]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/ubi/scan.c
UBI: do not let to read too much
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
22 * UBI scanning unit.
23 *
24 * This unit is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 */
42
43#include <linux/err.h>
44#include <linux/crc32.h>
45#include "ubi.h"
46
47#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48static int paranoid_check_si(const struct ubi_device *ubi,
49 struct ubi_scan_info *si);
50#else
51#define paranoid_check_si(ubi, si) 0
52#endif
53
54/* Temporary variables used during scanning */
55static struct ubi_ec_hdr *ech;
56static struct ubi_vid_hdr *vidh;
57
78d87c95
AB
58/*
59 * add_to_list - add physical eraseblock to a list.
60 * @si: scanning information
61 * @pnum: physical eraseblock number to add
62 * @ec: erase counter of the physical eraseblock
63 * @list: the list to add to
64 *
65 * This function adds physical eraseblock @pnum to free, erase, corrupted or
66 * alien lists. Returns zero in case of success and a negative error code in
67 * case of failure.
68 */
69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70 struct list_head *list)
801c135c
AB
71{
72 struct ubi_scan_leb *seb;
73
74 if (list == &si->free)
75 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76 else if (list == &si->erase)
77 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78 else if (list == &si->corr)
79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80 else if (list == &si->alien)
81 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
82 else
83 BUG();
84
85 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
86 if (!seb)
87 return -ENOMEM;
88
89 seb->pnum = pnum;
90 seb->ec = ec;
91 list_add_tail(&seb->u.list, list);
92 return 0;
93}
94
95/**
96 * commit_to_mean_value - commit intermediate results to the final mean erase
97 * counter value.
98 * @si: scanning information
99 *
100 * This is a helper function which calculates partial mean erase counter mean
101 * value and adds it to the resulting mean value. As we can work only in
102 * integer arithmetic and we want to calculate the mean value of erase counter
103 * accurately, we first sum erase counter values in @si->ec_sum variable and
104 * count these components in @si->ec_count. If this temporary @si->ec_sum is
105 * going to overflow, we calculate the partial mean value
106 * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
107 */
108static void commit_to_mean_value(struct ubi_scan_info *si)
109{
110 si->ec_sum /= si->ec_count;
111 if (si->ec_sum % si->ec_count >= si->ec_count / 2)
112 si->mean_ec += 1;
113 si->mean_ec += si->ec_sum;
114}
115
116/**
117 * validate_vid_hdr - check that volume identifier header is correct and
118 * consistent.
119 * @vid_hdr: the volume identifier header to check
120 * @sv: information about the volume this logical eraseblock belongs to
121 * @pnum: physical eraseblock number the VID header came from
122 *
123 * This function checks that data stored in @vid_hdr is consistent. Returns
124 * non-zero if an inconsistency was found and zero if not.
125 *
126 * Note, UBI does sanity check of everything it reads from the flash media.
127 * Most of the checks are done in the I/O unit. Here we check that the
128 * information in the VID header is consistent to the information in other VID
129 * headers of the same volume.
130 */
131static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
132 const struct ubi_scan_volume *sv, int pnum)
133{
134 int vol_type = vid_hdr->vol_type;
135 int vol_id = ubi32_to_cpu(vid_hdr->vol_id);
136 int used_ebs = ubi32_to_cpu(vid_hdr->used_ebs);
137 int data_pad = ubi32_to_cpu(vid_hdr->data_pad);
138
139 if (sv->leb_count != 0) {
140 int sv_vol_type;
141
142 /*
143 * This is not the first logical eraseblock belonging to this
144 * volume. Ensure that the data in its VID header is consistent
145 * to the data in previous logical eraseblock headers.
146 */
147
148 if (vol_id != sv->vol_id) {
149 dbg_err("inconsistent vol_id");
150 goto bad;
151 }
152
153 if (sv->vol_type == UBI_STATIC_VOLUME)
154 sv_vol_type = UBI_VID_STATIC;
155 else
156 sv_vol_type = UBI_VID_DYNAMIC;
157
158 if (vol_type != sv_vol_type) {
159 dbg_err("inconsistent vol_type");
160 goto bad;
161 }
162
163 if (used_ebs != sv->used_ebs) {
164 dbg_err("inconsistent used_ebs");
165 goto bad;
166 }
167
168 if (data_pad != sv->data_pad) {
169 dbg_err("inconsistent data_pad");
170 goto bad;
171 }
172 }
173
174 return 0;
175
176bad:
177 ubi_err("inconsistent VID header at PEB %d", pnum);
178 ubi_dbg_dump_vid_hdr(vid_hdr);
179 ubi_dbg_dump_sv(sv);
180 return -EINVAL;
181}
182
183/**
184 * add_volume - add volume to the scanning information.
185 * @si: scanning information
186 * @vol_id: ID of the volume to add
187 * @pnum: physical eraseblock number
188 * @vid_hdr: volume identifier header
189 *
190 * If the volume corresponding to the @vid_hdr logical eraseblock is already
191 * present in the scanning information, this function does nothing. Otherwise
192 * it adds corresponding volume to the scanning information. Returns a pointer
193 * to the scanning volume object in case of success and a negative error code
194 * in case of failure.
195 */
196static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
197 int pnum,
198 const struct ubi_vid_hdr *vid_hdr)
199{
200 struct ubi_scan_volume *sv;
201 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
202
203 ubi_assert(vol_id == ubi32_to_cpu(vid_hdr->vol_id));
204
205 /* Walk the volume RB-tree to look if this volume is already present */
206 while (*p) {
207 parent = *p;
208 sv = rb_entry(parent, struct ubi_scan_volume, rb);
209
210 if (vol_id == sv->vol_id)
211 return sv;
212
213 if (vol_id > sv->vol_id)
214 p = &(*p)->rb_left;
215 else
216 p = &(*p)->rb_right;
217 }
218
219 /* The volume is absent - add it */
220 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
221 if (!sv)
222 return ERR_PTR(-ENOMEM);
223
224 sv->highest_lnum = sv->leb_count = 0;
225 si->max_sqnum = 0;
226 sv->vol_id = vol_id;
227 sv->root = RB_ROOT;
228 sv->used_ebs = ubi32_to_cpu(vid_hdr->used_ebs);
229 sv->data_pad = ubi32_to_cpu(vid_hdr->data_pad);
230 sv->compat = vid_hdr->compat;
231 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
232 : UBI_STATIC_VOLUME;
233 if (vol_id > si->highest_vol_id)
234 si->highest_vol_id = vol_id;
235
236 rb_link_node(&sv->rb, parent, p);
237 rb_insert_color(&sv->rb, &si->volumes);
238 si->vols_found += 1;
239 dbg_bld("added volume %d", vol_id);
240 return sv;
241}
242
243/**
244 * compare_lebs - find out which logical eraseblock is newer.
245 * @ubi: UBI device description object
246 * @seb: first logical eraseblock to compare
247 * @pnum: physical eraseblock number of the second logical eraseblock to
248 * compare
249 * @vid_hdr: volume identifier header of the second logical eraseblock
250 *
251 * This function compares 2 copies of a LEB and informs which one is newer. In
252 * case of success this function returns a positive value, in case of failure, a
253 * negative error code is returned. The success return codes use the following
254 * bits:
255 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
256 * second PEB (described by @pnum and @vid_hdr);
257 * o bit 0 is set: the second PEB is newer;
258 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
259 * o bit 1 is set: bit-flips were detected in the newer LEB;
260 * o bit 2 is cleared: the older LEB is not corrupted;
261 * o bit 2 is set: the older LEB is corrupted.
262 */
263static int compare_lebs(const struct ubi_device *ubi,
264 const struct ubi_scan_leb *seb, int pnum,
265 const struct ubi_vid_hdr *vid_hdr)
266{
267 void *buf;
268 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
269 uint32_t data_crc, crc;
270 struct ubi_vid_hdr *vidh = NULL;
271 unsigned long long sqnum2 = ubi64_to_cpu(vid_hdr->sqnum);
272
273 if (seb->sqnum == 0 && sqnum2 == 0) {
274 long long abs, v1 = seb->leb_ver, v2 = ubi32_to_cpu(vid_hdr->leb_ver);
275
276 /*
277 * UBI constantly increases the logical eraseblock version
278 * number and it can overflow. Thus, we have to bear in mind
279 * that versions that are close to %0xFFFFFFFF are less then
280 * versions that are close to %0.
281 *
282 * The UBI WL unit guarantees that the number of pending tasks
283 * is not greater then %0x7FFFFFFF. So, if the difference
284 * between any two versions is greater or equivalent to
285 * %0x7FFFFFFF, there was an overflow and the logical
286 * eraseblock with lower version is actually newer then the one
287 * with higher version.
288 *
289 * FIXME: but this is anyway obsolete and will be removed at
290 * some point.
291 */
292
293 dbg_bld("using old crappy leb_ver stuff");
294
295 abs = v1 - v2;
296 if (abs < 0)
297 abs = -abs;
298
299 if (abs < 0x7FFFFFFF)
300 /* Non-overflow situation */
301 second_is_newer = (v2 > v1);
302 else
303 second_is_newer = (v2 < v1);
304 } else
305 /* Obviously the LEB with lower sequence counter is older */
306 second_is_newer = sqnum2 > seb->sqnum;
307
308 /*
309 * Now we know which copy is newer. If the copy flag of the PEB with
310 * newer version is not set, then we just return, otherwise we have to
311 * check data CRC. For the second PEB we already have the VID header,
312 * for the first one - we'll need to re-read it from flash.
313 *
314 * FIXME: this may be optimized so that we wouldn't read twice.
315 */
316
317 if (second_is_newer) {
318 if (!vid_hdr->copy_flag) {
319 /* It is not a copy, so it is newer */
320 dbg_bld("second PEB %d is newer, copy_flag is unset",
321 pnum);
322 return 1;
323 }
324 } else {
325 pnum = seb->pnum;
326
327 vidh = ubi_zalloc_vid_hdr(ubi);
328 if (!vidh)
329 return -ENOMEM;
330
331 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
332 if (err) {
333 if (err == UBI_IO_BITFLIPS)
334 bitflips = 1;
335 else {
336 dbg_err("VID of PEB %d header is bad, but it "
337 "was OK earlier", pnum);
338 if (err > 0)
339 err = -EIO;
340
341 goto out_free_vidh;
342 }
343 }
344
345 if (!vidh->copy_flag) {
346 /* It is not a copy, so it is newer */
347 dbg_bld("first PEB %d is newer, copy_flag is unset",
348 pnum);
349 err = bitflips << 1;
350 goto out_free_vidh;
351 }
352
353 vid_hdr = vidh;
354 }
355
356 /* Read the data of the copy and check the CRC */
357
358 len = ubi32_to_cpu(vid_hdr->data_size);
359 buf = kmalloc(len, GFP_KERNEL);
360 if (!buf) {
361 err = -ENOMEM;
362 goto out_free_vidh;
363 }
364
365 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
366 if (err && err != UBI_IO_BITFLIPS)
367 goto out_free_buf;
368
369 data_crc = ubi32_to_cpu(vid_hdr->data_crc);
370 crc = crc32(UBI_CRC32_INIT, buf, len);
371 if (crc != data_crc) {
372 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
373 pnum, crc, data_crc);
374 corrupted = 1;
375 bitflips = 0;
376 second_is_newer = !second_is_newer;
377 } else {
378 dbg_bld("PEB %d CRC is OK", pnum);
379 bitflips = !!err;
380 }
381
382 kfree(buf);
383 ubi_free_vid_hdr(ubi, vidh);
384
385 if (second_is_newer)
386 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
387 else
388 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
389
390 return second_is_newer | (bitflips << 1) | (corrupted << 2);
391
392out_free_buf:
393 kfree(buf);
394out_free_vidh:
395 ubi_free_vid_hdr(ubi, vidh);
396 ubi_assert(err < 0);
397 return err;
398}
399
400/**
401 * ubi_scan_add_used - add information about a physical eraseblock to the
402 * scanning information.
403 * @ubi: UBI device description object
404 * @si: scanning information
405 * @pnum: the physical eraseblock number
406 * @ec: erase counter
407 * @vid_hdr: the volume identifier header
408 * @bitflips: if bit-flips were detected when this physical eraseblock was read
409 *
410 * This function returns zero in case of success and a negative error code in
411 * case of failure.
412 */
413int ubi_scan_add_used(const struct ubi_device *ubi, struct ubi_scan_info *si,
414 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
415 int bitflips)
416{
417 int err, vol_id, lnum;
418 uint32_t leb_ver;
419 unsigned long long sqnum;
420 struct ubi_scan_volume *sv;
421 struct ubi_scan_leb *seb;
422 struct rb_node **p, *parent = NULL;
423
424 vol_id = ubi32_to_cpu(vid_hdr->vol_id);
425 lnum = ubi32_to_cpu(vid_hdr->lnum);
426 sqnum = ubi64_to_cpu(vid_hdr->sqnum);
427 leb_ver = ubi32_to_cpu(vid_hdr->leb_ver);
428
429 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
430 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
431
432 sv = add_volume(si, vol_id, pnum, vid_hdr);
433 if (IS_ERR(sv) < 0)
434 return PTR_ERR(sv);
435
436 /*
437 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
438 * if this is the first instance of this logical eraseblock or not.
439 */
440 p = &sv->root.rb_node;
441 while (*p) {
442 int cmp_res;
443
444 parent = *p;
445 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
446 if (lnum != seb->lnum) {
447 if (lnum < seb->lnum)
448 p = &(*p)->rb_left;
449 else
450 p = &(*p)->rb_right;
451 continue;
452 }
453
454 /*
455 * There is already a physical eraseblock describing the same
456 * logical eraseblock present.
457 */
458
459 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
460 "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
461 seb->leb_ver, seb->ec);
462
463 /*
464 * Make sure that the logical eraseblocks have different
465 * versions. Otherwise the image is bad.
466 */
467 if (seb->leb_ver == leb_ver && leb_ver != 0) {
468 ubi_err("two LEBs with same version %u", leb_ver);
469 ubi_dbg_dump_seb(seb, 0);
470 ubi_dbg_dump_vid_hdr(vid_hdr);
471 return -EINVAL;
472 }
473
474 /*
475 * Make sure that the logical eraseblocks have different
476 * sequence numbers. Otherwise the image is bad.
477 *
478 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
479 */
480 if (seb->sqnum == sqnum && sqnum != 0) {
481 ubi_err("two LEBs with same sequence number %llu",
482 sqnum);
483 ubi_dbg_dump_seb(seb, 0);
484 ubi_dbg_dump_vid_hdr(vid_hdr);
485 return -EINVAL;
486 }
487
488 /*
489 * Now we have to drop the older one and preserve the newer
490 * one.
491 */
492 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
493 if (cmp_res < 0)
494 return cmp_res;
495
496 if (cmp_res & 1) {
497 /*
498 * This logical eraseblock is newer then the one
499 * found earlier.
500 */
501 err = validate_vid_hdr(vid_hdr, sv, pnum);
502 if (err)
503 return err;
504
505 if (cmp_res & 4)
78d87c95
AB
506 err = add_to_list(si, seb->pnum, seb->ec,
507 &si->corr);
801c135c 508 else
78d87c95
AB
509 err = add_to_list(si, seb->pnum, seb->ec,
510 &si->erase);
801c135c
AB
511 if (err)
512 return err;
513
514 seb->ec = ec;
515 seb->pnum = pnum;
516 seb->scrub = ((cmp_res & 2) || bitflips);
517 seb->sqnum = sqnum;
518 seb->leb_ver = leb_ver;
519
520 if (sv->highest_lnum == lnum)
521 sv->last_data_size =
522 ubi32_to_cpu(vid_hdr->data_size);
523
524 return 0;
525 } else {
526 /*
527 * This logical eraseblock is older then the one found
528 * previously.
529 */
530 if (cmp_res & 4)
78d87c95 531 return add_to_list(si, pnum, ec, &si->corr);
801c135c 532 else
78d87c95 533 return add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
534 }
535 }
536
537 /*
538 * We've met this logical eraseblock for the first time, add it to the
539 * scanning information.
540 */
541
542 err = validate_vid_hdr(vid_hdr, sv, pnum);
543 if (err)
544 return err;
545
546 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
547 if (!seb)
548 return -ENOMEM;
549
550 seb->ec = ec;
551 seb->pnum = pnum;
552 seb->lnum = lnum;
553 seb->sqnum = sqnum;
554 seb->scrub = bitflips;
555 seb->leb_ver = leb_ver;
556
557 if (sv->highest_lnum <= lnum) {
558 sv->highest_lnum = lnum;
559 sv->last_data_size = ubi32_to_cpu(vid_hdr->data_size);
560 }
561
562 if (si->max_sqnum < sqnum)
563 si->max_sqnum = sqnum;
564
565 sv->leb_count += 1;
566 rb_link_node(&seb->u.rb, parent, p);
567 rb_insert_color(&seb->u.rb, &sv->root);
568 return 0;
569}
570
571/**
572 * ubi_scan_find_sv - find information about a particular volume in the
573 * scanning information.
574 * @si: scanning information
575 * @vol_id: the requested volume ID
576 *
577 * This function returns a pointer to the volume description or %NULL if there
578 * are no data about this volume in the scanning information.
579 */
580struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
581 int vol_id)
582{
583 struct ubi_scan_volume *sv;
584 struct rb_node *p = si->volumes.rb_node;
585
586 while (p) {
587 sv = rb_entry(p, struct ubi_scan_volume, rb);
588
589 if (vol_id == sv->vol_id)
590 return sv;
591
592 if (vol_id > sv->vol_id)
593 p = p->rb_left;
594 else
595 p = p->rb_right;
596 }
597
598 return NULL;
599}
600
601/**
602 * ubi_scan_find_seb - find information about a particular logical
603 * eraseblock in the volume scanning information.
604 * @sv: a pointer to the volume scanning information
605 * @lnum: the requested logical eraseblock
606 *
607 * This function returns a pointer to the scanning logical eraseblock or %NULL
608 * if there are no data about it in the scanning volume information.
609 */
610struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
611 int lnum)
612{
613 struct ubi_scan_leb *seb;
614 struct rb_node *p = sv->root.rb_node;
615
616 while (p) {
617 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
618
619 if (lnum == seb->lnum)
620 return seb;
621
622 if (lnum > seb->lnum)
623 p = p->rb_left;
624 else
625 p = p->rb_right;
626 }
627
628 return NULL;
629}
630
631/**
632 * ubi_scan_rm_volume - delete scanning information about a volume.
633 * @si: scanning information
634 * @sv: the volume scanning information to delete
635 */
636void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
637{
638 struct rb_node *rb;
639 struct ubi_scan_leb *seb;
640
641 dbg_bld("remove scanning information about volume %d", sv->vol_id);
642
643 while ((rb = rb_first(&sv->root))) {
644 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
645 rb_erase(&seb->u.rb, &sv->root);
646 list_add_tail(&seb->u.list, &si->erase);
647 }
648
649 rb_erase(&sv->rb, &si->volumes);
650 kfree(sv);
651 si->vols_found -= 1;
652}
653
654/**
655 * ubi_scan_erase_peb - erase a physical eraseblock.
656 * @ubi: UBI device description object
657 * @si: scanning information
658 * @pnum: physical eraseblock number to erase;
659 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
660 *
661 * This function erases physical eraseblock 'pnum', and writes the erase
662 * counter header to it. This function should only be used on UBI device
663 * initialization stages, when the EBA unit had not been yet initialized. This
664 * function returns zero in case of success and a negative error code in case
665 * of failure.
666 */
667int ubi_scan_erase_peb(const struct ubi_device *ubi,
668 const struct ubi_scan_info *si, int pnum, int ec)
669{
670 int err;
671 struct ubi_ec_hdr *ec_hdr;
672
673 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
674 if (!ec_hdr)
675 return -ENOMEM;
676
677 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
678 /*
679 * Erase counter overflow. Upgrade UBI and use 64-bit
680 * erase counters internally.
681 */
682 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
683 return -EINVAL;
684 }
685
686 ec_hdr->ec = cpu_to_ubi64(ec);
687
688 err = ubi_io_sync_erase(ubi, pnum, 0);
689 if (err < 0)
690 goto out_free;
691
692 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
693
694out_free:
695 kfree(ec_hdr);
696 return err;
697}
698
699/**
700 * ubi_scan_get_free_peb - get a free physical eraseblock.
701 * @ubi: UBI device description object
702 * @si: scanning information
703 *
704 * This function returns a free physical eraseblock. It is supposed to be
705 * called on the UBI initialization stages when the wear-leveling unit is not
706 * initialized yet. This function picks a physical eraseblocks from one of the
707 * lists, writes the EC header if it is needed, and removes it from the list.
708 *
709 * This function returns scanning physical eraseblock information in case of
710 * success and an error code in case of failure.
711 */
712struct ubi_scan_leb *ubi_scan_get_free_peb(const struct ubi_device *ubi,
713 struct ubi_scan_info *si)
714{
715 int err = 0, i;
716 struct ubi_scan_leb *seb;
717
718 if (!list_empty(&si->free)) {
719 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
720 list_del(&seb->u.list);
721 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
722 return seb;
723 }
724
725 for (i = 0; i < 2; i++) {
726 struct list_head *head;
727 struct ubi_scan_leb *tmp_seb;
728
729 if (i == 0)
730 head = &si->erase;
731 else
732 head = &si->corr;
733
734 /*
735 * We try to erase the first physical eraseblock from the @head
736 * list and pick it if we succeed, or try to erase the
737 * next one if not. And so forth. We don't want to take care
738 * about bad eraseblocks here - they'll be handled later.
739 */
740 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
741 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
742 seb->ec = si->mean_ec;
743
744 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
745 if (err)
746 continue;
747
748 seb->ec += 1;
749 list_del(&seb->u.list);
750 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
751 return seb;
752 }
753 }
754
755 ubi_err("no eraseblocks found");
756 return ERR_PTR(-ENOSPC);
757}
758
759/**
760 * process_eb - read UBI headers, check them and add corresponding data
761 * to the scanning information.
762 * @ubi: UBI device description object
763 * @si: scanning information
764 * @pnum: the physical eraseblock number
765 *
78d87c95 766 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
767 * handled and a negative error code in case of failure.
768 */
769static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
770{
771 long long ec;
772 int err, bitflips = 0, vol_id, ec_corr = 0;
773
774 dbg_bld("scan PEB %d", pnum);
775
776 /* Skip bad physical eraseblocks */
777 err = ubi_io_is_bad(ubi, pnum);
778 if (err < 0)
779 return err;
780 else if (err) {
781 /*
782 * FIXME: this is actually duty of the I/O unit to initialize
783 * this, but MTD does not provide enough information.
784 */
785 si->bad_peb_count += 1;
786 return 0;
787 }
788
789 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
790 if (err < 0)
791 return err;
792 else if (err == UBI_IO_BITFLIPS)
793 bitflips = 1;
794 else if (err == UBI_IO_PEB_EMPTY)
78d87c95 795 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
801c135c
AB
796 else if (err == UBI_IO_BAD_EC_HDR) {
797 /*
798 * We have to also look at the VID header, possibly it is not
799 * corrupted. Set %bitflips flag in order to make this PEB be
800 * moved and EC be re-created.
801 */
802 ec_corr = 1;
803 ec = UBI_SCAN_UNKNOWN_EC;
804 bitflips = 1;
805 }
806
807 si->is_empty = 0;
808
809 if (!ec_corr) {
810 /* Make sure UBI version is OK */
811 if (ech->version != UBI_VERSION) {
812 ubi_err("this UBI version is %d, image version is %d",
813 UBI_VERSION, (int)ech->version);
814 return -EINVAL;
815 }
816
817 ec = ubi64_to_cpu(ech->ec);
818 if (ec > UBI_MAX_ERASECOUNTER) {
819 /*
820 * Erase counter overflow. The EC headers have 64 bits
821 * reserved, but we anyway make use of only 31 bit
822 * values, as this seems to be enough for any existing
823 * flash. Upgrade UBI and use 64-bit erase counters
824 * internally.
825 */
826 ubi_err("erase counter overflow, max is %d",
827 UBI_MAX_ERASECOUNTER);
828 ubi_dbg_dump_ec_hdr(ech);
829 return -EINVAL;
830 }
831 }
832
833 /* OK, we've done with the EC header, let's look at the VID header */
834
835 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
836 if (err < 0)
837 return err;
838 else if (err == UBI_IO_BITFLIPS)
839 bitflips = 1;
840 else if (err == UBI_IO_BAD_VID_HDR ||
841 (err == UBI_IO_PEB_FREE && ec_corr)) {
842 /* VID header is corrupted */
78d87c95 843 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
844 if (err)
845 return err;
846 goto adjust_mean_ec;
847 } else if (err == UBI_IO_PEB_FREE) {
848 /* No VID header - the physical eraseblock is free */
78d87c95 849 err = add_to_list(si, pnum, ec, &si->free);
801c135c
AB
850 if (err)
851 return err;
852 goto adjust_mean_ec;
853 }
854
855 vol_id = ubi32_to_cpu(vidh->vol_id);
856 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOL_ID) {
857 int lnum = ubi32_to_cpu(vidh->lnum);
858
859 /* Unsupported internal volume */
860 switch (vidh->compat) {
861 case UBI_COMPAT_DELETE:
862 ubi_msg("\"delete\" compatible internal volume %d:%d"
863 " found, remove it", vol_id, lnum);
78d87c95 864 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
865 if (err)
866 return err;
867 break;
868
869 case UBI_COMPAT_RO:
870 ubi_msg("read-only compatible internal volume %d:%d"
871 " found, switch to read-only mode",
872 vol_id, lnum);
873 ubi->ro_mode = 1;
874 break;
875
876 case UBI_COMPAT_PRESERVE:
877 ubi_msg("\"preserve\" compatible internal volume %d:%d"
878 " found", vol_id, lnum);
78d87c95 879 err = add_to_list(si, pnum, ec, &si->alien);
801c135c
AB
880 if (err)
881 return err;
882 si->alien_peb_count += 1;
883 return 0;
884
885 case UBI_COMPAT_REJECT:
886 ubi_err("incompatible internal volume %d:%d found",
887 vol_id, lnum);
888 return -EINVAL;
889 }
890 }
891
892 /* Both UBI headers seem to be fine */
893 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
894 if (err)
895 return err;
896
897adjust_mean_ec:
898 if (!ec_corr) {
899 if (si->ec_sum + ec < ec) {
900 commit_to_mean_value(si);
901 si->ec_sum = 0;
902 si->ec_count = 0;
903 } else {
904 si->ec_sum += ec;
905 si->ec_count += 1;
906 }
907
908 if (ec > si->max_ec)
909 si->max_ec = ec;
910 if (ec < si->min_ec)
911 si->min_ec = ec;
912 }
913
914 return 0;
915}
916
917/**
918 * ubi_scan - scan an MTD device.
919 * @ubi: UBI device description object
920 *
921 * This function does full scanning of an MTD device and returns complete
922 * information about it. In case of failure, an error code is returned.
923 */
924struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
925{
926 int err, pnum;
927 struct rb_node *rb1, *rb2;
928 struct ubi_scan_volume *sv;
929 struct ubi_scan_leb *seb;
930 struct ubi_scan_info *si;
931
932 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
933 if (!si)
934 return ERR_PTR(-ENOMEM);
935
936 INIT_LIST_HEAD(&si->corr);
937 INIT_LIST_HEAD(&si->free);
938 INIT_LIST_HEAD(&si->erase);
939 INIT_LIST_HEAD(&si->alien);
940 si->volumes = RB_ROOT;
941 si->is_empty = 1;
942
943 err = -ENOMEM;
944 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
945 if (!ech)
946 goto out_si;
947
948 vidh = ubi_zalloc_vid_hdr(ubi);
949 if (!vidh)
950 goto out_ech;
951
952 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
953 cond_resched();
954
955 dbg_msg("process PEB %d", pnum);
956 err = process_eb(ubi, si, pnum);
957 if (err < 0)
958 goto out_vidh;
959 }
960
961 dbg_msg("scanning is finished");
962
963 /* Finish mean erase counter calculations */
964 if (si->ec_count)
965 commit_to_mean_value(si);
966
967 if (si->is_empty)
968 ubi_msg("empty MTD device detected");
969
970 /*
971 * In case of unknown erase counter we use the mean erase counter
972 * value.
973 */
974 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
975 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
976 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
977 seb->ec = si->mean_ec;
978 }
979
980 list_for_each_entry(seb, &si->free, u.list) {
981 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
982 seb->ec = si->mean_ec;
983 }
984
985 list_for_each_entry(seb, &si->corr, u.list)
986 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
987 seb->ec = si->mean_ec;
988
989 list_for_each_entry(seb, &si->erase, u.list)
990 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
991 seb->ec = si->mean_ec;
992
993 err = paranoid_check_si(ubi, si);
994 if (err) {
995 if (err > 0)
996 err = -EINVAL;
997 goto out_vidh;
998 }
999
1000 ubi_free_vid_hdr(ubi, vidh);
1001 kfree(ech);
1002
1003 return si;
1004
1005out_vidh:
1006 ubi_free_vid_hdr(ubi, vidh);
1007out_ech:
1008 kfree(ech);
1009out_si:
1010 ubi_scan_destroy_si(si);
1011 return ERR_PTR(err);
1012}
1013
1014/**
1015 * destroy_sv - free the scanning volume information
1016 * @sv: scanning volume information
1017 *
1018 * This function destroys the volume RB-tree (@sv->root) and the scanning
1019 * volume information.
1020 */
1021static void destroy_sv(struct ubi_scan_volume *sv)
1022{
1023 struct ubi_scan_leb *seb;
1024 struct rb_node *this = sv->root.rb_node;
1025
1026 while (this) {
1027 if (this->rb_left)
1028 this = this->rb_left;
1029 else if (this->rb_right)
1030 this = this->rb_right;
1031 else {
1032 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1033 this = rb_parent(this);
1034 if (this) {
1035 if (this->rb_left == &seb->u.rb)
1036 this->rb_left = NULL;
1037 else
1038 this->rb_right = NULL;
1039 }
1040
1041 kfree(seb);
1042 }
1043 }
1044 kfree(sv);
1045}
1046
1047/**
1048 * ubi_scan_destroy_si - destroy scanning information.
1049 * @si: scanning information
1050 */
1051void ubi_scan_destroy_si(struct ubi_scan_info *si)
1052{
1053 struct ubi_scan_leb *seb, *seb_tmp;
1054 struct ubi_scan_volume *sv;
1055 struct rb_node *rb;
1056
1057 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1058 list_del(&seb->u.list);
1059 kfree(seb);
1060 }
1061 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1062 list_del(&seb->u.list);
1063 kfree(seb);
1064 }
1065 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1066 list_del(&seb->u.list);
1067 kfree(seb);
1068 }
1069 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1070 list_del(&seb->u.list);
1071 kfree(seb);
1072 }
1073
1074 /* Destroy the volume RB-tree */
1075 rb = si->volumes.rb_node;
1076 while (rb) {
1077 if (rb->rb_left)
1078 rb = rb->rb_left;
1079 else if (rb->rb_right)
1080 rb = rb->rb_right;
1081 else {
1082 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1083
1084 rb = rb_parent(rb);
1085 if (rb) {
1086 if (rb->rb_left == &sv->rb)
1087 rb->rb_left = NULL;
1088 else
1089 rb->rb_right = NULL;
1090 }
1091
1092 destroy_sv(sv);
1093 }
1094 }
1095
1096 kfree(si);
1097}
1098
1099#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1100
1101/**
1102 * paranoid_check_si - check if the scanning information is correct and
1103 * consistent.
1104 * @ubi: UBI device description object
1105 * @si: scanning information
1106 *
1107 * This function returns zero if the scanning information is all right, %1 if
1108 * not and a negative error code if an error occurred.
1109 */
1110static int paranoid_check_si(const struct ubi_device *ubi,
1111 struct ubi_scan_info *si)
1112{
1113 int pnum, err, vols_found = 0;
1114 struct rb_node *rb1, *rb2;
1115 struct ubi_scan_volume *sv;
1116 struct ubi_scan_leb *seb, *last_seb;
1117 uint8_t *buf;
1118
1119 /*
78d87c95 1120 * At first, check that scanning information is OK.
801c135c
AB
1121 */
1122 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1123 int leb_count = 0;
1124
1125 cond_resched();
1126
1127 vols_found += 1;
1128
1129 if (si->is_empty) {
1130 ubi_err("bad is_empty flag");
1131 goto bad_sv;
1132 }
1133
1134 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1135 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1136 sv->data_pad < 0 || sv->last_data_size < 0) {
1137 ubi_err("negative values");
1138 goto bad_sv;
1139 }
1140
1141 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1142 sv->vol_id < UBI_INTERNAL_VOL_START) {
1143 ubi_err("bad vol_id");
1144 goto bad_sv;
1145 }
1146
1147 if (sv->vol_id > si->highest_vol_id) {
1148 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1149 si->highest_vol_id, sv->vol_id);
1150 goto out;
1151 }
1152
1153 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1154 sv->vol_type != UBI_STATIC_VOLUME) {
1155 ubi_err("bad vol_type");
1156 goto bad_sv;
1157 }
1158
1159 if (sv->data_pad > ubi->leb_size / 2) {
1160 ubi_err("bad data_pad");
1161 goto bad_sv;
1162 }
1163
1164 last_seb = NULL;
1165 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1166 cond_resched();
1167
1168 last_seb = seb;
1169 leb_count += 1;
1170
1171 if (seb->pnum < 0 || seb->ec < 0) {
1172 ubi_err("negative values");
1173 goto bad_seb;
1174 }
1175
1176 if (seb->ec < si->min_ec) {
1177 ubi_err("bad si->min_ec (%d), %d found",
1178 si->min_ec, seb->ec);
1179 goto bad_seb;
1180 }
1181
1182 if (seb->ec > si->max_ec) {
1183 ubi_err("bad si->max_ec (%d), %d found",
1184 si->max_ec, seb->ec);
1185 goto bad_seb;
1186 }
1187
1188 if (seb->pnum >= ubi->peb_count) {
1189 ubi_err("too high PEB number %d, total PEBs %d",
1190 seb->pnum, ubi->peb_count);
1191 goto bad_seb;
1192 }
1193
1194 if (sv->vol_type == UBI_STATIC_VOLUME) {
1195 if (seb->lnum >= sv->used_ebs) {
1196 ubi_err("bad lnum or used_ebs");
1197 goto bad_seb;
1198 }
1199 } else {
1200 if (sv->used_ebs != 0) {
1201 ubi_err("non-zero used_ebs");
1202 goto bad_seb;
1203 }
1204 }
1205
1206 if (seb->lnum > sv->highest_lnum) {
1207 ubi_err("incorrect highest_lnum or lnum");
1208 goto bad_seb;
1209 }
1210 }
1211
1212 if (sv->leb_count != leb_count) {
1213 ubi_err("bad leb_count, %d objects in the tree",
1214 leb_count);
1215 goto bad_sv;
1216 }
1217
1218 if (!last_seb)
1219 continue;
1220
1221 seb = last_seb;
1222
1223 if (seb->lnum != sv->highest_lnum) {
1224 ubi_err("bad highest_lnum");
1225 goto bad_seb;
1226 }
1227 }
1228
1229 if (vols_found != si->vols_found) {
1230 ubi_err("bad si->vols_found %d, should be %d",
1231 si->vols_found, vols_found);
1232 goto out;
1233 }
1234
1235 /* Check that scanning information is correct */
1236 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1237 last_seb = NULL;
1238 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1239 int vol_type;
1240
1241 cond_resched();
1242
1243 last_seb = seb;
1244
1245 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1246 if (err && err != UBI_IO_BITFLIPS) {
1247 ubi_err("VID header is not OK (%d)", err);
1248 if (err > 0)
1249 err = -EIO;
1250 return err;
1251 }
1252
1253 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1254 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1255 if (sv->vol_type != vol_type) {
1256 ubi_err("bad vol_type");
1257 goto bad_vid_hdr;
1258 }
1259
1260 if (seb->sqnum != ubi64_to_cpu(vidh->sqnum)) {
1261 ubi_err("bad sqnum %llu", seb->sqnum);
1262 goto bad_vid_hdr;
1263 }
1264
1265 if (sv->vol_id != ubi32_to_cpu(vidh->vol_id)) {
1266 ubi_err("bad vol_id %d", sv->vol_id);
1267 goto bad_vid_hdr;
1268 }
1269
1270 if (sv->compat != vidh->compat) {
1271 ubi_err("bad compat %d", vidh->compat);
1272 goto bad_vid_hdr;
1273 }
1274
1275 if (seb->lnum != ubi32_to_cpu(vidh->lnum)) {
1276 ubi_err("bad lnum %d", seb->lnum);
1277 goto bad_vid_hdr;
1278 }
1279
1280 if (sv->used_ebs != ubi32_to_cpu(vidh->used_ebs)) {
1281 ubi_err("bad used_ebs %d", sv->used_ebs);
1282 goto bad_vid_hdr;
1283 }
1284
1285 if (sv->data_pad != ubi32_to_cpu(vidh->data_pad)) {
1286 ubi_err("bad data_pad %d", sv->data_pad);
1287 goto bad_vid_hdr;
1288 }
1289
1290 if (seb->leb_ver != ubi32_to_cpu(vidh->leb_ver)) {
1291 ubi_err("bad leb_ver %u", seb->leb_ver);
1292 goto bad_vid_hdr;
1293 }
1294 }
1295
1296 if (!last_seb)
1297 continue;
1298
1299 if (sv->highest_lnum != ubi32_to_cpu(vidh->lnum)) {
1300 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1301 goto bad_vid_hdr;
1302 }
1303
1304 if (sv->last_data_size != ubi32_to_cpu(vidh->data_size)) {
1305 ubi_err("bad last_data_size %d", sv->last_data_size);
1306 goto bad_vid_hdr;
1307 }
1308 }
1309
1310 /*
1311 * Make sure that all the physical eraseblocks are in one of the lists
1312 * or trees.
1313 */
1314 buf = kmalloc(ubi->peb_count, GFP_KERNEL);
1315 if (!buf)
1316 return -ENOMEM;
1317
1318 memset(buf, 1, ubi->peb_count);
1319 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1320 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1321 if (err < 0) {
1322 kfree(buf);
801c135c 1323 return err;
341e1a0c 1324 }
801c135c
AB
1325 else if (err)
1326 buf[pnum] = 0;
1327 }
1328
1329 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1330 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1331 buf[seb->pnum] = 0;
1332
1333 list_for_each_entry(seb, &si->free, u.list)
1334 buf[seb->pnum] = 0;
1335
1336 list_for_each_entry(seb, &si->corr, u.list)
1337 buf[seb->pnum] = 0;
1338
1339 list_for_each_entry(seb, &si->erase, u.list)
1340 buf[seb->pnum] = 0;
1341
1342 list_for_each_entry(seb, &si->alien, u.list)
1343 buf[seb->pnum] = 0;
1344
1345 err = 0;
1346 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1347 if (buf[pnum]) {
1348 ubi_err("PEB %d is not referred", pnum);
1349 err = 1;
1350 }
1351
1352 kfree(buf);
1353 if (err)
1354 goto out;
1355 return 0;
1356
1357bad_seb:
1358 ubi_err("bad scanning information about LEB %d", seb->lnum);
1359 ubi_dbg_dump_seb(seb, 0);
1360 ubi_dbg_dump_sv(sv);
1361 goto out;
1362
1363bad_sv:
1364 ubi_err("bad scanning information about volume %d", sv->vol_id);
1365 ubi_dbg_dump_sv(sv);
1366 goto out;
1367
1368bad_vid_hdr:
1369 ubi_err("bad scanning information about volume %d", sv->vol_id);
1370 ubi_dbg_dump_sv(sv);
1371 ubi_dbg_dump_vid_hdr(vidh);
1372
1373out:
1374 ubi_dbg_dump_stack();
1375 return 1;
1376}
1377
1378#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */