]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/mtd/ubi/io.c
UBI: cleanup LEB start calculations
[mirror_ubuntu-bionic-kernel.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
85c6e6e2 23 * UBI input/output sub-system.
801c135c 24 *
85c6e6e2
AB
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
801c135c
AB
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
85c6e6e2
AB
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
801c135c
AB
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
be436f62
SK
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
801c135c
AB
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
85c6e6e2
AB
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
801c135c
AB
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
5a0e3ad6 91#include <linux/slab.h>
801c135c
AB
92#include "ubi.h"
93
94#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
801c135c
AB
102#else
103#define paranoid_check_not_bad(ubi, pnum) 0
104#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
801c135c
AB
108#endif
109
110/**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
801c135c
AB
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134{
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
adbf05e3 147 return err;
801c135c
AB
148
149 addr = (loff_t)pnum * ubi->peb_size + offset;
150retry:
151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 if (err) {
f5d5b1f8 153 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
1a49af2c 154
801c135c
AB
155 if (err == -EUCLEAN) {
156 /*
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
8c1e6ee1
AB
159 *
160 * We do not report about it here unless debugging is
161 * enabled. A corresponding message will be printed
162 * later, when it is has been scrubbed.
801c135c 163 */
8c1e6ee1 164 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
801c135c
AB
165 ubi_assert(len == read);
166 return UBI_IO_BITFLIPS;
167 }
168
169 if (read != len && retries++ < UBI_IO_RETRIES) {
1a49af2c 170 dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
9c9ec147 171 " read only %zd bytes, retry",
1a49af2c 172 err, errstr, len, pnum, offset, read);
801c135c
AB
173 yield();
174 goto retry;
175 }
176
f5d5b1f8 177 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
1a49af2c 178 "read %zd bytes", err, errstr, len, pnum, offset, read);
801c135c 179 ubi_dbg_dump_stack();
2362a53e
AB
180
181 /*
182 * The driver should never return -EBADMSG if it failed to read
183 * all the requested data. But some buggy drivers might do
184 * this, so we change it to -EIO.
185 */
186 if (read != len && err == -EBADMSG) {
187 ubi_assert(0);
188 err = -EIO;
189 }
801c135c
AB
190 } else {
191 ubi_assert(len == read);
192
193 if (ubi_dbg_is_bitflip()) {
c8566350 194 dbg_gen("bit-flip (emulated)");
801c135c
AB
195 err = UBI_IO_BITFLIPS;
196 }
197 }
198
199 return err;
200}
201
202/**
203 * ubi_io_write - write data to a physical eraseblock.
204 * @ubi: UBI device description object
205 * @buf: buffer with the data to write
206 * @pnum: physical eraseblock number to write to
207 * @offset: offset within the physical eraseblock where to write
208 * @len: how many bytes to write
209 *
210 * This function writes @len bytes of data from buffer @buf to offset @offset
211 * of physical eraseblock @pnum. If all the data were successfully written,
212 * zero is returned. If an error occurred, this function returns a negative
213 * error code. If %-EIO is returned, the physical eraseblock most probably went
214 * bad.
215 *
216 * Note, in case of an error, it is possible that something was still written
217 * to the flash media, but may be some garbage.
218 */
e88d6e10
AB
219int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 int len)
801c135c
AB
221{
222 int err;
223 size_t written;
224 loff_t addr;
225
226 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227
228 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232
233 if (ubi->ro_mode) {
234 ubi_err("read-only mode");
235 return -EROFS;
236 }
237
238 /* The below has to be compiled out if paranoid checks are disabled */
239
240 err = paranoid_check_not_bad(ubi, pnum);
241 if (err)
adbf05e3 242 return err;
801c135c
AB
243
244 /* The area we are writing to has to contain all 0xFF bytes */
40a71a87 245 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
801c135c 246 if (err)
adbf05e3 247 return err;
801c135c
AB
248
249 if (offset >= ubi->leb_start) {
250 /*
251 * We write to the data area of the physical eraseblock. Make
252 * sure it has valid EC and VID headers.
253 */
254 err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 if (err)
adbf05e3 256 return err;
801c135c
AB
257 err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 if (err)
adbf05e3 259 return err;
801c135c
AB
260 }
261
262 if (ubi_dbg_is_write_failure()) {
263 dbg_err("cannot write %d bytes to PEB %d:%d "
264 "(emulated)", len, pnum, offset);
265 ubi_dbg_dump_stack();
266 return -EIO;
267 }
268
269 addr = (loff_t)pnum * ubi->peb_size + offset;
270 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 if (err) {
ebf53f42
AB
272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
273 "%zd bytes", err, len, pnum, offset, written);
801c135c 274 ubi_dbg_dump_stack();
867996b1 275 ubi_dbg_dump_flash(ubi, pnum, offset, len);
801c135c
AB
276 } else
277 ubi_assert(written == len);
278
6e9065d7
AB
279 if (!err) {
280 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
281 if (err)
282 return err;
283
284 /*
285 * Since we always write sequentially, the rest of the PEB has
286 * to contain only 0xFF bytes.
287 */
288 offset += len;
289 len = ubi->peb_size - offset;
290 if (len)
291 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
292 }
293
801c135c
AB
294 return err;
295}
296
297/**
298 * erase_callback - MTD erasure call-back.
299 * @ei: MTD erase information object.
300 *
301 * Note, even though MTD erase interface is asynchronous, all the current
302 * implementations are synchronous anyway.
303 */
304static void erase_callback(struct erase_info *ei)
305{
306 wake_up_interruptible((wait_queue_head_t *)ei->priv);
307}
308
309/**
310 * do_sync_erase - synchronously erase a physical eraseblock.
311 * @ubi: UBI device description object
312 * @pnum: the physical eraseblock number to erase
313 *
314 * This function synchronously erases physical eraseblock @pnum and returns
315 * zero in case of success and a negative error code in case of failure. If
316 * %-EIO is returned, the physical eraseblock most probably went bad.
317 */
e88d6e10 318static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
319{
320 int err, retries = 0;
321 struct erase_info ei;
322 wait_queue_head_t wq;
323
324 dbg_io("erase PEB %d", pnum);
325
326retry:
327 init_waitqueue_head(&wq);
328 memset(&ei, 0, sizeof(struct erase_info));
329
330 ei.mtd = ubi->mtd;
2f176f79 331 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
332 ei.len = ubi->peb_size;
333 ei.callback = erase_callback;
334 ei.priv = (unsigned long)&wq;
335
336 err = ubi->mtd->erase(ubi->mtd, &ei);
337 if (err) {
338 if (retries++ < UBI_IO_RETRIES) {
339 dbg_io("error %d while erasing PEB %d, retry",
340 err, pnum);
341 yield();
342 goto retry;
343 }
344 ubi_err("cannot erase PEB %d, error %d", pnum, err);
345 ubi_dbg_dump_stack();
346 return err;
347 }
348
349 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
350 ei.state == MTD_ERASE_FAILED);
351 if (err) {
352 ubi_err("interrupted PEB %d erasure", pnum);
353 return -EINTR;
354 }
355
356 if (ei.state == MTD_ERASE_FAILED) {
357 if (retries++ < UBI_IO_RETRIES) {
358 dbg_io("error while erasing PEB %d, retry", pnum);
359 yield();
360 goto retry;
361 }
362 ubi_err("cannot erase PEB %d", pnum);
363 ubi_dbg_dump_stack();
364 return -EIO;
365 }
366
40a71a87 367 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
801c135c 368 if (err)
adbf05e3 369 return err;
801c135c
AB
370
371 if (ubi_dbg_is_erase_failure() && !err) {
372 dbg_err("cannot erase PEB %d (emulated)", pnum);
373 return -EIO;
374 }
375
376 return 0;
377}
378
801c135c
AB
379/* Patterns to write to a physical eraseblock when torturing it */
380static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
381
382/**
383 * torture_peb - test a supposedly bad physical eraseblock.
384 * @ubi: UBI device description object
385 * @pnum: the physical eraseblock number to test
386 *
387 * This function returns %-EIO if the physical eraseblock did not pass the
388 * test, a positive number of erase operations done if the test was
389 * successfully passed, and other negative error codes in case of other errors.
390 */
e88d6e10 391static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 392{
801c135c
AB
393 int err, i, patt_count;
394
8c1e6ee1 395 ubi_msg("run torture test for PEB %d", pnum);
801c135c
AB
396 patt_count = ARRAY_SIZE(patterns);
397 ubi_assert(patt_count > 0);
398
e88d6e10 399 mutex_lock(&ubi->buf_mutex);
801c135c
AB
400 for (i = 0; i < patt_count; i++) {
401 err = do_sync_erase(ubi, pnum);
402 if (err)
403 goto out;
404
405 /* Make sure the PEB contains only 0xFF bytes */
e88d6e10 406 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
407 if (err)
408 goto out;
409
bb00e180 410 err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
801c135c
AB
411 if (err == 0) {
412 ubi_err("erased PEB %d, but a non-0xFF byte found",
413 pnum);
414 err = -EIO;
415 goto out;
416 }
417
418 /* Write a pattern and check it */
e88d6e10
AB
419 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
420 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
421 if (err)
422 goto out;
423
e88d6e10
AB
424 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
426 if (err)
427 goto out;
428
bb00e180
AB
429 err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
430 ubi->peb_size);
801c135c
AB
431 if (err == 0) {
432 ubi_err("pattern %x checking failed for PEB %d",
433 patterns[i], pnum);
434 err = -EIO;
435 goto out;
436 }
437 }
438
439 err = patt_count;
8c1e6ee1 440 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
801c135c
AB
441
442out:
e88d6e10 443 mutex_unlock(&ubi->buf_mutex);
8d2d4011 444 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
801c135c
AB
445 /*
446 * If a bit-flip or data integrity error was detected, the test
447 * has not passed because it happened on a freshly erased
448 * physical eraseblock which means something is wrong with it.
449 */
8d2d4011
AB
450 ubi_err("read problems on freshly erased PEB %d, must be bad",
451 pnum);
801c135c 452 err = -EIO;
8d2d4011 453 }
801c135c
AB
454 return err;
455}
456
ebf53f42
AB
457/**
458 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
459 * @ubi: UBI device description object
460 * @pnum: physical eraseblock number to prepare
461 *
462 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
463 * algorithm: the PEB is first filled with zeroes, then it is erased. And
464 * filling with zeroes starts from the end of the PEB. This was observed with
465 * Spansion S29GL512N NOR flash.
466 *
467 * This means that in case of a power cut we may end up with intact data at the
468 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
469 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
470 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
471 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
472 *
473 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
474 * magic numbers in order to invalidate them and prevent the failures. Returns
475 * zero in case of success and a negative error code in case of failure.
476 */
477static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
478{
de75c771 479 int err, err1;
ebf53f42
AB
480 size_t written;
481 loff_t addr;
482 uint32_t data = 0;
de75c771 483 struct ubi_vid_hdr vid_hdr;
ebf53f42 484
7ac760c2
AB
485 /*
486 * It is important to first invalidate the EC header, and then the VID
487 * header. Otherwise a power cut may lead to valid EC header and
488 * invalid VID header, in which case UBI will treat this PEB as
489 * corrupted and will try to preserve it, and print scary warnings (see
490 * the header comment in scan.c for more information).
491 */
492 addr = (loff_t)pnum * ubi->peb_size;
83c2099f 493 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
de75c771 494 if (!err) {
7ac760c2 495 addr += ubi->vid_hdr_aloffset;
de75c771
AB
496 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
497 (void *)&data);
498 if (!err)
499 return 0;
ebf53f42
AB
500 }
501
de75c771
AB
502 /*
503 * We failed to write to the media. This was observed with Spansion
7ac760c2
AB
504 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
505 * was interrupted at a very inappropriate moment, so it became
506 * unwritable. In this case we probably anyway have garbage in this
507 * PEB.
de75c771
AB
508 */
509 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
d4c63813
HB
510 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
511 err1 == UBI_IO_FF) {
7ac760c2
AB
512 struct ubi_ec_hdr ec_hdr;
513
514 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
d4c63813
HB
515 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
516 err1 == UBI_IO_FF)
7ac760c2
AB
517 /*
518 * Both VID and EC headers are corrupted, so we can
519 * safely erase this PEB and not afraid that it will be
520 * treated as a valid PEB in case of an unclean reboot.
521 */
522 return 0;
523 }
de75c771
AB
524
525 /*
526 * The PEB contains a valid VID header, but we cannot invalidate it.
527 * Supposedly the flash media or the driver is screwed up, so return an
528 * error.
529 */
530 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
531 pnum, err, err1);
532 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
533 return -EIO;
ebf53f42
AB
534}
535
801c135c
AB
536/**
537 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
538 * @ubi: UBI device description object
539 * @pnum: physical eraseblock number to erase
540 * @torture: if this physical eraseblock has to be tortured
541 *
542 * This function synchronously erases physical eraseblock @pnum. If @torture
543 * flag is not zero, the physical eraseblock is checked by means of writing
544 * different patterns to it and reading them back. If the torturing is enabled,
025dfdaf 545 * the physical eraseblock is erased more than once.
801c135c
AB
546 *
547 * This function returns the number of erasures made in case of success, %-EIO
548 * if the erasure failed or the torturing test failed, and other negative error
549 * codes in case of other errors. Note, %-EIO means that the physical
550 * eraseblock is bad.
551 */
e88d6e10 552int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
553{
554 int err, ret = 0;
555
556 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
557
558 err = paranoid_check_not_bad(ubi, pnum);
559 if (err != 0)
adbf05e3 560 return err;
801c135c
AB
561
562 if (ubi->ro_mode) {
563 ubi_err("read-only mode");
564 return -EROFS;
565 }
566
ebf53f42
AB
567 if (ubi->nor_flash) {
568 err = nor_erase_prepare(ubi, pnum);
569 if (err)
570 return err;
571 }
572
801c135c
AB
573 if (torture) {
574 ret = torture_peb(ubi, pnum);
575 if (ret < 0)
576 return ret;
577 }
578
579 err = do_sync_erase(ubi, pnum);
580 if (err)
581 return err;
582
583 return ret + 1;
584}
585
586/**
587 * ubi_io_is_bad - check if a physical eraseblock is bad.
588 * @ubi: UBI device description object
589 * @pnum: the physical eraseblock number to check
590 *
591 * This function returns a positive number if the physical eraseblock is bad,
592 * zero if not, and a negative error code if an error occurred.
593 */
594int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
595{
596 struct mtd_info *mtd = ubi->mtd;
597
598 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
599
600 if (ubi->bad_allowed) {
601 int ret;
602
603 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
604 if (ret < 0)
605 ubi_err("error %d while checking if PEB %d is bad",
606 ret, pnum);
607 else if (ret)
608 dbg_io("PEB %d is bad", pnum);
609 return ret;
610 }
611
612 return 0;
613}
614
615/**
616 * ubi_io_mark_bad - mark a physical eraseblock as bad.
617 * @ubi: UBI device description object
618 * @pnum: the physical eraseblock number to mark
619 *
620 * This function returns zero in case of success and a negative error code in
621 * case of failure.
622 */
623int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
624{
625 int err;
626 struct mtd_info *mtd = ubi->mtd;
627
628 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
629
630 if (ubi->ro_mode) {
631 ubi_err("read-only mode");
632 return -EROFS;
633 }
634
635 if (!ubi->bad_allowed)
636 return 0;
637
638 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
639 if (err)
640 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
641 return err;
642}
643
644/**
645 * validate_ec_hdr - validate an erase counter header.
646 * @ubi: UBI device description object
647 * @ec_hdr: the erase counter header to check
648 *
649 * This function returns zero if the erase counter header is OK, and %1 if
650 * not.
651 */
fe96efc1 652static int validate_ec_hdr(const struct ubi_device *ubi,
801c135c
AB
653 const struct ubi_ec_hdr *ec_hdr)
654{
655 long long ec;
fe96efc1 656 int vid_hdr_offset, leb_start;
801c135c 657
3261ebd7
CH
658 ec = be64_to_cpu(ec_hdr->ec);
659 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
660 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
661
662 if (ec_hdr->version != UBI_VERSION) {
663 ubi_err("node with incompatible UBI version found: "
664 "this UBI version is %d, image version is %d",
665 UBI_VERSION, (int)ec_hdr->version);
666 goto bad;
667 }
668
669 if (vid_hdr_offset != ubi->vid_hdr_offset) {
670 ubi_err("bad VID header offset %d, expected %d",
671 vid_hdr_offset, ubi->vid_hdr_offset);
672 goto bad;
673 }
674
675 if (leb_start != ubi->leb_start) {
676 ubi_err("bad data offset %d, expected %d",
677 leb_start, ubi->leb_start);
678 goto bad;
679 }
680
681 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
682 ubi_err("bad erase counter %lld", ec);
683 goto bad;
684 }
685
686 return 0;
687
688bad:
689 ubi_err("bad EC header");
690 ubi_dbg_dump_ec_hdr(ec_hdr);
691 ubi_dbg_dump_stack();
692 return 1;
693}
694
695/**
696 * ubi_io_read_ec_hdr - read and check an erase counter header.
697 * @ubi: UBI device description object
698 * @pnum: physical eraseblock to read from
699 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
700 * header
701 * @verbose: be verbose if the header is corrupted or was not found
702 *
703 * This function reads erase counter header from physical eraseblock @pnum and
704 * stores it in @ec_hdr. This function also checks CRC checksum of the read
705 * erase counter header. The following codes may be returned:
706 *
707 * o %0 if the CRC checksum is correct and the header was successfully read;
708 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
709 * and corrected by the flash driver; this is harmless but may indicate that
710 * this eraseblock may become bad soon (but may be not);
786d7831 711 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
756e1df1
AB
712 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
713 * a data integrity error (uncorrectable ECC error in case of NAND);
74d82d26 714 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
801c135c
AB
715 * o a negative error code in case of failure.
716 */
e88d6e10 717int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
718 struct ubi_ec_hdr *ec_hdr, int verbose)
719{
92e1a7d9 720 int err, read_err;
801c135c
AB
721 uint32_t crc, magic, hdr_crc;
722
723 dbg_io("read EC header from PEB %d", pnum);
724 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
725
92e1a7d9
AB
726 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
727 if (read_err) {
728 if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
729 return read_err;
801c135c
AB
730
731 /*
732 * We read all the data, but either a correctable bit-flip
756e1df1
AB
733 * occurred, or MTD reported a data integrity error
734 * (uncorrectable ECC error in case of NAND). The former is
735 * harmless, the later may mean that the read data is
736 * corrupted. But we have a CRC check-sum and we will detect
737 * this. If the EC header is still OK, we just report this as
738 * there was a bit-flip, to force scrubbing.
801c135c 739 */
801c135c
AB
740 }
741
3261ebd7 742 magic = be32_to_cpu(ec_hdr->magic);
801c135c 743 if (magic != UBI_EC_HDR_MAGIC) {
92e1a7d9
AB
744 if (read_err == -EBADMSG)
745 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 746
801c135c
AB
747 /*
748 * The magic field is wrong. Let's check if we have read all
749 * 0xFF. If yes, this physical eraseblock is assumed to be
750 * empty.
801c135c 751 */
bb00e180 752 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
801c135c 753 /* The physical eraseblock is supposedly empty */
801c135c
AB
754 if (verbose)
755 ubi_warn("no EC header found at PEB %d, "
756 "only 0xFF bytes", pnum);
ed45819f
AB
757 else if (UBI_IO_DEBUG)
758 dbg_msg("no EC header found at PEB %d, "
759 "only 0xFF bytes", pnum);
92e1a7d9
AB
760 if (!read_err)
761 return UBI_IO_FF;
762 else
763 return UBI_IO_FF_BITFLIPS;
801c135c
AB
764 }
765
766 /*
767 * This is not a valid erase counter header, and these are not
768 * 0xFF bytes. Report that the header is corrupted.
769 */
770 if (verbose) {
771 ubi_warn("bad magic number at PEB %d: %08x instead of "
772 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
773 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
774 } else if (UBI_IO_DEBUG)
775 dbg_msg("bad magic number at PEB %d: %08x instead of "
776 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
786d7831 777 return UBI_IO_BAD_HDR;
801c135c
AB
778 }
779
780 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 781 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
782
783 if (hdr_crc != crc) {
784 if (verbose) {
9c9ec147
AB
785 ubi_warn("bad EC header CRC at PEB %d, calculated "
786 "%#08x, read %#08x", pnum, crc, hdr_crc);
801c135c 787 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
788 } else if (UBI_IO_DEBUG)
789 dbg_msg("bad EC header CRC at PEB %d, calculated "
790 "%#08x, read %#08x", pnum, crc, hdr_crc);
92e1a7d9
AB
791
792 if (!read_err)
793 return UBI_IO_BAD_HDR;
794 else
795 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
796 }
797
798 /* And of course validate what has just been read from the media */
799 err = validate_ec_hdr(ubi, ec_hdr);
800 if (err) {
801 ubi_err("validation failed for PEB %d", pnum);
802 return -EINVAL;
803 }
804
eb89580e
AB
805 /*
806 * If there was %-EBADMSG, but the header CRC is still OK, report about
807 * a bit-flip to force scrubbing on this PEB.
808 */
801c135c
AB
809 return read_err ? UBI_IO_BITFLIPS : 0;
810}
811
812/**
813 * ubi_io_write_ec_hdr - write an erase counter header.
814 * @ubi: UBI device description object
815 * @pnum: physical eraseblock to write to
816 * @ec_hdr: the erase counter header to write
817 *
818 * This function writes erase counter header described by @ec_hdr to physical
819 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
820 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
821 * field.
822 *
823 * This function returns zero in case of success and a negative error code in
824 * case of failure. If %-EIO is returned, the physical eraseblock most probably
825 * went bad.
826 */
e88d6e10 827int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
828 struct ubi_ec_hdr *ec_hdr)
829{
830 int err;
831 uint32_t crc;
832
833 dbg_io("write EC header to PEB %d", pnum);
834 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
835
3261ebd7 836 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 837 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
838 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
839 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0c6c7fa1 840 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801c135c 841 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 842 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
843
844 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
845 if (err)
adbf05e3 846 return err;
801c135c
AB
847
848 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
849 return err;
850}
851
852/**
853 * validate_vid_hdr - validate a volume identifier header.
854 * @ubi: UBI device description object
855 * @vid_hdr: the volume identifier header to check
856 *
857 * This function checks that data stored in the volume identifier header
858 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
859 */
860static int validate_vid_hdr(const struct ubi_device *ubi,
861 const struct ubi_vid_hdr *vid_hdr)
862{
863 int vol_type = vid_hdr->vol_type;
864 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
865 int vol_id = be32_to_cpu(vid_hdr->vol_id);
866 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 867 int compat = vid_hdr->compat;
3261ebd7
CH
868 int data_size = be32_to_cpu(vid_hdr->data_size);
869 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
870 int data_pad = be32_to_cpu(vid_hdr->data_pad);
871 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
872 int usable_leb_size = ubi->leb_size - data_pad;
873
874 if (copy_flag != 0 && copy_flag != 1) {
875 dbg_err("bad copy_flag");
876 goto bad;
877 }
878
879 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
880 data_pad < 0) {
881 dbg_err("negative values");
882 goto bad;
883 }
884
885 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
886 dbg_err("bad vol_id");
887 goto bad;
888 }
889
890 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
891 dbg_err("bad compat");
892 goto bad;
893 }
894
895 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
896 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
897 compat != UBI_COMPAT_REJECT) {
898 dbg_err("bad compat");
899 goto bad;
900 }
901
902 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
903 dbg_err("bad vol_type");
904 goto bad;
905 }
906
907 if (data_pad >= ubi->leb_size / 2) {
908 dbg_err("bad data_pad");
909 goto bad;
910 }
911
912 if (vol_type == UBI_VID_STATIC) {
913 /*
914 * Although from high-level point of view static volumes may
915 * contain zero bytes of data, but no VID headers can contain
916 * zero at these fields, because they empty volumes do not have
917 * mapped logical eraseblocks.
918 */
919 if (used_ebs == 0) {
920 dbg_err("zero used_ebs");
921 goto bad;
922 }
923 if (data_size == 0) {
924 dbg_err("zero data_size");
925 goto bad;
926 }
927 if (lnum < used_ebs - 1) {
928 if (data_size != usable_leb_size) {
929 dbg_err("bad data_size");
930 goto bad;
931 }
932 } else if (lnum == used_ebs - 1) {
933 if (data_size == 0) {
934 dbg_err("bad data_size at last LEB");
935 goto bad;
936 }
937 } else {
938 dbg_err("too high lnum");
939 goto bad;
940 }
941 } else {
942 if (copy_flag == 0) {
943 if (data_crc != 0) {
944 dbg_err("non-zero data CRC");
945 goto bad;
946 }
947 if (data_size != 0) {
948 dbg_err("non-zero data_size");
949 goto bad;
950 }
951 } else {
952 if (data_size == 0) {
953 dbg_err("zero data_size of copy");
954 goto bad;
955 }
956 }
957 if (used_ebs != 0) {
958 dbg_err("bad used_ebs");
959 goto bad;
960 }
961 }
962
963 return 0;
964
965bad:
966 ubi_err("bad VID header");
967 ubi_dbg_dump_vid_hdr(vid_hdr);
968 ubi_dbg_dump_stack();
969 return 1;
970}
971
972/**
973 * ubi_io_read_vid_hdr - read and check a volume identifier header.
974 * @ubi: UBI device description object
975 * @pnum: physical eraseblock number to read from
976 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
977 * identifier header
978 * @verbose: be verbose if the header is corrupted or wasn't found
979 *
980 * This function reads the volume identifier header from physical eraseblock
981 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
74d82d26
AB
982 * volume identifier header. The error codes are the same as in
983 * 'ubi_io_read_ec_hdr()'.
801c135c 984 *
74d82d26
AB
985 * Note, the implementation of this function is also very similar to
986 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
801c135c 987 */
e88d6e10 988int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
989 struct ubi_vid_hdr *vid_hdr, int verbose)
990{
92e1a7d9 991 int err, read_err;
801c135c
AB
992 uint32_t crc, magic, hdr_crc;
993 void *p;
994
995 dbg_io("read VID header from PEB %d", pnum);
996 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
997
998 p = (char *)vid_hdr - ubi->vid_hdr_shift;
92e1a7d9 999 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
801c135c 1000 ubi->vid_hdr_alsize);
92e1a7d9
AB
1001 if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
1002 return read_err;
801c135c 1003
3261ebd7 1004 magic = be32_to_cpu(vid_hdr->magic);
801c135c 1005 if (magic != UBI_VID_HDR_MAGIC) {
92e1a7d9
AB
1006 if (read_err == -EBADMSG)
1007 return UBI_IO_BAD_HDR_EBADMSG;
eb89580e 1008
bb00e180 1009 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
801c135c
AB
1010 if (verbose)
1011 ubi_warn("no VID header found at PEB %d, "
1012 "only 0xFF bytes", pnum);
ed45819f
AB
1013 else if (UBI_IO_DEBUG)
1014 dbg_msg("no VID header found at PEB %d, "
1015 "only 0xFF bytes", pnum);
92e1a7d9
AB
1016 if (!read_err)
1017 return UBI_IO_FF;
1018 else
1019 return UBI_IO_FF_BITFLIPS;
801c135c
AB
1020 }
1021
801c135c
AB
1022 if (verbose) {
1023 ubi_warn("bad magic number at PEB %d: %08x instead of "
1024 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1025 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1026 } else if (UBI_IO_DEBUG)
1027 dbg_msg("bad magic number at PEB %d: %08x instead of "
1028 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
786d7831 1029 return UBI_IO_BAD_HDR;
801c135c
AB
1030 }
1031
1032 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1033 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1034
1035 if (hdr_crc != crc) {
1036 if (verbose) {
1037 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1038 "read %#08x", pnum, crc, hdr_crc);
1039 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1040 } else if (UBI_IO_DEBUG)
1041 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1042 "read %#08x", pnum, crc, hdr_crc);
92e1a7d9
AB
1043 if (!read_err)
1044 return UBI_IO_BAD_HDR;
1045 else
1046 return UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
1047 }
1048
801c135c
AB
1049 err = validate_vid_hdr(ubi, vid_hdr);
1050 if (err) {
1051 ubi_err("validation failed for PEB %d", pnum);
1052 return -EINVAL;
1053 }
1054
1055 return read_err ? UBI_IO_BITFLIPS : 0;
1056}
1057
1058/**
1059 * ubi_io_write_vid_hdr - write a volume identifier header.
1060 * @ubi: UBI device description object
1061 * @pnum: the physical eraseblock number to write to
1062 * @vid_hdr: the volume identifier header to write
1063 *
1064 * This function writes the volume identifier header described by @vid_hdr to
1065 * physical eraseblock @pnum. This function automatically fills the
1066 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1067 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1068 *
1069 * This function returns zero in case of success and a negative error code in
1070 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1071 * bad.
1072 */
e88d6e10 1073int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1074 struct ubi_vid_hdr *vid_hdr)
1075{
1076 int err;
1077 uint32_t crc;
1078 void *p;
1079
1080 dbg_io("write VID header to PEB %d", pnum);
1081 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1082
1083 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1084 if (err)
adbf05e3 1085 return err;
801c135c 1086
3261ebd7 1087 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1088 vid_hdr->version = UBI_VERSION;
1089 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1090 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
1091
1092 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1093 if (err)
adbf05e3 1094 return err;
801c135c
AB
1095
1096 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1097 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1098 ubi->vid_hdr_alsize);
1099 return err;
1100}
1101
1102#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1103
1104/**
1105 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1106 * @ubi: UBI device description object
1107 * @pnum: physical eraseblock number to check
1108 *
adbf05e3
AB
1109 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1110 * it is bad and a negative error code if an error occurred.
801c135c
AB
1111 */
1112static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1113{
1114 int err;
1115
1116 err = ubi_io_is_bad(ubi, pnum);
1117 if (!err)
1118 return err;
1119
1120 ubi_err("paranoid check failed for PEB %d", pnum);
1121 ubi_dbg_dump_stack();
adbf05e3 1122 return err > 0 ? -EINVAL : err;
801c135c
AB
1123}
1124
1125/**
1126 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock number the erase counter header belongs to
1129 * @ec_hdr: the erase counter header to check
1130 *
1131 * This function returns zero if the erase counter header contains valid
adbf05e3 1132 * values, and %-EINVAL if not.
801c135c
AB
1133 */
1134static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1135 const struct ubi_ec_hdr *ec_hdr)
1136{
1137 int err;
1138 uint32_t magic;
1139
3261ebd7 1140 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
1141 if (magic != UBI_EC_HDR_MAGIC) {
1142 ubi_err("bad magic %#08x, must be %#08x",
1143 magic, UBI_EC_HDR_MAGIC);
1144 goto fail;
1145 }
1146
1147 err = validate_ec_hdr(ubi, ec_hdr);
1148 if (err) {
1149 ubi_err("paranoid check failed for PEB %d", pnum);
1150 goto fail;
1151 }
1152
1153 return 0;
1154
1155fail:
1156 ubi_dbg_dump_ec_hdr(ec_hdr);
1157 ubi_dbg_dump_stack();
adbf05e3 1158 return -EINVAL;
801c135c
AB
1159}
1160
1161/**
ebaaf1af 1162 * paranoid_check_peb_ec_hdr - check erase counter header.
801c135c
AB
1163 * @ubi: UBI device description object
1164 * @pnum: the physical eraseblock number to check
1165 *
adbf05e3
AB
1166 * This function returns zero if the erase counter header is all right and and
1167 * a negative error code if not or if an error occurred.
801c135c
AB
1168 */
1169static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1170{
1171 int err;
1172 uint32_t crc, hdr_crc;
1173 struct ubi_ec_hdr *ec_hdr;
1174
33818bbb 1175 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1176 if (!ec_hdr)
1177 return -ENOMEM;
1178
1179 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1180 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1181 goto exit;
1182
1183 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1184 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
1185 if (hdr_crc != crc) {
1186 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1187 ubi_err("paranoid check failed for PEB %d", pnum);
1188 ubi_dbg_dump_ec_hdr(ec_hdr);
1189 ubi_dbg_dump_stack();
adbf05e3 1190 err = -EINVAL;
801c135c
AB
1191 goto exit;
1192 }
1193
1194 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1195
1196exit:
1197 kfree(ec_hdr);
1198 return err;
1199}
1200
1201/**
1202 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1203 * @ubi: UBI device description object
1204 * @pnum: physical eraseblock number the volume identifier header belongs to
1205 * @vid_hdr: the volume identifier header to check
1206 *
1207 * This function returns zero if the volume identifier header is all right, and
adbf05e3 1208 * %-EINVAL if not.
801c135c
AB
1209 */
1210static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1211 const struct ubi_vid_hdr *vid_hdr)
1212{
1213 int err;
1214 uint32_t magic;
1215
3261ebd7 1216 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1217 if (magic != UBI_VID_HDR_MAGIC) {
1218 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1219 magic, pnum, UBI_VID_HDR_MAGIC);
1220 goto fail;
1221 }
1222
1223 err = validate_vid_hdr(ubi, vid_hdr);
1224 if (err) {
1225 ubi_err("paranoid check failed for PEB %d", pnum);
1226 goto fail;
1227 }
1228
1229 return err;
1230
1231fail:
1232 ubi_err("paranoid check failed for PEB %d", pnum);
1233 ubi_dbg_dump_vid_hdr(vid_hdr);
1234 ubi_dbg_dump_stack();
adbf05e3 1235 return -EINVAL;
801c135c
AB
1236
1237}
1238
1239/**
ebaaf1af 1240 * paranoid_check_peb_vid_hdr - check volume identifier header.
801c135c
AB
1241 * @ubi: UBI device description object
1242 * @pnum: the physical eraseblock number to check
1243 *
1244 * This function returns zero if the volume identifier header is all right,
adbf05e3 1245 * and a negative error code if not or if an error occurred.
801c135c
AB
1246 */
1247static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1248{
1249 int err;
1250 uint32_t crc, hdr_crc;
1251 struct ubi_vid_hdr *vid_hdr;
1252 void *p;
1253
33818bbb 1254 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
1255 if (!vid_hdr)
1256 return -ENOMEM;
1257
1258 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1259 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1260 ubi->vid_hdr_alsize);
1261 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1262 goto exit;
1263
1264 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1265 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1266 if (hdr_crc != crc) {
1267 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1268 "read %#08x", pnum, crc, hdr_crc);
1269 ubi_err("paranoid check failed for PEB %d", pnum);
1270 ubi_dbg_dump_vid_hdr(vid_hdr);
1271 ubi_dbg_dump_stack();
adbf05e3 1272 err = -EINVAL;
801c135c
AB
1273 goto exit;
1274 }
1275
1276 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1277
1278exit:
1279 ubi_free_vid_hdr(ubi, vid_hdr);
1280 return err;
1281}
1282
6e9065d7
AB
1283/**
1284 * ubi_dbg_check_write - make sure write succeeded.
1285 * @ubi: UBI device description object
1286 * @buf: buffer with data which were written
1287 * @pnum: physical eraseblock number the data were written to
1288 * @offset: offset within the physical eraseblock the data were written to
1289 * @len: how many bytes were written
1290 *
1291 * This functions reads data which were recently written and compares it with
1292 * the original data buffer - the data have to match. Returns zero if the data
1293 * match and a negative error code if not or in case of failure.
1294 */
1295int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1296 int offset, int len)
1297{
1298 int err, i;
1299
1300 mutex_lock(&ubi->dbg_buf_mutex);
1301 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1302 if (err)
1303 goto out_unlock;
1304
1305 for (i = 0; i < len; i++) {
1306 uint8_t c = ((uint8_t *)buf)[i];
1307 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1308 int dump_len;
1309
1310 if (c == c1)
1311 continue;
1312
1313 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1314 pnum, offset, len);
1315 ubi_msg("data differ at position %d", i);
1316 dump_len = max_t(int, 128, len - i);
1317 ubi_msg("hex dump of the original buffer from %d to %d",
1318 i, i + dump_len);
1319 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1320 buf + i, dump_len, 1);
1321 ubi_msg("hex dump of the read buffer from %d to %d",
1322 i, i + dump_len);
1323 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1324 ubi->dbg_peb_buf + i, dump_len, 1);
1325 ubi_dbg_dump_stack();
1326 err = -EINVAL;
1327 goto out_unlock;
1328 }
1329 mutex_unlock(&ubi->dbg_buf_mutex);
1330
1331 return 0;
1332
1333out_unlock:
1334 mutex_unlock(&ubi->dbg_buf_mutex);
1335 return err;
1336}
1337
801c135c 1338/**
40a71a87 1339 * ubi_dbg_check_all_ff - check that a region of flash is empty.
801c135c
AB
1340 * @ubi: UBI device description object
1341 * @pnum: the physical eraseblock number to check
1342 * @offset: the starting offset within the physical eraseblock to check
1343 * @len: the length of the region to check
1344 *
1345 * This function returns zero if only 0xFF bytes are present at offset
adbf05e3
AB
1346 * @offset of the physical eraseblock @pnum, and a negative error code if not
1347 * or if an error occurred.
801c135c 1348 */
40a71a87 1349int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
801c135c
AB
1350{
1351 size_t read;
1352 int err;
801c135c
AB
1353 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1354
e88d6e10
AB
1355 mutex_lock(&ubi->dbg_buf_mutex);
1356 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
801c135c
AB
1357 if (err && err != -EUCLEAN) {
1358 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1359 "read %zd bytes", err, len, pnum, offset, read);
1360 goto error;
1361 }
1362
bb00e180 1363 err = ubi_check_pattern(ubi->dbg_peb_buf, 0xFF, len);
801c135c
AB
1364 if (err == 0) {
1365 ubi_err("flash region at PEB %d:%d, length %d does not "
1366 "contain all 0xFF bytes", pnum, offset, len);
1367 goto fail;
1368 }
e88d6e10 1369 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c 1370
801c135c
AB
1371 return 0;
1372
1373fail:
1374 ubi_err("paranoid check failed for PEB %d", pnum);
c8566350 1375 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
6986646b 1376 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
e88d6e10 1377 ubi->dbg_peb_buf, len, 1);
adbf05e3 1378 err = -EINVAL;
801c135c
AB
1379error:
1380 ubi_dbg_dump_stack();
e88d6e10 1381 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c
AB
1382 return err;
1383}
1384
1385#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */