]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/ubi/scan.c
UBI: rename _init_scan functions
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
fbd0107f 22 * UBI attaching sub-system.
801c135c 23 *
fbd0107f
AB
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
801c135c 26 *
a4e6042f 27 * The attaching information is represented by a &struct ubi_attach_info'
fbd0107f
AB
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
801c135c 31 *
fbd0107f
AB
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
36 * per-LEB objects.
801c135c
AB
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
0525dac9 41 *
fef2deb3
AB
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
44 *
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
49 *
0525dac9 50 * UBI tries to distinguish between 2 types of corruptions.
fef2deb3
AB
51 *
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
fbd0107f
AB
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
fef2deb3
AB
58 *
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
0525dac9
AB
62 *
63 * 2. Unexpected corruptions which are not caused by power cuts. During
fbd0107f 64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
fef2deb3
AB
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
45aafd32
AB
68 *
69 * However, it is difficult to reliably distinguish between these types of
fbd0107f
AB
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
75 * are as follows.
76 * o If the data area contains only 0xFFs, there are no data, and it is safe
fef2deb3
AB
77 * to just erase this PEB - this is corruption type 1.
78 * o If the data area has bit-flips or data integrity errors (ECC errors on
45aafd32 79 * NAND), it is probably a PEB which was being erased when power cut
fef2deb3
AB
80 * happened, so this is corruption type 1. However, this is just a guess,
81 * which might be wrong.
82 * o Otherwise this it corruption type 2.
801c135c
AB
83 */
84
85#include <linux/err.h>
5a0e3ad6 86#include <linux/slab.h>
801c135c 87#include <linux/crc32.h>
3013ee31 88#include <linux/math64.h>
095751a6 89#include <linux/random.h>
801c135c
AB
90#include "ubi.h"
91
a4e6042f 92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
801c135c
AB
93
94/* Temporary variables used during scanning */
95static struct ubi_ec_hdr *ech;
96static struct ubi_vid_hdr *vidh;
97
941dfb07 98/**
78d87c95 99 * add_to_list - add physical eraseblock to a list.
a4e6042f 100 * @ai: attaching information
78d87c95
AB
101 * @pnum: physical eraseblock number to add
102 * @ec: erase counter of the physical eraseblock
0525dac9 103 * @to_head: if not zero, add to the head of the list
78d87c95
AB
104 * @list: the list to add to
105 *
fbd0107f
AB
106 * This function allocates a 'struct ubi_ainf_peb' object for physical
107 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
0525dac9
AB
108 * If @to_head is not zero, PEB will be added to the head of the list, which
109 * basically means it will be processed first later. E.g., we add corrupted
110 * PEBs (corrupted due to power cuts) to the head of the erase list to make
111 * sure we erase them first and get rid of corruptions ASAP. This function
112 * returns zero in case of success and a negative error code in case of
3fb34124 113 * failure.
78d87c95 114 */
a4e6042f 115static int add_to_list(struct ubi_attach_info *ai, int pnum, int ec,
afc15a81 116 int to_head, struct list_head *list)
801c135c 117{
2c5ec5ce 118 struct ubi_ainf_peb *aeb;
801c135c 119
a4e6042f 120 if (list == &ai->free) {
801c135c 121 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
a4e6042f 122 } else if (list == &ai->erase) {
801c135c 123 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
a4e6042f 124 } else if (list == &ai->alien) {
801c135c 125 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
a4e6042f 126 ai->alien_peb_count += 1;
33789fb9 127 } else
801c135c
AB
128 BUG();
129
1fc2e3e5 130 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 131 if (!aeb)
801c135c
AB
132 return -ENOMEM;
133
2c5ec5ce
AB
134 aeb->pnum = pnum;
135 aeb->ec = ec;
0525dac9 136 if (to_head)
2c5ec5ce 137 list_add(&aeb->u.list, list);
0525dac9 138 else
2c5ec5ce 139 list_add_tail(&aeb->u.list, list);
801c135c
AB
140 return 0;
141}
142
3fb34124
AB
143/**
144 * add_corrupted - add a corrupted physical eraseblock.
a4e6042f 145 * @ai: attaching information
3fb34124
AB
146 * @pnum: physical eraseblock number to add
147 * @ec: erase counter of the physical eraseblock
148 *
fbd0107f
AB
149 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
150 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
151 * was presumably not caused by a power cut. Returns zero in case of success
152 * and a negative error code in case of failure.
3fb34124 153 */
a4e6042f 154static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
3fb34124 155{
2c5ec5ce 156 struct ubi_ainf_peb *aeb;
3fb34124
AB
157
158 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
159
1fc2e3e5 160 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 161 if (!aeb)
3fb34124
AB
162 return -ENOMEM;
163
a4e6042f 164 ai->corr_peb_count += 1;
2c5ec5ce
AB
165 aeb->pnum = pnum;
166 aeb->ec = ec;
a4e6042f 167 list_add(&aeb->u.list, &ai->corr);
3fb34124
AB
168 return 0;
169}
170
801c135c 171/**
ebaaf1af 172 * validate_vid_hdr - check volume identifier header.
801c135c 173 * @vid_hdr: the volume identifier header to check
517af48c 174 * @av: information about the volume this logical eraseblock belongs to
801c135c
AB
175 * @pnum: physical eraseblock number the VID header came from
176 *
177 * This function checks that data stored in @vid_hdr is consistent. Returns
178 * non-zero if an inconsistency was found and zero if not.
179 *
180 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 181 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
182 * information in the VID header is consistent to the information in other VID
183 * headers of the same volume.
184 */
185static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
517af48c 186 const struct ubi_ainf_volume *av, int pnum)
801c135c
AB
187{
188 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
189 int vol_id = be32_to_cpu(vid_hdr->vol_id);
190 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
191 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c 192
517af48c
AB
193 if (av->leb_count != 0) {
194 int av_vol_type;
801c135c
AB
195
196 /*
197 * This is not the first logical eraseblock belonging to this
198 * volume. Ensure that the data in its VID header is consistent
199 * to the data in previous logical eraseblock headers.
200 */
201
517af48c 202 if (vol_id != av->vol_id) {
e2986827 203 ubi_err("inconsistent vol_id");
801c135c
AB
204 goto bad;
205 }
206
517af48c
AB
207 if (av->vol_type == UBI_STATIC_VOLUME)
208 av_vol_type = UBI_VID_STATIC;
801c135c 209 else
517af48c 210 av_vol_type = UBI_VID_DYNAMIC;
801c135c 211
517af48c 212 if (vol_type != av_vol_type) {
e2986827 213 ubi_err("inconsistent vol_type");
801c135c
AB
214 goto bad;
215 }
216
517af48c 217 if (used_ebs != av->used_ebs) {
e2986827 218 ubi_err("inconsistent used_ebs");
801c135c
AB
219 goto bad;
220 }
221
517af48c 222 if (data_pad != av->data_pad) {
e2986827 223 ubi_err("inconsistent data_pad");
801c135c
AB
224 goto bad;
225 }
226 }
227
228 return 0;
229
230bad:
231 ubi_err("inconsistent VID header at PEB %d", pnum);
a904e3f1 232 ubi_dump_vid_hdr(vid_hdr);
517af48c 233 ubi_dump_av(av);
801c135c
AB
234 return -EINVAL;
235}
236
237/**
a4e6042f
AB
238 * add_volume - add volume to the attaching information.
239 * @ai: attaching information
801c135c
AB
240 * @vol_id: ID of the volume to add
241 * @pnum: physical eraseblock number
242 * @vid_hdr: volume identifier header
243 *
244 * If the volume corresponding to the @vid_hdr logical eraseblock is already
a4e6042f
AB
245 * present in the attaching information, this function does nothing. Otherwise
246 * it adds corresponding volume to the attaching information. Returns a pointer
fbd0107f
AB
247 * to the allocated "av" object in case of success and a negative error code in
248 * case of failure.
801c135c 249 */
a4e6042f 250static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
afc15a81 251 int vol_id, int pnum,
801c135c
AB
252 const struct ubi_vid_hdr *vid_hdr)
253{
517af48c 254 struct ubi_ainf_volume *av;
a4e6042f 255 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
801c135c 256
3261ebd7 257 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
258
259 /* Walk the volume RB-tree to look if this volume is already present */
260 while (*p) {
261 parent = *p;
517af48c 262 av = rb_entry(parent, struct ubi_ainf_volume, rb);
801c135c 263
517af48c
AB
264 if (vol_id == av->vol_id)
265 return av;
801c135c 266
517af48c 267 if (vol_id > av->vol_id)
801c135c
AB
268 p = &(*p)->rb_left;
269 else
270 p = &(*p)->rb_right;
271 }
272
273 /* The volume is absent - add it */
517af48c
AB
274 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
275 if (!av)
801c135c
AB
276 return ERR_PTR(-ENOMEM);
277
517af48c
AB
278 av->highest_lnum = av->leb_count = 0;
279 av->vol_id = vol_id;
280 av->root = RB_ROOT;
281 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
282 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
283 av->compat = vid_hdr->compat;
284 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
801c135c 285 : UBI_STATIC_VOLUME;
a4e6042f
AB
286 if (vol_id > ai->highest_vol_id)
287 ai->highest_vol_id = vol_id;
801c135c 288
517af48c
AB
289 rb_link_node(&av->rb, parent, p);
290 rb_insert_color(&av->rb, &ai->volumes);
a4e6042f 291 ai->vols_found += 1;
801c135c 292 dbg_bld("added volume %d", vol_id);
517af48c 293 return av;
801c135c
AB
294}
295
296/**
297 * compare_lebs - find out which logical eraseblock is newer.
298 * @ubi: UBI device description object
2c5ec5ce 299 * @aeb: first logical eraseblock to compare
801c135c
AB
300 * @pnum: physical eraseblock number of the second logical eraseblock to
301 * compare
302 * @vid_hdr: volume identifier header of the second logical eraseblock
303 *
304 * This function compares 2 copies of a LEB and informs which one is newer. In
305 * case of success this function returns a positive value, in case of failure, a
306 * negative error code is returned. The success return codes use the following
307 * bits:
2c5ec5ce 308 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
801c135c
AB
309 * second PEB (described by @pnum and @vid_hdr);
310 * o bit 0 is set: the second PEB is newer;
311 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
312 * o bit 1 is set: bit-flips were detected in the newer LEB;
313 * o bit 2 is cleared: the older LEB is not corrupted;
314 * o bit 2 is set: the older LEB is corrupted.
315 */
2c5ec5ce 316static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
e88d6e10 317 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
318{
319 void *buf;
320 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
321 uint32_t data_crc, crc;
8bc22961 322 struct ubi_vid_hdr *vh = NULL;
3261ebd7 323 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c 324
2c5ec5ce 325 if (sqnum2 == aeb->sqnum) {
801c135c 326 /*
9869cd80
AB
327 * This must be a really ancient UBI image which has been
328 * created before sequence numbers support has been added. At
329 * that times we used 32-bit LEB versions stored in logical
330 * eraseblocks. That was before UBI got into mainline. We do not
0525dac9
AB
331 * support these images anymore. Well, those images still work,
332 * but only if no unclean reboots happened.
801c135c 333 */
9869cd80
AB
334 ubi_err("unsupported on-flash UBI format\n");
335 return -EINVAL;
336 }
64203195 337
9869cd80 338 /* Obviously the LEB with lower sequence counter is older */
2c5ec5ce 339 second_is_newer = (sqnum2 > aeb->sqnum);
801c135c
AB
340
341 /*
342 * Now we know which copy is newer. If the copy flag of the PEB with
343 * newer version is not set, then we just return, otherwise we have to
344 * check data CRC. For the second PEB we already have the VID header,
345 * for the first one - we'll need to re-read it from flash.
346 *
9869cd80 347 * Note: this may be optimized so that we wouldn't read twice.
801c135c
AB
348 */
349
350 if (second_is_newer) {
351 if (!vid_hdr->copy_flag) {
352 /* It is not a copy, so it is newer */
353 dbg_bld("second PEB %d is newer, copy_flag is unset",
354 pnum);
355 return 1;
356 }
357 } else {
2c5ec5ce 358 if (!aeb->copy_flag) {
fb22b59b
AB
359 /* It is not a copy, so it is newer */
360 dbg_bld("first PEB %d is newer, copy_flag is unset",
361 pnum);
362 return bitflips << 1;
363 }
801c135c 364
33818bbb 365 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 366 if (!vh)
801c135c
AB
367 return -ENOMEM;
368
2c5ec5ce 369 pnum = aeb->pnum;
8bc22961 370 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
371 if (err) {
372 if (err == UBI_IO_BITFLIPS)
373 bitflips = 1;
374 else {
e2986827 375 ubi_err("VID of PEB %d header is bad, but it "
0525dac9 376 "was OK earlier, err %d", pnum, err);
801c135c
AB
377 if (err > 0)
378 err = -EIO;
379
380 goto out_free_vidh;
381 }
382 }
383
8bc22961 384 vid_hdr = vh;
801c135c
AB
385 }
386
387 /* Read the data of the copy and check the CRC */
388
3261ebd7 389 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 390 buf = vmalloc(len);
801c135c
AB
391 if (!buf) {
392 err = -ENOMEM;
393 goto out_free_vidh;
394 }
395
396 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
d57f4054 397 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
801c135c
AB
398 goto out_free_buf;
399
3261ebd7 400 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
401 crc = crc32(UBI_CRC32_INIT, buf, len);
402 if (crc != data_crc) {
403 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
404 pnum, crc, data_crc);
405 corrupted = 1;
406 bitflips = 0;
407 second_is_newer = !second_is_newer;
408 } else {
409 dbg_bld("PEB %d CRC is OK", pnum);
410 bitflips = !!err;
411 }
412
92ad8f37 413 vfree(buf);
8bc22961 414 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
415
416 if (second_is_newer)
417 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
418 else
419 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
420
421 return second_is_newer | (bitflips << 1) | (corrupted << 2);
422
423out_free_buf:
92ad8f37 424 vfree(buf);
801c135c 425out_free_vidh:
8bc22961 426 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
427 return err;
428}
429
430/**
fbd0107f 431 * ubi_add_to_av - add used physical eraseblock to the attaching information.
801c135c 432 * @ubi: UBI device description object
a4e6042f 433 * @ai: attaching information
801c135c
AB
434 * @pnum: the physical eraseblock number
435 * @ec: erase counter
436 * @vid_hdr: the volume identifier header
437 * @bitflips: if bit-flips were detected when this physical eraseblock was read
438 *
79b510c0
AB
439 * This function adds information about a used physical eraseblock to the
440 * 'used' tree of the corresponding volume. The function is rather complex
441 * because it has to handle cases when this is not the first physical
442 * eraseblock belonging to the same logical eraseblock, and the newer one has
443 * to be picked, while the older one has to be dropped. This function returns
444 * zero in case of success and a negative error code in case of failure.
801c135c 445 */
3561188a
AB
446int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
447 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
801c135c
AB
448{
449 int err, vol_id, lnum;
801c135c 450 unsigned long long sqnum;
517af48c 451 struct ubi_ainf_volume *av;
2c5ec5ce 452 struct ubi_ainf_peb *aeb;
801c135c
AB
453 struct rb_node **p, *parent = NULL;
454
3261ebd7
CH
455 vol_id = be32_to_cpu(vid_hdr->vol_id);
456 lnum = be32_to_cpu(vid_hdr->lnum);
457 sqnum = be64_to_cpu(vid_hdr->sqnum);
801c135c 458
9869cd80
AB
459 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
460 pnum, vol_id, lnum, ec, sqnum, bitflips);
801c135c 461
517af48c
AB
462 av = add_volume(ai, vol_id, pnum, vid_hdr);
463 if (IS_ERR(av))
464 return PTR_ERR(av);
801c135c 465
a4e6042f
AB
466 if (ai->max_sqnum < sqnum)
467 ai->max_sqnum = sqnum;
76eafe47 468
801c135c
AB
469 /*
470 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
471 * if this is the first instance of this logical eraseblock or not.
472 */
517af48c 473 p = &av->root.rb_node;
801c135c
AB
474 while (*p) {
475 int cmp_res;
476
477 parent = *p;
2c5ec5ce
AB
478 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
479 if (lnum != aeb->lnum) {
480 if (lnum < aeb->lnum)
801c135c
AB
481 p = &(*p)->rb_left;
482 else
483 p = &(*p)->rb_right;
484 continue;
485 }
486
487 /*
488 * There is already a physical eraseblock describing the same
489 * logical eraseblock present.
490 */
491
2c5ec5ce
AB
492 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
493 aeb->pnum, aeb->sqnum, aeb->ec);
801c135c
AB
494
495 /*
496 * Make sure that the logical eraseblocks have different
497 * sequence numbers. Otherwise the image is bad.
498 *
9869cd80
AB
499 * However, if the sequence number is zero, we assume it must
500 * be an ancient UBI image from the era when UBI did not have
501 * sequence numbers. We still can attach these images, unless
502 * there is a need to distinguish between old and new
503 * eraseblocks, in which case we'll refuse the image in
504 * 'compare_lebs()'. In other words, we attach old clean
505 * images, but refuse attaching old images with duplicated
506 * logical eraseblocks because there was an unclean reboot.
801c135c 507 */
2c5ec5ce 508 if (aeb->sqnum == sqnum && sqnum != 0) {
801c135c
AB
509 ubi_err("two LEBs with same sequence number %llu",
510 sqnum);
2c5ec5ce 511 ubi_dump_aeb(aeb, 0);
a904e3f1 512 ubi_dump_vid_hdr(vid_hdr);
801c135c
AB
513 return -EINVAL;
514 }
515
516 /*
517 * Now we have to drop the older one and preserve the newer
518 * one.
519 */
2c5ec5ce 520 cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr);
801c135c
AB
521 if (cmp_res < 0)
522 return cmp_res;
523
524 if (cmp_res & 1) {
525 /*
3f502622 526 * This logical eraseblock is newer than the one
801c135c
AB
527 * found earlier.
528 */
517af48c 529 err = validate_vid_hdr(vid_hdr, av, pnum);
801c135c
AB
530 if (err)
531 return err;
532
a4e6042f
AB
533 err = add_to_list(ai, aeb->pnum, aeb->ec, cmp_res & 4,
534 &ai->erase);
801c135c
AB
535 if (err)
536 return err;
537
2c5ec5ce
AB
538 aeb->ec = ec;
539 aeb->pnum = pnum;
540 aeb->scrub = ((cmp_res & 2) || bitflips);
541 aeb->copy_flag = vid_hdr->copy_flag;
542 aeb->sqnum = sqnum;
801c135c 543
517af48c
AB
544 if (av->highest_lnum == lnum)
545 av->last_data_size =
3261ebd7 546 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
547
548 return 0;
549 } else {
550 /*
025dfdaf 551 * This logical eraseblock is older than the one found
801c135c
AB
552 * previously.
553 */
a4e6042f
AB
554 return add_to_list(ai, pnum, ec, cmp_res & 4,
555 &ai->erase);
801c135c
AB
556 }
557 }
558
559 /*
560 * We've met this logical eraseblock for the first time, add it to the
a4e6042f 561 * attaching information.
801c135c
AB
562 */
563
517af48c 564 err = validate_vid_hdr(vid_hdr, av, pnum);
801c135c
AB
565 if (err)
566 return err;
567
1fc2e3e5 568 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 569 if (!aeb)
801c135c
AB
570 return -ENOMEM;
571
2c5ec5ce
AB
572 aeb->ec = ec;
573 aeb->pnum = pnum;
574 aeb->lnum = lnum;
575 aeb->scrub = bitflips;
576 aeb->copy_flag = vid_hdr->copy_flag;
577 aeb->sqnum = sqnum;
801c135c 578
517af48c
AB
579 if (av->highest_lnum <= lnum) {
580 av->highest_lnum = lnum;
581 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
582 }
583
517af48c 584 av->leb_count += 1;
2c5ec5ce 585 rb_link_node(&aeb->u.rb, parent, p);
517af48c 586 rb_insert_color(&aeb->u.rb, &av->root);
801c135c
AB
587 return 0;
588}
589
590/**
dcd85fdd 591 * ubi_find_av - find volume in the attaching information.
a4e6042f 592 * @ai: attaching information
801c135c
AB
593 * @vol_id: the requested volume ID
594 *
595 * This function returns a pointer to the volume description or %NULL if there
a4e6042f 596 * are no data about this volume in the attaching information.
801c135c 597 */
dcd85fdd
AB
598struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
599 int vol_id)
801c135c 600{
517af48c 601 struct ubi_ainf_volume *av;
a4e6042f 602 struct rb_node *p = ai->volumes.rb_node;
801c135c
AB
603
604 while (p) {
517af48c 605 av = rb_entry(p, struct ubi_ainf_volume, rb);
801c135c 606
517af48c
AB
607 if (vol_id == av->vol_id)
608 return av;
801c135c 609
517af48c 610 if (vol_id > av->vol_id)
801c135c
AB
611 p = p->rb_left;
612 else
613 p = p->rb_right;
614 }
615
616 return NULL;
617}
618
801c135c 619/**
d717dc2f 620 * ubi_remove_av - delete attaching information about a volume.
a4e6042f 621 * @ai: attaching information
517af48c 622 * @av: the volume attaching information to delete
801c135c 623 */
d717dc2f 624void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
801c135c
AB
625{
626 struct rb_node *rb;
2c5ec5ce 627 struct ubi_ainf_peb *aeb;
801c135c 628
517af48c 629 dbg_bld("remove attaching information about volume %d", av->vol_id);
801c135c 630
517af48c 631 while ((rb = rb_first(&av->root))) {
2c5ec5ce 632 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
517af48c 633 rb_erase(&aeb->u.rb, &av->root);
a4e6042f 634 list_add_tail(&aeb->u.list, &ai->erase);
801c135c
AB
635 }
636
517af48c
AB
637 rb_erase(&av->rb, &ai->volumes);
638 kfree(av);
a4e6042f 639 ai->vols_found -= 1;
801c135c
AB
640}
641
642/**
13d33dad 643 * early_erase_peb - erase a physical eraseblock.
801c135c 644 * @ubi: UBI device description object
a4e6042f 645 * @ai: attaching information
801c135c
AB
646 * @pnum: physical eraseblock number to erase;
647 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
648 *
649 * This function erases physical eraseblock 'pnum', and writes the erase
650 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
651 * initialization stages, when the EBA sub-system had not been yet initialized.
652 * This function returns zero in case of success and a negative error code in
653 * case of failure.
801c135c 654 */
13d33dad
AB
655static int early_erase_peb(struct ubi_device *ubi,
656 const struct ubi_attach_info *ai, int pnum, int ec)
801c135c
AB
657{
658 int err;
659 struct ubi_ec_hdr *ec_hdr;
660
801c135c
AB
661 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
662 /*
663 * Erase counter overflow. Upgrade UBI and use 64-bit
664 * erase counters internally.
665 */
666 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
667 return -EINVAL;
668 }
669
dcec4c3b
FM
670 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
671 if (!ec_hdr)
672 return -ENOMEM;
673
3261ebd7 674 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
675
676 err = ubi_io_sync_erase(ubi, pnum, 0);
677 if (err < 0)
678 goto out_free;
679
680 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
681
682out_free:
683 kfree(ec_hdr);
684 return err;
685}
686
687/**
c87fbd7d 688 * ubi_early_get_peb - get a free physical eraseblock.
801c135c 689 * @ubi: UBI device description object
a4e6042f 690 * @ai: attaching information
801c135c
AB
691 *
692 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
693 * called on the UBI initialization stages when the wear-leveling sub-system is
694 * not initialized yet. This function picks a physical eraseblocks from one of
695 * the lists, writes the EC header if it is needed, and removes it from the
696 * list.
801c135c 697 *
fbd0107f
AB
698 * This function returns a pointer to the "aeb" of the found free PEB in case
699 * of success and an error code in case of failure.
801c135c 700 */
c87fbd7d
AB
701struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
702 struct ubi_attach_info *ai)
801c135c 703{
5fc01ab6 704 int err = 0;
2c5ec5ce 705 struct ubi_ainf_peb *aeb, *tmp_aeb;
801c135c 706
a4e6042f
AB
707 if (!list_empty(&ai->free)) {
708 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
2c5ec5ce
AB
709 list_del(&aeb->u.list);
710 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
711 return aeb;
801c135c
AB
712 }
713
5fc01ab6
AB
714 /*
715 * We try to erase the first physical eraseblock from the erase list
716 * and pick it if we succeed, or try to erase the next one if not. And
717 * so forth. We don't want to take care about bad eraseblocks here -
718 * they'll be handled later.
719 */
a4e6042f 720 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
2c5ec5ce 721 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
a4e6042f 722 aeb->ec = ai->mean_ec;
801c135c 723
13d33dad 724 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
5fc01ab6
AB
725 if (err)
726 continue;
801c135c 727
2c5ec5ce
AB
728 aeb->ec += 1;
729 list_del(&aeb->u.list);
730 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
731 return aeb;
801c135c
AB
732 }
733
5fc01ab6 734 ubi_err("no free eraseblocks");
801c135c
AB
735 return ERR_PTR(-ENOSPC);
736}
737
feeba4b8 738/**
45aafd32 739 * check_corruption - check the data area of PEB.
feeba4b8
AB
740 * @ubi: UBI device description object
741 * @vid_hrd: the (corrupted) VID header of this PEB
742 * @pnum: the physical eraseblock number to check
743 *
744 * This is a helper function which is used to distinguish between VID header
745 * corruptions caused by power cuts and other reasons. If the PEB contains only
45aafd32 746 * 0xFF bytes in the data area, the VID header is most probably corrupted
feeba4b8 747 * because of a power cut (%0 is returned in this case). Otherwise, it was
45aafd32
AB
748 * probably corrupted for some other reasons (%1 is returned in this case). A
749 * negative error code is returned if a read error occurred.
feeba4b8
AB
750 *
751 * If the corruption reason was a power cut, UBI can safely erase this PEB.
752 * Otherwise, it should preserve it to avoid possibly destroying important
753 * information.
754 */
45aafd32
AB
755static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
756 int pnum)
feeba4b8
AB
757{
758 int err;
759
760 mutex_lock(&ubi->buf_mutex);
0ca39d74 761 memset(ubi->peb_buf, 0x00, ubi->leb_size);
feeba4b8 762
0ca39d74 763 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
feeba4b8 764 ubi->leb_size);
d57f4054 765 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
45aafd32
AB
766 /*
767 * Bit-flips or integrity errors while reading the data area.
768 * It is difficult to say for sure what type of corruption is
769 * this, but presumably a power cut happened while this PEB was
770 * erased, so it became unstable and corrupted, and should be
771 * erased.
772 */
1b1d76e2
DC
773 err = 0;
774 goto out_unlock;
45aafd32
AB
775 }
776
777 if (err)
1b1d76e2 778 goto out_unlock;
feeba4b8 779
0ca39d74 780 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
1b1d76e2 781 goto out_unlock;
feeba4b8
AB
782
783 ubi_err("PEB %d contains corrupted VID header, and the data does not "
784 "contain all 0xFF, this may be a non-UBI PEB or a severe VID "
785 "header corruption which requires manual inspection", pnum);
a904e3f1 786 ubi_dump_vid_hdr(vid_hdr);
feeba4b8
AB
787 dbg_msg("hexdump of PEB %d offset %d, length %d",
788 pnum, ubi->leb_start, ubi->leb_size);
789 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
0ca39d74 790 ubi->peb_buf, ubi->leb_size, 1);
1b1d76e2
DC
791 err = 1;
792
793out_unlock:
feeba4b8 794 mutex_unlock(&ubi->buf_mutex);
1b1d76e2 795 return err;
feeba4b8
AB
796}
797
801c135c 798/**
fbd0107f 799 * scan_peb - scan and process UBI headers of a PEB.
801c135c 800 * @ubi: UBI device description object
a4e6042f 801 * @ai: attaching information
801c135c
AB
802 * @pnum: the physical eraseblock number
803 *
fbd0107f
AB
804 * This function reads UBI headers of PEB @pnum, checks them, and adds
805 * information about this PEB to the corresponding list or RB-tree in the
806 * "attaching info" structure. Returns zero if the physical eraseblock was
807 * successfully handled and a negative error code in case of failure.
801c135c 808 */
fbd0107f
AB
809static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
810 int pnum)
801c135c 811{
c18a8418 812 long long uninitialized_var(ec);
e0e718c2 813 int err, bitflips = 0, vol_id, ec_err = 0;
801c135c
AB
814
815 dbg_bld("scan PEB %d", pnum);
816
817 /* Skip bad physical eraseblocks */
818 err = ubi_io_is_bad(ubi, pnum);
819 if (err < 0)
820 return err;
821 else if (err) {
a4e6042f 822 ai->bad_peb_count += 1;
801c135c
AB
823 return 0;
824 }
825
826 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
827 if (err < 0)
828 return err;
b3321508
AB
829 switch (err) {
830 case 0:
831 break;
832 case UBI_IO_BITFLIPS:
801c135c 833 bitflips = 1;
b3321508
AB
834 break;
835 case UBI_IO_FF:
a4e6042f
AB
836 ai->empty_peb_count += 1;
837 return add_to_list(ai, pnum, UBI_SCAN_UNKNOWN_EC, 0,
838 &ai->erase);
b3321508 839 case UBI_IO_FF_BITFLIPS:
a4e6042f
AB
840 ai->empty_peb_count += 1;
841 return add_to_list(ai, pnum, UBI_SCAN_UNKNOWN_EC, 1,
842 &ai->erase);
b3321508 843 case UBI_IO_BAD_HDR_EBADMSG:
b3321508 844 case UBI_IO_BAD_HDR:
801c135c
AB
845 /*
846 * We have to also look at the VID header, possibly it is not
847 * corrupted. Set %bitflips flag in order to make this PEB be
848 * moved and EC be re-created.
849 */
e0e718c2 850 ec_err = err;
801c135c
AB
851 ec = UBI_SCAN_UNKNOWN_EC;
852 bitflips = 1;
b3321508
AB
853 break;
854 default:
855 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
856 return -EINVAL;
801c135c
AB
857 }
858
e0e718c2 859 if (!ec_err) {
fe96efc1
AB
860 int image_seq;
861
801c135c
AB
862 /* Make sure UBI version is OK */
863 if (ech->version != UBI_VERSION) {
864 ubi_err("this UBI version is %d, image version is %d",
865 UBI_VERSION, (int)ech->version);
866 return -EINVAL;
867 }
868
3261ebd7 869 ec = be64_to_cpu(ech->ec);
801c135c
AB
870 if (ec > UBI_MAX_ERASECOUNTER) {
871 /*
872 * Erase counter overflow. The EC headers have 64 bits
873 * reserved, but we anyway make use of only 31 bit
874 * values, as this seems to be enough for any existing
875 * flash. Upgrade UBI and use 64-bit erase counters
876 * internally.
877 */
878 ubi_err("erase counter overflow, max is %d",
879 UBI_MAX_ERASECOUNTER);
a904e3f1 880 ubi_dump_ec_hdr(ech);
801c135c
AB
881 return -EINVAL;
882 }
fe96efc1 883
32bc4820
AH
884 /*
885 * Make sure that all PEBs have the same image sequence number.
886 * This allows us to detect situations when users flash UBI
887 * images incorrectly, so that the flash has the new UBI image
888 * and leftovers from the old one. This feature was added
889 * relatively recently, and the sequence number was always
890 * zero, because old UBI implementations always set it to zero.
891 * For this reasons, we do not panic if some PEBs have zero
892 * sequence number, while other PEBs have non-zero sequence
893 * number.
894 */
3dc948da 895 image_seq = be32_to_cpu(ech->image_seq);
2eadaad6 896 if (!ubi->image_seq && image_seq)
fe96efc1 897 ubi->image_seq = image_seq;
2eadaad6
AB
898 if (ubi->image_seq && image_seq &&
899 ubi->image_seq != image_seq) {
fe96efc1
AB
900 ubi_err("bad image sequence number %d in PEB %d, "
901 "expected %d", image_seq, pnum, ubi->image_seq);
a904e3f1 902 ubi_dump_ec_hdr(ech);
fe96efc1
AB
903 return -EINVAL;
904 }
801c135c
AB
905 }
906
907 /* OK, we've done with the EC header, let's look at the VID header */
908
909 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
910 if (err < 0)
911 return err;
b3321508
AB
912 switch (err) {
913 case 0:
914 break;
915 case UBI_IO_BITFLIPS:
801c135c 916 bitflips = 1;
b3321508
AB
917 break;
918 case UBI_IO_BAD_HDR_EBADMSG:
0525dac9
AB
919 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
920 /*
921 * Both EC and VID headers are corrupted and were read
922 * with data integrity error, probably this is a bad
923 * PEB, bit it is not marked as bad yet. This may also
924 * be a result of power cut during erasure.
925 */
a4e6042f 926 ai->maybe_bad_peb_count += 1;
b3321508 927 case UBI_IO_BAD_HDR:
feeba4b8
AB
928 if (ec_err)
929 /*
930 * Both headers are corrupted. There is a possibility
931 * that this a valid UBI PEB which has corresponding
932 * LEB, but the headers are corrupted. However, it is
933 * impossible to distinguish it from a PEB which just
45aafd32 934 * contains garbage because of a power cut during erase
feeba4b8 935 * operation. So we just schedule this PEB for erasure.
7ac760c2 936 *
25985edc 937 * Besides, in case of NOR flash, we deliberately
7ac760c2
AB
938 * corrupt both headers because NOR flash erasure is
939 * slow and can start from the end.
feeba4b8
AB
940 */
941 err = 0;
942 else
943 /*
944 * The EC was OK, but the VID header is corrupted. We
945 * have to check what is in the data area.
946 */
45aafd32 947 err = check_corruption(ubi, vidh, pnum);
df3fca4c
AB
948
949 if (err < 0)
950 return err;
951 else if (!err)
feeba4b8 952 /* This corruption is caused by a power cut */
a4e6042f 953 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
feeba4b8
AB
954 else
955 /* This is an unexpected corruption */
a4e6042f 956 err = add_corrupted(ai, pnum, ec);
feeba4b8
AB
957 if (err)
958 return err;
959 goto adjust_mean_ec;
b3321508 960 case UBI_IO_FF_BITFLIPS:
a4e6042f 961 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
801c135c
AB
962 if (err)
963 return err;
964 goto adjust_mean_ec;
b3321508
AB
965 case UBI_IO_FF:
966 if (ec_err)
a4e6042f 967 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
b3321508 968 else
a4e6042f 969 err = add_to_list(ai, pnum, ec, 0, &ai->free);
801c135c
AB
970 if (err)
971 return err;
972 goto adjust_mean_ec;
b3321508
AB
973 default:
974 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
975 err);
976 return -EINVAL;
801c135c
AB
977 }
978
3261ebd7 979 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 980 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 981 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
982
983 /* Unsupported internal volume */
984 switch (vidh->compat) {
985 case UBI_COMPAT_DELETE:
986 ubi_msg("\"delete\" compatible internal volume %d:%d"
158132c9 987 " found, will remove it", vol_id, lnum);
a4e6042f 988 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
801c135c
AB
989 if (err)
990 return err;
158132c9 991 return 0;
801c135c
AB
992
993 case UBI_COMPAT_RO:
994 ubi_msg("read-only compatible internal volume %d:%d"
995 " found, switch to read-only mode",
996 vol_id, lnum);
997 ubi->ro_mode = 1;
998 break;
999
1000 case UBI_COMPAT_PRESERVE:
1001 ubi_msg("\"preserve\" compatible internal volume %d:%d"
1002 " found", vol_id, lnum);
a4e6042f 1003 err = add_to_list(ai, pnum, ec, 0, &ai->alien);
801c135c
AB
1004 if (err)
1005 return err;
801c135c
AB
1006 return 0;
1007
1008 case UBI_COMPAT_REJECT:
1009 ubi_err("incompatible internal volume %d:%d found",
1010 vol_id, lnum);
1011 return -EINVAL;
1012 }
1013 }
1014
e0e718c2 1015 if (ec_err)
29a88c99
AB
1016 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1017 pnum);
3561188a 1018 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
801c135c
AB
1019 if (err)
1020 return err;
1021
1022adjust_mean_ec:
e0e718c2 1023 if (!ec_err) {
a4e6042f
AB
1024 ai->ec_sum += ec;
1025 ai->ec_count += 1;
1026 if (ec > ai->max_ec)
1027 ai->max_ec = ec;
1028 if (ec < ai->min_ec)
1029 ai->min_ec = ec;
801c135c
AB
1030 }
1031
1032 return 0;
1033}
1034
0798cea8 1035/**
fbd0107f 1036 * late_analysis - analyze the overall situation with PEB.
0798cea8 1037 * @ubi: UBI device description object
a4e6042f 1038 * @ai: attaching information
0798cea8 1039 *
fbd0107f
AB
1040 * This is a helper function which takes a look what PEBs we have after we
1041 * gather information about all of them ("ai" is compete). It decides whether
1042 * the flash is empty and should be formatted of whether there are too many
1043 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1044 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
0798cea8 1045 */
fbd0107f 1046static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
0798cea8 1047{
2c5ec5ce 1048 struct ubi_ainf_peb *aeb;
0525dac9 1049 int max_corr, peb_count;
0798cea8 1050
a4e6042f 1051 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
0525dac9 1052 max_corr = peb_count / 20 ?: 8;
0798cea8
AB
1053
1054 /*
0525dac9 1055 * Few corrupted PEBs is not a problem and may be just a result of
0798cea8
AB
1056 * unclean reboots. However, many of them may indicate some problems
1057 * with the flash HW or driver.
1058 */
a4e6042f 1059 if (ai->corr_peb_count) {
0525dac9 1060 ubi_err("%d PEBs are corrupted and preserved",
a4e6042f 1061 ai->corr_peb_count);
0525dac9 1062 printk(KERN_ERR "Corrupted PEBs are:");
a4e6042f 1063 list_for_each_entry(aeb, &ai->corr, u.list)
2c5ec5ce 1064 printk(KERN_CONT " %d", aeb->pnum);
0798cea8
AB
1065 printk(KERN_CONT "\n");
1066
1067 /*
1068 * If too many PEBs are corrupted, we refuse attaching,
1069 * otherwise, only print a warning.
1070 */
a4e6042f 1071 if (ai->corr_peb_count >= max_corr) {
feddbb34 1072 ubi_err("too many corrupted PEBs, refusing");
0798cea8
AB
1073 return -EINVAL;
1074 }
1075 }
1076
a4e6042f 1077 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
0525dac9
AB
1078 /*
1079 * All PEBs are empty, or almost all - a couple PEBs look like
1080 * they may be bad PEBs which were not marked as bad yet.
1081 *
1082 * This piece of code basically tries to distinguish between
1083 * the following situations:
1084 *
1085 * 1. Flash is empty, but there are few bad PEBs, which are not
1086 * marked as bad so far, and which were read with error. We
1087 * want to go ahead and format this flash. While formatting,
1088 * the faulty PEBs will probably be marked as bad.
1089 *
1090 * 2. Flash contains non-UBI data and we do not want to format
1091 * it and destroy possibly important information.
1092 */
a4e6042f
AB
1093 if (ai->maybe_bad_peb_count <= 2) {
1094 ai->is_empty = 1;
0798cea8 1095 ubi_msg("empty MTD device detected");
0525dac9
AB
1096 get_random_bytes(&ubi->image_seq,
1097 sizeof(ubi->image_seq));
0798cea8 1098 } else {
0525dac9
AB
1099 ubi_err("MTD device is not UBI-formatted and possibly "
1100 "contains non-UBI data - refusing it");
0798cea8
AB
1101 return -EINVAL;
1102 }
0525dac9 1103
0798cea8
AB
1104 }
1105
0798cea8
AB
1106 return 0;
1107}
1108
801c135c
AB
1109/**
1110 * ubi_scan - scan an MTD device.
1111 * @ubi: UBI device description object
1112 *
1113 * This function does full scanning of an MTD device and returns complete
fbd0107f
AB
1114 * information about it in form of a "struct ubi_attach_info" object. In case
1115 * of failure, an error code is returned.
801c135c 1116 */
afc15a81 1117struct ubi_attach_info *ubi_scan(struct ubi_device *ubi)
801c135c
AB
1118{
1119 int err, pnum;
1120 struct rb_node *rb1, *rb2;
517af48c 1121 struct ubi_ainf_volume *av;
2c5ec5ce 1122 struct ubi_ainf_peb *aeb;
a4e6042f 1123 struct ubi_attach_info *ai;
801c135c 1124
a4e6042f
AB
1125 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1126 if (!ai)
801c135c
AB
1127 return ERR_PTR(-ENOMEM);
1128
a4e6042f
AB
1129 INIT_LIST_HEAD(&ai->corr);
1130 INIT_LIST_HEAD(&ai->free);
1131 INIT_LIST_HEAD(&ai->erase);
1132 INIT_LIST_HEAD(&ai->alien);
1133 ai->volumes = RB_ROOT;
801c135c
AB
1134
1135 err = -ENOMEM;
1fc2e3e5
AB
1136 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1137 sizeof(struct ubi_ainf_peb),
1138 0, 0, NULL);
1139 if (!ai->aeb_slab_cache)
a4e6042f 1140 goto out_ai;
6c1e875c 1141
801c135c
AB
1142 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1143 if (!ech)
a4e6042f 1144 goto out_ai;
801c135c 1145
33818bbb 1146 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
1147 if (!vidh)
1148 goto out_ech;
1149
1150 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1151 cond_resched();
1152
c8566350 1153 dbg_gen("process PEB %d", pnum);
fbd0107f 1154 err = scan_peb(ubi, ai, pnum);
801c135c
AB
1155 if (err < 0)
1156 goto out_vidh;
1157 }
1158
1159 dbg_msg("scanning is finished");
1160
4bc1dca4 1161 /* Calculate mean erase counter */
a4e6042f
AB
1162 if (ai->ec_count)
1163 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
801c135c 1164
fbd0107f 1165 err = late_analysis(ubi, ai);
0798cea8
AB
1166 if (err)
1167 goto out_vidh;
4a406856 1168
801c135c
AB
1169 /*
1170 * In case of unknown erase counter we use the mean erase counter
1171 * value.
1172 */
517af48c
AB
1173 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1174 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
2c5ec5ce 1175 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
a4e6042f 1176 aeb->ec = ai->mean_ec;
801c135c
AB
1177 }
1178
a4e6042f 1179 list_for_each_entry(aeb, &ai->free, u.list) {
2c5ec5ce 1180 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
a4e6042f 1181 aeb->ec = ai->mean_ec;
801c135c
AB
1182 }
1183
a4e6042f 1184 list_for_each_entry(aeb, &ai->corr, u.list)
2c5ec5ce 1185 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
a4e6042f 1186 aeb->ec = ai->mean_ec;
801c135c 1187
a4e6042f 1188 list_for_each_entry(aeb, &ai->erase, u.list)
2c5ec5ce 1189 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
a4e6042f 1190 aeb->ec = ai->mean_ec;
801c135c 1191
a4e6042f 1192 err = self_check_ai(ubi, ai);
adbf05e3 1193 if (err)
801c135c 1194 goto out_vidh;
801c135c
AB
1195
1196 ubi_free_vid_hdr(ubi, vidh);
1197 kfree(ech);
1198
a4e6042f 1199 return ai;
801c135c
AB
1200
1201out_vidh:
1202 ubi_free_vid_hdr(ubi, vidh);
1203out_ech:
1204 kfree(ech);
a4e6042f 1205out_ai:
66a2af38 1206 ubi_destroy_ai(ai);
801c135c
AB
1207 return ERR_PTR(err);
1208}
1209
1210/**
fbd0107f
AB
1211 * destroy_av - free volume attaching information.
1212 * @av: volume attaching information
a4e6042f 1213 * @ai: attaching information
801c135c 1214 *
fbd0107f 1215 * This function destroys the volume attaching information.
801c135c 1216 */
517af48c 1217static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
801c135c 1218{
2c5ec5ce 1219 struct ubi_ainf_peb *aeb;
517af48c 1220 struct rb_node *this = av->root.rb_node;
801c135c
AB
1221
1222 while (this) {
1223 if (this->rb_left)
1224 this = this->rb_left;
1225 else if (this->rb_right)
1226 this = this->rb_right;
1227 else {
2c5ec5ce 1228 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
801c135c
AB
1229 this = rb_parent(this);
1230 if (this) {
2c5ec5ce 1231 if (this->rb_left == &aeb->u.rb)
801c135c
AB
1232 this->rb_left = NULL;
1233 else
1234 this->rb_right = NULL;
1235 }
1236
1fc2e3e5 1237 kmem_cache_free(ai->aeb_slab_cache, aeb);
801c135c
AB
1238 }
1239 }
517af48c 1240 kfree(av);
801c135c
AB
1241}
1242
1243/**
66a2af38 1244 * ubi_destroy_ai - destroy attaching information.
a4e6042f 1245 * @ai: attaching information
801c135c 1246 */
66a2af38 1247void ubi_destroy_ai(struct ubi_attach_info *ai)
801c135c 1248{
2c5ec5ce 1249 struct ubi_ainf_peb *aeb, *aeb_tmp;
517af48c 1250 struct ubi_ainf_volume *av;
801c135c
AB
1251 struct rb_node *rb;
1252
a4e6042f 1253 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
2c5ec5ce 1254 list_del(&aeb->u.list);
1fc2e3e5 1255 kmem_cache_free(ai->aeb_slab_cache, aeb);
801c135c 1256 }
a4e6042f 1257 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
2c5ec5ce 1258 list_del(&aeb->u.list);
1fc2e3e5 1259 kmem_cache_free(ai->aeb_slab_cache, aeb);
801c135c 1260 }
a4e6042f 1261 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
2c5ec5ce 1262 list_del(&aeb->u.list);
1fc2e3e5 1263 kmem_cache_free(ai->aeb_slab_cache, aeb);
801c135c 1264 }
a4e6042f 1265 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
2c5ec5ce 1266 list_del(&aeb->u.list);
1fc2e3e5 1267 kmem_cache_free(ai->aeb_slab_cache, aeb);
801c135c
AB
1268 }
1269
1270 /* Destroy the volume RB-tree */
a4e6042f 1271 rb = ai->volumes.rb_node;
801c135c
AB
1272 while (rb) {
1273 if (rb->rb_left)
1274 rb = rb->rb_left;
1275 else if (rb->rb_right)
1276 rb = rb->rb_right;
1277 else {
517af48c 1278 av = rb_entry(rb, struct ubi_ainf_volume, rb);
801c135c
AB
1279
1280 rb = rb_parent(rb);
1281 if (rb) {
517af48c 1282 if (rb->rb_left == &av->rb)
801c135c
AB
1283 rb->rb_left = NULL;
1284 else
1285 rb->rb_right = NULL;
1286 }
1287
517af48c 1288 destroy_av(ai, av);
801c135c
AB
1289 }
1290 }
1291
1fc2e3e5
AB
1292 if (ai->aeb_slab_cache)
1293 kmem_cache_destroy(ai->aeb_slab_cache);
a29852be 1294
a4e6042f 1295 kfree(ai);
801c135c
AB
1296}
1297
801c135c 1298/**
a4e6042f 1299 * self_check_ai - check the attaching information.
801c135c 1300 * @ubi: UBI device description object
a4e6042f 1301 * @ai: attaching information
801c135c 1302 *
a4e6042f 1303 * This function returns zero if the attaching information is all right, and a
adbf05e3 1304 * negative error code if not or if an error occurred.
801c135c 1305 */
a4e6042f 1306static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
801c135c
AB
1307{
1308 int pnum, err, vols_found = 0;
1309 struct rb_node *rb1, *rb2;
517af48c 1310 struct ubi_ainf_volume *av;
2c5ec5ce 1311 struct ubi_ainf_peb *aeb, *last_aeb;
801c135c
AB
1312 uint8_t *buf;
1313
2a734bb8 1314 if (!ubi->dbg->chk_gen)
92d124f5
AB
1315 return 0;
1316
801c135c 1317 /*
a4e6042f 1318 * At first, check that attaching information is OK.
801c135c 1319 */
517af48c 1320 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
801c135c
AB
1321 int leb_count = 0;
1322
1323 cond_resched();
1324
1325 vols_found += 1;
1326
a4e6042f 1327 if (ai->is_empty) {
801c135c 1328 ubi_err("bad is_empty flag");
517af48c 1329 goto bad_av;
801c135c
AB
1330 }
1331
517af48c
AB
1332 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1333 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1334 av->data_pad < 0 || av->last_data_size < 0) {
801c135c 1335 ubi_err("negative values");
517af48c 1336 goto bad_av;
801c135c
AB
1337 }
1338
517af48c
AB
1339 if (av->vol_id >= UBI_MAX_VOLUMES &&
1340 av->vol_id < UBI_INTERNAL_VOL_START) {
801c135c 1341 ubi_err("bad vol_id");
517af48c 1342 goto bad_av;
801c135c
AB
1343 }
1344
517af48c 1345 if (av->vol_id > ai->highest_vol_id) {
801c135c 1346 ubi_err("highest_vol_id is %d, but vol_id %d is there",
517af48c 1347 ai->highest_vol_id, av->vol_id);
801c135c
AB
1348 goto out;
1349 }
1350
517af48c
AB
1351 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1352 av->vol_type != UBI_STATIC_VOLUME) {
801c135c 1353 ubi_err("bad vol_type");
517af48c 1354 goto bad_av;
801c135c
AB
1355 }
1356
517af48c 1357 if (av->data_pad > ubi->leb_size / 2) {
801c135c 1358 ubi_err("bad data_pad");
517af48c 1359 goto bad_av;
801c135c
AB
1360 }
1361
2c5ec5ce 1362 last_aeb = NULL;
517af48c 1363 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1364 cond_resched();
1365
2c5ec5ce 1366 last_aeb = aeb;
801c135c
AB
1367 leb_count += 1;
1368
2c5ec5ce 1369 if (aeb->pnum < 0 || aeb->ec < 0) {
801c135c 1370 ubi_err("negative values");
2c5ec5ce 1371 goto bad_aeb;
801c135c
AB
1372 }
1373
a4e6042f
AB
1374 if (aeb->ec < ai->min_ec) {
1375 ubi_err("bad ai->min_ec (%d), %d found",
1376 ai->min_ec, aeb->ec);
2c5ec5ce 1377 goto bad_aeb;
801c135c
AB
1378 }
1379
a4e6042f
AB
1380 if (aeb->ec > ai->max_ec) {
1381 ubi_err("bad ai->max_ec (%d), %d found",
1382 ai->max_ec, aeb->ec);
2c5ec5ce 1383 goto bad_aeb;
801c135c
AB
1384 }
1385
2c5ec5ce 1386 if (aeb->pnum >= ubi->peb_count) {
801c135c 1387 ubi_err("too high PEB number %d, total PEBs %d",
2c5ec5ce
AB
1388 aeb->pnum, ubi->peb_count);
1389 goto bad_aeb;
801c135c
AB
1390 }
1391
517af48c
AB
1392 if (av->vol_type == UBI_STATIC_VOLUME) {
1393 if (aeb->lnum >= av->used_ebs) {
801c135c 1394 ubi_err("bad lnum or used_ebs");
2c5ec5ce 1395 goto bad_aeb;
801c135c
AB
1396 }
1397 } else {
517af48c 1398 if (av->used_ebs != 0) {
801c135c 1399 ubi_err("non-zero used_ebs");
2c5ec5ce 1400 goto bad_aeb;
801c135c
AB
1401 }
1402 }
1403
517af48c 1404 if (aeb->lnum > av->highest_lnum) {
801c135c 1405 ubi_err("incorrect highest_lnum or lnum");
2c5ec5ce 1406 goto bad_aeb;
801c135c
AB
1407 }
1408 }
1409
517af48c 1410 if (av->leb_count != leb_count) {
801c135c
AB
1411 ubi_err("bad leb_count, %d objects in the tree",
1412 leb_count);
517af48c 1413 goto bad_av;
801c135c
AB
1414 }
1415
2c5ec5ce 1416 if (!last_aeb)
801c135c
AB
1417 continue;
1418
2c5ec5ce 1419 aeb = last_aeb;
801c135c 1420
517af48c 1421 if (aeb->lnum != av->highest_lnum) {
801c135c 1422 ubi_err("bad highest_lnum");
2c5ec5ce 1423 goto bad_aeb;
801c135c
AB
1424 }
1425 }
1426
a4e6042f
AB
1427 if (vols_found != ai->vols_found) {
1428 ubi_err("bad ai->vols_found %d, should be %d",
1429 ai->vols_found, vols_found);
801c135c
AB
1430 goto out;
1431 }
1432
a4e6042f 1433 /* Check that attaching information is correct */
517af48c 1434 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
2c5ec5ce 1435 last_aeb = NULL;
517af48c 1436 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1437 int vol_type;
1438
1439 cond_resched();
1440
2c5ec5ce 1441 last_aeb = aeb;
801c135c 1442
2c5ec5ce 1443 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
801c135c
AB
1444 if (err && err != UBI_IO_BITFLIPS) {
1445 ubi_err("VID header is not OK (%d)", err);
1446 if (err > 0)
1447 err = -EIO;
1448 return err;
1449 }
1450
1451 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1452 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
517af48c 1453 if (av->vol_type != vol_type) {
801c135c
AB
1454 ubi_err("bad vol_type");
1455 goto bad_vid_hdr;
1456 }
1457
2c5ec5ce
AB
1458 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1459 ubi_err("bad sqnum %llu", aeb->sqnum);
801c135c
AB
1460 goto bad_vid_hdr;
1461 }
1462
517af48c
AB
1463 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1464 ubi_err("bad vol_id %d", av->vol_id);
801c135c
AB
1465 goto bad_vid_hdr;
1466 }
1467
517af48c 1468 if (av->compat != vidh->compat) {
801c135c
AB
1469 ubi_err("bad compat %d", vidh->compat);
1470 goto bad_vid_hdr;
1471 }
1472
2c5ec5ce
AB
1473 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1474 ubi_err("bad lnum %d", aeb->lnum);
801c135c
AB
1475 goto bad_vid_hdr;
1476 }
1477
517af48c
AB
1478 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1479 ubi_err("bad used_ebs %d", av->used_ebs);
801c135c
AB
1480 goto bad_vid_hdr;
1481 }
1482
517af48c
AB
1483 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1484 ubi_err("bad data_pad %d", av->data_pad);
801c135c
AB
1485 goto bad_vid_hdr;
1486 }
801c135c
AB
1487 }
1488
2c5ec5ce 1489 if (!last_aeb)
801c135c
AB
1490 continue;
1491
517af48c
AB
1492 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1493 ubi_err("bad highest_lnum %d", av->highest_lnum);
801c135c
AB
1494 goto bad_vid_hdr;
1495 }
1496
517af48c
AB
1497 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1498 ubi_err("bad last_data_size %d", av->last_data_size);
801c135c
AB
1499 goto bad_vid_hdr;
1500 }
1501 }
1502
1503 /*
1504 * Make sure that all the physical eraseblocks are in one of the lists
1505 * or trees.
1506 */
d9b0744d 1507 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1508 if (!buf)
1509 return -ENOMEM;
1510
801c135c
AB
1511 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1512 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1513 if (err < 0) {
1514 kfree(buf);
801c135c 1515 return err;
9c9ec147 1516 } else if (err)
d9b0744d 1517 buf[pnum] = 1;
801c135c
AB
1518 }
1519
517af48c
AB
1520 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1521 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
2c5ec5ce 1522 buf[aeb->pnum] = 1;
801c135c 1523
a4e6042f 1524 list_for_each_entry(aeb, &ai->free, u.list)
2c5ec5ce 1525 buf[aeb->pnum] = 1;
801c135c 1526
a4e6042f 1527 list_for_each_entry(aeb, &ai->corr, u.list)
2c5ec5ce 1528 buf[aeb->pnum] = 1;
801c135c 1529
a4e6042f 1530 list_for_each_entry(aeb, &ai->erase, u.list)
2c5ec5ce 1531 buf[aeb->pnum] = 1;
801c135c 1532
a4e6042f 1533 list_for_each_entry(aeb, &ai->alien, u.list)
2c5ec5ce 1534 buf[aeb->pnum] = 1;
801c135c
AB
1535
1536 err = 0;
1537 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1538 if (!buf[pnum]) {
801c135c
AB
1539 ubi_err("PEB %d is not referred", pnum);
1540 err = 1;
1541 }
1542
1543 kfree(buf);
1544 if (err)
1545 goto out;
1546 return 0;
1547
2c5ec5ce 1548bad_aeb:
a4e6042f 1549 ubi_err("bad attaching information about LEB %d", aeb->lnum);
2c5ec5ce 1550 ubi_dump_aeb(aeb, 0);
517af48c 1551 ubi_dump_av(av);
801c135c
AB
1552 goto out;
1553
517af48c
AB
1554bad_av:
1555 ubi_err("bad attaching information about volume %d", av->vol_id);
1556 ubi_dump_av(av);
801c135c
AB
1557 goto out;
1558
1559bad_vid_hdr:
517af48c
AB
1560 ubi_err("bad attaching information about volume %d", av->vol_id);
1561 ubi_dump_av(av);
a904e3f1 1562 ubi_dump_vid_hdr(vidh);
801c135c
AB
1563
1564out:
25886a36 1565 dump_stack();
adbf05e3 1566 return -EINVAL;
801c135c 1567}