]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/mtd/ubi/wl.c
UBI: some code re-structuring
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / ubi / wl.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21/*
85c6e6e2 22 * UBI wear-leveling sub-system.
801c135c 23 *
85c6e6e2
AB
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical* eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
801c135c
AB
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
85c6e6e2 32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
801c135c 33 *
85c6e6e2 34 * When physical eraseblocks are returned to the WL sub-system by means of the
801c135c
AB
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
85c6e6e2 37 * which is also managed by the WL sub-system.
801c135c
AB
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
85c6e6e2
AB
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
801c135c 48 *
85c6e6e2
AB
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50 * bad.
801c135c 51 *
85c6e6e2
AB
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
801c135c 55 *
85c6e6e2
AB
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58 * used eraseblocks are kept in a set of different RB-trees: @wl->used,
801c135c
AB
59 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
60 *
61 * Note, in this implementation, we keep a small in-RAM object for each physical
62 * eraseblock. This is surely not a scalable solution. But it appears to be good
63 * enough for moderately large flashes and it is simple. In future, one may
85c6e6e2 64 * re-work this sub-system and make it more scalable.
801c135c 65 *
85c6e6e2
AB
66 * At the moment this sub-system does not utilize the sequence number, which
67 * was introduced relatively recently. But it would be wise to do this because
68 * the sequence number of a logical eraseblock characterizes how old is it. For
801c135c
AB
69 * example, when we move a PEB with low erase counter, and we need to pick the
70 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
71 * pick target PEB with an average EC if our PEB is not very "old". This is a
85c6e6e2 72 * room for future re-works of the WL sub-system.
801c135c 73 *
85c6e6e2
AB
74 * Note: the stuff with protection trees looks too complex and is difficult to
75 * understand. Should be fixed.
801c135c
AB
76 */
77
78#include <linux/slab.h>
79#include <linux/crc32.h>
80#include <linux/freezer.h>
81#include <linux/kthread.h>
82#include "ubi.h"
83
84/* Number of physical eraseblocks reserved for wear-leveling purposes */
85#define WL_RESERVED_PEBS 1
86
87/*
88 * How many erase cycles are short term, unknown, and long term physical
89 * eraseblocks protected.
90 */
91#define ST_PROTECTION 16
92#define U_PROTECTION 10
93#define LT_PROTECTION 4
94
95/*
96 * Maximum difference between two erase counters. If this threshold is
85c6e6e2
AB
97 * exceeded, the WL sub-system starts moving data from used physical
98 * eraseblocks with low erase counter to free physical eraseblocks with high
99 * erase counter.
801c135c
AB
100 */
101#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
102
103/*
85c6e6e2 104 * When a physical eraseblock is moved, the WL sub-system has to pick the target
801c135c
AB
105 * physical eraseblock to move to. The simplest way would be just to pick the
106 * one with the highest erase counter. But in certain workloads this could lead
107 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
108 * situation when the picked physical eraseblock is constantly erased after the
109 * data is written to it. So, we have a constant which limits the highest erase
85c6e6e2
AB
110 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
111 * does not pick eraseblocks with erase counter greater then the lowest erase
801c135c
AB
112 * counter plus %WL_FREE_MAX_DIFF.
113 */
114#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
115
116/*
117 * Maximum number of consecutive background thread failures which is enough to
118 * switch to read-only mode.
119 */
120#define WL_MAX_FAILURES 32
121
801c135c
AB
122/**
123 * struct ubi_wl_prot_entry - PEB protection entry.
124 * @rb_pnum: link in the @wl->prot.pnum RB-tree
125 * @rb_aec: link in the @wl->prot.aec RB-tree
126 * @abs_ec: the absolute erase counter value when the protection ends
127 * @e: the wear-leveling entry of the physical eraseblock under protection
128 *
85c6e6e2
AB
129 * When the WL sub-system returns a physical eraseblock, the physical
130 * eraseblock is protected from being moved for some "time". For this reason,
131 * the physical eraseblock is not directly moved from the @wl->free tree to the
132 * @wl->used tree. There is one more tree in between where this physical
133 * eraseblock is temporarily stored (@wl->prot).
801c135c
AB
134 *
135 * All this protection stuff is needed because:
136 * o we don't want to move physical eraseblocks just after we have given them
137 * to the user; instead, we first want to let users fill them up with data;
138 *
139 * o there is a chance that the user will put the physical eraseblock very
140 * soon, so it makes sense not to move it for some time, but wait; this is
141 * especially important in case of "short term" physical eraseblocks.
142 *
143 * Physical eraseblocks stay protected only for limited time. But the "time" is
144 * measured in erase cycles in this case. This is implemented with help of the
145 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
146 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
147 * the @wl->used tree.
148 *
149 * Protected physical eraseblocks are searched by physical eraseblock number
150 * (when they are put) and by the absolute erase counter (to check if it is
151 * time to move them to the @wl->used tree). So there are actually 2 RB-trees
152 * storing the protected physical eraseblocks: @wl->prot.pnum and
153 * @wl->prot.aec. They are referred to as the "protection" trees. The
154 * first one is indexed by the physical eraseblock number. The second one is
155 * indexed by the absolute erase counter. Both trees store
156 * &struct ubi_wl_prot_entry objects.
157 *
158 * Each physical eraseblock has 2 main states: free and used. The former state
159 * corresponds to the @wl->free tree. The latter state is split up on several
160 * sub-states:
161 * o the WL movement is allowed (@wl->used tree);
162 * o the WL movement is temporarily prohibited (@wl->prot.pnum and
163 * @wl->prot.aec trees);
164 * o scrubbing is needed (@wl->scrub tree).
165 *
166 * Depending on the sub-state, wear-leveling entries of the used physical
167 * eraseblocks may be kept in one of those trees.
168 */
169struct ubi_wl_prot_entry {
170 struct rb_node rb_pnum;
171 struct rb_node rb_aec;
172 unsigned long long abs_ec;
173 struct ubi_wl_entry *e;
174};
175
176/**
177 * struct ubi_work - UBI work description data structure.
178 * @list: a link in the list of pending works
179 * @func: worker function
180 * @priv: private data of the worker function
801c135c
AB
181 * @e: physical eraseblock to erase
182 * @torture: if the physical eraseblock has to be tortured
183 *
184 * The @func pointer points to the worker function. If the @cancel argument is
185 * not zero, the worker has to free the resources and exit immediately. The
186 * worker has to return zero in case of success and a negative error code in
187 * case of failure.
188 */
189struct ubi_work {
190 struct list_head list;
191 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
192 /* The below fields are only relevant to erasure works */
193 struct ubi_wl_entry *e;
194 int torture;
195};
196
197#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 198static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
801c135c
AB
199static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
200 struct rb_root *root);
201#else
202#define paranoid_check_ec(ubi, pnum, ec) 0
203#define paranoid_check_in_wl_tree(e, root)
204#endif
205
801c135c
AB
206/**
207 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
208 * @e: the wear-leveling entry to add
209 * @root: the root of the tree
210 *
211 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
212 * the @ubi->used and @ubi->free RB-trees.
213 */
214static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
215{
216 struct rb_node **p, *parent = NULL;
217
218 p = &root->rb_node;
219 while (*p) {
220 struct ubi_wl_entry *e1;
221
222 parent = *p;
223 e1 = rb_entry(parent, struct ubi_wl_entry, rb);
224
225 if (e->ec < e1->ec)
226 p = &(*p)->rb_left;
227 else if (e->ec > e1->ec)
228 p = &(*p)->rb_right;
229 else {
230 ubi_assert(e->pnum != e1->pnum);
231 if (e->pnum < e1->pnum)
232 p = &(*p)->rb_left;
233 else
234 p = &(*p)->rb_right;
235 }
236 }
237
238 rb_link_node(&e->rb, parent, p);
239 rb_insert_color(&e->rb, root);
240}
241
801c135c
AB
242/**
243 * do_work - do one pending work.
244 * @ubi: UBI device description object
245 *
246 * This function returns zero in case of success and a negative error code in
247 * case of failure.
248 */
249static int do_work(struct ubi_device *ubi)
250{
251 int err;
252 struct ubi_work *wrk;
253
43f9b25a
AB
254 cond_resched();
255
593dd33c
AB
256 /*
257 * @ubi->work_sem is used to synchronize with the workers. Workers take
258 * it in read mode, so many of them may be doing works at a time. But
259 * the queue flush code has to be sure the whole queue of works is
260 * done, and it takes the mutex in write mode.
261 */
262 down_read(&ubi->work_sem);
801c135c 263 spin_lock(&ubi->wl_lock);
801c135c
AB
264 if (list_empty(&ubi->works)) {
265 spin_unlock(&ubi->wl_lock);
593dd33c 266 up_read(&ubi->work_sem);
801c135c
AB
267 return 0;
268 }
269
270 wrk = list_entry(ubi->works.next, struct ubi_work, list);
271 list_del(&wrk->list);
16f557ec
AB
272 ubi->works_count -= 1;
273 ubi_assert(ubi->works_count >= 0);
801c135c
AB
274 spin_unlock(&ubi->wl_lock);
275
276 /*
277 * Call the worker function. Do not touch the work structure
278 * after this call as it will have been freed or reused by that
279 * time by the worker function.
280 */
281 err = wrk->func(ubi, wrk, 0);
282 if (err)
283 ubi_err("work failed with error code %d", err);
593dd33c 284 up_read(&ubi->work_sem);
16f557ec 285
801c135c
AB
286 return err;
287}
288
289/**
290 * produce_free_peb - produce a free physical eraseblock.
291 * @ubi: UBI device description object
292 *
293 * This function tries to make a free PEB by means of synchronous execution of
294 * pending works. This may be needed if, for example the background thread is
295 * disabled. Returns zero in case of success and a negative error code in case
296 * of failure.
297 */
298static int produce_free_peb(struct ubi_device *ubi)
299{
300 int err;
301
302 spin_lock(&ubi->wl_lock);
5abde384 303 while (!ubi->free.rb_node) {
801c135c
AB
304 spin_unlock(&ubi->wl_lock);
305
306 dbg_wl("do one work synchronously");
307 err = do_work(ubi);
308 if (err)
309 return err;
310
311 spin_lock(&ubi->wl_lock);
312 }
313 spin_unlock(&ubi->wl_lock);
314
315 return 0;
316}
317
318/**
319 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
320 * @e: the wear-leveling entry to check
321 * @root: the root of the tree
322 *
323 * This function returns non-zero if @e is in the @root RB-tree and zero if it
324 * is not.
325 */
326static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
327{
328 struct rb_node *p;
329
330 p = root->rb_node;
331 while (p) {
332 struct ubi_wl_entry *e1;
333
334 e1 = rb_entry(p, struct ubi_wl_entry, rb);
335
336 if (e->pnum == e1->pnum) {
337 ubi_assert(e == e1);
338 return 1;
339 }
340
341 if (e->ec < e1->ec)
342 p = p->rb_left;
343 else if (e->ec > e1->ec)
344 p = p->rb_right;
345 else {
346 ubi_assert(e->pnum != e1->pnum);
347 if (e->pnum < e1->pnum)
348 p = p->rb_left;
349 else
350 p = p->rb_right;
351 }
352 }
353
354 return 0;
355}
356
357/**
358 * prot_tree_add - add physical eraseblock to protection trees.
359 * @ubi: UBI device description object
360 * @e: the physical eraseblock to add
361 * @pe: protection entry object to use
6a8f483f 362 * @ec: for how many erase operations this PEB should be protected
801c135c
AB
363 *
364 * @wl->lock has to be locked.
365 */
366static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
6a8f483f 367 struct ubi_wl_prot_entry *pe, int ec)
801c135c
AB
368{
369 struct rb_node **p, *parent = NULL;
370 struct ubi_wl_prot_entry *pe1;
371
372 pe->e = e;
6a8f483f 373 pe->abs_ec = ubi->abs_ec + ec;
801c135c
AB
374
375 p = &ubi->prot.pnum.rb_node;
376 while (*p) {
377 parent = *p;
378 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
379
380 if (e->pnum < pe1->e->pnum)
381 p = &(*p)->rb_left;
382 else
383 p = &(*p)->rb_right;
384 }
385 rb_link_node(&pe->rb_pnum, parent, p);
386 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
387
388 p = &ubi->prot.aec.rb_node;
389 parent = NULL;
390 while (*p) {
391 parent = *p;
392 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
393
394 if (pe->abs_ec < pe1->abs_ec)
395 p = &(*p)->rb_left;
396 else
397 p = &(*p)->rb_right;
398 }
399 rb_link_node(&pe->rb_aec, parent, p);
400 rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
401}
402
403/**
404 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
405 * @root: the RB-tree where to look for
406 * @max: highest possible erase counter
407 *
408 * This function looks for a wear leveling entry with erase counter closest to
409 * @max and less then @max.
410 */
411static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
412{
413 struct rb_node *p;
414 struct ubi_wl_entry *e;
415
416 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
417 max += e->ec;
418
419 p = root->rb_node;
420 while (p) {
421 struct ubi_wl_entry *e1;
422
423 e1 = rb_entry(p, struct ubi_wl_entry, rb);
424 if (e1->ec >= max)
425 p = p->rb_left;
426 else {
427 p = p->rb_right;
428 e = e1;
429 }
430 }
431
432 return e;
433}
434
435/**
436 * ubi_wl_get_peb - get a physical eraseblock.
437 * @ubi: UBI device description object
438 * @dtype: type of data which will be stored in this physical eraseblock
439 *
440 * This function returns a physical eraseblock in case of success and a
441 * negative error code in case of failure. Might sleep.
442 */
443int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
444{
445 int err, protect, medium_ec;
446 struct ubi_wl_entry *e, *first, *last;
447 struct ubi_wl_prot_entry *pe;
448
449 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
450 dtype == UBI_UNKNOWN);
451
33818bbb 452 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
801c135c
AB
453 if (!pe)
454 return -ENOMEM;
455
456retry:
457 spin_lock(&ubi->wl_lock);
5abde384 458 if (!ubi->free.rb_node) {
801c135c
AB
459 if (ubi->works_count == 0) {
460 ubi_assert(list_empty(&ubi->works));
461 ubi_err("no free eraseblocks");
462 spin_unlock(&ubi->wl_lock);
463 kfree(pe);
464 return -ENOSPC;
465 }
466 spin_unlock(&ubi->wl_lock);
467
468 err = produce_free_peb(ubi);
469 if (err < 0) {
470 kfree(pe);
471 return err;
472 }
473 goto retry;
474 }
475
476 switch (dtype) {
9c9ec147
AB
477 case UBI_LONGTERM:
478 /*
479 * For long term data we pick a physical eraseblock with high
480 * erase counter. But the highest erase counter we can pick is
481 * bounded by the the lowest erase counter plus
482 * %WL_FREE_MAX_DIFF.
483 */
484 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
485 protect = LT_PROTECTION;
486 break;
487 case UBI_UNKNOWN:
488 /*
489 * For unknown data we pick a physical eraseblock with medium
490 * erase counter. But we by no means can pick a physical
491 * eraseblock with erase counter greater or equivalent than the
492 * lowest erase counter plus %WL_FREE_MAX_DIFF.
493 */
494 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
495 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, rb);
801c135c 496
9c9ec147
AB
497 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
498 e = rb_entry(ubi->free.rb_node,
499 struct ubi_wl_entry, rb);
500 else {
501 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
502 e = find_wl_entry(&ubi->free, medium_ec);
503 }
504 protect = U_PROTECTION;
505 break;
506 case UBI_SHORTTERM:
507 /*
508 * For short term data we pick a physical eraseblock with the
509 * lowest erase counter as we expect it will be erased soon.
510 */
511 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
512 protect = ST_PROTECTION;
513 break;
514 default:
515 protect = 0;
516 e = NULL;
517 BUG();
801c135c
AB
518 }
519
520 /*
521 * Move the physical eraseblock to the protection trees where it will
522 * be protected from being moved for some time.
523 */
5abde384
AB
524 paranoid_check_in_wl_tree(e, &ubi->free);
525 rb_erase(&e->rb, &ubi->free);
801c135c
AB
526 prot_tree_add(ubi, e, pe, protect);
527
528 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
529 spin_unlock(&ubi->wl_lock);
530
531 return e->pnum;
532}
533
534/**
535 * prot_tree_del - remove a physical eraseblock from the protection trees
536 * @ubi: UBI device description object
537 * @pnum: the physical eraseblock to remove
43f9b25a
AB
538 *
539 * This function returns PEB @pnum from the protection trees and returns zero
540 * in case of success and %-ENODEV if the PEB was not found in the protection
541 * trees.
801c135c 542 */
43f9b25a 543static int prot_tree_del(struct ubi_device *ubi, int pnum)
801c135c
AB
544{
545 struct rb_node *p;
546 struct ubi_wl_prot_entry *pe = NULL;
547
548 p = ubi->prot.pnum.rb_node;
549 while (p) {
550
551 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
552
553 if (pnum == pe->e->pnum)
43f9b25a 554 goto found;
801c135c
AB
555
556 if (pnum < pe->e->pnum)
557 p = p->rb_left;
558 else
559 p = p->rb_right;
560 }
561
43f9b25a
AB
562 return -ENODEV;
563
564found:
801c135c
AB
565 ubi_assert(pe->e->pnum == pnum);
566 rb_erase(&pe->rb_aec, &ubi->prot.aec);
567 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
568 kfree(pe);
43f9b25a 569 return 0;
801c135c
AB
570}
571
572/**
573 * sync_erase - synchronously erase a physical eraseblock.
574 * @ubi: UBI device description object
575 * @e: the the physical eraseblock to erase
576 * @torture: if the physical eraseblock has to be tortured
577 *
578 * This function returns zero in case of success and a negative error code in
579 * case of failure.
580 */
9c9ec147
AB
581static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
582 int torture)
801c135c
AB
583{
584 int err;
585 struct ubi_ec_hdr *ec_hdr;
586 unsigned long long ec = e->ec;
587
588 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
589
590 err = paranoid_check_ec(ubi, e->pnum, e->ec);
591 if (err > 0)
592 return -EINVAL;
593
33818bbb 594 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
595 if (!ec_hdr)
596 return -ENOMEM;
597
598 err = ubi_io_sync_erase(ubi, e->pnum, torture);
599 if (err < 0)
600 goto out_free;
601
602 ec += err;
603 if (ec > UBI_MAX_ERASECOUNTER) {
604 /*
605 * Erase counter overflow. Upgrade UBI and use 64-bit
606 * erase counters internally.
607 */
608 ubi_err("erase counter overflow at PEB %d, EC %llu",
609 e->pnum, ec);
610 err = -EINVAL;
611 goto out_free;
612 }
613
614 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
615
3261ebd7 616 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
617
618 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
619 if (err)
620 goto out_free;
621
622 e->ec = ec;
623 spin_lock(&ubi->wl_lock);
624 if (e->ec > ubi->max_ec)
625 ubi->max_ec = e->ec;
626 spin_unlock(&ubi->wl_lock);
627
628out_free:
629 kfree(ec_hdr);
630 return err;
631}
632
633/**
ebaaf1af 634 * check_protection_over - check if it is time to stop protecting some PEBs.
801c135c
AB
635 * @ubi: UBI device description object
636 *
637 * This function is called after each erase operation, when the absolute erase
638 * counter is incremented, to check if some physical eraseblock have not to be
639 * protected any longer. These physical eraseblocks are moved from the
640 * protection trees to the used tree.
641 */
642static void check_protection_over(struct ubi_device *ubi)
643{
644 struct ubi_wl_prot_entry *pe;
645
646 /*
647 * There may be several protected physical eraseblock to remove,
648 * process them all.
649 */
650 while (1) {
651 spin_lock(&ubi->wl_lock);
5abde384 652 if (!ubi->prot.aec.rb_node) {
801c135c
AB
653 spin_unlock(&ubi->wl_lock);
654 break;
655 }
656
657 pe = rb_entry(rb_first(&ubi->prot.aec),
658 struct ubi_wl_prot_entry, rb_aec);
659
660 if (pe->abs_ec > ubi->abs_ec) {
661 spin_unlock(&ubi->wl_lock);
662 break;
663 }
664
665 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
666 pe->e->pnum, ubi->abs_ec, pe->abs_ec);
667 rb_erase(&pe->rb_aec, &ubi->prot.aec);
668 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
5abde384 669 wl_tree_add(pe->e, &ubi->used);
801c135c
AB
670 spin_unlock(&ubi->wl_lock);
671
672 kfree(pe);
673 cond_resched();
674 }
675}
676
677/**
678 * schedule_ubi_work - schedule a work.
679 * @ubi: UBI device description object
680 * @wrk: the work to schedule
681 *
682 * This function enqueues a work defined by @wrk to the tail of the pending
683 * works list.
684 */
685static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
686{
687 spin_lock(&ubi->wl_lock);
688 list_add_tail(&wrk->list, &ubi->works);
689 ubi_assert(ubi->works_count >= 0);
690 ubi->works_count += 1;
691 if (ubi->thread_enabled)
692 wake_up_process(ubi->bgt_thread);
693 spin_unlock(&ubi->wl_lock);
694}
695
696static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
697 int cancel);
698
699/**
700 * schedule_erase - schedule an erase work.
701 * @ubi: UBI device description object
702 * @e: the WL entry of the physical eraseblock to erase
703 * @torture: if the physical eraseblock has to be tortured
704 *
705 * This function returns zero in case of success and a %-ENOMEM in case of
706 * failure.
707 */
708static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
709 int torture)
710{
711 struct ubi_work *wl_wrk;
712
713 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
714 e->pnum, e->ec, torture);
715
33818bbb 716 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
717 if (!wl_wrk)
718 return -ENOMEM;
719
720 wl_wrk->func = &erase_worker;
721 wl_wrk->e = e;
722 wl_wrk->torture = torture;
723
724 schedule_ubi_work(ubi, wl_wrk);
725 return 0;
726}
727
728/**
729 * wear_leveling_worker - wear-leveling worker function.
730 * @ubi: UBI device description object
731 * @wrk: the work object
732 * @cancel: non-zero if the worker has to free memory and exit
733 *
734 * This function copies a more worn out physical eraseblock to a less worn out
735 * one. Returns zero in case of success and a negative error code in case of
736 * failure.
737 */
738static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
739 int cancel)
740{
6a8f483f 741 int err, put = 0, scrubbing = 0;
c18a8418 742 struct ubi_wl_prot_entry *uninitialized_var(pe);
801c135c
AB
743 struct ubi_wl_entry *e1, *e2;
744 struct ubi_vid_hdr *vid_hdr;
745
746 kfree(wrk);
747
748 if (cancel)
749 return 0;
750
33818bbb 751 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
752 if (!vid_hdr)
753 return -ENOMEM;
754
43f9b25a 755 mutex_lock(&ubi->move_mutex);
801c135c 756 spin_lock(&ubi->wl_lock);
43f9b25a
AB
757 ubi_assert(!ubi->move_from && !ubi->move_to);
758 ubi_assert(!ubi->move_to_put);
801c135c 759
43f9b25a 760 if (!ubi->free.rb_node ||
5abde384 761 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
801c135c 762 /*
43f9b25a
AB
763 * No free physical eraseblocks? Well, they must be waiting in
764 * the queue to be erased. Cancel movement - it will be
765 * triggered again when a free physical eraseblock appears.
801c135c
AB
766 *
767 * No used physical eraseblocks? They must be temporarily
768 * protected from being moved. They will be moved to the
769 * @ubi->used tree later and the wear-leveling will be
770 * triggered again.
771 */
772 dbg_wl("cancel WL, a list is empty: free %d, used %d",
5abde384 773 !ubi->free.rb_node, !ubi->used.rb_node);
43f9b25a 774 goto out_cancel;
801c135c
AB
775 }
776
5abde384 777 if (!ubi->scrub.rb_node) {
801c135c
AB
778 /*
779 * Now pick the least worn-out used physical eraseblock and a
780 * highly worn-out free physical eraseblock. If the erase
781 * counters differ much enough, start wear-leveling.
782 */
783 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
784 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
785
786 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
787 dbg_wl("no WL needed: min used EC %d, max free EC %d",
788 e1->ec, e2->ec);
43f9b25a 789 goto out_cancel;
801c135c 790 }
5abde384
AB
791 paranoid_check_in_wl_tree(e1, &ubi->used);
792 rb_erase(&e1->rb, &ubi->used);
801c135c
AB
793 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
794 e1->pnum, e1->ec, e2->pnum, e2->ec);
795 } else {
43f9b25a
AB
796 /* Perform scrubbing */
797 scrubbing = 1;
801c135c
AB
798 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
799 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
5abde384 800 paranoid_check_in_wl_tree(e1, &ubi->scrub);
d2c46855 801 rb_erase(&e1->rb, &ubi->scrub);
801c135c
AB
802 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
803 }
804
5abde384
AB
805 paranoid_check_in_wl_tree(e2, &ubi->free);
806 rb_erase(&e2->rb, &ubi->free);
801c135c
AB
807 ubi->move_from = e1;
808 ubi->move_to = e2;
809 spin_unlock(&ubi->wl_lock);
810
811 /*
812 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
813 * We so far do not know which logical eraseblock our physical
814 * eraseblock (@e1) belongs to. We have to read the volume identifier
815 * header first.
43f9b25a
AB
816 *
817 * Note, we are protected from this PEB being unmapped and erased. The
818 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
819 * which is being moved was unmapped.
801c135c
AB
820 */
821
822 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
823 if (err && err != UBI_IO_BITFLIPS) {
824 if (err == UBI_IO_PEB_FREE) {
825 /*
826 * We are trying to move PEB without a VID header. UBI
827 * always write VID headers shortly after the PEB was
828 * given, so we have a situation when it did not have
829 * chance to write it down because it was preempted.
830 * Just re-schedule the work, so that next time it will
831 * likely have the VID header in place.
832 */
833 dbg_wl("PEB %d has no VID header", e1->pnum);
43f9b25a 834 goto out_not_moved;
801c135c 835 }
43f9b25a
AB
836
837 ubi_err("error %d while reading VID header from PEB %d",
838 err, e1->pnum);
839 if (err > 0)
840 err = -EIO;
841 goto out_error;
801c135c
AB
842 }
843
844 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
845 if (err) {
43f9b25a
AB
846
847 if (err < 0)
848 goto out_error;
849 if (err == 1)
850 goto out_not_moved;
851
852 /*
853 * For some reason the LEB was not moved - it might be because
854 * the volume is being deleted. We should prevent this PEB from
855 * being selected for wear-levelling movement for some "time",
856 * so put it to the protection tree.
857 */
858
859 dbg_wl("cancelled moving PEB %d", e1->pnum);
860 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
861 if (!pe) {
862 err = -ENOMEM;
863 goto out_error;
864 }
865
6a8f483f
AB
866 ubi_free_vid_hdr(ubi, vid_hdr);
867 spin_lock(&ubi->wl_lock);
868 prot_tree_add(ubi, e1, pe, U_PROTECTION);
869 ubi_assert(!ubi->move_to_put);
870 ubi->move_from = ubi->move_to = NULL;
871 ubi->wl_scheduled = 0;
872 spin_unlock(&ubi->wl_lock);
873
874 err = schedule_erase(ubi, e2, 0);
875 if (err)
876 goto out_error;
877 mutex_unlock(&ubi->move_mutex);
878 return 0;
801c135c
AB
879 }
880
6a8f483f 881 /* The PEB has been successfully moved */
801c135c 882 ubi_free_vid_hdr(ubi, vid_hdr);
6a8f483f 883 if (scrubbing)
8c1e6ee1
AB
884 ubi_msg("scrubbed PEB %d, data moved to PEB %d",
885 e1->pnum, e2->pnum);
886
801c135c
AB
887 spin_lock(&ubi->wl_lock);
888 if (!ubi->move_to_put)
5abde384 889 wl_tree_add(e2, &ubi->used);
801c135c
AB
890 else
891 put = 1;
892 ubi->move_from = ubi->move_to = NULL;
43f9b25a 893 ubi->move_to_put = ubi->wl_scheduled = 0;
801c135c
AB
894 spin_unlock(&ubi->wl_lock);
895
6a8f483f
AB
896 err = schedule_erase(ubi, e1, 0);
897 if (err)
898 goto out_error;
899
801c135c
AB
900 if (put) {
901 /*
902 * Well, the target PEB was put meanwhile, schedule it for
903 * erasure.
904 */
905 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
906 err = schedule_erase(ubi, e2, 0);
43f9b25a
AB
907 if (err)
908 goto out_error;
801c135c
AB
909 }
910
801c135c 911 dbg_wl("done");
43f9b25a
AB
912 mutex_unlock(&ubi->move_mutex);
913 return 0;
801c135c
AB
914
915 /*
43f9b25a
AB
916 * For some reasons the LEB was not moved, might be an error, might be
917 * something else. @e1 was not changed, so return it back. @e2 might
918 * be changed, schedule it for erasure.
801c135c 919 */
43f9b25a 920out_not_moved:
801c135c
AB
921 ubi_free_vid_hdr(ubi, vid_hdr);
922 spin_lock(&ubi->wl_lock);
43f9b25a
AB
923 if (scrubbing)
924 wl_tree_add(e1, &ubi->scrub);
801c135c 925 else
5abde384 926 wl_tree_add(e1, &ubi->used);
801c135c 927 ubi->move_from = ubi->move_to = NULL;
43f9b25a 928 ubi->move_to_put = ubi->wl_scheduled = 0;
801c135c
AB
929 spin_unlock(&ubi->wl_lock);
930
801c135c 931 err = schedule_erase(ubi, e2, 0);
43f9b25a
AB
932 if (err)
933 goto out_error;
934
935 mutex_unlock(&ubi->move_mutex);
936 return 0;
937
938out_error:
939 ubi_err("error %d while moving PEB %d to PEB %d",
940 err, e1->pnum, e2->pnum);
801c135c 941
43f9b25a
AB
942 ubi_free_vid_hdr(ubi, vid_hdr);
943 spin_lock(&ubi->wl_lock);
944 ubi->move_from = ubi->move_to = NULL;
945 ubi->move_to_put = ubi->wl_scheduled = 0;
946 spin_unlock(&ubi->wl_lock);
947
948 kmem_cache_free(ubi_wl_entry_slab, e1);
949 kmem_cache_free(ubi_wl_entry_slab, e2);
950 ubi_ro_mode(ubi);
951
952 mutex_unlock(&ubi->move_mutex);
801c135c 953 return err;
43f9b25a
AB
954
955out_cancel:
956 ubi->wl_scheduled = 0;
957 spin_unlock(&ubi->wl_lock);
958 mutex_unlock(&ubi->move_mutex);
959 ubi_free_vid_hdr(ubi, vid_hdr);
960 return 0;
801c135c
AB
961}
962
963/**
964 * ensure_wear_leveling - schedule wear-leveling if it is needed.
965 * @ubi: UBI device description object
966 *
967 * This function checks if it is time to start wear-leveling and schedules it
968 * if yes. This function returns zero in case of success and a negative error
969 * code in case of failure.
970 */
971static int ensure_wear_leveling(struct ubi_device *ubi)
972{
973 int err = 0;
974 struct ubi_wl_entry *e1;
975 struct ubi_wl_entry *e2;
976 struct ubi_work *wrk;
977
978 spin_lock(&ubi->wl_lock);
979 if (ubi->wl_scheduled)
980 /* Wear-leveling is already in the work queue */
981 goto out_unlock;
982
983 /*
984 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
985 * the WL worker has to be scheduled anyway.
986 */
5abde384
AB
987 if (!ubi->scrub.rb_node) {
988 if (!ubi->used.rb_node || !ubi->free.rb_node)
801c135c
AB
989 /* No physical eraseblocks - no deal */
990 goto out_unlock;
991
992 /*
993 * We schedule wear-leveling only if the difference between the
994 * lowest erase counter of used physical eraseblocks and a high
995 * erase counter of free physical eraseblocks is greater then
996 * %UBI_WL_THRESHOLD.
997 */
998 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
999 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
1000
1001 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1002 goto out_unlock;
1003 dbg_wl("schedule wear-leveling");
1004 } else
1005 dbg_wl("schedule scrubbing");
1006
1007 ubi->wl_scheduled = 1;
1008 spin_unlock(&ubi->wl_lock);
1009
33818bbb 1010 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
1011 if (!wrk) {
1012 err = -ENOMEM;
1013 goto out_cancel;
1014 }
1015
1016 wrk->func = &wear_leveling_worker;
1017 schedule_ubi_work(ubi, wrk);
1018 return err;
1019
1020out_cancel:
1021 spin_lock(&ubi->wl_lock);
1022 ubi->wl_scheduled = 0;
1023out_unlock:
1024 spin_unlock(&ubi->wl_lock);
1025 return err;
1026}
1027
1028/**
1029 * erase_worker - physical eraseblock erase worker function.
1030 * @ubi: UBI device description object
1031 * @wl_wrk: the work object
1032 * @cancel: non-zero if the worker has to free memory and exit
1033 *
1034 * This function erases a physical eraseblock and perform torture testing if
1035 * needed. It also takes care about marking the physical eraseblock bad if
1036 * needed. Returns zero in case of success and a negative error code in case of
1037 * failure.
1038 */
1039static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1040 int cancel)
1041{
801c135c 1042 struct ubi_wl_entry *e = wl_wrk->e;
784c1454 1043 int pnum = e->pnum, err, need;
801c135c
AB
1044
1045 if (cancel) {
1046 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1047 kfree(wl_wrk);
06b68ba1 1048 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1049 return 0;
1050 }
1051
1052 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1053
1054 err = sync_erase(ubi, e, wl_wrk->torture);
1055 if (!err) {
1056 /* Fine, we've erased it successfully */
1057 kfree(wl_wrk);
1058
1059 spin_lock(&ubi->wl_lock);
1060 ubi->abs_ec += 1;
5abde384 1061 wl_tree_add(e, &ubi->free);
801c135c
AB
1062 spin_unlock(&ubi->wl_lock);
1063
1064 /*
9c9ec147
AB
1065 * One more erase operation has happened, take care about
1066 * protected physical eraseblocks.
801c135c
AB
1067 */
1068 check_protection_over(ubi);
1069
1070 /* And take care about wear-leveling */
1071 err = ensure_wear_leveling(ubi);
1072 return err;
1073 }
1074
8d2d4011 1075 ubi_err("failed to erase PEB %d, error %d", pnum, err);
801c135c 1076 kfree(wl_wrk);
06b68ba1 1077 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c 1078
784c1454
AB
1079 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1080 err == -EBUSY) {
1081 int err1;
1082
1083 /* Re-schedule the LEB for erasure */
1084 err1 = schedule_erase(ubi, e, 0);
1085 if (err1) {
1086 err = err1;
1087 goto out_ro;
1088 }
1089 return err;
1090 } else if (err != -EIO) {
801c135c
AB
1091 /*
1092 * If this is not %-EIO, we have no idea what to do. Scheduling
1093 * this physical eraseblock for erasure again would cause
1094 * errors again and again. Well, lets switch to RO mode.
1095 */
784c1454 1096 goto out_ro;
801c135c
AB
1097 }
1098
1099 /* It is %-EIO, the PEB went bad */
1100
1101 if (!ubi->bad_allowed) {
1102 ubi_err("bad physical eraseblock %d detected", pnum);
784c1454
AB
1103 goto out_ro;
1104 }
801c135c 1105
784c1454
AB
1106 spin_lock(&ubi->volumes_lock);
1107 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1108 if (need > 0) {
1109 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1110 ubi->avail_pebs -= need;
1111 ubi->rsvd_pebs += need;
1112 ubi->beb_rsvd_pebs += need;
1113 if (need > 0)
1114 ubi_msg("reserve more %d PEBs", need);
1115 }
801c135c 1116
784c1454 1117 if (ubi->beb_rsvd_pebs == 0) {
801c135c 1118 spin_unlock(&ubi->volumes_lock);
784c1454
AB
1119 ubi_err("no reserved physical eraseblocks");
1120 goto out_ro;
1121 }
801c135c 1122
784c1454
AB
1123 spin_unlock(&ubi->volumes_lock);
1124 ubi_msg("mark PEB %d as bad", pnum);
801c135c 1125
784c1454
AB
1126 err = ubi_io_mark_bad(ubi, pnum);
1127 if (err)
1128 goto out_ro;
1129
1130 spin_lock(&ubi->volumes_lock);
1131 ubi->beb_rsvd_pebs -= 1;
1132 ubi->bad_peb_count += 1;
1133 ubi->good_peb_count -= 1;
1134 ubi_calculate_reserved(ubi);
1135 if (ubi->beb_rsvd_pebs == 0)
1136 ubi_warn("last PEB from the reserved pool was used");
1137 spin_unlock(&ubi->volumes_lock);
1138
1139 return err;
801c135c 1140
784c1454
AB
1141out_ro:
1142 ubi_ro_mode(ubi);
801c135c
AB
1143 return err;
1144}
1145
1146/**
85c6e6e2 1147 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
801c135c
AB
1148 * @ubi: UBI device description object
1149 * @pnum: physical eraseblock to return
1150 * @torture: if this physical eraseblock has to be tortured
1151 *
1152 * This function is called to return physical eraseblock @pnum to the pool of
1153 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1154 * occurred to this @pnum and it has to be tested. This function returns zero
43f9b25a 1155 * in case of success, and a negative error code in case of failure.
801c135c
AB
1156 */
1157int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1158{
1159 int err;
1160 struct ubi_wl_entry *e;
1161
1162 dbg_wl("PEB %d", pnum);
1163 ubi_assert(pnum >= 0);
1164 ubi_assert(pnum < ubi->peb_count);
1165
43f9b25a 1166retry:
801c135c 1167 spin_lock(&ubi->wl_lock);
801c135c
AB
1168 e = ubi->lookuptbl[pnum];
1169 if (e == ubi->move_from) {
1170 /*
1171 * User is putting the physical eraseblock which was selected to
1172 * be moved. It will be scheduled for erasure in the
1173 * wear-leveling worker.
1174 */
43f9b25a 1175 dbg_wl("PEB %d is being moved, wait", pnum);
801c135c 1176 spin_unlock(&ubi->wl_lock);
43f9b25a
AB
1177
1178 /* Wait for the WL worker by taking the @ubi->move_mutex */
1179 mutex_lock(&ubi->move_mutex);
1180 mutex_unlock(&ubi->move_mutex);
1181 goto retry;
801c135c
AB
1182 } else if (e == ubi->move_to) {
1183 /*
1184 * User is putting the physical eraseblock which was selected
1185 * as the target the data is moved to. It may happen if the EBA
85c6e6e2
AB
1186 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1187 * but the WL sub-system has not put the PEB to the "used" tree
1188 * yet, but it is about to do this. So we just set a flag which
1189 * will tell the WL worker that the PEB is not needed anymore
1190 * and should be scheduled for erasure.
801c135c
AB
1191 */
1192 dbg_wl("PEB %d is the target of data moving", pnum);
1193 ubi_assert(!ubi->move_to_put);
1194 ubi->move_to_put = 1;
1195 spin_unlock(&ubi->wl_lock);
1196 return 0;
1197 } else {
5abde384
AB
1198 if (in_wl_tree(e, &ubi->used)) {
1199 paranoid_check_in_wl_tree(e, &ubi->used);
1200 rb_erase(&e->rb, &ubi->used);
1201 } else if (in_wl_tree(e, &ubi->scrub)) {
1202 paranoid_check_in_wl_tree(e, &ubi->scrub);
1203 rb_erase(&e->rb, &ubi->scrub);
43f9b25a
AB
1204 } else {
1205 err = prot_tree_del(ubi, e->pnum);
1206 if (err) {
1207 ubi_err("PEB %d not found", pnum);
1208 ubi_ro_mode(ubi);
1209 spin_unlock(&ubi->wl_lock);
1210 return err;
1211 }
1212 }
801c135c
AB
1213 }
1214 spin_unlock(&ubi->wl_lock);
1215
1216 err = schedule_erase(ubi, e, torture);
1217 if (err) {
1218 spin_lock(&ubi->wl_lock);
5abde384 1219 wl_tree_add(e, &ubi->used);
801c135c
AB
1220 spin_unlock(&ubi->wl_lock);
1221 }
1222
1223 return err;
1224}
1225
1226/**
1227 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1228 * @ubi: UBI device description object
1229 * @pnum: the physical eraseblock to schedule
1230 *
1231 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1232 * needs scrubbing. This function schedules a physical eraseblock for
1233 * scrubbing which is done in background. This function returns zero in case of
1234 * success and a negative error code in case of failure.
1235 */
1236int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1237{
1238 struct ubi_wl_entry *e;
1239
8c1e6ee1 1240 dbg_msg("schedule PEB %d for scrubbing", pnum);
801c135c
AB
1241
1242retry:
1243 spin_lock(&ubi->wl_lock);
1244 e = ubi->lookuptbl[pnum];
1245 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1246 spin_unlock(&ubi->wl_lock);
1247 return 0;
1248 }
1249
1250 if (e == ubi->move_to) {
1251 /*
1252 * This physical eraseblock was used to move data to. The data
1253 * was moved but the PEB was not yet inserted to the proper
1254 * tree. We should just wait a little and let the WL worker
1255 * proceed.
1256 */
1257 spin_unlock(&ubi->wl_lock);
1258 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1259 yield();
1260 goto retry;
1261 }
1262
5abde384
AB
1263 if (in_wl_tree(e, &ubi->used)) {
1264 paranoid_check_in_wl_tree(e, &ubi->used);
1265 rb_erase(&e->rb, &ubi->used);
43f9b25a
AB
1266 } else {
1267 int err;
1268
1269 err = prot_tree_del(ubi, e->pnum);
1270 if (err) {
1271 ubi_err("PEB %d not found", pnum);
1272 ubi_ro_mode(ubi);
1273 spin_unlock(&ubi->wl_lock);
1274 return err;
1275 }
1276 }
801c135c 1277
5abde384 1278 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1279 spin_unlock(&ubi->wl_lock);
1280
1281 /*
1282 * Technically scrubbing is the same as wear-leveling, so it is done
1283 * by the WL worker.
1284 */
1285 return ensure_wear_leveling(ubi);
1286}
1287
1288/**
1289 * ubi_wl_flush - flush all pending works.
1290 * @ubi: UBI device description object
1291 *
1292 * This function returns zero in case of success and a negative error code in
1293 * case of failure.
1294 */
1295int ubi_wl_flush(struct ubi_device *ubi)
1296{
593dd33c 1297 int err;
801c135c
AB
1298
1299 /*
1300 * Erase while the pending works queue is not empty, but not more then
1301 * the number of currently pending works.
1302 */
593dd33c
AB
1303 dbg_wl("flush (%d pending works)", ubi->works_count);
1304 while (ubi->works_count) {
1305 err = do_work(ubi);
1306 if (err)
1307 return err;
1308 }
1309
1310 /*
1311 * Make sure all the works which have been done in parallel are
1312 * finished.
1313 */
1314 down_write(&ubi->work_sem);
1315 up_write(&ubi->work_sem);
1316
1317 /*
1318 * And in case last was the WL worker and it cancelled the LEB
1319 * movement, flush again.
1320 */
1321 while (ubi->works_count) {
1322 dbg_wl("flush more (%d pending works)", ubi->works_count);
801c135c
AB
1323 err = do_work(ubi);
1324 if (err)
1325 return err;
1326 }
1327
1328 return 0;
1329}
1330
1331/**
1332 * tree_destroy - destroy an RB-tree.
1333 * @root: the root of the tree to destroy
1334 */
1335static void tree_destroy(struct rb_root *root)
1336{
1337 struct rb_node *rb;
1338 struct ubi_wl_entry *e;
1339
1340 rb = root->rb_node;
1341 while (rb) {
1342 if (rb->rb_left)
1343 rb = rb->rb_left;
1344 else if (rb->rb_right)
1345 rb = rb->rb_right;
1346 else {
1347 e = rb_entry(rb, struct ubi_wl_entry, rb);
1348
1349 rb = rb_parent(rb);
1350 if (rb) {
1351 if (rb->rb_left == &e->rb)
1352 rb->rb_left = NULL;
1353 else
1354 rb->rb_right = NULL;
1355 }
1356
06b68ba1 1357 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1358 }
1359 }
1360}
1361
1362/**
1363 * ubi_thread - UBI background thread.
1364 * @u: the UBI device description object pointer
1365 */
cdfa788a 1366int ubi_thread(void *u)
801c135c
AB
1367{
1368 int failures = 0;
1369 struct ubi_device *ubi = u;
1370
1371 ubi_msg("background thread \"%s\" started, PID %d",
ba25f9dc 1372 ubi->bgt_name, task_pid_nr(current));
801c135c 1373
83144186 1374 set_freezable();
801c135c
AB
1375 for (;;) {
1376 int err;
1377
1378 if (kthread_should_stop())
cadb40cc 1379 break;
801c135c
AB
1380
1381 if (try_to_freeze())
1382 continue;
1383
1384 spin_lock(&ubi->wl_lock);
1385 if (list_empty(&ubi->works) || ubi->ro_mode ||
1386 !ubi->thread_enabled) {
1387 set_current_state(TASK_INTERRUPTIBLE);
1388 spin_unlock(&ubi->wl_lock);
1389 schedule();
1390 continue;
1391 }
1392 spin_unlock(&ubi->wl_lock);
1393
1394 err = do_work(ubi);
1395 if (err) {
1396 ubi_err("%s: work failed with error code %d",
1397 ubi->bgt_name, err);
1398 if (failures++ > WL_MAX_FAILURES) {
1399 /*
1400 * Too many failures, disable the thread and
1401 * switch to read-only mode.
1402 */
1403 ubi_msg("%s: %d consecutive failures",
1404 ubi->bgt_name, WL_MAX_FAILURES);
1405 ubi_ro_mode(ubi);
2ad49887
VG
1406 ubi->thread_enabled = 0;
1407 continue;
801c135c
AB
1408 }
1409 } else
1410 failures = 0;
1411
1412 cond_resched();
1413 }
1414
801c135c
AB
1415 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1416 return 0;
1417}
1418
1419/**
1420 * cancel_pending - cancel all pending works.
1421 * @ubi: UBI device description object
1422 */
1423static void cancel_pending(struct ubi_device *ubi)
1424{
1425 while (!list_empty(&ubi->works)) {
1426 struct ubi_work *wrk;
1427
1428 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1429 list_del(&wrk->list);
1430 wrk->func(ubi, wrk, 1);
1431 ubi->works_count -= 1;
1432 ubi_assert(ubi->works_count >= 0);
1433 }
1434}
1435
1436/**
85c6e6e2 1437 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
801c135c
AB
1438 * @ubi: UBI device description object
1439 * @si: scanning information
1440 *
1441 * This function returns zero in case of success, and a negative error code in
1442 * case of failure.
1443 */
1444int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1445{
1446 int err;
1447 struct rb_node *rb1, *rb2;
1448 struct ubi_scan_volume *sv;
1449 struct ubi_scan_leb *seb, *tmp;
1450 struct ubi_wl_entry *e;
1451
1452
1453 ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1454 ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1455 spin_lock_init(&ubi->wl_lock);
43f9b25a 1456 mutex_init(&ubi->move_mutex);
593dd33c 1457 init_rwsem(&ubi->work_sem);
801c135c
AB
1458 ubi->max_ec = si->max_ec;
1459 INIT_LIST_HEAD(&ubi->works);
1460
1461 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1462
801c135c
AB
1463 err = -ENOMEM;
1464 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1465 if (!ubi->lookuptbl)
cdfa788a 1466 return err;
801c135c
AB
1467
1468 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1469 cond_resched();
1470
06b68ba1 1471 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1472 if (!e)
1473 goto out_free;
1474
1475 e->pnum = seb->pnum;
1476 e->ec = seb->ec;
1477 ubi->lookuptbl[e->pnum] = e;
1478 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1479 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1480 goto out_free;
1481 }
1482 }
1483
1484 list_for_each_entry(seb, &si->free, u.list) {
1485 cond_resched();
1486
06b68ba1 1487 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1488 if (!e)
1489 goto out_free;
1490
1491 e->pnum = seb->pnum;
1492 e->ec = seb->ec;
1493 ubi_assert(e->ec >= 0);
5abde384 1494 wl_tree_add(e, &ubi->free);
801c135c
AB
1495 ubi->lookuptbl[e->pnum] = e;
1496 }
1497
1498 list_for_each_entry(seb, &si->corr, u.list) {
1499 cond_resched();
1500
06b68ba1 1501 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1502 if (!e)
1503 goto out_free;
1504
1505 e->pnum = seb->pnum;
1506 e->ec = seb->ec;
1507 ubi->lookuptbl[e->pnum] = e;
1508 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1509 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1510 goto out_free;
1511 }
1512 }
1513
1514 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1515 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1516 cond_resched();
1517
06b68ba1 1518 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1519 if (!e)
1520 goto out_free;
1521
1522 e->pnum = seb->pnum;
1523 e->ec = seb->ec;
1524 ubi->lookuptbl[e->pnum] = e;
1525 if (!seb->scrub) {
1526 dbg_wl("add PEB %d EC %d to the used tree",
1527 e->pnum, e->ec);
5abde384 1528 wl_tree_add(e, &ubi->used);
801c135c
AB
1529 } else {
1530 dbg_wl("add PEB %d EC %d to the scrub tree",
1531 e->pnum, e->ec);
5abde384 1532 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1533 }
1534 }
1535 }
1536
5abde384 1537 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
801c135c
AB
1538 ubi_err("no enough physical eraseblocks (%d, need %d)",
1539 ubi->avail_pebs, WL_RESERVED_PEBS);
1540 goto out_free;
1541 }
1542 ubi->avail_pebs -= WL_RESERVED_PEBS;
1543 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1544
1545 /* Schedule wear-leveling if needed */
1546 err = ensure_wear_leveling(ubi);
1547 if (err)
1548 goto out_free;
1549
1550 return 0;
1551
1552out_free:
1553 cancel_pending(ubi);
1554 tree_destroy(&ubi->used);
1555 tree_destroy(&ubi->free);
1556 tree_destroy(&ubi->scrub);
1557 kfree(ubi->lookuptbl);
801c135c
AB
1558 return err;
1559}
1560
1561/**
1562 * protection_trees_destroy - destroy the protection RB-trees.
1563 * @ubi: UBI device description object
1564 */
1565static void protection_trees_destroy(struct ubi_device *ubi)
1566{
1567 struct rb_node *rb;
1568 struct ubi_wl_prot_entry *pe;
1569
1570 rb = ubi->prot.aec.rb_node;
1571 while (rb) {
1572 if (rb->rb_left)
1573 rb = rb->rb_left;
1574 else if (rb->rb_right)
1575 rb = rb->rb_right;
1576 else {
1577 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1578
1579 rb = rb_parent(rb);
1580 if (rb) {
1581 if (rb->rb_left == &pe->rb_aec)
1582 rb->rb_left = NULL;
1583 else
1584 rb->rb_right = NULL;
1585 }
1586
06b68ba1 1587 kmem_cache_free(ubi_wl_entry_slab, pe->e);
801c135c
AB
1588 kfree(pe);
1589 }
1590 }
1591}
1592
1593/**
85c6e6e2 1594 * ubi_wl_close - close the wear-leveling sub-system.
801c135c
AB
1595 * @ubi: UBI device description object
1596 */
1597void ubi_wl_close(struct ubi_device *ubi)
1598{
85c6e6e2 1599 dbg_wl("close the WL sub-system");
801c135c
AB
1600 cancel_pending(ubi);
1601 protection_trees_destroy(ubi);
1602 tree_destroy(&ubi->used);
1603 tree_destroy(&ubi->free);
1604 tree_destroy(&ubi->scrub);
1605 kfree(ubi->lookuptbl);
801c135c
AB
1606}
1607
1608#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1609
1610/**
ebaaf1af 1611 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
801c135c
AB
1612 * @ubi: UBI device description object
1613 * @pnum: the physical eraseblock number to check
1614 * @ec: the erase counter to check
1615 *
1616 * This function returns zero if the erase counter of physical eraseblock @pnum
1617 * is equivalent to @ec, %1 if not, and a negative error code if an error
1618 * occurred.
1619 */
e88d6e10 1620static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
801c135c
AB
1621{
1622 int err;
1623 long long read_ec;
1624 struct ubi_ec_hdr *ec_hdr;
1625
33818bbb 1626 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1627 if (!ec_hdr)
1628 return -ENOMEM;
1629
1630 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1631 if (err && err != UBI_IO_BITFLIPS) {
1632 /* The header does not have to exist */
1633 err = 0;
1634 goto out_free;
1635 }
1636
3261ebd7 1637 read_ec = be64_to_cpu(ec_hdr->ec);
801c135c
AB
1638 if (ec != read_ec) {
1639 ubi_err("paranoid check failed for PEB %d", pnum);
1640 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1641 ubi_dbg_dump_stack();
1642 err = 1;
1643 } else
1644 err = 0;
1645
1646out_free:
1647 kfree(ec_hdr);
1648 return err;
1649}
1650
1651/**
ebaaf1af 1652 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
801c135c
AB
1653 * @e: the wear-leveling entry to check
1654 * @root: the root of the tree
1655 *
ebaaf1af
AB
1656 * This function returns zero if @e is in the @root RB-tree and %1 if it is
1657 * not.
801c135c
AB
1658 */
1659static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1660 struct rb_root *root)
1661{
1662 if (in_wl_tree(e, root))
1663 return 0;
1664
1665 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1666 e->pnum, e->ec, root);
1667 ubi_dbg_dump_stack();
1668 return 1;
1669}
1670
1671#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */