bad erase counter %lld", ec);
696 goto bad;
697 }
698
699 return 0;
700
701bad:
702 ubi_err("bad EC header");
a904e3f1 703 ubi_dump_ec_hdr(ec_hdr);
25886a36 704 dump_stack();
801c135c
AB
705 return 1;
706}
707
708/**
709 * ubi_io_read_ec_hdr - read and check an erase counter header.
710 * @ubi: UBI device description object
711 * @pnum: physical eraseblock to read from
712 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
713 * header
714 * @verbose: be verbose if the header is corrupted or was not found
715 *
716 * This function reads erase counter header from physical eraseblock @pnum and
717 * stores it in @ec_hdr. This function also checks CRC checksum of the read
718 * erase counter header. The following codes may be returned:
719 *
720 * o %0 if the CRC checksum is correct and the header was successfully read;
721 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
722 * and corrected by the flash driver; this is harmless but may indicate that
723 * this eraseblock may become bad soon (but may be not);
786d7831 724 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
756e1df1
AB
725 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
726 * a data integrity error (uncorrectable ECC error in case of NAND);
74d82d26 727 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
801c135c
AB
728 * o a negative error code in case of failure.
729 */
e88d6e10 730int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
731 struct ubi_ec_hdr *ec_hdr, int verbose)
732{
92e1a7d9 733 int err, read_err;
801c135c
AB
734 uint32_t crc, magic, hdr_crc;
735
736 dbg_io("read EC header from PEB %d", pnum);
737 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
738
92e1a7d9
AB
739 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
740 if (read_err) {
d57f4054 741 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
92e1a7d9 742 return read_err;
801c135c
AB
743
744 /*
745 * We read all the data, but either a correctable bit-flip
756e1df1
AB
746 * occurred, or MTD reported a data integrity error
747 * (uncorrectable ECC error in case of NAND). The former is
748 * harmless, the later may mean that the read data is
749 * corrupted. But we have a CRC check-sum and we will detect
750 * this. If the EC header is still OK, we just report this as
751 * there was a bit-flip, to force scrubbing.
801c135c 752 */
801c135c
AB
753 }
754
3261ebd7 755 magic = be32_to_cpu(ec_hdr->magic);
801c135c 756 if (magic != UBI_EC_HDR_MAGIC) {
d57f4054 757 if (mtd_is_eccerr(read_err))
92e1a7d9 758 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 759
801c135c
AB
760 /*
761 * The magic field is wrong. Let's check if we have read all
762 * 0xFF. If yes, this physical eraseblock is assumed to be
763 * empty.
801c135c 764 */
bb00e180 765 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
801c135c 766 /* The physical eraseblock is supposedly empty */
801c135c 767 if (verbose)
049333ce
AB
768 ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
769 pnum);
770 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
771 pnum);
92e1a7d9
AB
772 if (!read_err)
773 return UBI_IO_FF;
774 else
775 return UBI_IO_FF_BITFLIPS;
801c135c
AB
776 }
777
778 /*
779 * This is not a valid erase counter header, and these are not
780 * 0xFF bytes. Report that the header is corrupted.
781 */
782 if (verbose) {
049333ce
AB
783 ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
784 pnum, magic, UBI_EC_HDR_MAGIC);
a904e3f1 785 ubi_dump_ec_hdr(ec_hdr);
6f9fdf62 786 }
049333ce
AB
787 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
788 pnum, magic, UBI_EC_HDR_MAGIC);
786d7831 789 return UBI_IO_BAD_HDR;
801c135c
AB
790 }
791
792 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 793 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
794
795 if (hdr_crc != crc) {
796 if (verbose) {
049333ce
AB
797 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
798 pnum, crc, hdr_crc);
a904e3f1 799 ubi_dump_ec_hdr(ec_hdr);
6f9fdf62 800 }
049333ce
AB
801 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
802 pnum, crc, hdr_crc);
92e1a7d9
AB
803
804 if (!read_err)
805 return UBI_IO_BAD_HDR;
806 else
807 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
808 }
809
810 /* And of course validate what has just been read from the media */
811 err = validate_ec_hdr(ubi, ec_hdr);
812 if (err) {
813 ubi_err("validation failed for PEB %d", pnum);
814 return -EINVAL;
815 }
816
eb89580e
AB
817 /*
818 * If there was %-EBADMSG, but the header CRC is still OK, report about
819 * a bit-flip to force scrubbing on this PEB.
820 */
801c135c
AB
821 return read_err ? UBI_IO_BITFLIPS : 0;
822}
823
824/**
825 * ubi_io_write_ec_hdr - write an erase counter header.
826 * @ubi: UBI device description object
827 * @pnum: physical eraseblock to write to
828 * @ec_hdr: the erase counter header to write
829 *
830 * This function writes erase counter header described by @ec_hdr to physical
831 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
832 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
833 * field.
834 *
835 * This function returns zero in case of success and a negative error code in
836 * case of failure. If %-EIO is returned, the physical eraseblock most probably
837 * went bad.
838 */
e88d6e10 839int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
840 struct ubi_ec_hdr *ec_hdr)
841{
842 int err;
843 uint32_t crc;
844
845 dbg_io("write EC header to PEB %d", pnum);
846 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
847
3261ebd7 848 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 849 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
850 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
851 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0c6c7fa1 852 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801c135c 853 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 854 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c 855
8056eb4a 856 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
801c135c 857 if (err)
adbf05e3 858 return err;
801c135c
AB
859
860 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
861 return err;
862}
863
864/**
865 * validate_vid_hdr - validate a volume identifier header.
866 * @ubi: UBI device description object
867 * @vid_hdr: the volume identifier header to check
868 *
869 * This function checks that data stored in the volume identifier header
870 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
871 */
872static int validate_vid_hdr(const struct ubi_device *ubi,
873 const struct ubi_vid_hdr *vid_hdr)
874{
875 int vol_type = vid_hdr->vol_type;
876 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
877 int vol_id = be32_to_cpu(vid_hdr->vol_id);
878 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 879 int compat = vid_hdr->compat;
3261ebd7
CH
880 int data_size = be32_to_cpu(vid_hdr->data_size);
881 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
882 int data_pad = be32_to_cpu(vid_hdr->data_pad);
883 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
884 int usable_leb_size = ubi->leb_size - data_pad;
885
886 if (copy_flag != 0 && copy_flag != 1) {
e2986827 887 ubi_err("bad copy_flag");
801c135c
AB
888 goto bad;
889 }
890
891 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
892 data_pad < 0) {
e2986827 893 ubi_err("negative values");
801c135c
AB
894 goto bad;
895 }
896
897 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
e2986827 898 ubi_err("bad vol_id");
801c135c
AB
899 goto bad;
900 }
901
902 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
e2986827 903 ubi_err("bad compat");
801c135c
AB
904 goto bad;
905 }
906
907 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
908 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
909 compat != UBI_COMPAT_REJECT) {
e2986827 910 ubi_err("bad compat");
801c135c
AB
911 goto bad;
912 }
913
914 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
e2986827 915 ubi_err("bad vol_type");
801c135c
AB
916 goto bad;
917 }
918
919 if (data_pad >= ubi->leb_size / 2) {
e2986827 920 ubi_err("bad data_pad");
801c135c
AB
921 goto bad;
922 }
923
924 if (vol_type == UBI_VID_STATIC) {
925 /*
926 * Although from high-level point of view static volumes may
927 * contain zero bytes of data, but no VID headers can contain
928 * zero at these fields, because they empty volumes do not have
929 * mapped logical eraseblocks.
930 */
931 if (used_ebs == 0) {
e2986827 932 ubi_err("zero used_ebs");
801c135c
AB
933 goto bad;
934 }
935 if (data_size == 0) {
e2986827 936 ubi_err("zero data_size");
801c135c
AB
937 goto bad;
938 }
939 if (lnum < used_ebs - 1) {
940 if (data_size != usable_leb_size) {
e2986827 941 ubi_err("bad data_size");
801c135c
AB
942 goto bad;
943 }
944 } else if (lnum == used_ebs - 1) {
945 if (data_size == 0) {
e2986827 946 ubi_err("bad data_size at last LEB");
801c135c
AB
947 goto bad;
948 }
949 } else {
e2986827 950 ubi_err("too high lnum");
801c135c
AB
951 goto bad;
952 }
953 } else {
954 if (copy_flag == 0) {
955 if (data_crc != 0) {
e2986827 956 ubi_err("non-zero data CRC");
801c135c
AB
957 goto bad;
958 }
959 if (data_size != 0) {
e2986827 960 ubi_err("non-zero data_size");
801c135c
AB
961 goto bad;
962 }
963 } else {
964 if (data_size == 0) {
e2986827 965 ubi_err("zero data_size of copy");
801c135c
AB
966 goto bad;
967 }
968 }
969 if (used_ebs != 0) {
e2986827 970 ubi_err("bad used_ebs");
801c135c
AB
971 goto bad;
972 }
973 }
974
975 return 0;
976
977bad:
978 ubi_err("bad VID header");
a904e3f1 979 ubi_dump_vid_hdr(vid_hdr);
25886a36 980 dump_stack();
801c135c
AB
981 return 1;
982}
983
984/**
985 * ubi_io_read_vid_hdr - read and check a volume identifier header.
986 * @ubi: UBI device description object
987 * @pnum: physical eraseblock number to read from
988 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
989 * identifier header
990 * @verbose: be verbose if the header is corrupted or wasn't found
991 *
992 * This function reads the volume identifier header from physical eraseblock
993 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
74d82d26
AB
994 * volume identifier header. The error codes are the same as in
995 * 'ubi_io_read_ec_hdr()'.
801c135c 996 *
74d82d26
AB
997 * Note, the implementation of this function is also very similar to
998 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
801c135c 999 */
e88d6e10 1000int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1001 struct ubi_vid_hdr *vid_hdr, int verbose)
1002{
92e1a7d9 1003 int err, read_err;
801c135c
AB
1004 uint32_t crc, magic, hdr_crc;
1005 void *p;
1006
1007 dbg_io("read VID header from PEB %d", pnum);
1008 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1009
1010 p = (char *)vid_hdr - ubi->vid_hdr_shift;
92e1a7d9 1011 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
801c135c 1012 ubi->vid_hdr_alsize);
d57f4054 1013 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
92e1a7d9 1014 return read_err;
801c135c 1015
3261ebd7 1016 magic = be32_to_cpu(vid_hdr->magic);
801c135c 1017 if (magic != UBI_VID_HDR_MAGIC) {
d57f4054 1018 if (mtd_is_eccerr(read_err))
92e1a7d9 1019 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 1020
bb00e180 1021 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
801c135c 1022 if (verbose)
049333ce
AB
1023 ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
1024 pnum);
1025 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1026 pnum);
92e1a7d9
AB
1027 if (!read_err)
1028 return UBI_IO_FF;
1029 else
1030 return UBI_IO_FF_BITFLIPS;
801c135c
AB
1031 }
1032
801c135c 1033 if (verbose) {
049333ce
AB
1034 ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
1035 pnum, magic, UBI_VID_HDR_MAGIC);
a904e3f1 1036 ubi_dump_vid_hdr(vid_hdr);
6f9fdf62 1037 }
049333ce
AB
1038 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1039 pnum, magic, UBI_VID_HDR_MAGIC);
786d7831 1040 return UBI_IO_BAD_HDR;
801c135c
AB
1041 }
1042
1043 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1044 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1045
1046 if (hdr_crc != crc) {
1047 if (verbose) {
049333ce
AB
1048 ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
1049 pnum, crc, hdr_crc);
a904e3f1 1050 ubi_dump_vid_hdr(vid_hdr);
6f9fdf62 1051 }
049333ce
AB
1052 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1053 pnum, crc, hdr_crc);
92e1a7d9
AB
1054 if (!read_err)
1055 return UBI_IO_BAD_HDR;
1056 else
1057 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
1058 }
1059
801c135c
AB
1060 err = validate_vid_hdr(ubi, vid_hdr);
1061 if (err) {
1062 ubi_err("validation failed for PEB %d", pnum);
1063 return -EINVAL;
1064 }
1065
1066 return read_err ? UBI_IO_BITFLIPS : 0;
1067}
1068
1069/**
1070 * ubi_io_write_vid_hdr - write a volume identifier header.
1071 * @ubi: UBI device description object
1072 * @pnum: the physical eraseblock number to write to
1073 * @vid_hdr: the volume identifier header to write
1074 *
1075 * This function writes the volume identifier header described by @vid_hdr to
1076 * physical eraseblock @pnum. This function automatically fills the
1077 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1078 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1079 *
1080 * This function returns zero in case of success and a negative error code in
1081 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1082 * bad.
1083 */
e88d6e10 1084int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1085 struct ubi_vid_hdr *vid_hdr)
1086{
1087 int err;
1088 uint32_t crc;
1089 void *p;
1090
1091 dbg_io("write VID header to PEB %d", pnum);
1092 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1093
8056eb4a 1094 err = self_check_peb_ec_hdr(ubi, pnum);
801c135c 1095 if (err)
adbf05e3 1096 return err;
801c135c 1097
3261ebd7 1098 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1099 vid_hdr->version = UBI_VERSION;
1100 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1101 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c 1102
8056eb4a 1103 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
801c135c 1104 if (err)
adbf05e3 1105 return err;
801c135c
AB
1106
1107 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1108 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1109 ubi->vid_hdr_alsize);
1110 return err;
1111}
1112
801c135c 1113/**
8056eb4a 1114 * self_check_not_bad - ensure that a physical eraseblock is not bad.
801c135c
AB
1115 * @ubi: UBI device description object
1116 * @pnum: physical eraseblock number to check
1117 *
adbf05e3
AB
1118 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1119 * it is bad and a negative error code if an error occurred.
801c135c 1120 */
8056eb4a 1121static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
801c135c
AB
1122{
1123 int err;
1124
64575574 1125 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1126 return 0;
1127
801c135c
AB
1128 err = ubi_io_is_bad(ubi, pnum);
1129 if (!err)
1130 return err;
1131
8056eb4a 1132 ubi_err("self-check failed for PEB %d", pnum);
25886a36 1133 dump_stack();
adbf05e3 1134 return err > 0 ? -EINVAL : err;
801c135c
AB
1135}
1136
1137/**
8056eb4a 1138 * self_check_ec_hdr - check if an erase counter header is all right.
801c135c
AB
1139 * @ubi: UBI device description object
1140 * @pnum: physical eraseblock number the erase counter header belongs to
1141 * @ec_hdr: the erase counter header to check
1142 *
1143 * This function returns zero if the erase counter header contains valid
adbf05e3 1144 * values, and %-EINVAL if not.
801c135c 1145 */
8056eb4a
AB
1146static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1147 const struct ubi_ec_hdr *ec_hdr)
801c135c
AB
1148{
1149 int err;
1150 uint32_t magic;
1151
64575574 1152 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1153 return 0;
1154
3261ebd7 1155 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
1156 if (magic != UBI_EC_HDR_MAGIC) {
1157 ubi_err("bad magic %#08x, must be %#08x",
1158 magic, UBI_EC_HDR_MAGIC);
1159 goto fail;
1160 }
1161
1162 err = validate_ec_hdr(ubi, ec_hdr);
1163 if (err) {
8056eb4a 1164 ubi_err("self-check failed for PEB %d", pnum);
801c135c
AB
1165 goto fail;
1166 }
1167
1168 return 0;
1169
1170fail:
a904e3f1 1171 ubi_dump_ec_hdr(ec_hdr);
25886a36 1172 dump_stack();
adbf05e3 1173 return -EINVAL;
801c135c
AB
1174}
1175
1176/**
8056eb4a 1177 * self_check_peb_ec_hdr - check erase counter header.
801c135c
AB
1178 * @ubi: UBI device description object
1179 * @pnum: the physical eraseblock number to check
1180 *
adbf05e3
AB
1181 * This function returns zero if the erase counter header is all right and and
1182 * a negative error code if not or if an error occurred.
801c135c 1183 */
8056eb4a 1184static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
801c135c
AB
1185{
1186 int err;
1187 uint32_t crc, hdr_crc;
1188 struct ubi_ec_hdr *ec_hdr;
1189
64575574 1190 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1191 return 0;
1192
33818bbb 1193 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1194 if (!ec_hdr)
1195 return -ENOMEM;
1196
1197 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
d57f4054 1198 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
801c135c
AB
1199 goto exit;
1200
1201 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1202 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
1203 if (hdr_crc != crc) {
1204 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
8056eb4a 1205 ubi_err("self-check failed for PEB %d", pnum);
a904e3f1 1206 ubi_dump_ec_hdr(ec_hdr);
25886a36 1207 dump_stack();
adbf05e3 1208 err = -EINVAL;
801c135c
AB
1209 goto exit;
1210 }
1211
8056eb4a 1212 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
801c135c
AB
1213
1214exit:
1215 kfree(ec_hdr);
1216 return err;
1217}
1218
1219/**
8056eb4a 1220 * self_check_vid_hdr - check that a volume identifier header is all right.
801c135c
AB
1221 * @ubi: UBI device description object
1222 * @pnum: physical eraseblock number the volume identifier header belongs to
1223 * @vid_hdr: the volume identifier header to check
1224 *
1225 * This function returns zero if the volume identifier header is all right, and
adbf05e3 1226 * %-EINVAL if not.
801c135c 1227 */
8056eb4a
AB
1228static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1229 const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
1230{
1231 int err;
1232 uint32_t magic;
1233
64575574 1234 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1235 return 0;
1236
3261ebd7 1237 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1238 if (magic != UBI_VID_HDR_MAGIC) {
1239 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1240 magic, pnum, UBI_VID_HDR_MAGIC);
1241 goto fail;
1242 }
1243
1244 err = validate_vid_hdr(ubi, vid_hdr);
1245 if (err) {
8056eb4a 1246 ubi_err("self-check failed for PEB %d", pnum);
801c135c
AB
1247 goto fail;
1248 }
1249
1250 return err;
1251
1252fail:
8056eb4a 1253 ubi_err("self-check failed for PEB %d", pnum);
a904e3f1 1254 ubi_dump_vid_hdr(vid_hdr);
25886a36 1255 dump_stack();
adbf05e3 1256 return -EINVAL;
801c135c
AB
1257
1258}
1259
1260/**
8056eb4a 1261 * self_check_peb_vid_hdr - check volume identifier header.
801c135c
AB
1262 * @ubi: UBI device description object
1263 * @pnum: the physical eraseblock number to check
1264 *
1265 * This function returns zero if the volume identifier header is all right,
adbf05e3 1266 * and a negative error code if not or if an error occurred.
801c135c 1267 */
8056eb4a 1268static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
801c135c
AB
1269{
1270 int err;
1271 uint32_t crc, hdr_crc;
1272 struct ubi_vid_hdr *vid_hdr;
1273 void *p;
1274
64575574 1275 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1276 return 0;
1277
33818bbb 1278 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
1279 if (!vid_hdr)
1280 return -ENOMEM;
1281
1282 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1283 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1284 ubi->vid_hdr_alsize);
d57f4054 1285 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
801c135c
AB
1286 goto exit;
1287
1288 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1289 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c 1290 if (hdr_crc != crc) {
049333ce
AB
1291 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1292 pnum, crc, hdr_crc);
8056eb4a 1293 ubi_err("self-check failed for PEB %d", pnum);
a904e3f1 1294 ubi_dump_vid_hdr(vid_hdr);
25886a36 1295 dump_stack();
adbf05e3 1296 err = -EINVAL;
801c135c
AB
1297 goto exit;
1298 }
1299
8056eb4a 1300 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
801c135c
AB
1301
1302exit:
1303 ubi_free_vid_hdr(ubi, vid_hdr);
1304 return err;
1305}
1306
6e9065d7 1307/**
97d6104b 1308 * self_check_write - make sure write succeeded.
6e9065d7
AB
1309 * @ubi: UBI device description object
1310 * @buf: buffer with data which were written
1311 * @pnum: physical eraseblock number the data were written to
1312 * @offset: offset within the physical eraseblock the data were written to
1313 * @len: how many bytes were written
1314 *
1315 * This functions reads data which were recently written and compares it with
1316 * the original data buffer - the data have to match. Returns zero if the data
1317 * match and a negative error code if not or in case of failure.
1318 */
97d6104b
AB
1319static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1320 int offset, int len)
6e9065d7
AB
1321{
1322 int err, i;
7950d023 1323 size_t read;
a7586743 1324 void *buf1;
7950d023 1325 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
6e9065d7 1326
64575574 1327 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1328 return 0;
1329
3d46b316 1330 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
a7586743
AB
1331 if (!buf1) {
1332 ubi_err("cannot allocate memory to check writes");
1333 return 0;
1334 }
1335
329ad399 1336 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
d57f4054 1337 if (err && !mtd_is_bitflip(err))
a7586743 1338 goto out_free;
6e9065d7
AB
1339
1340 for (i = 0; i < len; i++) {
1341 uint8_t c = ((uint8_t *)buf)[i];
a7586743 1342 uint8_t c1 = ((uint8_t *)buf1)[i];
6e9065d7
AB
1343 int dump_len;
1344
1345 if (c == c1)
1346 continue;
1347
8056eb4a 1348 ubi_err("self-check failed for PEB %d:%d, len %d",
6e9065d7
AB
1349 pnum, offset, len);
1350 ubi_msg("data differ at position %d", i);
1351 dump_len = max_t(int, 128, len - i);
1352 ubi_msg("hex dump of the original buffer from %d to %d",
1353 i, i + dump_len);
1354 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1355 buf + i, dump_len, 1);
1356 ubi_msg("hex dump of the read buffer from %d to %d",
1357 i, i + dump_len);
1358 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
a7586743 1359 buf1 + i, dump_len, 1);
25886a36 1360 dump_stack();
6e9065d7 1361 err = -EINVAL;
a7586743 1362 goto out_free;
6e9065d7 1363 }
6e9065d7 1364
a7586743 1365 vfree(buf1);
6e9065d7
AB
1366 return 0;
1367
a7586743
AB
1368out_free:
1369 vfree(buf1);
6e9065d7
AB
1370 return err;
1371}
1372
801c135c 1373/**
97d6104b 1374 * ubi_self_check_all_ff - check that a region of flash is empty.
801c135c
AB
1375 * @ubi: UBI device description object
1376 * @pnum: the physical eraseblock number to check
1377 * @offset: the starting offset within the physical eraseblock to check
1378 * @len: the length of the region to check
1379 *
1380 * This function returns zero if only 0xFF bytes are present at offset
adbf05e3
AB
1381 * @offset of the physical eraseblock @pnum, and a negative error code if not
1382 * or if an error occurred.
801c135c 1383 */
97d6104b 1384int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
801c135c
AB
1385{
1386 size_t read;
1387 int err;
332873d6 1388 void *buf;
801c135c
AB
1389 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1390
64575574 1391 if (!ubi_dbg_chk_io(ubi))
92d124f5
AB
1392 return 0;
1393
3d46b316 1394 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
332873d6
AB
1395 if (!buf) {
1396 ubi_err("cannot allocate memory to check for 0xFFs");
1397 return 0;
1398 }
1399
329ad399 1400 err = mtd_read(ubi->mtd, addr, len, &read, buf);
d57f4054 1401 if (err && !mtd_is_bitflip(err)) {
049333ce
AB
1402 ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1403 err, len, pnum, offset, read);
801c135c
AB
1404 goto error;
1405 }
1406
332873d6 1407 err = ubi_check_pattern(buf, 0xFF, len);
801c135c 1408 if (err == 0) {
049333ce
AB
1409 ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1410 pnum, offset, len);
801c135c
AB
1411 goto fail;
1412 }
1413
332873d6 1414 vfree(buf);
801c135c
AB
1415 return 0;
1416
1417fail:
8056eb4a 1418 ubi_err("self-check failed for PEB %d", pnum);
c8566350 1419 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
332873d6 1420 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
adbf05e3 1421 err = -EINVAL;
801c135c 1422error:
25886a36 1423 dump_stack();
332873d6 1424 vfree(buf);
801c135c
AB
1425 return err;
1426}