]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/mtd/ubi/wl.c
Merge tag 'livepatching-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / drivers / mtd / ubi / wl.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
801c135c
AB
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
801c135c
AB
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8/*
85c6e6e2 9 * UBI wear-leveling sub-system.
801c135c 10 *
85c6e6e2 11 * This sub-system is responsible for wear-leveling. It works in terms of
7b6c32da 12 * physical eraseblocks and erase counters and knows nothing about logical
85c6e6e2
AB
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
801c135c
AB
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
85c6e6e2 19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
801c135c 20 *
85c6e6e2 21 * When physical eraseblocks are returned to the WL sub-system by means of the
801c135c
AB
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
85c6e6e2 24 * which is also managed by the WL sub-system.
801c135c
AB
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
85c6e6e2
AB
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
801c135c 32 *
85c6e6e2
AB
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
801c135c 36 *
85c6e6e2
AB
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
b86a2c56
AB
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
7b6c32da
XX
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
44156267 53 * soon, so it makes sense not to move it for some time, but wait.
7b6c32da
XX
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
815bc5f8 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
b86a2c56 67 * erroneous - e.g., there was a read error;
7b6c32da
XX
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
801c135c
AB
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
85c6e6e2 77 * re-work this sub-system and make it more scalable.
801c135c 78 *
85c6e6e2
AB
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
801c135c
AB
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85c6e6e2 85 * room for future re-works of the WL sub-system.
801c135c
AB
86 */
87
88#include <linux/slab.h>
89#include <linux/crc32.h>
90#include <linux/freezer.h>
91#include <linux/kthread.h>
92#include "ubi.h"
78d6d497 93#include "wl.h"
801c135c
AB
94
95/* Number of physical eraseblocks reserved for wear-leveling purposes */
96#define WL_RESERVED_PEBS 1
97
801c135c
AB
98/*
99 * Maximum difference between two erase counters. If this threshold is
85c6e6e2
AB
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
801c135c
AB
103 */
104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106/*
85c6e6e2 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
801c135c
AB
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
85c6e6e2 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
025dfdaf 114 * does not pick eraseblocks with erase counter greater than the lowest erase
801c135c
AB
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119/*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123#define WL_MAX_FAILURES 32
124
7bf523ae
AB
125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
801c135c 130
801c135c
AB
131/**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140{
141 struct rb_node **p, *parent = NULL;
142
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
146
147 parent = *p;
23553b2c 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
801c135c
AB
149
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
160 }
161 }
162
23553b2c
XX
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
801c135c
AB
165}
166
ee59ba8b
RW
167/**
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176{
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
179}
180
801c135c
AB
181/**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
188static int do_work(struct ubi_device *ubi)
189{
190 int err;
191 struct ubi_work *wrk;
192
43f9b25a
AB
193 cond_resched();
194
593dd33c
AB
195 /*
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
200 */
201 down_read(&ubi->work_sem);
801c135c 202 spin_lock(&ubi->wl_lock);
801c135c
AB
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
593dd33c 205 up_read(&ubi->work_sem);
801c135c
AB
206 return 0;
207 }
208
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
16f557ec
AB
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
801c135c
AB
213 spin_unlock(&ubi->wl_lock);
214
215 /*
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
219 */
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
32608703 222 ubi_err(ubi, "work failed with error code %d", err);
593dd33c 223 up_read(&ubi->work_sem);
16f557ec 224
801c135c
AB
225 return err;
226}
227
801c135c
AB
228/**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237{
238 struct rb_node *p;
239
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
243
23553b2c 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
245
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
249 }
250
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
261 }
262 }
263
264 return 0;
265}
266
b32b78f8
RW
267/**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276{
277 struct ubi_wl_entry *p;
278 int i;
279
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
284
285 return 0;
286}
287
801c135c 288/**
7b6c32da 289 * prot_queue_add - add physical eraseblock to the protection queue.
801c135c
AB
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
801c135c 292 *
7b6c32da
XX
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
801c135c 297 */
7b6c32da 298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
801c135c 299{
7b6c32da 300 int pq_tail = ubi->pq_head - 1;
801c135c 301
7b6c32da
XX
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
801c135c
AB
307}
308
309/**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
8199b901 311 * @ubi: UBI device description object
801c135c 312 * @root: the RB-tree where to look for
add8287e 313 * @diff: maximum possible difference from the smallest erase counter
801c135c
AB
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
add8287e 316 * min + @diff, where min is the smallest erase counter.
801c135c 317 */
8199b901
RW
318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
801c135c
AB
320{
321 struct rb_node *p;
770aa73d 322 struct ubi_wl_entry *e;
add8287e 323 int max;
801c135c 324
23553b2c 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
add8287e 326 max = e->ec + diff;
801c135c
AB
327
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
331
23553b2c 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
338 }
339 }
340
341 return e;
342}
343
344/**
8199b901
RW
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355{
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
8199b901
RW
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
2f84c246 367 e = may_reserve_for_fm(ubi, e, root);
8199b901
RW
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372}
373
8199b901 374/**
78d6d497 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
691a8705
RW
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383{
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403}
404
801c135c 405/**
7b6c32da 406 * prot_queue_del - remove a physical eraseblock from the protection queue.
801c135c
AB
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
43f9b25a 409 *
7b6c32da
XX
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
801c135c 412 */
7b6c32da 413static int prot_queue_del(struct ubi_device *ubi, int pnum)
801c135c 414{
7b6c32da 415 struct ubi_wl_entry *e;
801c135c 416
7b6c32da
XX
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
801c135c 420
7bf523ae 421 if (self_check_in_pq(ubi, e))
7b6c32da 422 return -ENODEV;
43f9b25a 423
7b6c32da
XX
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
43f9b25a 426 return 0;
801c135c
AB
427}
428
429/**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
9c9ec147
AB
438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
801c135c
AB
440{
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
7bf523ae 447 err = self_check_ec(ubi, e->pnum, e->ec);
adbf05e3 448 if (err)
801c135c
AB
449 return -EINVAL;
450
33818bbb 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
32608703 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
801c135c
AB
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
3261ebd7 473 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485out_free:
486 kfree(ec_hdr);
487 return err;
488}
489
490/**
7b6c32da 491 * serve_prot_queue - check if it is time to stop protecting PEBs.
801c135c
AB
492 * @ubi: UBI device description object
493 *
7b6c32da
XX
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
801c135c 497 */
7b6c32da 498static void serve_prot_queue(struct ubi_device *ubi)
801c135c 499{
7b6c32da
XX
500 struct ubi_wl_entry *e, *tmp;
501 int count;
801c135c
AB
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
7b6c32da
XX
507repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
801c135c 513
7b6c32da
XX
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
801c135c 521 spin_unlock(&ubi->wl_lock);
7b6c32da
XX
522 cond_resched();
523 goto repeat;
801c135c 524 }
801c135c 525 }
7b6c32da
XX
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
801c135c
AB
532}
533
534/**
8199b901 535 * __schedule_ubi_work - schedule a work.
801c135c
AB
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
7b6c32da 539 * This function adds a work defined by @wrk to the tail of the pending works
e3e00445 540 * list. Can only be used if ubi->work_sem is already held in read mode!
801c135c 541 */
8199b901 542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
801c135c
AB
543{
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
27a0f2a3 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
801c135c
AB
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551}
552
8199b901
RW
553/**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562{
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566}
567
801c135c 568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
849271a4 569 int shutdown);
801c135c
AB
570
571/**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
d36e59e6
JR
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
801c135c
AB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
582static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
2e8f08de 583 int vol_id, int lnum, int torture, bool nested)
801c135c
AB
584{
585 struct ubi_work *wl_wrk;
586
8199b901 587 ubi_assert(e);
8199b901 588
801c135c
AB
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
591
33818bbb 592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
593 if (!wl_wrk)
594 return -ENOMEM;
595
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
d36e59e6
JR
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
801c135c
AB
600 wl_wrk->torture = torture;
601
2e8f08de
RW
602 if (nested)
603 __schedule_ubi_work(ubi, wl_wrk);
604 else
605 schedule_ubi_work(ubi, wl_wrk);
801c135c
AB
606 return 0;
607}
608
1a31b20c 609static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
8199b901
RW
610/**
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
617 *
618 */
619static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 int vol_id, int lnum, int torture)
621{
1a31b20c 622 struct ubi_work wl_wrk;
8199b901
RW
623
624 dbg_wl("sync erase of PEB %i", e->pnum);
625
1a31b20c
SS
626 wl_wrk.e = e;
627 wl_wrk.vol_id = vol_id;
628 wl_wrk.lnum = lnum;
629 wl_wrk.torture = torture;
8199b901 630
1a31b20c 631 return __erase_worker(ubi, &wl_wrk);
8199b901
RW
632}
633
34b89df9 634static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
801c135c
AB
635/**
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
849271a4
RW
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
801c135c
AB
641 *
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
644 * failure.
645 */
646static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
849271a4 647 int shutdown)
801c135c 648{
b86a2c56 649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
23654188 650 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
801c135c 651 struct ubi_wl_entry *e1, *e2;
3291b52f 652 struct ubi_vid_io_buf *vidb;
801c135c 653 struct ubi_vid_hdr *vid_hdr;
34b89df9 654 int dst_leb_clean = 0;
801c135c
AB
655
656 kfree(wrk);
849271a4 657 if (shutdown)
801c135c
AB
658 return 0;
659
3291b52f
BB
660 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
661 if (!vidb)
801c135c
AB
662 return -ENOMEM;
663
3291b52f
BB
664 vid_hdr = ubi_get_vid_hdr(vidb);
665
2e8f08de 666 down_read(&ubi->fm_eba_sem);
43f9b25a 667 mutex_lock(&ubi->move_mutex);
801c135c 668 spin_lock(&ubi->wl_lock);
43f9b25a
AB
669 ubi_assert(!ubi->move_from && !ubi->move_to);
670 ubi_assert(!ubi->move_to_put);
801c135c 671
43f9b25a 672 if (!ubi->free.rb_node ||
5abde384 673 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
801c135c 674 /*
43f9b25a
AB
675 * No free physical eraseblocks? Well, they must be waiting in
676 * the queue to be erased. Cancel movement - it will be
677 * triggered again when a free physical eraseblock appears.
801c135c
AB
678 *
679 * No used physical eraseblocks? They must be temporarily
680 * protected from being moved. They will be moved to the
681 * @ubi->used tree later and the wear-leveling will be
682 * triggered again.
683 */
684 dbg_wl("cancel WL, a list is empty: free %d, used %d",
5abde384 685 !ubi->free.rb_node, !ubi->used.rb_node);
43f9b25a 686 goto out_cancel;
801c135c
AB
687 }
688
8199b901 689#ifdef CONFIG_MTD_UBI_FASTMAP
4b68bf9a
AE
690 e1 = find_anchor_wl_entry(&ubi->used);
691 if (e1 && ubi->fm_next_anchor &&
692 (ubi->fm_next_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
693 ubi->fm_do_produce_anchor = 1;
694 /* fm_next_anchor is no longer considered a good anchor
695 * candidate.
696 * NULL assignment also prevents multiple wear level checks
697 * of this PEB.
698 */
699 wl_tree_add(ubi->fm_next_anchor, &ubi->free);
700 ubi->fm_next_anchor = NULL;
701 ubi->free_count++;
702 }
703
f9c34bb5 704 if (ubi->fm_do_produce_anchor) {
8199b901
RW
705 if (!e1)
706 goto out_cancel;
707 e2 = get_peb_for_wl(ubi);
708 if (!e2)
709 goto out_cancel;
710
711 self_check_in_wl_tree(ubi, e1, &ubi->used);
712 rb_erase(&e1->u.rb, &ubi->used);
713 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
f9c34bb5 714 ubi->fm_do_produce_anchor = 0;
8199b901
RW
715 } else if (!ubi->scrub.rb_node) {
716#else
5abde384 717 if (!ubi->scrub.rb_node) {
8199b901 718#endif
801c135c
AB
719 /*
720 * Now pick the least worn-out used physical eraseblock and a
721 * highly worn-out free physical eraseblock. If the erase
722 * counters differ much enough, start wear-leveling.
723 */
23553b2c 724 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
8199b901
RW
725 e2 = get_peb_for_wl(ubi);
726 if (!e2)
727 goto out_cancel;
801c135c
AB
728
729 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
730 dbg_wl("no WL needed: min used EC %d, max free EC %d",
731 e1->ec, e2->ec);
5ef4414f
RW
732
733 /* Give the unused PEB back */
734 wl_tree_add(e2, &ubi->free);
3d21bb76 735 ubi->free_count++;
43f9b25a 736 goto out_cancel;
801c135c 737 }
7bf523ae 738 self_check_in_wl_tree(ubi, e1, &ubi->used);
23553b2c 739 rb_erase(&e1->u.rb, &ubi->used);
801c135c
AB
740 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
741 e1->pnum, e1->ec, e2->pnum, e2->ec);
742 } else {
43f9b25a
AB
743 /* Perform scrubbing */
744 scrubbing = 1;
23553b2c 745 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
8199b901
RW
746 e2 = get_peb_for_wl(ubi);
747 if (!e2)
748 goto out_cancel;
749
7bf523ae 750 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
23553b2c 751 rb_erase(&e1->u.rb, &ubi->scrub);
801c135c
AB
752 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
753 }
754
801c135c
AB
755 ubi->move_from = e1;
756 ubi->move_to = e2;
757 spin_unlock(&ubi->wl_lock);
758
759 /*
760 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
761 * We so far do not know which logical eraseblock our physical
762 * eraseblock (@e1) belongs to. We have to read the volume identifier
763 * header first.
43f9b25a
AB
764 *
765 * Note, we are protected from this PEB being unmapped and erased. The
766 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
767 * which is being moved was unmapped.
801c135c
AB
768 */
769
3291b52f 770 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
801c135c 771 if (err && err != UBI_IO_BITFLIPS) {
34b89df9 772 dst_leb_clean = 1;
74d82d26 773 if (err == UBI_IO_FF) {
801c135c
AB
774 /*
775 * We are trying to move PEB without a VID header. UBI
776 * always write VID headers shortly after the PEB was
87960c0b
AB
777 * given, so we have a situation when it has not yet
778 * had a chance to write it, because it was preempted.
779 * So add this PEB to the protection queue so far,
815bc5f8
AB
780 * because presumably more data will be written there
781 * (including the missing VID header), and then we'll
87960c0b 782 * move it.
801c135c
AB
783 */
784 dbg_wl("PEB %d has no VID header", e1->pnum);
87960c0b 785 protect = 1;
43f9b25a 786 goto out_not_moved;
92e1a7d9
AB
787 } else if (err == UBI_IO_FF_BITFLIPS) {
788 /*
789 * The same situation as %UBI_IO_FF, but bit-flips were
790 * detected. It is better to schedule this PEB for
791 * scrubbing.
792 */
793 dbg_wl("PEB %d has no VID header but has bit-flips",
794 e1->pnum);
795 scrubbing = 1;
796 goto out_not_moved;
23654188
RW
797 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
798 /*
799 * While a full scan would detect interrupted erasures
800 * at attach time we can face them here when attached from
801 * Fastmap.
802 */
803 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
804 e1->pnum);
805 erase = 1;
806 goto out_not_moved;
801c135c 807 }
43f9b25a 808
32608703 809 ubi_err(ubi, "error %d while reading VID header from PEB %d",
43f9b25a 810 err, e1->pnum);
43f9b25a 811 goto out_error;
801c135c
AB
812 }
813
9c259a52
AB
814 vol_id = be32_to_cpu(vid_hdr->vol_id);
815 lnum = be32_to_cpu(vid_hdr->lnum);
816
3291b52f 817 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
801c135c 818 if (err) {
87960c0b
AB
819 if (err == MOVE_CANCEL_RACE) {
820 /*
821 * The LEB has not been moved because the volume is
822 * being deleted or the PEB has been put meanwhile. We
823 * should prevent this PEB from being selected for
824 * wear-leveling movement again, so put it to the
825 * protection queue.
826 */
827 protect = 1;
34b89df9 828 dst_leb_clean = 1;
87960c0b
AB
829 goto out_not_moved;
830 }
e801e128
BP
831 if (err == MOVE_RETRY) {
832 scrubbing = 1;
34b89df9 833 dst_leb_clean = 1;
e801e128
BP
834 goto out_not_moved;
835 }
cc831464 836 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
b86a2c56 837 err == MOVE_TARGET_RD_ERR) {
9c259a52
AB
838 /*
839 * Target PEB had bit-flips or write error - torture it.
840 */
6fa6f5bb 841 torture = 1;
23654188 842 keep = 1;
43f9b25a 843 goto out_not_moved;
6fa6f5bb 844 }
87960c0b 845
b86a2c56
AB
846 if (err == MOVE_SOURCE_RD_ERR) {
847 /*
848 * An error happened while reading the source PEB. Do
849 * not switch to R/O mode in this case, and give the
850 * upper layers a possibility to recover from this,
851 * e.g. by unmapping corresponding LEB. Instead, just
815bc5f8
AB
852 * put this PEB to the @ubi->erroneous list to prevent
853 * UBI from trying to move it over and over again.
b86a2c56
AB
854 */
855 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
32608703 856 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
b86a2c56
AB
857 ubi->erroneous_peb_count);
858 goto out_error;
859 }
34b89df9 860 dst_leb_clean = 1;
b86a2c56
AB
861 erroneous = 1;
862 goto out_not_moved;
863 }
864
90bf0265
AB
865 if (err < 0)
866 goto out_error;
43f9b25a 867
87960c0b 868 ubi_assert(0);
801c135c
AB
869 }
870
6a8f483f 871 /* The PEB has been successfully moved */
6a8f483f 872 if (scrubbing)
32608703 873 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
9c259a52 874 e1->pnum, vol_id, lnum, e2->pnum);
3291b52f 875 ubi_free_vid_buf(vidb);
8c1e6ee1 876
801c135c 877 spin_lock(&ubi->wl_lock);
3c98b0a0 878 if (!ubi->move_to_put) {
5abde384 879 wl_tree_add(e2, &ubi->used);
3c98b0a0
AB
880 e2 = NULL;
881 }
801c135c 882 ubi->move_from = ubi->move_to = NULL;
43f9b25a 883 ubi->move_to_put = ubi->wl_scheduled = 0;
801c135c
AB
884 spin_unlock(&ubi->wl_lock);
885
8199b901 886 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
3c98b0a0 887 if (err) {
21d08bbc 888 if (e2)
ee59ba8b 889 wl_entry_destroy(ubi, e2);
87960c0b 890 goto out_ro;
3c98b0a0 891 }
6a8f483f 892
3c98b0a0 893 if (e2) {
801c135c
AB
894 /*
895 * Well, the target PEB was put meanwhile, schedule it for
896 * erasure.
897 */
9c259a52
AB
898 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
899 e2->pnum, vol_id, lnum);
8199b901 900 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
aa5ad3b6 901 if (err)
87960c0b 902 goto out_ro;
801c135c
AB
903 }
904
801c135c 905 dbg_wl("done");
43f9b25a 906 mutex_unlock(&ubi->move_mutex);
2e8f08de 907 up_read(&ubi->fm_eba_sem);
43f9b25a 908 return 0;
801c135c
AB
909
910 /*
43f9b25a
AB
911 * For some reasons the LEB was not moved, might be an error, might be
912 * something else. @e1 was not changed, so return it back. @e2 might
6fa6f5bb 913 * have been changed, schedule it for erasure.
801c135c 914 */
43f9b25a 915out_not_moved:
9c259a52
AB
916 if (vol_id != -1)
917 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
918 e1->pnum, vol_id, lnum, e2->pnum, err);
919 else
920 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
921 e1->pnum, e2->pnum, err);
801c135c 922 spin_lock(&ubi->wl_lock);
87960c0b
AB
923 if (protect)
924 prot_queue_add(ubi, e1);
b86a2c56
AB
925 else if (erroneous) {
926 wl_tree_add(e1, &ubi->erroneous);
927 ubi->erroneous_peb_count += 1;
928 } else if (scrubbing)
43f9b25a 929 wl_tree_add(e1, &ubi->scrub);
23654188 930 else if (keep)
5abde384 931 wl_tree_add(e1, &ubi->used);
34b89df9
SS
932 if (dst_leb_clean) {
933 wl_tree_add(e2, &ubi->free);
934 ubi->free_count++;
935 }
936
6fa6f5bb 937 ubi_assert(!ubi->move_to_put);
801c135c 938 ubi->move_from = ubi->move_to = NULL;
6fa6f5bb 939 ubi->wl_scheduled = 0;
801c135c
AB
940 spin_unlock(&ubi->wl_lock);
941
3291b52f 942 ubi_free_vid_buf(vidb);
34b89df9
SS
943 if (dst_leb_clean) {
944 ensure_wear_leveling(ubi, 1);
945 } else {
946 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
947 if (err)
948 goto out_ro;
949 }
aa5ad3b6 950
23654188
RW
951 if (erase) {
952 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
953 if (err)
954 goto out_ro;
955 }
956
43f9b25a 957 mutex_unlock(&ubi->move_mutex);
2e8f08de 958 up_read(&ubi->fm_eba_sem);
43f9b25a
AB
959 return 0;
960
961out_error:
9c259a52 962 if (vol_id != -1)
32608703 963 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
9c259a52
AB
964 err, e1->pnum, e2->pnum);
965 else
32608703 966 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
9c259a52 967 err, e1->pnum, vol_id, lnum, e2->pnum);
43f9b25a
AB
968 spin_lock(&ubi->wl_lock);
969 ubi->move_from = ubi->move_to = NULL;
970 ubi->move_to_put = ubi->wl_scheduled = 0;
971 spin_unlock(&ubi->wl_lock);
972
3291b52f 973 ubi_free_vid_buf(vidb);
ee59ba8b
RW
974 wl_entry_destroy(ubi, e1);
975 wl_entry_destroy(ubi, e2);
43f9b25a 976
87960c0b
AB
977out_ro:
978 ubi_ro_mode(ubi);
43f9b25a 979 mutex_unlock(&ubi->move_mutex);
2e8f08de 980 up_read(&ubi->fm_eba_sem);
87960c0b
AB
981 ubi_assert(err != 0);
982 return err < 0 ? err : -EIO;
43f9b25a
AB
983
984out_cancel:
985 ubi->wl_scheduled = 0;
986 spin_unlock(&ubi->wl_lock);
987 mutex_unlock(&ubi->move_mutex);
2e8f08de 988 up_read(&ubi->fm_eba_sem);
3291b52f 989 ubi_free_vid_buf(vidb);
43f9b25a 990 return 0;
801c135c
AB
991}
992
993/**
994 * ensure_wear_leveling - schedule wear-leveling if it is needed.
995 * @ubi: UBI device description object
8199b901 996 * @nested: set to non-zero if this function is called from UBI worker
801c135c
AB
997 *
998 * This function checks if it is time to start wear-leveling and schedules it
999 * if yes. This function returns zero in case of success and a negative error
1000 * code in case of failure.
1001 */
8199b901 1002static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
801c135c
AB
1003{
1004 int err = 0;
1005 struct ubi_wl_entry *e1;
1006 struct ubi_wl_entry *e2;
1007 struct ubi_work *wrk;
1008
1009 spin_lock(&ubi->wl_lock);
1010 if (ubi->wl_scheduled)
1011 /* Wear-leveling is already in the work queue */
1012 goto out_unlock;
1013
1014 /*
1015 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1016 * the WL worker has to be scheduled anyway.
1017 */
5abde384
AB
1018 if (!ubi->scrub.rb_node) {
1019 if (!ubi->used.rb_node || !ubi->free.rb_node)
801c135c
AB
1020 /* No physical eraseblocks - no deal */
1021 goto out_unlock;
1022
1023 /*
1024 * We schedule wear-leveling only if the difference between the
1025 * lowest erase counter of used physical eraseblocks and a high
025dfdaf 1026 * erase counter of free physical eraseblocks is greater than
801c135c
AB
1027 * %UBI_WL_THRESHOLD.
1028 */
23553b2c 1029 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
8199b901 1030 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
801c135c
AB
1031
1032 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1033 goto out_unlock;
1034 dbg_wl("schedule wear-leveling");
1035 } else
1036 dbg_wl("schedule scrubbing");
1037
1038 ubi->wl_scheduled = 1;
1039 spin_unlock(&ubi->wl_lock);
1040
33818bbb 1041 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
1042 if (!wrk) {
1043 err = -ENOMEM;
1044 goto out_cancel;
1045 }
1046
1047 wrk->func = &wear_leveling_worker;
8199b901
RW
1048 if (nested)
1049 __schedule_ubi_work(ubi, wrk);
1050 else
1051 schedule_ubi_work(ubi, wrk);
801c135c
AB
1052 return err;
1053
1054out_cancel:
1055 spin_lock(&ubi->wl_lock);
1056 ubi->wl_scheduled = 0;
1057out_unlock:
1058 spin_unlock(&ubi->wl_lock);
1059 return err;
1060}
1061
1062/**
1a31b20c 1063 * __erase_worker - physical eraseblock erase worker function.
801c135c
AB
1064 * @ubi: UBI device description object
1065 * @wl_wrk: the work object
849271a4
RW
1066 * @shutdown: non-zero if the worker has to free memory and exit
1067 * because the WL sub-system is shutting down
801c135c
AB
1068 *
1069 * This function erases a physical eraseblock and perform torture testing if
1070 * needed. It also takes care about marking the physical eraseblock bad if
1071 * needed. Returns zero in case of success and a negative error code in case of
1072 * failure.
1073 */
1a31b20c 1074static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
801c135c 1075{
801c135c 1076 struct ubi_wl_entry *e = wl_wrk->e;
37f758a0 1077 int pnum = e->pnum;
d36e59e6
JR
1078 int vol_id = wl_wrk->vol_id;
1079 int lnum = wl_wrk->lnum;
37f758a0 1080 int err, available_consumed = 0;
801c135c 1081
d36e59e6
JR
1082 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1083 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
801c135c
AB
1084
1085 err = sync_erase(ubi, e, wl_wrk->torture);
1086 if (!err) {
801c135c 1087 spin_lock(&ubi->wl_lock);
f9c34bb5 1088
4b68bf9a
AE
1089 if (!ubi->fm_next_anchor && e->pnum < UBI_FM_MAX_START) {
1090 /* Abort anchor production, if needed it will be
1091 * enabled again in the wear leveling started below.
1092 */
1093 ubi->fm_next_anchor = e;
f9c34bb5
SH
1094 ubi->fm_do_produce_anchor = 0;
1095 } else {
1096 wl_tree_add(e, &ubi->free);
1097 ubi->free_count++;
1098 }
1099
801c135c
AB
1100 spin_unlock(&ubi->wl_lock);
1101
1102 /*
9c9ec147
AB
1103 * One more erase operation has happened, take care about
1104 * protected physical eraseblocks.
801c135c 1105 */
7b6c32da 1106 serve_prot_queue(ubi);
801c135c
AB
1107
1108 /* And take care about wear-leveling */
8199b901 1109 err = ensure_wear_leveling(ubi, 1);
801c135c
AB
1110 return err;
1111 }
1112
32608703 1113 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
801c135c 1114
784c1454
AB
1115 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1116 err == -EBUSY) {
1117 int err1;
1118
1119 /* Re-schedule the LEB for erasure */
2e8f08de 1120 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
784c1454 1121 if (err1) {
6b238de1 1122 wl_entry_destroy(ubi, e);
784c1454
AB
1123 err = err1;
1124 goto out_ro;
1125 }
1126 return err;
e57e0d8e
AB
1127 }
1128
ee59ba8b 1129 wl_entry_destroy(ubi, e);
e57e0d8e 1130 if (err != -EIO)
801c135c
AB
1131 /*
1132 * If this is not %-EIO, we have no idea what to do. Scheduling
1133 * this physical eraseblock for erasure again would cause
815bc5f8 1134 * errors again and again. Well, lets switch to R/O mode.
801c135c 1135 */
784c1454 1136 goto out_ro;
801c135c
AB
1137
1138 /* It is %-EIO, the PEB went bad */
1139
1140 if (!ubi->bad_allowed) {
32608703 1141 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
784c1454
AB
1142 goto out_ro;
1143 }
801c135c 1144
784c1454 1145 spin_lock(&ubi->volumes_lock);
784c1454 1146 if (ubi->beb_rsvd_pebs == 0) {
37f758a0
SL
1147 if (ubi->avail_pebs == 0) {
1148 spin_unlock(&ubi->volumes_lock);
32608703 1149 ubi_err(ubi, "no reserved/available physical eraseblocks");
37f758a0
SL
1150 goto out_ro;
1151 }
1152 ubi->avail_pebs -= 1;
1153 available_consumed = 1;
784c1454 1154 }
784c1454 1155 spin_unlock(&ubi->volumes_lock);
801c135c 1156
32608703 1157 ubi_msg(ubi, "mark PEB %d as bad", pnum);
784c1454
AB
1158 err = ubi_io_mark_bad(ubi, pnum);
1159 if (err)
1160 goto out_ro;
1161
1162 spin_lock(&ubi->volumes_lock);
37f758a0
SL
1163 if (ubi->beb_rsvd_pebs > 0) {
1164 if (available_consumed) {
1165 /*
1166 * The amount of reserved PEBs increased since we last
1167 * checked.
1168 */
1169 ubi->avail_pebs += 1;
1170 available_consumed = 0;
1171 }
1172 ubi->beb_rsvd_pebs -= 1;
1173 }
784c1454
AB
1174 ubi->bad_peb_count += 1;
1175 ubi->good_peb_count -= 1;
1176 ubi_calculate_reserved(ubi);
37f758a0 1177 if (available_consumed)
32608703 1178 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
37f758a0 1179 else if (ubi->beb_rsvd_pebs)
32608703
TB
1180 ubi_msg(ubi, "%d PEBs left in the reserve",
1181 ubi->beb_rsvd_pebs);
52b605d1 1182 else
32608703 1183 ubi_warn(ubi, "last PEB from the reserve was used");
784c1454
AB
1184 spin_unlock(&ubi->volumes_lock);
1185
1186 return err;
801c135c 1187
784c1454 1188out_ro:
37f758a0
SL
1189 if (available_consumed) {
1190 spin_lock(&ubi->volumes_lock);
1191 ubi->avail_pebs += 1;
1192 spin_unlock(&ubi->volumes_lock);
1193 }
784c1454 1194 ubi_ro_mode(ubi);
801c135c
AB
1195 return err;
1196}
1197
1a31b20c
SS
1198static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1199 int shutdown)
1200{
1201 int ret;
1202
1203 if (shutdown) {
1204 struct ubi_wl_entry *e = wl_wrk->e;
1205
1206 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1207 kfree(wl_wrk);
1208 wl_entry_destroy(ubi, e);
1209 return 0;
1210 }
1211
1212 ret = __erase_worker(ubi, wl_wrk);
1213 kfree(wl_wrk);
1214 return ret;
1215}
1216
801c135c 1217/**
85c6e6e2 1218 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
801c135c 1219 * @ubi: UBI device description object
d36e59e6
JR
1220 * @vol_id: the volume ID that last used this PEB
1221 * @lnum: the last used logical eraseblock number for the PEB
801c135c
AB
1222 * @pnum: physical eraseblock to return
1223 * @torture: if this physical eraseblock has to be tortured
1224 *
1225 * This function is called to return physical eraseblock @pnum to the pool of
1226 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1227 * occurred to this @pnum and it has to be tested. This function returns zero
43f9b25a 1228 * in case of success, and a negative error code in case of failure.
801c135c 1229 */
d36e59e6
JR
1230int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1231 int pnum, int torture)
801c135c
AB
1232{
1233 int err;
1234 struct ubi_wl_entry *e;
1235
1236 dbg_wl("PEB %d", pnum);
1237 ubi_assert(pnum >= 0);
1238 ubi_assert(pnum < ubi->peb_count);
1239
111ab0b2
RW
1240 down_read(&ubi->fm_protect);
1241
43f9b25a 1242retry:
801c135c 1243 spin_lock(&ubi->wl_lock);
801c135c
AB
1244 e = ubi->lookuptbl[pnum];
1245 if (e == ubi->move_from) {
1246 /*
1247 * User is putting the physical eraseblock which was selected to
1248 * be moved. It will be scheduled for erasure in the
1249 * wear-leveling worker.
1250 */
43f9b25a 1251 dbg_wl("PEB %d is being moved, wait", pnum);
801c135c 1252 spin_unlock(&ubi->wl_lock);
43f9b25a
AB
1253
1254 /* Wait for the WL worker by taking the @ubi->move_mutex */
1255 mutex_lock(&ubi->move_mutex);
1256 mutex_unlock(&ubi->move_mutex);
1257 goto retry;
801c135c
AB
1258 } else if (e == ubi->move_to) {
1259 /*
1260 * User is putting the physical eraseblock which was selected
1261 * as the target the data is moved to. It may happen if the EBA
85c6e6e2
AB
1262 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1263 * but the WL sub-system has not put the PEB to the "used" tree
1264 * yet, but it is about to do this. So we just set a flag which
1265 * will tell the WL worker that the PEB is not needed anymore
1266 * and should be scheduled for erasure.
801c135c
AB
1267 */
1268 dbg_wl("PEB %d is the target of data moving", pnum);
1269 ubi_assert(!ubi->move_to_put);
1270 ubi->move_to_put = 1;
1271 spin_unlock(&ubi->wl_lock);
111ab0b2 1272 up_read(&ubi->fm_protect);
801c135c
AB
1273 return 0;
1274 } else {
5abde384 1275 if (in_wl_tree(e, &ubi->used)) {
7bf523ae 1276 self_check_in_wl_tree(ubi, e, &ubi->used);
23553b2c 1277 rb_erase(&e->u.rb, &ubi->used);
5abde384 1278 } else if (in_wl_tree(e, &ubi->scrub)) {
7bf523ae 1279 self_check_in_wl_tree(ubi, e, &ubi->scrub);
23553b2c 1280 rb_erase(&e->u.rb, &ubi->scrub);
b86a2c56 1281 } else if (in_wl_tree(e, &ubi->erroneous)) {
7bf523ae 1282 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
b86a2c56
AB
1283 rb_erase(&e->u.rb, &ubi->erroneous);
1284 ubi->erroneous_peb_count -= 1;
1285 ubi_assert(ubi->erroneous_peb_count >= 0);
815bc5f8 1286 /* Erroneous PEBs should be tortured */
b86a2c56 1287 torture = 1;
43f9b25a 1288 } else {
7b6c32da 1289 err = prot_queue_del(ubi, e->pnum);
43f9b25a 1290 if (err) {
32608703 1291 ubi_err(ubi, "PEB %d not found", pnum);
43f9b25a
AB
1292 ubi_ro_mode(ubi);
1293 spin_unlock(&ubi->wl_lock);
111ab0b2 1294 up_read(&ubi->fm_protect);
43f9b25a
AB
1295 return err;
1296 }
1297 }
801c135c
AB
1298 }
1299 spin_unlock(&ubi->wl_lock);
1300
2e8f08de 1301 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
801c135c
AB
1302 if (err) {
1303 spin_lock(&ubi->wl_lock);
5abde384 1304 wl_tree_add(e, &ubi->used);
801c135c
AB
1305 spin_unlock(&ubi->wl_lock);
1306 }
1307
111ab0b2 1308 up_read(&ubi->fm_protect);
801c135c
AB
1309 return err;
1310}
1311
1312/**
1313 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1314 * @ubi: UBI device description object
1315 * @pnum: the physical eraseblock to schedule
1316 *
1317 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1318 * needs scrubbing. This function schedules a physical eraseblock for
1319 * scrubbing which is done in background. This function returns zero in case of
1320 * success and a negative error code in case of failure.
1321 */
1322int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1323{
1324 struct ubi_wl_entry *e;
1325
32608703 1326 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
801c135c
AB
1327
1328retry:
1329 spin_lock(&ubi->wl_lock);
1330 e = ubi->lookuptbl[pnum];
d3f6e6c6
AB
1331 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1332 in_wl_tree(e, &ubi->erroneous)) {
801c135c
AB
1333 spin_unlock(&ubi->wl_lock);
1334 return 0;
1335 }
1336
1337 if (e == ubi->move_to) {
1338 /*
1339 * This physical eraseblock was used to move data to. The data
1340 * was moved but the PEB was not yet inserted to the proper
1341 * tree. We should just wait a little and let the WL worker
1342 * proceed.
1343 */
1344 spin_unlock(&ubi->wl_lock);
1345 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1346 yield();
1347 goto retry;
1348 }
1349
5abde384 1350 if (in_wl_tree(e, &ubi->used)) {
7bf523ae 1351 self_check_in_wl_tree(ubi, e, &ubi->used);
23553b2c 1352 rb_erase(&e->u.rb, &ubi->used);
43f9b25a
AB
1353 } else {
1354 int err;
1355
7b6c32da 1356 err = prot_queue_del(ubi, e->pnum);
43f9b25a 1357 if (err) {
32608703 1358 ubi_err(ubi, "PEB %d not found", pnum);
43f9b25a
AB
1359 ubi_ro_mode(ubi);
1360 spin_unlock(&ubi->wl_lock);
1361 return err;
1362 }
1363 }
801c135c 1364
5abde384 1365 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1366 spin_unlock(&ubi->wl_lock);
1367
1368 /*
1369 * Technically scrubbing is the same as wear-leveling, so it is done
1370 * by the WL worker.
1371 */
8199b901 1372 return ensure_wear_leveling(ubi, 0);
801c135c
AB
1373}
1374
1375/**
1376 * ubi_wl_flush - flush all pending works.
1377 * @ubi: UBI device description object
62f38455
JR
1378 * @vol_id: the volume id to flush for
1379 * @lnum: the logical eraseblock number to flush for
801c135c 1380 *
62f38455
JR
1381 * This function executes all pending works for a particular volume id /
1382 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1383 * acts as a wildcard for all of the corresponding volume numbers or logical
1384 * eraseblock numbers. It returns zero in case of success and a negative error
1385 * code in case of failure.
801c135c 1386 */
62f38455 1387int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
801c135c 1388{
62f38455
JR
1389 int err = 0;
1390 int found = 1;
801c135c
AB
1391
1392 /*
7b6c32da 1393 * Erase while the pending works queue is not empty, but not more than
801c135c
AB
1394 * the number of currently pending works.
1395 */
62f38455
JR
1396 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1397 vol_id, lnum, ubi->works_count);
593dd33c 1398
62f38455 1399 while (found) {
49e236bc 1400 struct ubi_work *wrk, *tmp;
62f38455 1401 found = 0;
593dd33c 1402
12027f1b 1403 down_read(&ubi->work_sem);
62f38455 1404 spin_lock(&ubi->wl_lock);
49e236bc 1405 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
62f38455
JR
1406 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1407 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1408 list_del(&wrk->list);
1409 ubi->works_count -= 1;
1410 ubi_assert(ubi->works_count >= 0);
1411 spin_unlock(&ubi->wl_lock);
1412
1413 err = wrk->func(ubi, wrk, 0);
12027f1b
AB
1414 if (err) {
1415 up_read(&ubi->work_sem);
1416 return err;
1417 }
1418
62f38455
JR
1419 spin_lock(&ubi->wl_lock);
1420 found = 1;
1421 break;
1422 }
1423 }
1424 spin_unlock(&ubi->wl_lock);
12027f1b 1425 up_read(&ubi->work_sem);
801c135c
AB
1426 }
1427
12027f1b
AB
1428 /*
1429 * Make sure all the works which have been done in parallel are
1430 * finished.
1431 */
1432 down_write(&ubi->work_sem);
62f38455 1433 up_write(&ubi->work_sem);
12027f1b 1434
62f38455 1435 return err;
801c135c
AB
1436}
1437
663586c0
RW
1438static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1439{
1440 if (in_wl_tree(e, &ubi->scrub))
1441 return false;
1442 else if (in_wl_tree(e, &ubi->erroneous))
1443 return false;
1444 else if (ubi->move_from == e)
1445 return false;
1446 else if (ubi->move_to == e)
1447 return false;
1448
1449 return true;
1450}
1451
1452/**
1453 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1454 * @ubi: UBI device description object
1455 * @pnum: the physical eraseblock to schedule
1456 * @force: dont't read the block, assume bitflips happened and take action.
1457 *
1458 * This function reads the given eraseblock and checks if bitflips occured.
1459 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1460 * If scrubbing is forced with @force, the eraseblock is not read,
1461 * but scheduled for scrubbing right away.
1462 *
1463 * Returns:
1464 * %EINVAL, PEB is out of range
1465 * %ENOENT, PEB is no longer used by UBI
1466 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1467 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1468 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1469 * %0, no bit flips detected
1470 */
1471int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1472{
04d37e5a 1473 int err = 0;
663586c0
RW
1474 struct ubi_wl_entry *e;
1475
1476 if (pnum < 0 || pnum >= ubi->peb_count) {
1477 err = -EINVAL;
1478 goto out;
1479 }
1480
1481 /*
1482 * Pause all parallel work, otherwise it can happen that the
1483 * erase worker frees a wl entry under us.
1484 */
1485 down_write(&ubi->work_sem);
1486
1487 /*
1488 * Make sure that the wl entry does not change state while
1489 * inspecting it.
1490 */
1491 spin_lock(&ubi->wl_lock);
1492 e = ubi->lookuptbl[pnum];
1493 if (!e) {
1494 spin_unlock(&ubi->wl_lock);
1495 err = -ENOENT;
1496 goto out_resume;
1497 }
1498
1499 /*
1500 * Does it make sense to check this PEB?
1501 */
1502 if (!scrub_possible(ubi, e)) {
1503 spin_unlock(&ubi->wl_lock);
1504 err = -EBUSY;
1505 goto out_resume;
1506 }
1507 spin_unlock(&ubi->wl_lock);
1508
1509 if (!force) {
1510 mutex_lock(&ubi->buf_mutex);
1511 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1512 mutex_unlock(&ubi->buf_mutex);
1513 }
1514
5578e48e 1515 if (force || err == UBI_IO_BITFLIPS) {
663586c0
RW
1516 /*
1517 * Okay, bit flip happened, let's figure out what we can do.
1518 */
1519 spin_lock(&ubi->wl_lock);
1520
1521 /*
1522 * Recheck. We released wl_lock, UBI might have killed the
1523 * wl entry under us.
1524 */
1525 e = ubi->lookuptbl[pnum];
1526 if (!e) {
1527 spin_unlock(&ubi->wl_lock);
1528 err = -ENOENT;
1529 goto out_resume;
1530 }
1531
1532 /*
1533 * Need to re-check state
1534 */
1535 if (!scrub_possible(ubi, e)) {
1536 spin_unlock(&ubi->wl_lock);
1537 err = -EBUSY;
1538 goto out_resume;
1539 }
1540
1541 if (in_pq(ubi, e)) {
1542 prot_queue_del(ubi, e->pnum);
1543 wl_tree_add(e, &ubi->scrub);
1544 spin_unlock(&ubi->wl_lock);
1545
1546 err = ensure_wear_leveling(ubi, 1);
1547 } else if (in_wl_tree(e, &ubi->used)) {
1548 rb_erase(&e->u.rb, &ubi->used);
1549 wl_tree_add(e, &ubi->scrub);
1550 spin_unlock(&ubi->wl_lock);
1551
1552 err = ensure_wear_leveling(ubi, 1);
1553 } else if (in_wl_tree(e, &ubi->free)) {
1554 rb_erase(&e->u.rb, &ubi->free);
1555 ubi->free_count--;
1556 spin_unlock(&ubi->wl_lock);
1557
1558 /*
1559 * This PEB is empty we can schedule it for
1560 * erasure right away. No wear leveling needed.
1561 */
1562 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1563 force ? 0 : 1, true);
1564 } else {
1565 spin_unlock(&ubi->wl_lock);
1566 err = -EAGAIN;
1567 }
1568
1569 if (!err && !force)
1570 err = -EUCLEAN;
1571 } else {
1572 err = 0;
1573 }
1574
1575out_resume:
1576 up_write(&ubi->work_sem);
1577out:
1578
1579 return err;
1580}
1581
801c135c
AB
1582/**
1583 * tree_destroy - destroy an RB-tree.
ee59ba8b 1584 * @ubi: UBI device description object
801c135c
AB
1585 * @root: the root of the tree to destroy
1586 */
ee59ba8b 1587static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
801c135c
AB
1588{
1589 struct rb_node *rb;
1590 struct ubi_wl_entry *e;
1591
1592 rb = root->rb_node;
1593 while (rb) {
1594 if (rb->rb_left)
1595 rb = rb->rb_left;
1596 else if (rb->rb_right)
1597 rb = rb->rb_right;
1598 else {
23553b2c 1599 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
801c135c
AB
1600
1601 rb = rb_parent(rb);
1602 if (rb) {
23553b2c 1603 if (rb->rb_left == &e->u.rb)
801c135c
AB
1604 rb->rb_left = NULL;
1605 else
1606 rb->rb_right = NULL;
1607 }
1608
ee59ba8b 1609 wl_entry_destroy(ubi, e);
801c135c
AB
1610 }
1611 }
1612}
1613
1614/**
1615 * ubi_thread - UBI background thread.
1616 * @u: the UBI device description object pointer
1617 */
cdfa788a 1618int ubi_thread(void *u)
801c135c
AB
1619{
1620 int failures = 0;
1621 struct ubi_device *ubi = u;
1622
32608703 1623 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
ba25f9dc 1624 ubi->bgt_name, task_pid_nr(current));
801c135c 1625
83144186 1626 set_freezable();
801c135c
AB
1627 for (;;) {
1628 int err;
1629
45fc5c81 1630 if (kthread_should_stop())
cadb40cc 1631 break;
801c135c
AB
1632
1633 if (try_to_freeze())
1634 continue;
1635
1636 spin_lock(&ubi->wl_lock);
1637 if (list_empty(&ubi->works) || ubi->ro_mode ||
27a0f2a3 1638 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
801c135c
AB
1639 set_current_state(TASK_INTERRUPTIBLE);
1640 spin_unlock(&ubi->wl_lock);
1641 schedule();
1642 continue;
1643 }
1644 spin_unlock(&ubi->wl_lock);
1645
1646 err = do_work(ubi);
1647 if (err) {
32608703 1648 ubi_err(ubi, "%s: work failed with error code %d",
801c135c
AB
1649 ubi->bgt_name, err);
1650 if (failures++ > WL_MAX_FAILURES) {
1651 /*
1652 * Too many failures, disable the thread and
1653 * switch to read-only mode.
1654 */
32608703 1655 ubi_msg(ubi, "%s: %d consecutive failures",
801c135c
AB
1656 ubi->bgt_name, WL_MAX_FAILURES);
1657 ubi_ro_mode(ubi);
2ad49887
VG
1658 ubi->thread_enabled = 0;
1659 continue;
801c135c
AB
1660 }
1661 } else
1662 failures = 0;
1663
1664 cond_resched();
1665 }
1666
801c135c 1667 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
6e7d8016 1668 ubi->thread_enabled = 0;
801c135c
AB
1669 return 0;
1670}
1671
1672/**
849271a4 1673 * shutdown_work - shutdown all pending works.
801c135c
AB
1674 * @ubi: UBI device description object
1675 */
849271a4 1676static void shutdown_work(struct ubi_device *ubi)
801c135c
AB
1677{
1678 while (!list_empty(&ubi->works)) {
1679 struct ubi_work *wrk;
1680
1681 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1682 list_del(&wrk->list);
1683 wrk->func(ubi, wrk, 1);
1684 ubi->works_count -= 1;
1685 ubi_assert(ubi->works_count >= 0);
1686 }
1687}
1688
f78e5623
SH
1689/**
1690 * erase_aeb - erase a PEB given in UBI attach info PEB
1691 * @ubi: UBI device description object
1692 * @aeb: UBI attach info PEB
1693 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1694 */
1695static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1696{
1697 struct ubi_wl_entry *e;
1698 int err;
1699
1700 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1701 if (!e)
1702 return -ENOMEM;
1703
1704 e->pnum = aeb->pnum;
1705 e->ec = aeb->ec;
1706 ubi->lookuptbl[e->pnum] = e;
1707
1708 if (sync) {
1709 err = sync_erase(ubi, e, false);
1710 if (err)
1711 goto out_free;
1712
1713 wl_tree_add(e, &ubi->free);
1714 ubi->free_count++;
1715 } else {
1716 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1717 if (err)
1718 goto out_free;
1719 }
1720
1721 return 0;
1722
1723out_free:
1724 wl_entry_destroy(ubi, e);
1725
1726 return err;
1727}
1728
801c135c 1729/**
41e0cd9d 1730 * ubi_wl_init - initialize the WL sub-system using attaching information.
801c135c 1731 * @ubi: UBI device description object
a4e6042f 1732 * @ai: attaching information
801c135c
AB
1733 *
1734 * This function returns zero in case of success, and a negative error code in
1735 * case of failure.
1736 */
41e0cd9d 1737int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
801c135c 1738{
8199b901 1739 int err, i, reserved_pebs, found_pebs = 0;
801c135c 1740 struct rb_node *rb1, *rb2;
517af48c 1741 struct ubi_ainf_volume *av;
2c5ec5ce 1742 struct ubi_ainf_peb *aeb, *tmp;
801c135c
AB
1743 struct ubi_wl_entry *e;
1744
b86a2c56 1745 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
801c135c 1746 spin_lock_init(&ubi->wl_lock);
43f9b25a 1747 mutex_init(&ubi->move_mutex);
593dd33c 1748 init_rwsem(&ubi->work_sem);
a4e6042f 1749 ubi->max_ec = ai->max_ec;
801c135c
AB
1750 INIT_LIST_HEAD(&ubi->works);
1751
1752 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1753
801c135c 1754 err = -ENOMEM;
6396bb22 1755 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
801c135c 1756 if (!ubi->lookuptbl)
cdfa788a 1757 return err;
801c135c 1758
7b6c32da
XX
1759 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1760 INIT_LIST_HEAD(&ubi->pq[i]);
1761 ubi->pq_head = 0;
1762
73b0cd57 1763 ubi->free_count = 0;
a4e6042f 1764 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
801c135c
AB
1765 cond_resched();
1766
f78e5623
SH
1767 err = erase_aeb(ubi, aeb, false);
1768 if (err)
801c135c
AB
1769 goto out_free;
1770
8199b901 1771 found_pebs++;
801c135c
AB
1772 }
1773
a4e6042f 1774 list_for_each_entry(aeb, &ai->free, u.list) {
801c135c
AB
1775 cond_resched();
1776
06b68ba1 1777 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
7233982a
WY
1778 if (!e) {
1779 err = -ENOMEM;
801c135c 1780 goto out_free;
7233982a 1781 }
801c135c 1782
2c5ec5ce
AB
1783 e->pnum = aeb->pnum;
1784 e->ec = aeb->ec;
801c135c 1785 ubi_assert(e->ec >= 0);
8199b901 1786
5abde384 1787 wl_tree_add(e, &ubi->free);
8199b901
RW
1788 ubi->free_count++;
1789
801c135c 1790 ubi->lookuptbl[e->pnum] = e;
8199b901
RW
1791
1792 found_pebs++;
801c135c
AB
1793 }
1794
517af48c
AB
1795 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1796 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1797 cond_resched();
1798
06b68ba1 1799 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
7233982a
WY
1800 if (!e) {
1801 err = -ENOMEM;
801c135c 1802 goto out_free;
7233982a 1803 }
801c135c 1804
2c5ec5ce
AB
1805 e->pnum = aeb->pnum;
1806 e->ec = aeb->ec;
801c135c 1807 ubi->lookuptbl[e->pnum] = e;
8199b901 1808
2c5ec5ce 1809 if (!aeb->scrub) {
801c135c
AB
1810 dbg_wl("add PEB %d EC %d to the used tree",
1811 e->pnum, e->ec);
5abde384 1812 wl_tree_add(e, &ubi->used);
801c135c
AB
1813 } else {
1814 dbg_wl("add PEB %d EC %d to the scrub tree",
1815 e->pnum, e->ec);
5abde384 1816 wl_tree_add(e, &ubi->scrub);
801c135c 1817 }
8199b901
RW
1818
1819 found_pebs++;
801c135c
AB
1820 }
1821 }
1822
fdf10ed7
RW
1823 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1824 cond_resched();
1825
1826 e = ubi_find_fm_block(ubi, aeb->pnum);
8199b901 1827
fdf10ed7
RW
1828 if (e) {
1829 ubi_assert(!ubi->lookuptbl[e->pnum]);
1830 ubi->lookuptbl[e->pnum] = e;
1831 } else {
f78e5623
SH
1832 bool sync = false;
1833
fdf10ed7
RW
1834 /*
1835 * Usually old Fastmap PEBs are scheduled for erasure
1836 * and we don't have to care about them but if we face
1837 * an power cut before scheduling them we need to
1838 * take care of them here.
1839 */
1840 if (ubi->lookuptbl[aeb->pnum])
1841 continue;
1842
f78e5623
SH
1843 /*
1844 * The fastmap update code might not find a free PEB for
1845 * writing the fastmap anchor to and then reuses the
1846 * current fastmap anchor PEB. When this PEB gets erased
1847 * and a power cut happens before it is written again we
1848 * must make sure that the fastmap attach code doesn't
1849 * find any outdated fastmap anchors, hence we erase the
1850 * outdated fastmap anchor PEBs synchronously here.
1851 */
1852 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1853 sync = true;
68303564 1854
f78e5623
SH
1855 err = erase_aeb(ubi, aeb, sync);
1856 if (err)
fdf10ed7 1857 goto out_free;
68303564 1858 }
fdf10ed7
RW
1859
1860 found_pebs++;
68303564 1861 }
fdf10ed7
RW
1862
1863 dbg_wl("found %i PEBs", found_pebs);
1864
1865 ubi_assert(ubi->good_peb_count == found_pebs);
8199b901
RW
1866
1867 reserved_pebs = WL_RESERVED_PEBS;
acfda79f 1868 ubi_fastmap_init(ubi, &reserved_pebs);
8199b901
RW
1869
1870 if (ubi->avail_pebs < reserved_pebs) {
32608703 1871 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
8199b901 1872 ubi->avail_pebs, reserved_pebs);
5fc01ab6 1873 if (ubi->corr_peb_count)
32608703 1874 ubi_err(ubi, "%d PEBs are corrupted and not used",
5fc01ab6 1875 ubi->corr_peb_count);
7c7feb2e 1876 err = -ENOSPC;
801c135c
AB
1877 goto out_free;
1878 }
8199b901
RW
1879 ubi->avail_pebs -= reserved_pebs;
1880 ubi->rsvd_pebs += reserved_pebs;
801c135c
AB
1881
1882 /* Schedule wear-leveling if needed */
8199b901 1883 err = ensure_wear_leveling(ubi, 0);
801c135c
AB
1884 if (err)
1885 goto out_free;
1886
f9c34bb5 1887#ifdef CONFIG_MTD_UBI_FASTMAP
294a8dbe
HT
1888 if (!ubi->ro_mode && !ubi->fm_disabled)
1889 ubi_ensure_anchor_pebs(ubi);
f9c34bb5 1890#endif
801c135c
AB
1891 return 0;
1892
1893out_free:
849271a4 1894 shutdown_work(ubi);
ee59ba8b
RW
1895 tree_destroy(ubi, &ubi->used);
1896 tree_destroy(ubi, &ubi->free);
1897 tree_destroy(ubi, &ubi->scrub);
801c135c 1898 kfree(ubi->lookuptbl);
801c135c
AB
1899 return err;
1900}
1901
1902/**
7b6c32da 1903 * protection_queue_destroy - destroy the protection queue.
801c135c
AB
1904 * @ubi: UBI device description object
1905 */
7b6c32da 1906static void protection_queue_destroy(struct ubi_device *ubi)
801c135c 1907{
7b6c32da
XX
1908 int i;
1909 struct ubi_wl_entry *e, *tmp;
801c135c 1910
7b6c32da
XX
1911 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1912 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1913 list_del(&e->u.list);
ee59ba8b 1914 wl_entry_destroy(ubi, e);
801c135c
AB
1915 }
1916 }
1917}
1918
1919/**
85c6e6e2 1920 * ubi_wl_close - close the wear-leveling sub-system.
801c135c
AB
1921 * @ubi: UBI device description object
1922 */
1923void ubi_wl_close(struct ubi_device *ubi)
1924{
85c6e6e2 1925 dbg_wl("close the WL sub-system");
74cdaf24 1926 ubi_fastmap_close(ubi);
849271a4 1927 shutdown_work(ubi);
7b6c32da 1928 protection_queue_destroy(ubi);
ee59ba8b
RW
1929 tree_destroy(ubi, &ubi->used);
1930 tree_destroy(ubi, &ubi->erroneous);
1931 tree_destroy(ubi, &ubi->free);
1932 tree_destroy(ubi, &ubi->scrub);
801c135c 1933 kfree(ubi->lookuptbl);
801c135c
AB
1934}
1935
801c135c 1936/**
7bf523ae 1937 * self_check_ec - make sure that the erase counter of a PEB is correct.
801c135c
AB
1938 * @ubi: UBI device description object
1939 * @pnum: the physical eraseblock number to check
1940 * @ec: the erase counter to check
1941 *
1942 * This function returns zero if the erase counter of physical eraseblock @pnum
feddbb34
AB
1943 * is equivalent to @ec, and a negative error code if not or if an error
1944 * occurred.
801c135c 1945 */
7bf523ae 1946static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
801c135c
AB
1947{
1948 int err;
1949 long long read_ec;
1950 struct ubi_ec_hdr *ec_hdr;
1951
64575574 1952 if (!ubi_dbg_chk_gen(ubi))
92d124f5
AB
1953 return 0;
1954
33818bbb 1955 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1956 if (!ec_hdr)
1957 return -ENOMEM;
1958
1959 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1960 if (err && err != UBI_IO_BITFLIPS) {
1961 /* The header does not have to exist */
1962 err = 0;
1963 goto out_free;
1964 }
1965
3261ebd7 1966 read_ec = be64_to_cpu(ec_hdr->ec);
8199b901 1967 if (ec != read_ec && read_ec - ec > 1) {
32608703
TB
1968 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1969 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
25886a36 1970 dump_stack();
801c135c
AB
1971 err = 1;
1972 } else
1973 err = 0;
1974
1975out_free:
1976 kfree(ec_hdr);
1977 return err;
1978}
1979
1980/**
7bf523ae 1981 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
d99383b0 1982 * @ubi: UBI device description object
801c135c
AB
1983 * @e: the wear-leveling entry to check
1984 * @root: the root of the tree
1985 *
adbf05e3
AB
1986 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1987 * is not.
801c135c 1988 */
7bf523ae
AB
1989static int self_check_in_wl_tree(const struct ubi_device *ubi,
1990 struct ubi_wl_entry *e, struct rb_root *root)
801c135c 1991{
64575574 1992 if (!ubi_dbg_chk_gen(ubi))
92d124f5
AB
1993 return 0;
1994
801c135c
AB
1995 if (in_wl_tree(e, root))
1996 return 0;
1997
32608703 1998 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
801c135c 1999 e->pnum, e->ec, root);
25886a36 2000 dump_stack();
adbf05e3 2001 return -EINVAL;
801c135c
AB
2002}
2003
7b6c32da 2004/**
7bf523ae 2005 * self_check_in_pq - check if wear-leveling entry is in the protection
7b6c32da
XX
2006 * queue.
2007 * @ubi: UBI device description object
2008 * @e: the wear-leveling entry to check
2009 *
adbf05e3 2010 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
7b6c32da 2011 */
7bf523ae
AB
2012static int self_check_in_pq(const struct ubi_device *ubi,
2013 struct ubi_wl_entry *e)
7b6c32da 2014{
64575574 2015 if (!ubi_dbg_chk_gen(ubi))
92d124f5
AB
2016 return 0;
2017
b32b78f8
RW
2018 if (in_pq(ubi, e))
2019 return 0;
7b6c32da 2020
32608703 2021 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
7b6c32da 2022 e->pnum, e->ec);
25886a36 2023 dump_stack();
adbf05e3 2024 return -EINVAL;
7b6c32da 2025}
78d6d497
RW
2026#ifndef CONFIG_MTD_UBI_FASTMAP
2027static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2028{
2029 struct ubi_wl_entry *e;
2030
2031 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2032 self_check_in_wl_tree(ubi, e, &ubi->free);
2033 ubi->free_count--;
2034 ubi_assert(ubi->free_count >= 0);
2035 rb_erase(&e->u.rb, &ubi->free);
2036
2037 return e;
2038}
2039
2040/**
2041 * produce_free_peb - produce a free physical eraseblock.
2042 * @ubi: UBI device description object
2043 *
2044 * This function tries to make a free PEB by means of synchronous execution of
2045 * pending works. This may be needed if, for example the background thread is
2046 * disabled. Returns zero in case of success and a negative error code in case
2047 * of failure.
2048 */
2049static int produce_free_peb(struct ubi_device *ubi)
2050{
2051 int err;
2052
2053 while (!ubi->free.rb_node && ubi->works_count) {
2054 spin_unlock(&ubi->wl_lock);
2055
2056 dbg_wl("do one work synchronously");
2057 err = do_work(ubi);
2058
2059 spin_lock(&ubi->wl_lock);
2060 if (err)
2061 return err;
2062 }
2063
2064 return 0;
2065}
2066
2067/**
2068 * ubi_wl_get_peb - get a physical eraseblock.
2069 * @ubi: UBI device description object
2070 *
2071 * This function returns a physical eraseblock in case of success and a
2072 * negative error code in case of failure.
2073 * Returns with ubi->fm_eba_sem held in read mode!
2074 */
2075int ubi_wl_get_peb(struct ubi_device *ubi)
2076{
2077 int err;
2078 struct ubi_wl_entry *e;
2079
2080retry:
2081 down_read(&ubi->fm_eba_sem);
2082 spin_lock(&ubi->wl_lock);
2083 if (!ubi->free.rb_node) {
2084 if (ubi->works_count == 0) {
2085 ubi_err(ubi, "no free eraseblocks");
2086 ubi_assert(list_empty(&ubi->works));
2087 spin_unlock(&ubi->wl_lock);
2088 return -ENOSPC;
2089 }
2090
2091 err = produce_free_peb(ubi);
2092 if (err < 0) {
2093 spin_unlock(&ubi->wl_lock);
2094 return err;
2095 }
2096 spin_unlock(&ubi->wl_lock);
2097 up_read(&ubi->fm_eba_sem);
2098 goto retry;
2099
2100 }
2101 e = wl_get_wle(ubi);
2102 prot_queue_add(ubi, e);
2103 spin_unlock(&ubi->wl_lock);
2104
2105 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2106 ubi->peb_size - ubi->vid_hdr_aloffset);
2107 if (err) {
2108 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2109 return err;
2110 }
2111
2112 return e->pnum;
2113}
2114#else
2115#include "fastmap-wl.c"
2116#endif