]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/ubi/scan.c
UBI: fix kernel-doc errors and warnings
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * UBI scanning sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for scanning the flash media, checking UBI
801c135c
AB
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 */
42
43#include <linux/err.h>
44#include <linux/crc32.h>
4bc1dca4 45#include <asm/div64.h>
801c135c
AB
46#include "ubi.h"
47
48#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 49static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
801c135c
AB
50#else
51#define paranoid_check_si(ubi, si) 0
52#endif
53
54/* Temporary variables used during scanning */
55static struct ubi_ec_hdr *ech;
56static struct ubi_vid_hdr *vidh;
57
941dfb07 58/**
78d87c95
AB
59 * add_to_list - add physical eraseblock to a list.
60 * @si: scanning information
61 * @pnum: physical eraseblock number to add
62 * @ec: erase counter of the physical eraseblock
63 * @list: the list to add to
64 *
65 * This function adds physical eraseblock @pnum to free, erase, corrupted or
66 * alien lists. Returns zero in case of success and a negative error code in
67 * case of failure.
68 */
69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70 struct list_head *list)
801c135c
AB
71{
72 struct ubi_scan_leb *seb;
73
74 if (list == &si->free)
75 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76 else if (list == &si->erase)
77 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78 else if (list == &si->corr)
79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80 else if (list == &si->alien)
81 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
82 else
83 BUG();
84
85 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
86 if (!seb)
87 return -ENOMEM;
88
89 seb->pnum = pnum;
90 seb->ec = ec;
91 list_add_tail(&seb->u.list, list);
92 return 0;
93}
94
801c135c 95/**
ebaaf1af 96 * validate_vid_hdr - check volume identifier header.
801c135c
AB
97 * @vid_hdr: the volume identifier header to check
98 * @sv: information about the volume this logical eraseblock belongs to
99 * @pnum: physical eraseblock number the VID header came from
100 *
101 * This function checks that data stored in @vid_hdr is consistent. Returns
102 * non-zero if an inconsistency was found and zero if not.
103 *
104 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 105 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
106 * information in the VID header is consistent to the information in other VID
107 * headers of the same volume.
108 */
109static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
110 const struct ubi_scan_volume *sv, int pnum)
111{
112 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
113 int vol_id = be32_to_cpu(vid_hdr->vol_id);
114 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
115 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
116
117 if (sv->leb_count != 0) {
118 int sv_vol_type;
119
120 /*
121 * This is not the first logical eraseblock belonging to this
122 * volume. Ensure that the data in its VID header is consistent
123 * to the data in previous logical eraseblock headers.
124 */
125
126 if (vol_id != sv->vol_id) {
127 dbg_err("inconsistent vol_id");
128 goto bad;
129 }
130
131 if (sv->vol_type == UBI_STATIC_VOLUME)
132 sv_vol_type = UBI_VID_STATIC;
133 else
134 sv_vol_type = UBI_VID_DYNAMIC;
135
136 if (vol_type != sv_vol_type) {
137 dbg_err("inconsistent vol_type");
138 goto bad;
139 }
140
141 if (used_ebs != sv->used_ebs) {
142 dbg_err("inconsistent used_ebs");
143 goto bad;
144 }
145
146 if (data_pad != sv->data_pad) {
147 dbg_err("inconsistent data_pad");
148 goto bad;
149 }
150 }
151
152 return 0;
153
154bad:
155 ubi_err("inconsistent VID header at PEB %d", pnum);
156 ubi_dbg_dump_vid_hdr(vid_hdr);
157 ubi_dbg_dump_sv(sv);
158 return -EINVAL;
159}
160
161/**
162 * add_volume - add volume to the scanning information.
163 * @si: scanning information
164 * @vol_id: ID of the volume to add
165 * @pnum: physical eraseblock number
166 * @vid_hdr: volume identifier header
167 *
168 * If the volume corresponding to the @vid_hdr logical eraseblock is already
169 * present in the scanning information, this function does nothing. Otherwise
170 * it adds corresponding volume to the scanning information. Returns a pointer
171 * to the scanning volume object in case of success and a negative error code
172 * in case of failure.
173 */
174static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
175 int pnum,
176 const struct ubi_vid_hdr *vid_hdr)
177{
178 struct ubi_scan_volume *sv;
179 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
180
3261ebd7 181 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
182
183 /* Walk the volume RB-tree to look if this volume is already present */
184 while (*p) {
185 parent = *p;
186 sv = rb_entry(parent, struct ubi_scan_volume, rb);
187
188 if (vol_id == sv->vol_id)
189 return sv;
190
191 if (vol_id > sv->vol_id)
192 p = &(*p)->rb_left;
193 else
194 p = &(*p)->rb_right;
195 }
196
197 /* The volume is absent - add it */
198 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
199 if (!sv)
200 return ERR_PTR(-ENOMEM);
201
202 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
203 sv->vol_id = vol_id;
204 sv->root = RB_ROOT;
3261ebd7
CH
205 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
206 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
207 sv->compat = vid_hdr->compat;
208 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
209 : UBI_STATIC_VOLUME;
210 if (vol_id > si->highest_vol_id)
211 si->highest_vol_id = vol_id;
212
213 rb_link_node(&sv->rb, parent, p);
214 rb_insert_color(&sv->rb, &si->volumes);
215 si->vols_found += 1;
216 dbg_bld("added volume %d", vol_id);
217 return sv;
218}
219
220/**
221 * compare_lebs - find out which logical eraseblock is newer.
