]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/ubi/io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
85c6e6e2 23 * UBI input/output sub-system.
801c135c 24 *
85c6e6e2
AB
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
801c135c
AB
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
85c6e6e2
AB
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
801c135c
AB
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
be436f62
SK
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
801c135c
AB
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
85c6e6e2
AB
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
801c135c
AB
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
5a0e3ad6 91#include <linux/slab.h>
801c135c
AB
92#include "ubi.h"
93
92d124f5 94#ifdef CONFIG_MTD_UBI_DEBUG
801c135c
AB
95static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
801c135c
AB
102#else
103#define paranoid_check_not_bad(ubi, pnum) 0
104#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
801c135c
AB
108#endif
109
110/**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
801c135c
AB
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134{
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
adbf05e3 147 return err;
801c135c 148
276832d8
AB
149 /*
150 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
151 * do not do this, the following may happen:
152 * 1. The buffer contains data from previous operation, e.g., read from
153 * another PEB previously. The data looks like expected, e.g., if we
154 * just do not read anything and return - the caller would not
155 * notice this. E.g., if we are reading a VID header, the buffer may
156 * contain a valid VID header from another PEB.
157 * 2. The driver is buggy and returns us success or -EBADMSG or
158 * -EUCLEAN, but it does not actually put any data to the buffer.
159 *
160 * This may confuse UBI or upper layers - they may think the buffer
161 * contains valid data while in fact it is just old data. This is
162 * especially possible because UBI (and UBIFS) relies on CRC, and
163 * treats data as correct even in case of ECC errors if the CRC is
164 * correct.
165 *
166 * Try to prevent this situation by changing the first byte of the
167 * buffer.
168 */
169 *((uint8_t *)buf) ^= 0xFF;
170
801c135c
AB
171 addr = (loff_t)pnum * ubi->peb_size + offset;
172retry:
173 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
174 if (err) {
f5d5b1f8 175 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
1a49af2c 176
801c135c
AB
177 if (err == -EUCLEAN) {
178 /*
179 * -EUCLEAN is reported if there was a bit-flip which
180 * was corrected, so this is harmless.
8c1e6ee1
AB
181 *
182 * We do not report about it here unless debugging is
183 * enabled. A corresponding message will be printed
184 * later, when it is has been scrubbed.
801c135c 185 */
8c1e6ee1 186 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
801c135c
AB
187 ubi_assert(len == read);
188 return UBI_IO_BITFLIPS;
189 }
190
a87f29cb 191 if (retries++ < UBI_IO_RETRIES) {
1a49af2c 192 dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
9c9ec147 193 " read only %zd bytes, retry",
1a49af2c 194 err, errstr, len, pnum, offset, read);
801c135c
AB
195 yield();
196 goto retry;
197 }
198
f5d5b1f8 199 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
1a49af2c 200 "read %zd bytes", err, errstr, len, pnum, offset, read);
801c135c 201 ubi_dbg_dump_stack();
2362a53e
AB
202
203 /*
204 * The driver should never return -EBADMSG if it failed to read
205 * all the requested data. But some buggy drivers might do
206 * this, so we change it to -EIO.
207 */
208 if (read != len && err == -EBADMSG) {
209 ubi_assert(0);
210 err = -EIO;
211 }
801c135c
AB
212 } else {
213 ubi_assert(len == read);
214
215 if (ubi_dbg_is_bitflip()) {
c8566350 216 dbg_gen("bit-flip (emulated)");
801c135c
AB
217 err = UBI_IO_BITFLIPS;
218 }
219 }
220
221 return err;
222}
223
224/**
225 * ubi_io_write - write data to a physical eraseblock.
226 * @ubi: UBI device description object
227 * @buf: buffer with the data to write
228 * @pnum: physical eraseblock number to write to
229 * @offset: offset within the physical eraseblock where to write
230 * @len: how many bytes to write
231 *
232 * This function writes @len bytes of data from buffer @buf to offset @offset
233 * of physical eraseblock @pnum. If all the data were successfully written,
234 * zero is returned. If an error occurred, this function returns a negative
235 * error code. If %-EIO is returned, the physical eraseblock most probably went
236 * bad.
237 *
238 * Note, in case of an error, it is possible that something was still written
239 * to the flash media, but may be some garbage.
240 */
e88d6e10
AB
241int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
242 int len)
801c135c
AB
243{
244 int err;
245 size_t written;
246 loff_t addr;
247
248 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
249
250 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
251 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
252 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
253 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
254
255 if (ubi->ro_mode) {
256 ubi_err("read-only mode");
257 return -EROFS;
258 }
259
260 /* The below has to be compiled out if paranoid checks are disabled */
261
262 err = paranoid_check_not_bad(ubi, pnum);
263 if (err)
adbf05e3 264 return err;
801c135c
AB
265
266 /* The area we are writing to has to contain all 0xFF bytes */
40a71a87 267 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
801c135c 268 if (err)
adbf05e3 269 return err;
801c135c
AB
270
271 if (offset >= ubi->leb_start) {
272 /*
273 * We write to the data area of the physical eraseblock. Make
274 * sure it has valid EC and VID headers.
275 */
276 err = paranoid_check_peb_ec_hdr(ubi, pnum);
277 if (err)
adbf05e3 278 return err;
801c135c
AB
279 err = paranoid_check_peb_vid_hdr(ubi, pnum);
280 if (err)
adbf05e3 281 return err;
801c135c
AB
282 }
283
284 if (ubi_dbg_is_write_failure()) {
285 dbg_err("cannot write %d bytes to PEB %d:%d "
286 "(emulated)", len, pnum, offset);
287 ubi_dbg_dump_stack();
288 return -EIO;
289 }
290
291 addr = (loff_t)pnum * ubi->peb_size + offset;
292 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
293 if (err) {
ebf53f42
AB
294 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
295 "%zd bytes", err, len, pnum, offset, written);
801c135c 296 ubi_dbg_dump_stack();
867996b1 297 ubi_dbg_dump_flash(ubi, pnum, offset, len);
801c135c
AB
298 } else
299 ubi_assert(written == len);
300
6e9065d7
AB
301 if (!err) {
302 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
303 if (err)
304 return err;
305
306 /*
307 * Since we always write sequentially, the rest of the PEB has
308 * to contain only 0xFF bytes.
309 */
310 offset += len;
311 len = ubi->peb_size - offset;
312 if (len)
313 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
314 }
315
801c135c
AB
316 return err;
317}
318
319/**
320 * erase_callback - MTD erasure call-back.
321 * @ei: MTD erase information object.
322 *
323 * Note, even though MTD erase interface is asynchronous, all the current
324 * implementations are synchronous anyway.
325 */
326static void erase_callback(struct erase_info *ei)
327{
328 wake_up_interruptible((wait_queue_head_t *)ei->priv);
329}
330
331/**
332 * do_sync_erase - synchronously erase a physical eraseblock.
333 * @ubi: UBI device description object
334 * @pnum: the physical eraseblock number to erase
335 *
336 * This function synchronously erases physical eraseblock @pnum and returns
337 * zero in case of success and a negative error code in case of failure. If
338 * %-EIO is returned, the physical eraseblock most probably went bad.
339 */
e88d6e10 340static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
341{
342 int err, retries = 0;
343 struct erase_info ei;
344 wait_queue_head_t wq;
345
346 dbg_io("erase PEB %d", pnum);
347
348retry:
349 init_waitqueue_head(&wq);
350 memset(&ei, 0, sizeof(struct erase_info));
351
352 ei.mtd = ubi->mtd;
2f176f79 353 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
354 ei.len = ubi->peb_size;
355 ei.callback = erase_callback;
356 ei.priv = (unsigned long)&wq;
357
358 err = ubi->mtd->erase(ubi->mtd, &ei);
359 if (err) {
360 if (retries++ < UBI_IO_RETRIES) {
361 dbg_io("error %d while erasing PEB %d, retry",
362 err, pnum);
363 yield();
364 goto retry;
365 }
366 ubi_err("cannot erase PEB %d, error %d", pnum, err);
367 ubi_dbg_dump_stack();
368 return err;
369 }
370
371 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
372 ei.state == MTD_ERASE_FAILED);
373 if (err) {
374 ubi_err("interrupted PEB %d erasure", pnum);
375 return -EINTR;
376 }
377
378 if (ei.state == MTD_ERASE_FAILED) {
379 if (retries++ < UBI_IO_RETRIES) {
380 dbg_io("error while erasing PEB %d, retry", pnum);
381 yield();
382 goto retry;
383 }
384 ubi_err("cannot erase PEB %d", pnum);
385 ubi_dbg_dump_stack();
386 return -EIO;
387 }
388
40a71a87 389 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
801c135c 390 if (err)
adbf05e3 391 return err;
801c135c
AB
392
393 if (ubi_dbg_is_erase_failure() && !err) {
394 dbg_err("cannot erase PEB %d (emulated)", pnum);
395 return -EIO;
396 }
397
398 return 0;
399}
400
801c135c
AB
401/* Patterns to write to a physical eraseblock when torturing it */
402static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
403
404/**
405 * torture_peb - test a supposedly bad physical eraseblock.
406 * @ubi: UBI device description object
407 * @pnum: the physical eraseblock number to test
408 *
409 * This function returns %-EIO if the physical eraseblock did not pass the
410 * test, a positive number of erase operations done if the test was
411 * successfully passed, and other negative error codes in case of other errors.
412 */
e88d6e10 413static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 414{
801c135c
AB
415 int err, i, patt_count;
416
8c1e6ee1 417 ubi_msg("run torture test for PEB %d", pnum);
801c135c
AB
418 patt_count = ARRAY_SIZE(patterns);
419 ubi_assert(patt_count > 0);
420
e88d6e10 421 mutex_lock(&ubi->buf_mutex);
801c135c
AB
422 for (i = 0; i < patt_count; i++) {
423 err = do_sync_erase(ubi, pnum);
424 if (err)
425 goto out;
426
427 /* Make sure the PEB contains only 0xFF bytes */
e88d6e10 428 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
429 if (err)
430 goto out;
431
bb00e180 432 err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
801c135c
AB
433 if (err == 0) {
434 ubi_err("erased PEB %d, but a non-0xFF byte found",
435 pnum);
436 err = -EIO;
437 goto out;
438 }
439
440 /* Write a pattern and check it */
e88d6e10
AB
441 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
442 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
443 if (err)
444 goto out;
445
e88d6e10
AB
446 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
447 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
448 if (err)
449 goto out;
450
bb00e180
AB
451 err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
452 ubi->peb_size);
801c135c
AB
453 if (err == 0) {
454 ubi_err("pattern %x checking failed for PEB %d",
455 patterns[i], pnum);
456 err = -EIO;
457 goto out;
458 }
459 }
460
461 err = patt_count;
8c1e6ee1 462 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
801c135c
AB
463
464out:
e88d6e10 465 mutex_unlock(&ubi->buf_mutex);
8d2d4011 466 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
801c135c
AB
467 /*
468 * If a bit-flip or data integrity error was detected, the test
469 * has not passed because it happened on a freshly erased
470 * physical eraseblock which means something is wrong with it.
471 */
8d2d4011
AB
472 ubi_err("read problems on freshly erased PEB %d, must be bad",
473 pnum);
801c135c 474 err = -EIO;
8d2d4011 475 }
801c135c
AB
476 return err;
477}
478
ebf53f42
AB
479/**
480 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
481 * @ubi: UBI device description object
482 * @pnum: physical eraseblock number to prepare
483 *
484 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
485 * algorithm: the PEB is first filled with zeroes, then it is erased. And
486 * filling with zeroes starts from the end of the PEB. This was observed with
487 * Spansion S29GL512N NOR flash.
488 *
489 * This means that in case of a power cut we may end up with intact data at the
490 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
491 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
492 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
493 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
494 *
495 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
496 * magic numbers in order to invalidate them and prevent the failures. Returns
497 * zero in case of success and a negative error code in case of failure.
498 */
499static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
500{
de75c771 501 int err, err1;
ebf53f42
AB
502 size_t written;
503 loff_t addr;
504 uint32_t data = 0;
2fff570e
AB
505 /*
506 * Note, we cannot generally define VID header buffers on stack,
507 * because of the way we deal with these buffers (see the header
508 * comment in this file). But we know this is a NOR-specific piece of
509 * code, so we can do this. But yes, this is error-prone and we should
510 * (pre-)allocate VID header buffer instead.
511 */
de75c771 512 struct ubi_vid_hdr vid_hdr;
ebf53f42 513
7ac760c2
AB
514 /*
515 * It is important to first invalidate the EC header, and then the VID
516 * header. Otherwise a power cut may lead to valid EC header and
517 * invalid VID header, in which case UBI will treat this PEB as
518 * corrupted and will try to preserve it, and print scary warnings (see
519 * the header comment in scan.c for more information).
520 */
521 addr = (loff_t)pnum * ubi->peb_size;
83c2099f 522 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
de75c771 523 if (!err) {
7ac760c2 524 addr += ubi->vid_hdr_aloffset;
de75c771
AB
525 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
526 (void *)&data);
527 if (!err)
528 return 0;
ebf53f42
AB
529 }
530
de75c771
AB
531 /*
532 * We failed to write to the media. This was observed with Spansion
7ac760c2
AB
533 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
534 * was interrupted at a very inappropriate moment, so it became
535 * unwritable. In this case we probably anyway have garbage in this
536 * PEB.
de75c771
AB
537 */
538 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
d4c63813
HB
539 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
540 err1 == UBI_IO_FF) {
7ac760c2
AB
541 struct ubi_ec_hdr ec_hdr;
542
543 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
d4c63813
HB
544 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
545 err1 == UBI_IO_FF)
7ac760c2
AB
546 /*
547 * Both VID and EC headers are corrupted, so we can
548 * safely erase this PEB and not afraid that it will be
549 * treated as a valid PEB in case of an unclean reboot.
550 */
551 return 0;
552 }
de75c771
AB
553
554 /*
555 * The PEB contains a valid VID header, but we cannot invalidate it.
556 * Supposedly the flash media or the driver is screwed up, so return an
557 * error.
558 */
559 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
560 pnum, err, err1);
561 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
562 return -EIO;
ebf53f42
AB
563}
564
801c135c
AB
565/**
566 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
567 * @ubi: UBI device description object
568 * @pnum: physical eraseblock number to erase
569 * @torture: if this physical eraseblock has to be tortured
570 *
571 * This function synchronously erases physical eraseblock @pnum. If @torture
572 * flag is not zero, the physical eraseblock is checked by means of writing
573 * different patterns to it and reading them back. If the torturing is enabled,
025dfdaf 574 * the physical eraseblock is erased more than once.
801c135c
AB
575 *
576 * This function returns the number of erasures made in case of success, %-EIO
577 * if the erasure failed or the torturing test failed, and other negative error
578 * codes in case of other errors. Note, %-EIO means that the physical
579 * eraseblock is bad.
580 */
e88d6e10 581int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
582{
583 int err, ret = 0;
584
585 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
586
587 err = paranoid_check_not_bad(ubi, pnum);
588 if (err != 0)
adbf05e3 589 return err;
801c135c
AB
590
591 if (ubi->ro_mode) {
592 ubi_err("read-only mode");
593 return -EROFS;
594 }
595
ebf53f42
AB
596 if (ubi->nor_flash) {
597 err = nor_erase_prepare(ubi, pnum);
598 if (err)
599 return err;
600 }
601
801c135c
AB
602 if (torture) {
603 ret = torture_peb(ubi, pnum);
604 if (ret < 0)
605 return ret;
606 }
607
608 err = do_sync_erase(ubi, pnum);
609 if (err)
610 return err;
611
612 return ret + 1;
613}
614
615/**
616 * ubi_io_is_bad - check if a physical eraseblock is bad.
617 * @ubi: UBI device description object
618 * @pnum: the physical eraseblock number to check
619 *
620 * This function returns a positive number if the physical eraseblock is bad,
621 * zero if not, and a negative error code if an error occurred.
622 */
623int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
624{
625 struct mtd_info *mtd = ubi->mtd;
626
627 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
628
629 if (ubi->bad_allowed) {
630 int ret;
631
632 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
633 if (ret < 0)
634 ubi_err("error %d while checking if PEB %d is bad",
635 ret, pnum);
636 else if (ret)
637 dbg_io("PEB %d is bad", pnum);
638 return ret;
639 }
640
641 return 0;
642}
643
644/**
645 * ubi_io_mark_bad - mark a physical eraseblock as bad.
646 * @ubi: UBI device description object
647 * @pnum: the physical eraseblock number to mark
648 *
649 * This function returns zero in case of success and a negative error code in
650 * case of failure.
651 */
652int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
653{
654 int err;
655 struct mtd_info *mtd = ubi->mtd;
656
657 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
658
659 if (ubi->ro_mode) {
660 ubi_err("read-only mode");
661 return -EROFS;
662 }
663
664 if (!ubi->bad_allowed)
665 return 0;
666
667 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
668 if (err)
669 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
670 return err;
671}
672
673/**
674 * validate_ec_hdr - validate an erase counter header.
675 * @ubi: UBI device description object
676 * @ec_hdr: the erase counter header to check
677 *
678 * This function returns zero if the erase counter header is OK, and %1 if
679 * not.
680 */
fe96efc1 681static int validate_ec_hdr(const struct ubi_device *ubi,
801c135c
AB
682 const struct ubi_ec_hdr *ec_hdr)
683{
684 long long ec;
fe96efc1 685 int vid_hdr_offset, leb_start;
801c135c 686
3261ebd7
CH
687 ec = be64_to_cpu(ec_hdr->ec);
688 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
689 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
690
691 if (ec_hdr->version != UBI_VERSION) {
692 ubi_err("node with incompatible UBI version found: "
693 "this UBI version is %d, image version is %d",
694 UBI_VERSION, (int)ec_hdr->version);
695 goto bad;
696 }
697
698 if (vid_hdr_offset != ubi->vid_hdr_offset) {
699 ubi_err("bad VID header offset %d, expected %d",
700 vid_hdr_offset, ubi->vid_hdr_offset);
701 goto bad;
702 }
703
704 if (leb_start != ubi->leb_start) {
705 ubi_err("bad data offset %d, expected %d",
706 leb_start, ubi->leb_start);
707 goto bad;
708 }
709
710 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
711 ubi_err("bad erase counter %lld", ec);
712 goto bad;
713 }
714
715 return 0;
716
717bad:
718 ubi_err("bad EC header");
719 ubi_dbg_dump_ec_hdr(ec_hdr);
720 ubi_dbg_dump_stack();
721 return 1;
722}
723
724/**
725 * ubi_io_read_ec_hdr - read and check an erase counter header.
726 * @ubi: UBI device description object
727 * @pnum: physical eraseblock to read from
728 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
729 * header
730 * @verbose: be verbose if the header is corrupted or was not found
731 *
732 * This function reads erase counter header from physical eraseblock @pnum and
733 * stores it in @ec_hdr. This function also checks CRC checksum of the read
734 * erase counter header. The following codes may be returned:
735 *
736 * o %0 if the CRC checksum is correct and the header was successfully read;
737 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
738 * and corrected by the flash driver; this is harmless but may indicate that
739 * this eraseblock may become bad soon (but may be not);
786d7831 740 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
756e1df1
AB
741 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
742 * a data integrity error (uncorrectable ECC error in case of NAND);
74d82d26 743 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
801c135c
AB
744 * o a negative error code in case of failure.
745 */
e88d6e10 746int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
747 struct ubi_ec_hdr *ec_hdr, int verbose)
748{
92e1a7d9 749 int err, read_err;
801c135c
AB
750 uint32_t crc, magic, hdr_crc;
751
752 dbg_io("read EC header from PEB %d", pnum);
753 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
754
92e1a7d9
AB
755 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
756 if (read_err) {
757 if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
758 return read_err;
801c135c
AB
759
760 /*
761 * We read all the data, but either a correctable bit-flip
756e1df1
AB
762 * occurred, or MTD reported a data integrity error
763 * (uncorrectable ECC error in case of NAND). The former is
764 * harmless, the later may mean that the read data is
765 * corrupted. But we have a CRC check-sum and we will detect
766 * this. If the EC header is still OK, we just report this as
767 * there was a bit-flip, to force scrubbing.
801c135c 768 */
801c135c
AB
769 }
770
3261ebd7 771 magic = be32_to_cpu(ec_hdr->magic);
801c135c 772 if (magic != UBI_EC_HDR_MAGIC) {
92e1a7d9
AB
773 if (read_err == -EBADMSG)
774 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 775
801c135c
AB
776 /*
777 * The magic field is wrong. Let's check if we have read all
778 * 0xFF. If yes, this physical eraseblock is assumed to be
779 * empty.
801c135c 780 */
bb00e180 781 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
801c135c 782 /* The physical eraseblock is supposedly empty */
801c135c
AB
783 if (verbose)
784 ubi_warn("no EC header found at PEB %d, "
785 "only 0xFF bytes", pnum);
6f9fdf62
AB
786 dbg_bld("no EC header found at PEB %d, "
787 "only 0xFF bytes", pnum);
92e1a7d9
AB
788 if (!read_err)
789 return UBI_IO_FF;
790 else
791 return UBI_IO_FF_BITFLIPS;
801c135c
AB
792 }
793
794 /*
795 * This is not a valid erase counter header, and these are not
796 * 0xFF bytes. Report that the header is corrupted.
797 */
798 if (verbose) {
799 ubi_warn("bad magic number at PEB %d: %08x instead of "
800 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
801 ubi_dbg_dump_ec_hdr(ec_hdr);
6f9fdf62
AB
802 }
803 dbg_bld("bad magic number at PEB %d: %08x instead of "
804 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
786d7831 805 return UBI_IO_BAD_HDR;
801c135c
AB
806 }
807
808 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 809 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
810
811 if (hdr_crc != crc) {
812 if (verbose) {
9c9ec147
AB
813 ubi_warn("bad EC header CRC at PEB %d, calculated "
814 "%#08x, read %#08x", pnum, crc, hdr_crc);
801c135c 815 ubi_dbg_dump_ec_hdr(ec_hdr);
6f9fdf62
AB
816 }
817 dbg_bld("bad EC header CRC at PEB %d, calculated "
818 "%#08x, read %#08x", pnum, crc, hdr_crc);
92e1a7d9
AB
819
820 if (!read_err)
821 return UBI_IO_BAD_HDR;
822 else
823 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
824 }
825
826 /* And of course validate what has just been read from the media */
827 err = validate_ec_hdr(ubi, ec_hdr);
828 if (err) {
829 ubi_err("validation failed for PEB %d", pnum);
830 return -EINVAL;
831 }
832
eb89580e
AB
833 /*
834 * If there was %-EBADMSG, but the header CRC is still OK, report about
835 * a bit-flip to force scrubbing on this PEB.
836 */
801c135c
AB
837 return read_err ? UBI_IO_BITFLIPS : 0;
838}
839
840/**
841 * ubi_io_write_ec_hdr - write an erase counter header.
842 * @ubi: UBI device description object
843 * @pnum: physical eraseblock to write to
844 * @ec_hdr: the erase counter header to write
845 *
846 * This function writes erase counter header described by @ec_hdr to physical
847 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
848 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
849 * field.
850 *
851 * This function returns zero in case of success and a negative error code in
852 * case of failure. If %-EIO is returned, the physical eraseblock most probably
853 * went bad.
854 */
e88d6e10 855int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
856 struct ubi_ec_hdr *ec_hdr)
857{
858 int err;
859 uint32_t crc;
860
861 dbg_io("write EC header to PEB %d", pnum);
862 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
863
3261ebd7 864 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 865 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
866 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
867 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0c6c7fa1 868 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801c135c 869 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 870 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
871
872 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
873 if (err)
adbf05e3 874 return err;
801c135c
AB
875
876 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
877 return err;
878}
879
880/**
881 * validate_vid_hdr - validate a volume identifier header.
882 * @ubi: UBI device description object
883 * @vid_hdr: the volume identifier header to check
884 *
885 * This function checks that data stored in the volume identifier header
886 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
887 */
888static int validate_vid_hdr(const struct ubi_device *ubi,
889 const struct ubi_vid_hdr *vid_hdr)
890{
891 int vol_type = vid_hdr->vol_type;
892 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
893 int vol_id = be32_to_cpu(vid_hdr->vol_id);
894 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 895 int compat = vid_hdr->compat;
3261ebd7
CH
896 int data_size = be32_to_cpu(vid_hdr->data_size);
897 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
898 int data_pad = be32_to_cpu(vid_hdr->data_pad);
899 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
900 int usable_leb_size = ubi->leb_size - data_pad;
901
902 if (copy_flag != 0 && copy_flag != 1) {
903 dbg_err("bad copy_flag");
904 goto bad;
905 }
906
907 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
908 data_pad < 0) {
909 dbg_err("negative values");
910 goto bad;
911 }
912
913 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
914 dbg_err("bad vol_id");
915 goto bad;
916 }
917
918 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
919 dbg_err("bad compat");
920 goto bad;
921 }
922
923 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
924 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
925 compat != UBI_COMPAT_REJECT) {
926 dbg_err("bad compat");
927 goto bad;
928 }
929
930 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
931 dbg_err("bad vol_type");
932 goto bad;
933 }
934
935 if (data_pad >= ubi->leb_size / 2) {
936 dbg_err("bad data_pad");
937 goto bad;
938 }
939
940 if (vol_type == UBI_VID_STATIC) {
941 /*
942 * Although from high-level point of view static volumes may
943 * contain zero bytes of data, but no VID headers can contain
944 * zero at these fields, because they empty volumes do not have
945 * mapped logical eraseblocks.
946 */
947 if (used_ebs == 0) {
948 dbg_err("zero used_ebs");
949 goto bad;
950 }
951 if (data_size == 0) {
952 dbg_err("zero data_size");
953 goto bad;
954 }
955 if (lnum < used_ebs - 1) {
956 if (data_size != usable_leb_size) {
957 dbg_err("bad data_size");
958 goto bad;
959 }
960 } else if (lnum == used_ebs - 1) {
961 if (data_size == 0) {
962 dbg_err("bad data_size at last LEB");
963 goto bad;
964 }
965 } else {
966 dbg_err("too high lnum");
967 goto bad;
968 }
969 } else {
970 if (copy_flag == 0) {
971 if (data_crc != 0) {
972 dbg_err("non-zero data CRC");
973 goto bad;
974 }
975 if (data_size != 0) {
976 dbg_err("non-zero data_size");
977 goto bad;
978 }
979 } else {
980 if (data_size == 0) {
981 dbg_err("zero data_size of copy");
982 goto bad;
983 }
984 }
985 if (used_ebs != 0) {
986 dbg_err("bad used_ebs");
987 goto bad;
988 }
989 }
990
991 return 0;
992
993bad:
994 ubi_err("bad VID header");
995 ubi_dbg_dump_vid_hdr(vid_hdr);
996 ubi_dbg_dump_stack();
997 return 1;
998}
999
1000/**
1001 * ubi_io_read_vid_hdr - read and check a volume identifier header.
1002 * @ubi: UBI device description object
1003 * @pnum: physical eraseblock number to read from
1004 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1005 * identifier header
1006 * @verbose: be verbose if the header is corrupted or wasn't found
1007 *
1008 * This function reads the volume identifier header from physical eraseblock
1009 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
74d82d26
AB
1010 * volume identifier header. The error codes are the same as in
1011 * 'ubi_io_read_ec_hdr()'.
801c135c 1012 *
74d82d26
AB
1013 * Note, the implementation of this function is also very similar to
1014 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
801c135c 1015 */
e88d6e10 1016int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1017 struct ubi_vid_hdr *vid_hdr, int verbose)
1018{
92e1a7d9 1019 int err, read_err;
801c135c
AB
1020 uint32_t crc, magic, hdr_crc;
1021 void *p;
1022
1023 dbg_io("read VID header from PEB %d", pnum);
1024 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1025
1026 p = (char *)vid_hdr - ubi->vid_hdr_shift;
92e1a7d9 1027 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
801c135c 1028 ubi->vid_hdr_alsize);
92e1a7d9
AB
1029 if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
1030 return read_err;
801c135c 1031
3261ebd7 1032 magic = be32_to_cpu(vid_hdr->magic);
801c135c 1033 if (magic != UBI_VID_HDR_MAGIC) {
92e1a7d9
AB
1034 if (read_err == -EBADMSG)
1035 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 1036
bb00e180 1037 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
801c135c
AB
1038 if (verbose)
1039 ubi_warn("no VID header found at PEB %d, "
1040 "only 0xFF bytes", pnum);
6f9fdf62
AB
1041 dbg_bld("no VID header found at PEB %d, "
1042 "only 0xFF bytes", pnum);
92e1a7d9
AB
1043 if (!read_err)
1044 return UBI_IO_FF;
1045 else
1046 return UBI_IO_FF_BITFLIPS;
801c135c
AB
1047 }
1048
801c135c
AB
1049 if (verbose) {
1050 ubi_warn("bad magic number at PEB %d: %08x instead of "
1051 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1052 ubi_dbg_dump_vid_hdr(vid_hdr);
6f9fdf62
AB
1053 }
1054 dbg_bld("bad magic number at PEB %d: %08x instead of "
1055 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
786d7831 1056 return UBI_IO_BAD_HDR;
801c135c
AB
1057 }
1058
1059 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1060 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1061
1062 if (hdr_crc != crc) {
1063 if (verbose) {
1064 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1065 "read %#08x", pnum, crc, hdr_crc);
1066 ubi_dbg_dump_vid_hdr(vid_hdr);
6f9fdf62
AB
1067 }
1068 dbg_bld("bad CRC at PEB %d, calculated %#08x, "
1069 "read %#08x", pnum, crc, hdr_crc);
92e1a7d9
AB
1070 if (!read_err)
1071 return UBI_IO_BAD_HDR;
1072 else
1073 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
1074 }
1075
801c135c
AB
1076 err = validate_vid_hdr(ubi, vid_hdr);
1077 if (err) {
1078 ubi_err("validation failed for PEB %d", pnum);
1079 return -EINVAL;
1080 }
1081
1082 return read_err ? UBI_IO_BITFLIPS : 0;
1083}
1084
1085/**
1086 * ubi_io_write_vid_hdr - write a volume identifier header.
1087 * @ubi: UBI device description object
1088 * @pnum: the physical eraseblock number to write to
1089 * @vid_hdr: the volume identifier header to write
1090 *
1091 * This function writes the volume identifier header described by @vid_hdr to
1092 * physical eraseblock @pnum. This function automatically fills the
1093 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1094 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1095 *
1096 * This function returns zero in case of success and a negative error code in
1097 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1098 * bad.
1099 */
e88d6e10 1100int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1101 struct ubi_vid_hdr *vid_hdr)
1102{
1103 int err;
1104 uint32_t crc;
1105 void *p;
1106
1107 dbg_io("write VID header to PEB %d", pnum);
1108 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1109
1110 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1111 if (err)
adbf05e3 1112 return err;
801c135c 1113
3261ebd7 1114 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1115 vid_hdr->version = UBI_VERSION;
1116 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1117 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
1118
1119 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1120 if (err)
adbf05e3 1121 return err;
801c135c
AB
1122
1123 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1124 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1125 ubi->vid_hdr_alsize);
1126 return err;
1127}
1128
92d124f5 1129#ifdef CONFIG_MTD_UBI_DEBUG
801c135c
AB
1130
1131/**
1132 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1133 * @ubi: UBI device description object
1134 * @pnum: physical eraseblock number to check
1135 *
adbf05e3
AB
1136 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1137 * it is bad and a negative error code if an error occurred.
801c135c
AB
1138 */
1139static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1140{
1141 int err;
1142
92d124f5
AB
1143 if (!(ubi_chk_flags & UBI_CHK_IO))
1144 return 0;
1145
801c135c
AB
1146 err = ubi_io_is_bad(ubi, pnum);
1147 if (!err)
1148 return err;
1149
1150 ubi_err("paranoid check failed for PEB %d", pnum);
1151 ubi_dbg_dump_stack();
adbf05e3 1152 return err > 0 ? -EINVAL : err;
801c135c
AB
1153}
1154
1155/**
1156 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1157 * @ubi: UBI device description object
1158 * @pnum: physical eraseblock number the erase counter header belongs to
1159 * @ec_hdr: the erase counter header to check
1160 *
1161 * This function returns zero if the erase counter header contains valid
adbf05e3 1162 * values, and %-EINVAL if not.
801c135c
AB
1163 */
1164static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1165 const struct ubi_ec_hdr *ec_hdr)
1166{
1167 int err;
1168 uint32_t magic;
1169
92d124f5
AB
1170 if (!(ubi_chk_flags & UBI_CHK_IO))
1171 return 0;
1172
3261ebd7 1173 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
1174 if (magic != UBI_EC_HDR_MAGIC) {
1175 ubi_err("bad magic %#08x, must be %#08x",
1176 magic, UBI_EC_HDR_MAGIC);
1177 goto fail;
1178 }
1179
1180 err = validate_ec_hdr(ubi, ec_hdr);
1181 if (err) {
1182 ubi_err("paranoid check failed for PEB %d", pnum);
1183 goto fail;
1184 }
1185
1186 return 0;
1187
1188fail:
1189 ubi_dbg_dump_ec_hdr(ec_hdr);
1190 ubi_dbg_dump_stack();
adbf05e3 1191 return -EINVAL;
801c135c
AB
1192}
1193
1194/**
ebaaf1af 1195 * paranoid_check_peb_ec_hdr - check erase counter header.
801c135c
AB
1196 * @ubi: UBI device description object
1197 * @pnum: the physical eraseblock number to check
1198 *
adbf05e3
AB
1199 * This function returns zero if the erase counter header is all right and and
1200 * a negative error code if not or if an error occurred.
801c135c
AB
1201 */
1202static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1203{
1204 int err;
1205 uint32_t crc, hdr_crc;
1206 struct ubi_ec_hdr *ec_hdr;
1207
92d124f5
AB
1208 if (!(ubi_chk_flags & UBI_CHK_IO))
1209 return 0;
1210
33818bbb 1211 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1212 if (!ec_hdr)
1213 return -ENOMEM;
1214
1215 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1216 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1217 goto exit;
1218
1219 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1220 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
1221 if (hdr_crc != crc) {
1222 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1223 ubi_err("paranoid check failed for PEB %d", pnum);
1224 ubi_dbg_dump_ec_hdr(ec_hdr);
1225 ubi_dbg_dump_stack();
adbf05e3 1226 err = -EINVAL;
801c135c
AB
1227 goto exit;
1228 }
1229
1230 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1231
1232exit:
1233 kfree(ec_hdr);
1234 return err;
1235}
1236
1237/**
1238 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1239 * @ubi: UBI device description object
1240 * @pnum: physical eraseblock number the volume identifier header belongs to
1241 * @vid_hdr: the volume identifier header to check
1242 *
1243 * This function returns zero if the volume identifier header is all right, and
adbf05e3 1244 * %-EINVAL if not.
801c135c
AB
1245 */
1246static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1247 const struct ubi_vid_hdr *vid_hdr)
1248{
1249 int err;
1250 uint32_t magic;
1251
92d124f5
AB
1252 if (!(ubi_chk_flags & UBI_CHK_IO))
1253 return 0;
1254
3261ebd7 1255 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1256 if (magic != UBI_VID_HDR_MAGIC) {
1257 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1258 magic, pnum, UBI_VID_HDR_MAGIC);
1259 goto fail;
1260 }
1261
1262 err = validate_vid_hdr(ubi, vid_hdr);
1263 if (err) {
1264 ubi_err("paranoid check failed for PEB %d", pnum);
1265 goto fail;
1266 }
1267
1268 return err;
1269
1270fail:
1271 ubi_err("paranoid check failed for PEB %d", pnum);
1272 ubi_dbg_dump_vid_hdr(vid_hdr);
1273 ubi_dbg_dump_stack();
adbf05e3 1274 return -EINVAL;
801c135c
AB
1275
1276}
1277
1278/**
ebaaf1af 1279 * paranoid_check_peb_vid_hdr - check volume identifier header.
801c135c
AB
1280 * @ubi: UBI device description object
1281 * @pnum: the physical eraseblock number to check
1282 *
1283 * This function returns zero if the volume identifier header is all right,
adbf05e3 1284 * and a negative error code if not or if an error occurred.
801c135c
AB
1285 */
1286static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1287{
1288 int err;
1289 uint32_t crc, hdr_crc;
1290 struct ubi_vid_hdr *vid_hdr;
1291 void *p;
1292
92d124f5
AB
1293 if (!(ubi_chk_flags & UBI_CHK_IO))
1294 return 0;
1295
33818bbb 1296 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
1297 if (!vid_hdr)
1298 return -ENOMEM;
1299
1300 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1301 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1302 ubi->vid_hdr_alsize);
1303 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1304 goto exit;
1305
1306 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1307 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1308 if (hdr_crc != crc) {
1309 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1310 "read %#08x", pnum, crc, hdr_crc);
1311 ubi_err("paranoid check failed for PEB %d", pnum);
1312 ubi_dbg_dump_vid_hdr(vid_hdr);
1313 ubi_dbg_dump_stack();
adbf05e3 1314 err = -EINVAL;
801c135c
AB
1315 goto exit;
1316 }
1317
1318 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1319
1320exit:
1321 ubi_free_vid_hdr(ubi, vid_hdr);
1322 return err;
1323}
1324
6e9065d7
AB
1325/**
1326 * ubi_dbg_check_write - make sure write succeeded.
1327 * @ubi: UBI device description object
1328 * @buf: buffer with data which were written
1329 * @pnum: physical eraseblock number the data were written to
1330 * @offset: offset within the physical eraseblock the data were written to
1331 * @len: how many bytes were written
1332 *
1333 * This functions reads data which were recently written and compares it with
1334 * the original data buffer - the data have to match. Returns zero if the data
1335 * match and a negative error code if not or in case of failure.
1336 */
1337int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1338 int offset, int len)
1339{
1340 int err, i;
7950d023 1341 size_t read;
a7586743 1342 void *buf1;
7950d023 1343 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
6e9065d7 1344
92d124f5
AB
1345 if (!(ubi_chk_flags & UBI_CHK_IO))
1346 return 0;
1347
3d46b316 1348 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
a7586743
AB
1349 if (!buf1) {
1350 ubi_err("cannot allocate memory to check writes");
1351 return 0;
1352 }
1353
1354 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1);
7950d023 1355 if (err && err != -EUCLEAN)
a7586743 1356 goto out_free;
6e9065d7
AB
1357
1358 for (i = 0; i < len; i++) {
1359 uint8_t c = ((uint8_t *)buf)[i];
a7586743 1360 uint8_t c1 = ((uint8_t *)buf1)[i];
6e9065d7
AB
1361 int dump_len;
1362
1363 if (c == c1)
1364 continue;
1365
1366 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1367 pnum, offset, len);
1368 ubi_msg("data differ at position %d", i);
1369 dump_len = max_t(int, 128, len - i);
1370 ubi_msg("hex dump of the original buffer from %d to %d",
1371 i, i + dump_len);
1372 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1373 buf + i, dump_len, 1);
1374 ubi_msg("hex dump of the read buffer from %d to %d",
1375 i, i + dump_len);
1376 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
a7586743 1377 buf1 + i, dump_len, 1);
6e9065d7
AB
1378 ubi_dbg_dump_stack();
1379 err = -EINVAL;
a7586743 1380 goto out_free;
6e9065d7 1381 }
6e9065d7 1382
a7586743 1383 vfree(buf1);
6e9065d7
AB
1384 return 0;
1385
a7586743
AB
1386out_free:
1387 vfree(buf1);
6e9065d7
AB
1388 return err;
1389}
1390
801c135c 1391/**
40a71a87 1392 * ubi_dbg_check_all_ff - check that a region of flash is empty.
801c135c
AB
1393 * @ubi: UBI device description object
1394 * @pnum: the physical eraseblock number to check
1395 * @offset: the starting offset within the physical eraseblock to check
1396 * @len: the length of the region to check
1397 *
1398 * This function returns zero if only 0xFF bytes are present at offset
adbf05e3
AB
1399 * @offset of the physical eraseblock @pnum, and a negative error code if not
1400 * or if an error occurred.
801c135c 1401 */
40a71a87 1402int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
801c135c
AB
1403{
1404 size_t read;
1405 int err;
332873d6 1406 void *buf;
801c135c
AB
1407 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1408
92d124f5
AB
1409 if (!(ubi_chk_flags & UBI_CHK_IO))
1410 return 0;
1411
3d46b316 1412 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
332873d6
AB
1413 if (!buf) {
1414 ubi_err("cannot allocate memory to check for 0xFFs");
1415 return 0;
1416 }
1417
1418 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
801c135c
AB
1419 if (err && err != -EUCLEAN) {
1420 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1421 "read %zd bytes", err, len, pnum, offset, read);
1422 goto error;
1423 }
1424
332873d6 1425 err = ubi_check_pattern(buf, 0xFF, len);
801c135c
AB
1426 if (err == 0) {
1427 ubi_err("flash region at PEB %d:%d, length %d does not "
1428 "contain all 0xFF bytes", pnum, offset, len);
1429 goto fail;
1430 }
1431
332873d6 1432 vfree(buf);
801c135c
AB
1433 return 0;
1434
1435fail:
1436 ubi_err("paranoid check failed for PEB %d", pnum);
c8566350 1437 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
332873d6 1438 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
adbf05e3 1439 err = -EINVAL;
801c135c
AB
1440error:
1441 ubi_dbg_dump_stack();
332873d6 1442 vfree(buf);
801c135c
AB
1443 return err;
1444}
1445
92d124f5 1446#endif /* CONFIG_MTD_UBI_DEBUG */