222 * @ubi: UBI device description object
223 * @seb: first logical eraseblock to compare
224 * @pnum: physical eraseblock number of the second logical eraseblock to
225 * compare
226 * @vid_hdr: volume identifier header of the second logical eraseblock
227 *
228 * This function compares 2 copies of a LEB and informs which one is newer. In
229 * case of success this function returns a positive value, in case of failure, a
230 * negative error code is returned. The success return codes use the following
231 * bits:
232 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
233 * second PEB (described by @pnum and @vid_hdr);
234 * o bit 0 is set: the second PEB is newer;
235 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
236 * o bit 1 is set: bit-flips were detected in the newer LEB;
237 * o bit 2 is cleared: the older LEB is not corrupted;
238 * o bit 2 is set: the older LEB is corrupted.
239 */
e88d6e10
AB
240static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
241 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
242{
243 void *buf;
244 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
245 uint32_t data_crc, crc;
8bc22961 246 struct ubi_vid_hdr *vh = NULL;
3261ebd7 247 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c
AB
248
249 if (seb->sqnum == 0 && sqnum2 == 0) {
9c9ec147
AB
250 long long abs;
251 long long v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
252
253 /*
254 * UBI constantly increases the logical eraseblock version
255 * number and it can overflow. Thus, we have to bear in mind
256 * that versions that are close to %0xFFFFFFFF are less then
257 * versions that are close to %0.
258 *
85c6e6e2
AB
259 * The UBI WL sub-system guarantees that the number of pending
260 * tasks is not greater then %0x7FFFFFFF. So, if the difference
801c135c
AB
261 * between any two versions is greater or equivalent to
262 * %0x7FFFFFFF, there was an overflow and the logical
263 * eraseblock with lower version is actually newer then the one
264 * with higher version.
265 *
266 * FIXME: but this is anyway obsolete and will be removed at
267 * some point.
268 */
801c135c
AB
269 dbg_bld("using old crappy leb_ver stuff");
270
64203195
AB
271 if (v1 == v2) {
272 ubi_err("PEB %d and PEB %d have the same version %lld",
273 seb->pnum, pnum, v1);
274 return -EINVAL;
275 }
276
801c135c
AB
277 abs = v1 - v2;
278 if (abs < 0)
279 abs = -abs;
280
281 if (abs < 0x7FFFFFFF)
282 /* Non-overflow situation */
283 second_is_newer = (v2 > v1);
284 else
285 second_is_newer = (v2 < v1);
286 } else
287 /* Obviously the LEB with lower sequence counter is older */
288 second_is_newer = sqnum2 > seb->sqnum;
289
290 /*
291 * Now we know which copy is newer. If the copy flag of the PEB with
292 * newer version is not set, then we just return, otherwise we have to
293 * check data CRC. For the second PEB we already have the VID header,
294 * for the first one - we'll need to re-read it from flash.
295 *
296 * FIXME: this may be optimized so that we wouldn't read twice.
297 */
298
299 if (second_is_newer) {
300 if (!vid_hdr->copy_flag) {
301 /* It is not a copy, so it is newer */
302 dbg_bld("second PEB %d is newer, copy_flag is unset",
303 pnum);
304 return 1;
305 }
306 } else {
307 pnum = seb->pnum;
308
33818bbb 309 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 310 if (!vh)
801c135c
AB
311 return -ENOMEM;
312
8bc22961 313 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
314 if (err) {
315 if (err == UBI_IO_BITFLIPS)
316 bitflips = 1;
317 else {
318 dbg_err("VID of PEB %d header is bad, but it "
319 "was OK earlier", pnum);
320 if (err > 0)
321 err = -EIO;
322
323 goto out_free_vidh;
324 }
325 }
326
8bc22961 327 if (!vh->copy_flag) {
801c135c
AB
328 /* It is not a copy, so it is newer */
329 dbg_bld("first PEB %d is newer, copy_flag is unset",
330 pnum);
331 err = bitflips << 1;
332 goto out_free_vidh;
333 }
334
8bc22961 335 vid_hdr = vh;
801c135c
AB
336 }
337
338 /* Read the data of the copy and check the CRC */
339
3261ebd7 340 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 341 buf = vmalloc(len);
801c135c
AB
342 if (!buf) {
343 err = -ENOMEM;
344 goto out_free_vidh;
345 }
346
347 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
348 if (err && err != UBI_IO_BITFLIPS)
349 goto out_free_buf;
350
3261ebd7 351 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
352 crc = crc32(UBI_CRC32_INIT, buf, len);
353 if (crc != data_crc) {
354 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
355 pnum, crc, data_crc);
356 corrupted = 1;
357 bitflips = 0;
358 second_is_newer = !second_is_newer;
359 } else {
360 dbg_bld("PEB %d CRC is OK", pnum);
361 bitflips = !!err;
362 }
363
92ad8f37 364 vfree(buf);
8bc22961 365 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
366
367 if (second_is_newer)
368 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
369 else
370 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
371
372 return second_is_newer | (bitflips << 1) | (corrupted << 2);
373
374out_free_buf:
92ad8f37 375 vfree(buf);
801c135c 376out_free_vidh:
8bc22961 377 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
378 return err;
379}
380
381/**
ebaaf1af 382 * ubi_scan_add_used - add physical eraseblock to the scanning information.
801c135c
AB
383 * @ubi: UBI device description object
384 * @si: scanning information
385 * @pnum: the physical eraseblock number
386 * @ec: erase counter
387 * @vid_hdr: the volume identifier header
388 * @bitflips: if bit-flips were detected when this physical eraseblock was read
389 *
79b510c0
AB
390 * This function adds information about a used physical eraseblock to the
391 * 'used' tree of the corresponding volume. The function is rather complex
392 * because it has to handle cases when this is not the first physical
393 * eraseblock belonging to the same logical eraseblock, and the newer one has
394 * to be picked, while the older one has to be dropped. This function returns
395 * zero in case of success and a negative error code in case of failure.
801c135c 396 */
e88d6e10 397int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
398 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
399 int bitflips)
400{
401 int err, vol_id, lnum;
402 uint32_t leb_ver;
403 unsigned long long sqnum;
404 struct ubi_scan_volume *sv;
405 struct ubi_scan_leb *seb;
406 struct rb_node **p, *parent = NULL;
407
3261ebd7
CH
408 vol_id = be32_to_cpu(vid_hdr->vol_id);
409 lnum = be32_to_cpu(vid_hdr->lnum);
410 sqnum = be64_to_cpu(vid_hdr->sqnum);
411 leb_ver = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
412
413 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
414 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
415
416 sv = add_volume(si, vol_id, pnum, vid_hdr);
417 if (IS_ERR(sv) < 0)
418 return PTR_ERR(sv);
419
76eafe47
BS
420 if (si->max_sqnum < sqnum)
421 si->max_sqnum = sqnum;
422
801c135c
AB
423 /*
424 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
425 * if this is the first instance of this logical eraseblock or not.
426 */
427 p = &sv->root.rb_node;
428 while (*p) {
429 int cmp_res;
430
431 parent = *p;
432 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
433 if (lnum != seb->lnum) {
434 if (lnum < seb->lnum)
435 p = &(*p)->rb_left;
436 else
437 p = &(*p)->rb_right;
438 continue;
439 }
440
441 /*
442 * There is already a physical eraseblock describing the same
443 * logical eraseblock present.
444 */
445
446 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
447 "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
448 seb->leb_ver, seb->ec);
449
450 /*
451 * Make sure that the logical eraseblocks have different
452 * versions. Otherwise the image is bad.
453 */
454 if (seb->leb_ver == leb_ver && leb_ver != 0) {
455 ubi_err("two LEBs with same version %u", leb_ver);
456 ubi_dbg_dump_seb(seb, 0);
457 ubi_dbg_dump_vid_hdr(vid_hdr);
458 return -EINVAL;
459 }
460
461 /*
462 * Make sure that the logical eraseblocks have different
463 * sequence numbers. Otherwise the image is bad.
464 *
465 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
466 */
467 if (seb->sqnum == sqnum && sqnum != 0) {
468 ubi_err("two LEBs with same sequence number %llu",
469 sqnum);
470 ubi_dbg_dump_seb(seb, 0);
471 ubi_dbg_dump_vid_hdr(vid_hdr);
472 return -EINVAL;
473 }
474
475 /*
476 * Now we have to drop the older one and preserve the newer
477 * one.
478 */
479 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
480 if (cmp_res < 0)
481 return cmp_res;
482
483 if (cmp_res & 1) {
484 /*
485 * This logical eraseblock is newer then the one
486 * found earlier.
487 */
488 err = validate_vid_hdr(vid_hdr, sv, pnum);
489 if (err)
490 return err;
491
492 if (cmp_res & 4)
78d87c95
AB
493 err = add_to_list(si, seb->pnum, seb->ec,
494 &si->corr);
801c135c 495 else
78d87c95
AB
496 err = add_to_list(si, seb->pnum, seb->ec,
497 &si->erase);
801c135c
AB
498 if (err)
499 return err;
500
501 seb->ec = ec;
502 seb->pnum = pnum;
503 seb->scrub = ((cmp_res & 2) || bitflips);
504 seb->sqnum = sqnum;
505 seb->leb_ver = leb_ver;
506
507 if (sv->highest_lnum == lnum)
508 sv->last_data_size =
3261ebd7 509 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
510
511 return 0;
512 } else {
513 /*
514 * This logical eraseblock is older then the one found
515 * previously.
516 */
517 if (cmp_res & 4)
78d87c95 518 return add_to_list(si, pnum, ec, &si->corr);
801c135c 519 else
78d87c95 520 return add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
521 }
522 }
523
524 /*
525 * We've met this logical eraseblock for the first time, add it to the
526 * scanning information.
527 */
528
529 err = validate_vid_hdr(vid_hdr, sv, pnum);
530 if (err)
531 return err;
532
533 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
534 if (!seb)
535 return -ENOMEM;
536
537 seb->ec = ec;
538 seb->pnum = pnum;
539 seb->lnum = lnum;
540 seb->sqnum = sqnum;
541 seb->scrub = bitflips;
542 seb->leb_ver = leb_ver;
543
544 if (sv->highest_lnum <= lnum) {
545 sv->highest_lnum = lnum;
3261ebd7 546 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
547 }
548
801c135c
AB
549 sv->leb_count += 1;
550 rb_link_node(&seb->u.rb, parent, p);
551 rb_insert_color(&seb->u.rb, &sv->root);
552 return 0;
553}
554
555/**
ebaaf1af 556 * ubi_scan_find_sv - find volume in the scanning information.
801c135c
AB
557 * @si: scanning information
558 * @vol_id: the requested volume ID
559 *
560 * This function returns a pointer to the volume description or %NULL if there
561 * are no data about this volume in the scanning information.
562 */
563struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
564 int vol_id)
565{
566 struct ubi_scan_volume *sv;
567 struct rb_node *p = si->volumes.rb_node;
568
569 while (p) {
570 sv = rb_entry(p, struct ubi_scan_volume, rb);
571
572 if (vol_id == sv->vol_id)
573 return sv;
574
575 if (vol_id > sv->vol_id)
576 p = p->rb_left;
577 else
578 p = p->rb_right;
579 }
580
581 return NULL;
582}
583
584/**
ebaaf1af 585 * ubi_scan_find_seb - find LEB in the volume scanning information.
801c135c
AB
586 * @sv: a pointer to the volume scanning information
587 * @lnum: the requested logical eraseblock
588 *
589 * This function returns a pointer to the scanning logical eraseblock or %NULL
590 * if there are no data about it in the scanning volume information.
591 */
592struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
593 int lnum)
594{
595 struct ubi_scan_leb *seb;
596 struct rb_node *p = sv->root.rb_node;
597
598 while (p) {
599 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
600
601 if (lnum == seb->lnum)
602 return seb;
603
604 if (lnum > seb->lnum)
605 p = p->rb_left;
606 else
607 p = p->rb_right;
608 }
609
610 return NULL;
611}
612
613/**
614 * ubi_scan_rm_volume - delete scanning information about a volume.
615 * @si: scanning information
616 * @sv: the volume scanning information to delete
617 */
618void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
619{
620 struct rb_node *rb;
621 struct ubi_scan_leb *seb;
622
623 dbg_bld("remove scanning information about volume %d", sv->vol_id);
624
625 while ((rb = rb_first(&sv->root))) {
626 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
627 rb_erase(&seb->u.rb, &sv->root);
628 list_add_tail(&seb->u.list, &si->erase);
629 }
630
631 rb_erase(&sv->rb, &si->volumes);
632 kfree(sv);
633 si->vols_found -= 1;
634}
635
636/**
637 * ubi_scan_erase_peb - erase a physical eraseblock.
638 * @ubi: UBI device description object
639 * @si: scanning information
640 * @pnum: physical eraseblock number to erase;
641 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
642 *
643 * This function erases physical eraseblock 'pnum', and writes the erase
644 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
645 * initialization stages, when the EBA sub-system had not been yet initialized.
646 * This function returns zero in case of success and a negative error code in
647 * case of failure.
801c135c 648 */
e88d6e10
AB
649int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
650 int pnum, int ec)
801c135c
AB
651{
652 int err;
653 struct ubi_ec_hdr *ec_hdr;
654
801c135c
AB
655 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
656 /*
657 * Erase counter overflow. Upgrade UBI and use 64-bit
658 * erase counters internally.
659 */
660 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
661 return -EINVAL;
662 }
663
dcec4c3b
FM
664 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
665 if (!ec_hdr)
666 return -ENOMEM;
667
3261ebd7 668 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
669
670 err = ubi_io_sync_erase(ubi, pnum, 0);
671 if (err < 0)
672 goto out_free;
673
674 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
675
676out_free:
677 kfree(ec_hdr);
678 return err;
679}
680
681/**
682 * ubi_scan_get_free_peb - get a free physical eraseblock.
683 * @ubi: UBI device description object
684 * @si: scanning information
685 *
686 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
687 * called on the UBI initialization stages when the wear-leveling sub-system is
688 * not initialized yet. This function picks a physical eraseblocks from one of
689 * the lists, writes the EC header if it is needed, and removes it from the
690 * list.
801c135c
AB
691 *
692 * This function returns scanning physical eraseblock information in case of
693 * success and an error code in case of failure.
694 */
e88d6e10 695struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
801c135c
AB
696 struct ubi_scan_info *si)
697{
698 int err = 0, i;
699 struct ubi_scan_leb *seb;
700
701 if (!list_empty(&si->free)) {
702 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
703 list_del(&seb->u.list);
704 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
705 return seb;
706 }
707
708 for (i = 0; i < 2; i++) {
709 struct list_head *head;
710 struct ubi_scan_leb *tmp_seb;
711
712 if (i == 0)
713 head = &si->erase;
714 else
715 head = &si->corr;
716
717 /*
718 * We try to erase the first physical eraseblock from the @head
719 * list and pick it if we succeed, or try to erase the
720 * next one if not. And so forth. We don't want to take care
721 * about bad eraseblocks here - they'll be handled later.
722 */
723 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
724 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
725 seb->ec = si->mean_ec;
726
727 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
728 if (err)
729 continue;
730
731 seb->ec += 1;
732 list_del(&seb->u.list);
733 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
734 return seb;
735 }
736 }
737
738 ubi_err("no eraseblocks found");
739 return ERR_PTR(-ENOSPC);
740}
741
742/**
ebaaf1af 743 * process_eb - read, check UBI headers, and add them to scanning information.
801c135c
AB
744 * @ubi: UBI device description object
745 * @si: scanning information
746 * @pnum: the physical eraseblock number
747 *
78d87c95 748 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
749 * handled and a negative error code in case of failure.
750 */
9c9ec147
AB
751static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
752 int pnum)
801c135c 753{
c18a8418 754 long long uninitialized_var(ec);
801c135c
AB
755 int err, bitflips = 0, vol_id, ec_corr = 0;
756
757 dbg_bld("scan PEB %d", pnum);
758
759 /* Skip bad physical eraseblocks */
760 err = ubi_io_is_bad(ubi, pnum);
761 if (err < 0)
762 return err;
763 else if (err) {
764 /*
85c6e6e2
AB
765 * FIXME: this is actually duty of the I/O sub-system to
766 * initialize this, but MTD does not provide enough
767 * information.
801c135c
AB
768 */
769 si->bad_peb_count += 1;
770 return 0;
771 }
772
773 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
774 if (err < 0)
775 return err;
776 else if (err == UBI_IO_BITFLIPS)
777 bitflips = 1;
778 else if (err == UBI_IO_PEB_EMPTY)
78d87c95 779 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
801c135c
AB
780 else if (err == UBI_IO_BAD_EC_HDR) {
781 /*
782 * We have to also look at the VID header, possibly it is not
783 * corrupted. Set %bitflips flag in order to make this PEB be
784 * moved and EC be re-created.
785 */
786 ec_corr = 1;
787 ec = UBI_SCAN_UNKNOWN_EC;
788 bitflips = 1;
789 }
790
791 si->is_empty = 0;
792
793 if (!ec_corr) {
794 /* Make sure UBI version is OK */
795 if (ech->version != UBI_VERSION) {
796 ubi_err("this UBI version is %d, image version is %d",
797 UBI_VERSION, (int)ech->version);
798 return -EINVAL;
799 }
800
3261ebd7 801 ec = be64_to_cpu(ech->ec);
801c135c
AB
802 if (ec > UBI_MAX_ERASECOUNTER) {
803 /*
804 * Erase counter overflow. The EC headers have 64 bits
805 * reserved, but we anyway make use of only 31 bit
806 * values, as this seems to be enough for any existing
807 * flash. Upgrade UBI and use 64-bit erase counters
808 * internally.
809 */
810 ubi_err("erase counter overflow, max is %d",
811 UBI_MAX_ERASECOUNTER);
812 ubi_dbg_dump_ec_hdr(ech);
813 return -EINVAL;
814 }
815 }
816
817 /* OK, we've done with the EC header, let's look at the VID header */
818
819 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
820 if (err < 0)
821 return err;
822 else if (err == UBI_IO_BITFLIPS)
823 bitflips = 1;
824 else if (err == UBI_IO_BAD_VID_HDR ||
825 (err == UBI_IO_PEB_FREE && ec_corr)) {
826 /* VID header is corrupted */
78d87c95 827 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
828 if (err)
829 return err;
830 goto adjust_mean_ec;
831 } else if (err == UBI_IO_PEB_FREE) {
832 /* No VID header - the physical eraseblock is free */
78d87c95 833 err = add_to_list(si, pnum, ec, &si->free);
801c135c
AB
834 if (err)
835 return err;
836 goto adjust_mean_ec;
837 }
838
3261ebd7 839 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 840 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 841 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
842
843 /* Unsupported internal volume */
844 switch (vidh->compat) {
845 case UBI_COMPAT_DELETE:
846 ubi_msg("\"delete\" compatible internal volume %d:%d"
847 " found, remove it", vol_id, lnum);
78d87c95 848 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
849 if (err)
850 return err;
851 break;
852
853 case UBI_COMPAT_RO:
854 ubi_msg("read-only compatible internal volume %d:%d"
855 " found, switch to read-only mode",
856 vol_id, lnum);
857 ubi->ro_mode = 1;
858 break;
859
860 case UBI_COMPAT_PRESERVE:
861 ubi_msg("\"preserve\" compatible internal volume %d:%d"
862 " found", vol_id, lnum);
78d87c95 863 err = add_to_list(si, pnum, ec, &si->alien);
801c135c
AB
864 if (err)
865 return err;
866 si->alien_peb_count += 1;
867 return 0;
868
869 case UBI_COMPAT_REJECT:
870 ubi_err("incompatible internal volume %d:%d found",
871 vol_id, lnum);
872 return -EINVAL;
873 }
874 }
875
876 /* Both UBI headers seem to be fine */
877 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
878 if (err)
879 return err;
880
881adjust_mean_ec:
882 if (!ec_corr) {
4bc1dca4
AB
883 si->ec_sum += ec;
884 si->ec_count += 1;
801c135c
AB
885 if (ec > si->max_ec)
886 si->max_ec = ec;
887 if (ec < si->min_ec)
888 si->min_ec = ec;
889 }
890
891 return 0;
892}
893
894/**
895 * ubi_scan - scan an MTD device.
896 * @ubi: UBI device description object
897 *
898 * This function does full scanning of an MTD device and returns complete
899 * information about it. In case of failure, an error code is returned.
900 */
901struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
902{
903 int err, pnum;
904 struct rb_node *rb1, *rb2;
905 struct ubi_scan_volume *sv;
906 struct ubi_scan_leb *seb;
907 struct ubi_scan_info *si;
908
909 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
910 if (!si)
911 return ERR_PTR(-ENOMEM);
912
913 INIT_LIST_HEAD(&si->corr);
914 INIT_LIST_HEAD(&si->free);
915 INIT_LIST_HEAD(&si->erase);
916 INIT_LIST_HEAD(&si->alien);
917 si->volumes = RB_ROOT;
918 si->is_empty = 1;
919
920 err = -ENOMEM;
921 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
922 if (!ech)
923 goto out_si;
924
33818bbb 925 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
926 if (!vidh)
927 goto out_ech;
928
929 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
930 cond_resched();
931
c8566350 932 dbg_gen("process PEB %d", pnum);
801c135c
AB
933 err = process_eb(ubi, si, pnum);
934 if (err < 0)
935 goto out_vidh;
936 }
937
938 dbg_msg("scanning is finished");
939
4bc1dca4
AB
940 /* Calculate mean erase counter */
941 if (si->ec_count) {
942 do_div(si->ec_sum, si->ec_count);
943 si->mean_ec = si->ec_sum;
944 }
801c135c
AB
945
946 if (si->is_empty)
947 ubi_msg("empty MTD device detected");
948
949 /*
950 * In case of unknown erase counter we use the mean erase counter
951 * value.
952 */
953 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
954 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
955 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
956 seb->ec = si->mean_ec;
957 }
958
959 list_for_each_entry(seb, &si->free, u.list) {
960 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
961 seb->ec = si->mean_ec;
962 }
963
964 list_for_each_entry(seb, &si->corr, u.list)
965 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
966 seb->ec = si->mean_ec;
967
968 list_for_each_entry(seb, &si->erase, u.list)
969 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
970 seb->ec = si->mean_ec;
971
972 err = paranoid_check_si(ubi, si);
973 if (err) {
974 if (err > 0)
975 err = -EINVAL;
976 goto out_vidh;
977 }
978
979 ubi_free_vid_hdr(ubi, vidh);
980 kfree(ech);
981
982 return si;
983
984out_vidh:
985 ubi_free_vid_hdr(ubi, vidh);
986out_ech:
987 kfree(ech);
988out_si:
989 ubi_scan_destroy_si(si);
990 return ERR_PTR(err);
991}
992
993/**
994 * destroy_sv - free the scanning volume information
995 * @sv: scanning volume information
996 *
997 * This function destroys the volume RB-tree (@sv->root) and the scanning
998 * volume information.
999 */
1000static void destroy_sv(struct ubi_scan_volume *sv)
1001{
1002 struct ubi_scan_leb *seb;
1003 struct rb_node *this = sv->root.rb_node;
1004
1005 while (this) {
1006 if (this->rb_left)
1007 this = this->rb_left;
1008 else if (this->rb_right)
1009 this = this->rb_right;
1010 else {
1011 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1012 this = rb_parent(this);
1013 if (this) {
1014 if (this->rb_left == &seb->u.rb)
1015 this->rb_left = NULL;
1016 else
1017 this->rb_right = NULL;
1018 }
1019
1020 kfree(seb);
1021 }
1022 }
1023 kfree(sv);
1024}
1025
1026/**
1027 * ubi_scan_destroy_si - destroy scanning information.
1028 * @si: scanning information
1029 */
1030void ubi_scan_destroy_si(struct ubi_scan_info *si)
1031{
1032 struct ubi_scan_leb *seb, *seb_tmp;
1033 struct ubi_scan_volume *sv;
1034 struct rb_node *rb;
1035
1036 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1037 list_del(&seb->u.list);
1038 kfree(seb);
1039 }
1040 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1041 list_del(&seb->u.list);
1042 kfree(seb);
1043 }
1044 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1045 list_del(&seb->u.list);
1046 kfree(seb);
1047 }
1048 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1049 list_del(&seb->u.list);
1050 kfree(seb);
1051 }
1052
1053 /* Destroy the volume RB-tree */
1054 rb = si->volumes.rb_node;
1055 while (rb) {
1056 if (rb->rb_left)
1057 rb = rb->rb_left;
1058 else if (rb->rb_right)
1059 rb = rb->rb_right;
1060 else {
1061 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1062
1063 rb = rb_parent(rb);
1064 if (rb) {
1065 if (rb->rb_left == &sv->rb)
1066 rb->rb_left = NULL;
1067 else
1068 rb->rb_right = NULL;
1069 }
1070
1071 destroy_sv(sv);
1072 }
1073 }
1074
1075 kfree(si);
1076}
1077
1078#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1079
1080/**
ebaaf1af 1081 * paranoid_check_si - check the scanning information.
801c135c
AB
1082 * @ubi: UBI device description object
1083 * @si: scanning information
1084 *
1085 * This function returns zero if the scanning information is all right, %1 if
1086 * not and a negative error code if an error occurred.
1087 */
e88d6e10 1088static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
801c135c
AB
1089{
1090 int pnum, err, vols_found = 0;
1091 struct rb_node *rb1, *rb2;
1092 struct ubi_scan_volume *sv;
1093 struct ubi_scan_leb *seb, *last_seb;
1094 uint8_t *buf;
1095
1096 /*
78d87c95 1097 * At first, check that scanning information is OK.
801c135c
AB
1098 */
1099 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1100 int leb_count = 0;
1101
1102 cond_resched();
1103
1104 vols_found += 1;
1105
1106 if (si->is_empty) {
1107 ubi_err("bad is_empty flag");
1108 goto bad_sv;
1109 }
1110
1111 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1112 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1113 sv->data_pad < 0 || sv->last_data_size < 0) {
1114 ubi_err("negative values");
1115 goto bad_sv;
1116 }
1117
1118 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1119 sv->vol_id < UBI_INTERNAL_VOL_START) {
1120 ubi_err("bad vol_id");
1121 goto bad_sv;
1122 }
1123
1124 if (sv->vol_id > si->highest_vol_id) {
1125 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1126 si->highest_vol_id, sv->vol_id);
1127 goto out;
1128 }
1129
1130 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1131 sv->vol_type != UBI_STATIC_VOLUME) {
1132 ubi_err("bad vol_type");
1133 goto bad_sv;
1134 }
1135
1136 if (sv->data_pad > ubi->leb_size / 2) {
1137 ubi_err("bad data_pad");
1138 goto bad_sv;
1139 }
1140
1141 last_seb = NULL;
1142 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1143 cond_resched();
1144
1145 last_seb = seb;
1146 leb_count += 1;
1147
1148 if (seb->pnum < 0 || seb->ec < 0) {
1149 ubi_err("negative values");
1150 goto bad_seb;
1151 }
1152
1153 if (seb->ec < si->min_ec) {
1154 ubi_err("bad si->min_ec (%d), %d found",
1155 si->min_ec, seb->ec);
1156 goto bad_seb;
1157 }
1158
1159 if (seb->ec > si->max_ec) {
1160 ubi_err("bad si->max_ec (%d), %d found",
1161 si->max_ec, seb->ec);
1162 goto bad_seb;
1163 }
1164
1165 if (seb->pnum >= ubi->peb_count) {
1166 ubi_err("too high PEB number %d, total PEBs %d",
1167 seb->pnum, ubi->peb_count);
1168 goto bad_seb;
1169 }
1170
1171 if (sv->vol_type == UBI_STATIC_VOLUME) {
1172 if (seb->lnum >= sv->used_ebs) {
1173 ubi_err("bad lnum or used_ebs");
1174 goto bad_seb;
1175 }
1176 } else {
1177 if (sv->used_ebs != 0) {
1178 ubi_err("non-zero used_ebs");
1179 goto bad_seb;
1180 }
1181 }
1182
1183 if (seb->lnum > sv->highest_lnum) {
1184 ubi_err("incorrect highest_lnum or lnum");
1185 goto bad_seb;
1186 }
1187 }
1188
1189 if (sv->leb_count != leb_count) {
1190 ubi_err("bad leb_count, %d objects in the tree",
1191 leb_count);
1192 goto bad_sv;
1193 }
1194
1195 if (!last_seb)
1196 continue;
1197
1198 seb = last_seb;
1199
1200 if (seb->lnum != sv->highest_lnum) {
1201 ubi_err("bad highest_lnum");
1202 goto bad_seb;
1203 }
1204 }
1205
1206 if (vols_found != si->vols_found) {
1207 ubi_err("bad si->vols_found %d, should be %d",
1208 si->vols_found, vols_found);
1209 goto out;
1210 }
1211
1212 /* Check that scanning information is correct */
1213 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1214 last_seb = NULL;
1215 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1216 int vol_type;
1217
1218 cond_resched();
1219
1220 last_seb = seb;
1221
1222 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1223 if (err && err != UBI_IO_BITFLIPS) {
1224 ubi_err("VID header is not OK (%d)", err);
1225 if (err > 0)
1226 err = -EIO;
1227 return err;
1228 }
1229
1230 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1231 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1232 if (sv->vol_type != vol_type) {
1233 ubi_err("bad vol_type");
1234 goto bad_vid_hdr;
1235 }
1236
3261ebd7 1237 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
801c135c
AB
1238 ubi_err("bad sqnum %llu", seb->sqnum);
1239 goto bad_vid_hdr;
1240 }
1241
3261ebd7 1242 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1243 ubi_err("bad vol_id %d", sv->vol_id);
1244 goto bad_vid_hdr;
1245 }
1246
1247 if (sv->compat != vidh->compat) {
1248 ubi_err("bad compat %d", vidh->compat);
1249 goto bad_vid_hdr;
1250 }
1251
3261ebd7 1252 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1253 ubi_err("bad lnum %d", seb->lnum);
1254 goto bad_vid_hdr;
1255 }
1256
3261ebd7 1257 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1258 ubi_err("bad used_ebs %d", sv->used_ebs);
1259 goto bad_vid_hdr;
1260 }
1261
3261ebd7 1262 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1263 ubi_err("bad data_pad %d", sv->data_pad);
1264 goto bad_vid_hdr;
1265 }
1266
3261ebd7 1267 if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
801c135c
AB
1268 ubi_err("bad leb_ver %u", seb->leb_ver);
1269 goto bad_vid_hdr;
1270 }
1271 }
1272
1273 if (!last_seb)
1274 continue;
1275
3261ebd7 1276 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1277 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1278 goto bad_vid_hdr;
1279 }
1280
3261ebd7 1281 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1282 ubi_err("bad last_data_size %d", sv->last_data_size);
1283 goto bad_vid_hdr;
1284 }
1285 }
1286
1287 /*
1288 * Make sure that all the physical eraseblocks are in one of the lists
1289 * or trees.
1290 */
d9b0744d 1291 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1292 if (!buf)
1293 return -ENOMEM;
1294
801c135c
AB
1295 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1296 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1297 if (err < 0) {
1298 kfree(buf);
801c135c 1299 return err;
9c9ec147 1300 } else if (err)
d9b0744d 1301 buf[pnum] = 1;
801c135c
AB
1302 }
1303
1304 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1305 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
d9b0744d 1306 buf[seb->pnum] = 1;
801c135c
AB
1307
1308 list_for_each_entry(seb, &si->free, u.list)
d9b0744d 1309 buf[seb->pnum] = 1;
801c135c
AB
1310
1311 list_for_each_entry(seb, &si->corr, u.list)
d9b0744d 1312 buf[seb->pnum] = 1;
801c135c
AB
1313
1314 list_for_each_entry(seb, &si->erase, u.list)
d9b0744d 1315 buf[seb->pnum] = 1;
801c135c
AB
1316
1317 list_for_each_entry(seb, &si->alien, u.list)
d9b0744d 1318 buf[seb->pnum] = 1;
801c135c
AB
1319
1320 err = 0;
1321 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1322 if (!buf[pnum]) {
801c135c
AB
1323 ubi_err("PEB %d is not referred", pnum);
1324 err = 1;
1325 }
1326
1327 kfree(buf);
1328 if (err)
1329 goto out;
1330 return 0;
1331
1332bad_seb:
1333 ubi_err("bad scanning information about LEB %d", seb->lnum);
1334 ubi_dbg_dump_seb(seb, 0);
1335 ubi_dbg_dump_sv(sv);
1336 goto out;
1337
1338bad_sv:
1339 ubi_err("bad scanning information about volume %d", sv->vol_id);
1340 ubi_dbg_dump_sv(sv);
1341 goto out;
1342
1343bad_vid_hdr:
1344 ubi_err("bad scanning information about volume %d", sv->vol_id);
1345 ubi_dbg_dump_sv(sv);
1346 ubi_dbg_dump_vid_hdr(vidh);
1347
1348out:
1349 ubi_dbg_dump_stack();
1350 return 1;
1351}
1352
1353#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */