]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/mtd/ubi/wl.c
UBI: improve messages in the WL worker
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / ubi / wl.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21/*
85c6e6e2 22 * UBI wear-leveling sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for wear-leveling. It works in terms of
7b6c32da 25 * physical eraseblocks and erase counters and knows nothing about logical
85c6e6e2
AB
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
801c135c
AB
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
85c6e6e2 32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
801c135c 33 *
85c6e6e2 34 * When physical eraseblocks are returned to the WL sub-system by means of the
801c135c
AB
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
85c6e6e2 37 * which is also managed by the WL sub-system.
801c135c
AB
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
85c6e6e2
AB
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
801c135c 48 *
85c6e6e2
AB
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50 * bad.
801c135c 51 *
85c6e6e2
AB
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
801c135c 55 *
85c6e6e2
AB
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
b86a2c56
AB
58 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
59 * RB-trees, as well as (temporarily) in the @wl->pq queue.
7b6c32da
XX
60 *
61 * When the WL sub-system returns a physical eraseblock, the physical
62 * eraseblock is protected from being moved for some "time". For this reason,
63 * the physical eraseblock is not directly moved from the @wl->free tree to the
64 * @wl->used tree. There is a protection queue in between where this
65 * physical eraseblock is temporarily stored (@wl->pq).
66 *
67 * All this protection stuff is needed because:
68 * o we don't want to move physical eraseblocks just after we have given them
69 * to the user; instead, we first want to let users fill them up with data;
70 *
71 * o there is a chance that the user will put the physical eraseblock very
72 * soon, so it makes sense not to move it for some time, but wait; this is
73 * especially important in case of "short term" physical eraseblocks.
74 *
75 * Physical eraseblocks stay protected only for limited time. But the "time" is
76 * measured in erase cycles in this case. This is implemented with help of the
77 * protection queue. Eraseblocks are put to the tail of this queue when they
78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
79 * head of the queue on each erase operation (for any eraseblock). So the
80 * length of the queue defines how may (global) erase cycles PEBs are protected.
81 *
82 * To put it differently, each physical eraseblock has 2 main states: free and
83 * used. The former state corresponds to the @wl->free tree. The latter state
84 * is split up on several sub-states:
85 * o the WL movement is allowed (@wl->used tree);
b86a2c56
AB
86 * o the WL movement is disallowed (@wl->erroneous) becouse the PEB is
87 * erroneous - e.g., there was a read error;
7b6c32da
XX
88 * o the WL movement is temporarily prohibited (@wl->pq queue);
89 * o scrubbing is needed (@wl->scrub tree).
90 *
91 * Depending on the sub-state, wear-leveling entries of the used physical
92 * eraseblocks may be kept in one of those structures.
801c135c
AB
93 *
94 * Note, in this implementation, we keep a small in-RAM object for each physical
95 * eraseblock. This is surely not a scalable solution. But it appears to be good
96 * enough for moderately large flashes and it is simple. In future, one may
85c6e6e2 97 * re-work this sub-system and make it more scalable.
801c135c 98 *
85c6e6e2
AB
99 * At the moment this sub-system does not utilize the sequence number, which
100 * was introduced relatively recently. But it would be wise to do this because
101 * the sequence number of a logical eraseblock characterizes how old is it. For
801c135c
AB
102 * example, when we move a PEB with low erase counter, and we need to pick the
103 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
104 * pick target PEB with an average EC if our PEB is not very "old". This is a
85c6e6e2 105 * room for future re-works of the WL sub-system.
801c135c
AB
106 */
107
108#include <linux/slab.h>
109#include <linux/crc32.h>
110#include <linux/freezer.h>
111#include <linux/kthread.h>
112#include "ubi.h"
113
114/* Number of physical eraseblocks reserved for wear-leveling purposes */
115#define WL_RESERVED_PEBS 1
116
801c135c
AB
117/*
118 * Maximum difference between two erase counters. If this threshold is
85c6e6e2
AB
119 * exceeded, the WL sub-system starts moving data from used physical
120 * eraseblocks with low erase counter to free physical eraseblocks with high
121 * erase counter.
801c135c
AB
122 */
123#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
124
125/*
85c6e6e2 126 * When a physical eraseblock is moved, the WL sub-system has to pick the target
801c135c
AB
127 * physical eraseblock to move to. The simplest way would be just to pick the
128 * one with the highest erase counter. But in certain workloads this could lead
129 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
130 * situation when the picked physical eraseblock is constantly erased after the
131 * data is written to it. So, we have a constant which limits the highest erase
85c6e6e2 132 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
025dfdaf 133 * does not pick eraseblocks with erase counter greater than the lowest erase
801c135c
AB
134 * counter plus %WL_FREE_MAX_DIFF.
135 */
136#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
137
138/*
139 * Maximum number of consecutive background thread failures which is enough to
140 * switch to read-only mode.
141 */
142#define WL_MAX_FAILURES 32
143
801c135c
AB
144/**
145 * struct ubi_work - UBI work description data structure.
146 * @list: a link in the list of pending works
147 * @func: worker function
801c135c
AB
148 * @e: physical eraseblock to erase
149 * @torture: if the physical eraseblock has to be tortured
150 *
151 * The @func pointer points to the worker function. If the @cancel argument is
152 * not zero, the worker has to free the resources and exit immediately. The
153 * worker has to return zero in case of success and a negative error code in
154 * case of failure.
155 */
156struct ubi_work {
157 struct list_head list;
158 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
159 /* The below fields are only relevant to erasure works */
160 struct ubi_wl_entry *e;
161 int torture;
162};
163
164#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 165static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
801c135c
AB
166static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
167 struct rb_root *root);
7b6c32da 168static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e);
801c135c
AB
169#else
170#define paranoid_check_ec(ubi, pnum, ec) 0
171#define paranoid_check_in_wl_tree(e, root)
7b6c32da 172#define paranoid_check_in_pq(ubi, e) 0
801c135c
AB
173#endif
174
801c135c
AB
175/**
176 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
177 * @e: the wear-leveling entry to add
178 * @root: the root of the tree
179 *
180 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
181 * the @ubi->used and @ubi->free RB-trees.
182 */
183static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
184{
185 struct rb_node **p, *parent = NULL;
186
187 p = &root->rb_node;
188 while (*p) {
189 struct ubi_wl_entry *e1;
190
191 parent = *p;
23553b2c 192 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
801c135c
AB
193
194 if (e->ec < e1->ec)
195 p = &(*p)->rb_left;
196 else if (e->ec > e1->ec)
197 p = &(*p)->rb_right;
198 else {
199 ubi_assert(e->pnum != e1->pnum);
200 if (e->pnum < e1->pnum)
201 p = &(*p)->rb_left;
202 else
203 p = &(*p)->rb_right;
204 }
205 }
206
23553b2c
XX
207 rb_link_node(&e->u.rb, parent, p);
208 rb_insert_color(&e->u.rb, root);
801c135c
AB
209}
210
801c135c
AB
211/**
212 * do_work - do one pending work.
213 * @ubi: UBI device description object
214 *
215 * This function returns zero in case of success and a negative error code in
216 * case of failure.
217 */
218static int do_work(struct ubi_device *ubi)
219{
220 int err;
221 struct ubi_work *wrk;
222
43f9b25a
AB
223 cond_resched();
224
593dd33c
AB
225 /*
226 * @ubi->work_sem is used to synchronize with the workers. Workers take
227 * it in read mode, so many of them may be doing works at a time. But
228 * the queue flush code has to be sure the whole queue of works is
229 * done, and it takes the mutex in write mode.
230 */
231 down_read(&ubi->work_sem);
801c135c 232 spin_lock(&ubi->wl_lock);
801c135c
AB
233 if (list_empty(&ubi->works)) {
234 spin_unlock(&ubi->wl_lock);
593dd33c 235 up_read(&ubi->work_sem);
801c135c
AB
236 return 0;
237 }
238
239 wrk = list_entry(ubi->works.next, struct ubi_work, list);
240 list_del(&wrk->list);
16f557ec
AB
241 ubi->works_count -= 1;
242 ubi_assert(ubi->works_count >= 0);
801c135c
AB
243 spin_unlock(&ubi->wl_lock);
244
245 /*
246 * Call the worker function. Do not touch the work structure
247 * after this call as it will have been freed or reused by that
248 * time by the worker function.
249 */
250 err = wrk->func(ubi, wrk, 0);
251 if (err)
252 ubi_err("work failed with error code %d", err);
593dd33c 253 up_read(&ubi->work_sem);
16f557ec 254
801c135c
AB
255 return err;
256}
257
258/**
259 * produce_free_peb - produce a free physical eraseblock.
260 * @ubi: UBI device description object
261 *
262 * This function tries to make a free PEB by means of synchronous execution of
263 * pending works. This may be needed if, for example the background thread is
264 * disabled. Returns zero in case of success and a negative error code in case
265 * of failure.
266 */
267static int produce_free_peb(struct ubi_device *ubi)
268{
269 int err;
270
271 spin_lock(&ubi->wl_lock);
5abde384 272 while (!ubi->free.rb_node) {
801c135c
AB
273 spin_unlock(&ubi->wl_lock);
274
275 dbg_wl("do one work synchronously");
276 err = do_work(ubi);
277 if (err)
278 return err;
279
280 spin_lock(&ubi->wl_lock);
281 }
282 spin_unlock(&ubi->wl_lock);
283
284 return 0;
285}
286
287/**
288 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
289 * @e: the wear-leveling entry to check
290 * @root: the root of the tree
291 *
292 * This function returns non-zero if @e is in the @root RB-tree and zero if it
293 * is not.
294 */
295static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
296{
297 struct rb_node *p;
298
299 p = root->rb_node;
300 while (p) {
301 struct ubi_wl_entry *e1;
302
23553b2c 303 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
304
305 if (e->pnum == e1->pnum) {
306 ubi_assert(e == e1);
307 return 1;
308 }
309
310 if (e->ec < e1->ec)
311 p = p->rb_left;
312 else if (e->ec > e1->ec)
313 p = p->rb_right;
314 else {
315 ubi_assert(e->pnum != e1->pnum);
316 if (e->pnum < e1->pnum)
317 p = p->rb_left;
318 else
319 p = p->rb_right;
320 }
321 }
322
323 return 0;
324}
325
326/**
7b6c32da 327 * prot_queue_add - add physical eraseblock to the protection queue.
801c135c
AB
328 * @ubi: UBI device description object
329 * @e: the physical eraseblock to add
801c135c 330 *
7b6c32da
XX
331 * This function adds @e to the tail of the protection queue @ubi->pq, where
332 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
333 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
334 * be locked.
801c135c 335 */
7b6c32da 336static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
801c135c 337{
7b6c32da 338 int pq_tail = ubi->pq_head - 1;
801c135c 339
7b6c32da
XX
340 if (pq_tail < 0)
341 pq_tail = UBI_PROT_QUEUE_LEN - 1;
342 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
343 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
344 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
801c135c
AB
345}
346
347/**
348 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
349 * @root: the RB-tree where to look for
350 * @max: highest possible erase counter
351 *
352 * This function looks for a wear leveling entry with erase counter closest to
353 * @max and less then @max.
354 */
355static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
356{
357 struct rb_node *p;
358 struct ubi_wl_entry *e;
359
23553b2c 360 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
801c135c
AB
361 max += e->ec;
362
363 p = root->rb_node;
364 while (p) {
365 struct ubi_wl_entry *e1;
366
23553b2c 367 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
368 if (e1->ec >= max)
369 p = p->rb_left;
370 else {
371 p = p->rb_right;
372 e = e1;
373 }
374 }
375
376 return e;
377}
378
379/**
380 * ubi_wl_get_peb - get a physical eraseblock.
381 * @ubi: UBI device description object
382 * @dtype: type of data which will be stored in this physical eraseblock
383 *
384 * This function returns a physical eraseblock in case of success and a
385 * negative error code in case of failure. Might sleep.
386 */
387int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
388{
7b6c32da 389 int err, medium_ec;
801c135c 390 struct ubi_wl_entry *e, *first, *last;
801c135c
AB
391
392 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
393 dtype == UBI_UNKNOWN);
394
801c135c
AB
395retry:
396 spin_lock(&ubi->wl_lock);
5abde384 397 if (!ubi->free.rb_node) {
801c135c
AB
398 if (ubi->works_count == 0) {
399 ubi_assert(list_empty(&ubi->works));
400 ubi_err("no free eraseblocks");
401 spin_unlock(&ubi->wl_lock);
801c135c
AB
402 return -ENOSPC;
403 }
404 spin_unlock(&ubi->wl_lock);
405
406 err = produce_free_peb(ubi);
7b6c32da 407 if (err < 0)
801c135c 408 return err;
801c135c
AB
409 goto retry;
410 }
411
412 switch (dtype) {
9c9ec147
AB
413 case UBI_LONGTERM:
414 /*
415 * For long term data we pick a physical eraseblock with high
416 * erase counter. But the highest erase counter we can pick is
417 * bounded by the the lowest erase counter plus
418 * %WL_FREE_MAX_DIFF.
419 */
420 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
9c9ec147
AB
421 break;
422 case UBI_UNKNOWN:
423 /*
424 * For unknown data we pick a physical eraseblock with medium
425 * erase counter. But we by no means can pick a physical
426 * eraseblock with erase counter greater or equivalent than the
427 * lowest erase counter plus %WL_FREE_MAX_DIFF.
428 */
23553b2c
XX
429 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
430 u.rb);
431 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
801c135c 432
9c9ec147
AB
433 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
434 e = rb_entry(ubi->free.rb_node,
23553b2c 435 struct ubi_wl_entry, u.rb);
9c9ec147
AB
436 else {
437 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
438 e = find_wl_entry(&ubi->free, medium_ec);
439 }
9c9ec147
AB
440 break;
441 case UBI_SHORTTERM:
442 /*
443 * For short term data we pick a physical eraseblock with the
444 * lowest erase counter as we expect it will be erased soon.
445 */
23553b2c 446 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
9c9ec147
AB
447 break;
448 default:
9c9ec147 449 BUG();
801c135c
AB
450 }
451
7b6c32da
XX
452 paranoid_check_in_wl_tree(e, &ubi->free);
453
801c135c 454 /*
7b6c32da 455 * Move the physical eraseblock to the protection queue where it will
801c135c
AB
456 * be protected from being moved for some time.
457 */
23553b2c 458 rb_erase(&e->u.rb, &ubi->free);
7b6c32da
XX
459 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
460 prot_queue_add(ubi, e);
801c135c 461 spin_unlock(&ubi->wl_lock);
801c135c
AB
462 return e->pnum;
463}
464
465/**
7b6c32da 466 * prot_queue_del - remove a physical eraseblock from the protection queue.
801c135c
AB
467 * @ubi: UBI device description object
468 * @pnum: the physical eraseblock to remove
43f9b25a 469 *
7b6c32da
XX
470 * This function deletes PEB @pnum from the protection queue and returns zero
471 * in case of success and %-ENODEV if the PEB was not found.
801c135c 472 */
7b6c32da 473static int prot_queue_del(struct ubi_device *ubi, int pnum)
801c135c 474{
7b6c32da 475 struct ubi_wl_entry *e;
801c135c 476
7b6c32da
XX
477 e = ubi->lookuptbl[pnum];
478 if (!e)
479 return -ENODEV;
801c135c 480
7b6c32da
XX
481 if (paranoid_check_in_pq(ubi, e))
482 return -ENODEV;
43f9b25a 483
7b6c32da
XX
484 list_del(&e->u.list);
485 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
43f9b25a 486 return 0;
801c135c
AB
487}
488
489/**
490 * sync_erase - synchronously erase a physical eraseblock.
491 * @ubi: UBI device description object
492 * @e: the the physical eraseblock to erase
493 * @torture: if the physical eraseblock has to be tortured
494 *
495 * This function returns zero in case of success and a negative error code in
496 * case of failure.
497 */
9c9ec147
AB
498static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
499 int torture)
801c135c
AB
500{
501 int err;
502 struct ubi_ec_hdr *ec_hdr;
503 unsigned long long ec = e->ec;
504
505 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
506
507 err = paranoid_check_ec(ubi, e->pnum, e->ec);
508 if (err > 0)
509 return -EINVAL;
510
33818bbb 511 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
512 if (!ec_hdr)
513 return -ENOMEM;
514
515 err = ubi_io_sync_erase(ubi, e->pnum, torture);
516 if (err < 0)
517 goto out_free;
518
519 ec += err;
520 if (ec > UBI_MAX_ERASECOUNTER) {
521 /*
522 * Erase counter overflow. Upgrade UBI and use 64-bit
523 * erase counters internally.
524 */
525 ubi_err("erase counter overflow at PEB %d, EC %llu",
526 e->pnum, ec);
527 err = -EINVAL;
528 goto out_free;
529 }
530
531 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
532
3261ebd7 533 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
534
535 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
536 if (err)
537 goto out_free;
538
539 e->ec = ec;
540 spin_lock(&ubi->wl_lock);
541 if (e->ec > ubi->max_ec)
542 ubi->max_ec = e->ec;
543 spin_unlock(&ubi->wl_lock);
544
545out_free:
546 kfree(ec_hdr);
547 return err;
548}
549
550/**
7b6c32da 551 * serve_prot_queue - check if it is time to stop protecting PEBs.
801c135c
AB
552 * @ubi: UBI device description object
553 *
7b6c32da
XX
554 * This function is called after each erase operation and removes PEBs from the
555 * tail of the protection queue. These PEBs have been protected for long enough
556 * and should be moved to the used tree.
801c135c 557 */
7b6c32da 558static void serve_prot_queue(struct ubi_device *ubi)
801c135c 559{
7b6c32da
XX
560 struct ubi_wl_entry *e, *tmp;
561 int count;
801c135c
AB
562
563 /*
564 * There may be several protected physical eraseblock to remove,
565 * process them all.
566 */
7b6c32da
XX
567repeat:
568 count = 0;
569 spin_lock(&ubi->wl_lock);
570 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
571 dbg_wl("PEB %d EC %d protection over, move to used tree",
572 e->pnum, e->ec);
801c135c 573
7b6c32da
XX
574 list_del(&e->u.list);
575 wl_tree_add(e, &ubi->used);
576 if (count++ > 32) {
577 /*
578 * Let's be nice and avoid holding the spinlock for
579 * too long.
580 */
801c135c 581 spin_unlock(&ubi->wl_lock);
7b6c32da
XX
582 cond_resched();
583 goto repeat;
801c135c 584 }
801c135c 585 }
7b6c32da
XX
586
587 ubi->pq_head += 1;
588 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
589 ubi->pq_head = 0;
590 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
591 spin_unlock(&ubi->wl_lock);
801c135c
AB
592}
593
594/**
595 * schedule_ubi_work - schedule a work.
596 * @ubi: UBI device description object
597 * @wrk: the work to schedule
598 *
7b6c32da
XX
599 * This function adds a work defined by @wrk to the tail of the pending works
600 * list.
801c135c
AB
601 */
602static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
603{
604 spin_lock(&ubi->wl_lock);
605 list_add_tail(&wrk->list, &ubi->works);
606 ubi_assert(ubi->works_count >= 0);
607 ubi->works_count += 1;
608 if (ubi->thread_enabled)
609 wake_up_process(ubi->bgt_thread);
610 spin_unlock(&ubi->wl_lock);
611}
612
613static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
614 int cancel);
615
616/**
617 * schedule_erase - schedule an erase work.
618 * @ubi: UBI device description object
619 * @e: the WL entry of the physical eraseblock to erase
620 * @torture: if the physical eraseblock has to be tortured
621 *
622 * This function returns zero in case of success and a %-ENOMEM in case of
623 * failure.
624 */
625static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
626 int torture)
627{
628 struct ubi_work *wl_wrk;
629
630 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
631 e->pnum, e->ec, torture);
632
33818bbb 633 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
634 if (!wl_wrk)
635 return -ENOMEM;
636
637 wl_wrk->func = &erase_worker;
638 wl_wrk->e = e;
639 wl_wrk->torture = torture;
640
641 schedule_ubi_work(ubi, wl_wrk);
642 return 0;
643}
644
645/**
646 * wear_leveling_worker - wear-leveling worker function.
647 * @ubi: UBI device description object
648 * @wrk: the work object
649 * @cancel: non-zero if the worker has to free memory and exit
650 *
651 * This function copies a more worn out physical eraseblock to a less worn out
652 * one. Returns zero in case of success and a negative error code in case of
653 * failure.
654 */
655static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
656 int cancel)
657{
b86a2c56 658 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
9c259a52 659 int vol_id = -1, uninitialized_var(lnum);
801c135c
AB
660 struct ubi_wl_entry *e1, *e2;
661 struct ubi_vid_hdr *vid_hdr;
662
663 kfree(wrk);
801c135c
AB
664 if (cancel)
665 return 0;
666
33818bbb 667 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
668 if (!vid_hdr)
669 return -ENOMEM;
670
43f9b25a 671 mutex_lock(&ubi->move_mutex);
801c135c 672 spin_lock(&ubi->wl_lock);
43f9b25a
AB
673 ubi_assert(!ubi->move_from && !ubi->move_to);
674 ubi_assert(!ubi->move_to_put);
801c135c 675
43f9b25a 676 if (!ubi->free.rb_node ||
5abde384 677 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
801c135c 678 /*
43f9b25a
AB
679 * No free physical eraseblocks? Well, they must be waiting in
680 * the queue to be erased. Cancel movement - it will be
681 * triggered again when a free physical eraseblock appears.
801c135c
AB
682 *
683 * No used physical eraseblocks? They must be temporarily
684 * protected from being moved. They will be moved to the
685 * @ubi->used tree later and the wear-leveling will be
686 * triggered again.
687 */
688 dbg_wl("cancel WL, a list is empty: free %d, used %d",
5abde384 689 !ubi->free.rb_node, !ubi->used.rb_node);
43f9b25a 690 goto out_cancel;
801c135c
AB
691 }
692
5abde384 693 if (!ubi->scrub.rb_node) {
801c135c
AB
694 /*
695 * Now pick the least worn-out used physical eraseblock and a
696 * highly worn-out free physical eraseblock. If the erase
697 * counters differ much enough, start wear-leveling.
698 */
23553b2c 699 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
801c135c
AB
700 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
701
702 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
703 dbg_wl("no WL needed: min used EC %d, max free EC %d",
704 e1->ec, e2->ec);
43f9b25a 705 goto out_cancel;
801c135c 706 }
5abde384 707 paranoid_check_in_wl_tree(e1, &ubi->used);
23553b2c 708 rb_erase(&e1->u.rb, &ubi->used);
801c135c
AB
709 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
710 e1->pnum, e1->ec, e2->pnum, e2->ec);
711 } else {
43f9b25a
AB
712 /* Perform scrubbing */
713 scrubbing = 1;
23553b2c 714 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
801c135c 715 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
5abde384 716 paranoid_check_in_wl_tree(e1, &ubi->scrub);
23553b2c 717 rb_erase(&e1->u.rb, &ubi->scrub);
801c135c
AB
718 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
719 }
720
5abde384 721 paranoid_check_in_wl_tree(e2, &ubi->free);
23553b2c 722 rb_erase(&e2->u.rb, &ubi->free);
801c135c
AB
723 ubi->move_from = e1;
724 ubi->move_to = e2;
725 spin_unlock(&ubi->wl_lock);
726
727 /*
728 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
729 * We so far do not know which logical eraseblock our physical
730 * eraseblock (@e1) belongs to. We have to read the volume identifier
731 * header first.
43f9b25a
AB
732 *
733 * Note, we are protected from this PEB being unmapped and erased. The
734 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
735 * which is being moved was unmapped.
801c135c
AB
736 */
737
738 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
739 if (err && err != UBI_IO_BITFLIPS) {
740 if (err == UBI_IO_PEB_FREE) {
741 /*
742 * We are trying to move PEB without a VID header. UBI
743 * always write VID headers shortly after the PEB was
87960c0b
AB
744 * given, so we have a situation when it has not yet
745 * had a chance to write it, because it was preempted.
746 * So add this PEB to the protection queue so far,
747 * because presubably more data will be written there
748 * (including the missin VID header), and then we'll
749 * move it.
801c135c
AB
750 */
751 dbg_wl("PEB %d has no VID header", e1->pnum);
87960c0b 752 protect = 1;
43f9b25a 753 goto out_not_moved;
801c135c 754 }
43f9b25a
AB
755
756 ubi_err("error %d while reading VID header from PEB %d",
757 err, e1->pnum);
43f9b25a 758 goto out_error;
801c135c
AB
759 }
760
9c259a52
AB
761 vol_id = be32_to_cpu(vid_hdr->vol_id);
762 lnum = be32_to_cpu(vid_hdr->lnum);
763
801c135c
AB
764 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
765 if (err) {
87960c0b
AB
766 if (err == MOVE_CANCEL_RACE) {
767 /*
768 * The LEB has not been moved because the volume is
769 * being deleted or the PEB has been put meanwhile. We
770 * should prevent this PEB from being selected for
771 * wear-leveling movement again, so put it to the
772 * protection queue.
773 */
774 protect = 1;
775 goto out_not_moved;
776 }
777
b86a2c56
AB
778 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
779 err == MOVE_TARGET_RD_ERR) {
9c259a52
AB
780 /*
781 * Target PEB had bit-flips or write error - torture it.
782 */
6fa6f5bb 783 torture = 1;
43f9b25a 784 goto out_not_moved;
6fa6f5bb 785 }
87960c0b 786
b86a2c56
AB
787 if (err == MOVE_SOURCE_RD_ERR) {
788 /*
789 * An error happened while reading the source PEB. Do
790 * not switch to R/O mode in this case, and give the
791 * upper layers a possibility to recover from this,
792 * e.g. by unmapping corresponding LEB. Instead, just
793 * put thie PEB to the @ubi->erroneus list to prevent
794 * UBI from trying to move the over and over again.
795 */
796 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
797 ubi_err("too many erroneous eraseblocks (%d)",
798 ubi->erroneous_peb_count);
799 goto out_error;
800 }
801 erroneous = 1;
802 goto out_not_moved;
803 }
804
90bf0265
AB
805 if (err < 0)
806 goto out_error;
43f9b25a 807
87960c0b 808 ubi_assert(0);
801c135c
AB
809 }
810
6a8f483f 811 /* The PEB has been successfully moved */
6a8f483f 812 if (scrubbing)
9c259a52
AB
813 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
814 e1->pnum, vol_id, lnum, e2->pnum);
815 ubi_free_vid_hdr(ubi, vid_hdr);
8c1e6ee1 816
801c135c 817 spin_lock(&ubi->wl_lock);
3c98b0a0 818 if (!ubi->move_to_put) {
5abde384 819 wl_tree_add(e2, &ubi->used);
3c98b0a0
AB
820 e2 = NULL;
821 }
801c135c 822 ubi->move_from = ubi->move_to = NULL;
43f9b25a 823 ubi->move_to_put = ubi->wl_scheduled = 0;
801c135c
AB
824 spin_unlock(&ubi->wl_lock);
825
6a8f483f 826 err = schedule_erase(ubi, e1, 0);
3c98b0a0 827 if (err) {
87960c0b
AB
828 kmem_cache_free(ubi_wl_entry_slab, e1);
829 kmem_cache_free(ubi_wl_entry_slab, e2);
830 goto out_ro;
3c98b0a0 831 }
6a8f483f 832
3c98b0a0 833 if (e2) {
801c135c
AB
834 /*
835 * Well, the target PEB was put meanwhile, schedule it for
836 * erasure.
837 */
9c259a52
AB
838 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
839 e2->pnum, vol_id, lnum);
801c135c 840 err = schedule_erase(ubi, e2, 0);
87960c0b
AB
841 if (err) {
842 kmem_cache_free(ubi_wl_entry_slab, e2);
843 goto out_ro;
844 }
801c135c
AB
845 }
846
801c135c 847 dbg_wl("done");
43f9b25a
AB
848 mutex_unlock(&ubi->move_mutex);
849 return 0;
801c135c
AB
850
851 /*
43f9b25a
AB
852 * For some reasons the LEB was not moved, might be an error, might be
853 * something else. @e1 was not changed, so return it back. @e2 might
6fa6f5bb 854 * have been changed, schedule it for erasure.
801c135c 855 */
43f9b25a 856out_not_moved:
9c259a52
AB
857 if (vol_id != -1)
858 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
859 e1->pnum, vol_id, lnum, e2->pnum, err);
860 else
861 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
862 e1->pnum, e2->pnum, err);
801c135c 863 spin_lock(&ubi->wl_lock);
87960c0b
AB
864 if (protect)
865 prot_queue_add(ubi, e1);
b86a2c56
AB
866 else if (erroneous) {
867 wl_tree_add(e1, &ubi->erroneous);
868 ubi->erroneous_peb_count += 1;
869 } else if (scrubbing)
43f9b25a 870 wl_tree_add(e1, &ubi->scrub);
801c135c 871 else
5abde384 872 wl_tree_add(e1, &ubi->used);
6fa6f5bb 873 ubi_assert(!ubi->move_to_put);
801c135c 874 ubi->move_from = ubi->move_to = NULL;
6fa6f5bb 875 ubi->wl_scheduled = 0;
801c135c
AB
876 spin_unlock(&ubi->wl_lock);
877
87960c0b 878 ubi_free_vid_hdr(ubi, vid_hdr);
6fa6f5bb 879 err = schedule_erase(ubi, e2, torture);
87960c0b
AB
880 if (err) {
881 kmem_cache_free(ubi_wl_entry_slab, e2);
882 goto out_ro;
883 }
43f9b25a
AB
884 mutex_unlock(&ubi->move_mutex);
885 return 0;
886
887out_error:
9c259a52
AB
888 if (vol_id != -1)
889 ubi_err("error %d while moving PEB %d to PEB %d",
890 err, e1->pnum, e2->pnum);
891 else
892 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
893 err, e1->pnum, vol_id, lnum, e2->pnum);
43f9b25a
AB
894 spin_lock(&ubi->wl_lock);
895 ubi->move_from = ubi->move_to = NULL;
896 ubi->move_to_put = ubi->wl_scheduled = 0;
897 spin_unlock(&ubi->wl_lock);
898
87960c0b
AB
899 ubi_free_vid_hdr(ubi, vid_hdr);
900 kmem_cache_free(ubi_wl_entry_slab, e1);
901 kmem_cache_free(ubi_wl_entry_slab, e2);
43f9b25a 902
87960c0b
AB
903out_ro:
904 ubi_ro_mode(ubi);
43f9b25a 905 mutex_unlock(&ubi->move_mutex);
87960c0b
AB
906 ubi_assert(err != 0);
907 return err < 0 ? err : -EIO;
43f9b25a
AB
908
909out_cancel:
910 ubi->wl_scheduled = 0;
911 spin_unlock(&ubi->wl_lock);
912 mutex_unlock(&ubi->move_mutex);
913 ubi_free_vid_hdr(ubi, vid_hdr);
914 return 0;
801c135c
AB
915}
916
917/**
918 * ensure_wear_leveling - schedule wear-leveling if it is needed.
919 * @ubi: UBI device description object
920 *
921 * This function checks if it is time to start wear-leveling and schedules it
922 * if yes. This function returns zero in case of success and a negative error
923 * code in case of failure.
924 */
925static int ensure_wear_leveling(struct ubi_device *ubi)
926{
927 int err = 0;
928 struct ubi_wl_entry *e1;
929 struct ubi_wl_entry *e2;
930 struct ubi_work *wrk;
931
932 spin_lock(&ubi->wl_lock);
933 if (ubi->wl_scheduled)
934 /* Wear-leveling is already in the work queue */
935 goto out_unlock;
936
937 /*
938 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
939 * the WL worker has to be scheduled anyway.
940 */
5abde384
AB
941 if (!ubi->scrub.rb_node) {
942 if (!ubi->used.rb_node || !ubi->free.rb_node)
801c135c
AB
943 /* No physical eraseblocks - no deal */
944 goto out_unlock;
945
946 /*
947 * We schedule wear-leveling only if the difference between the
948 * lowest erase counter of used physical eraseblocks and a high
025dfdaf 949 * erase counter of free physical eraseblocks is greater than
801c135c
AB
950 * %UBI_WL_THRESHOLD.
951 */
23553b2c 952 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
801c135c
AB
953 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
954
955 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
956 goto out_unlock;
957 dbg_wl("schedule wear-leveling");
958 } else
959 dbg_wl("schedule scrubbing");
960
961 ubi->wl_scheduled = 1;
962 spin_unlock(&ubi->wl_lock);
963
33818bbb 964 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
965 if (!wrk) {
966 err = -ENOMEM;
967 goto out_cancel;
968 }
969
970 wrk->func = &wear_leveling_worker;
971 schedule_ubi_work(ubi, wrk);
972 return err;
973
974out_cancel:
975 spin_lock(&ubi->wl_lock);
976 ubi->wl_scheduled = 0;
977out_unlock:
978 spin_unlock(&ubi->wl_lock);
979 return err;
980}
981
982/**
983 * erase_worker - physical eraseblock erase worker function.
984 * @ubi: UBI device description object
985 * @wl_wrk: the work object
986 * @cancel: non-zero if the worker has to free memory and exit
987 *
988 * This function erases a physical eraseblock and perform torture testing if
989 * needed. It also takes care about marking the physical eraseblock bad if
990 * needed. Returns zero in case of success and a negative error code in case of
991 * failure.
992 */
993static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
994 int cancel)
995{
801c135c 996 struct ubi_wl_entry *e = wl_wrk->e;
784c1454 997 int pnum = e->pnum, err, need;
801c135c
AB
998
999 if (cancel) {
1000 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1001 kfree(wl_wrk);
06b68ba1 1002 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1003 return 0;
1004 }
1005
1006 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1007
1008 err = sync_erase(ubi, e, wl_wrk->torture);
1009 if (!err) {
1010 /* Fine, we've erased it successfully */
1011 kfree(wl_wrk);
1012
1013 spin_lock(&ubi->wl_lock);
5abde384 1014 wl_tree_add(e, &ubi->free);
801c135c
AB
1015 spin_unlock(&ubi->wl_lock);
1016
1017 /*
9c9ec147
AB
1018 * One more erase operation has happened, take care about
1019 * protected physical eraseblocks.
801c135c 1020 */
7b6c32da 1021 serve_prot_queue(ubi);
801c135c
AB
1022
1023 /* And take care about wear-leveling */
1024 err = ensure_wear_leveling(ubi);
1025 return err;
1026 }
1027
8d2d4011 1028 ubi_err("failed to erase PEB %d, error %d", pnum, err);
801c135c 1029 kfree(wl_wrk);
06b68ba1 1030 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c 1031
784c1454
AB
1032 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1033 err == -EBUSY) {
1034 int err1;
1035
1036 /* Re-schedule the LEB for erasure */
1037 err1 = schedule_erase(ubi, e, 0);
1038 if (err1) {
1039 err = err1;
1040 goto out_ro;
1041 }
1042 return err;
1043 } else if (err != -EIO) {
801c135c
AB
1044 /*
1045 * If this is not %-EIO, we have no idea what to do. Scheduling
1046 * this physical eraseblock for erasure again would cause
1047 * errors again and again. Well, lets switch to RO mode.
1048 */
784c1454 1049 goto out_ro;
801c135c
AB
1050 }
1051
1052 /* It is %-EIO, the PEB went bad */
1053
1054 if (!ubi->bad_allowed) {
1055 ubi_err("bad physical eraseblock %d detected", pnum);
784c1454
AB
1056 goto out_ro;
1057 }
801c135c 1058
784c1454
AB
1059 spin_lock(&ubi->volumes_lock);
1060 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1061 if (need > 0) {
1062 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1063 ubi->avail_pebs -= need;
1064 ubi->rsvd_pebs += need;
1065 ubi->beb_rsvd_pebs += need;
1066 if (need > 0)
1067 ubi_msg("reserve more %d PEBs", need);
1068 }
801c135c 1069
784c1454 1070 if (ubi->beb_rsvd_pebs == 0) {
801c135c 1071 spin_unlock(&ubi->volumes_lock);
784c1454
AB
1072 ubi_err("no reserved physical eraseblocks");
1073 goto out_ro;
1074 }
801c135c 1075
784c1454
AB
1076 spin_unlock(&ubi->volumes_lock);
1077 ubi_msg("mark PEB %d as bad", pnum);
801c135c 1078
784c1454
AB
1079 err = ubi_io_mark_bad(ubi, pnum);
1080 if (err)
1081 goto out_ro;
1082
1083 spin_lock(&ubi->volumes_lock);
1084 ubi->beb_rsvd_pebs -= 1;
1085 ubi->bad_peb_count += 1;
1086 ubi->good_peb_count -= 1;
1087 ubi_calculate_reserved(ubi);
1088 if (ubi->beb_rsvd_pebs == 0)
1089 ubi_warn("last PEB from the reserved pool was used");
1090 spin_unlock(&ubi->volumes_lock);
1091
1092 return err;
801c135c 1093
784c1454
AB
1094out_ro:
1095 ubi_ro_mode(ubi);
801c135c
AB
1096 return err;
1097}
1098
1099/**
85c6e6e2 1100 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
801c135c
AB
1101 * @ubi: UBI device description object
1102 * @pnum: physical eraseblock to return
1103 * @torture: if this physical eraseblock has to be tortured
1104 *
1105 * This function is called to return physical eraseblock @pnum to the pool of
1106 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1107 * occurred to this @pnum and it has to be tested. This function returns zero
43f9b25a 1108 * in case of success, and a negative error code in case of failure.
801c135c
AB
1109 */
1110int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1111{
1112 int err;
1113 struct ubi_wl_entry *e;
1114
1115 dbg_wl("PEB %d", pnum);
1116 ubi_assert(pnum >= 0);
1117 ubi_assert(pnum < ubi->peb_count);
1118
43f9b25a 1119retry:
801c135c 1120 spin_lock(&ubi->wl_lock);
801c135c
AB
1121 e = ubi->lookuptbl[pnum];
1122 if (e == ubi->move_from) {
1123 /*
1124 * User is putting the physical eraseblock which was selected to
1125 * be moved. It will be scheduled for erasure in the
1126 * wear-leveling worker.
1127 */
43f9b25a 1128 dbg_wl("PEB %d is being moved, wait", pnum);
801c135c 1129 spin_unlock(&ubi->wl_lock);
43f9b25a
AB
1130
1131 /* Wait for the WL worker by taking the @ubi->move_mutex */
1132 mutex_lock(&ubi->move_mutex);
1133 mutex_unlock(&ubi->move_mutex);
1134 goto retry;
801c135c
AB
1135 } else if (e == ubi->move_to) {
1136 /*
1137 * User is putting the physical eraseblock which was selected
1138 * as the target the data is moved to. It may happen if the EBA
85c6e6e2
AB
1139 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1140 * but the WL sub-system has not put the PEB to the "used" tree
1141 * yet, but it is about to do this. So we just set a flag which
1142 * will tell the WL worker that the PEB is not needed anymore
1143 * and should be scheduled for erasure.
801c135c
AB
1144 */
1145 dbg_wl("PEB %d is the target of data moving", pnum);
1146 ubi_assert(!ubi->move_to_put);
1147 ubi->move_to_put = 1;
1148 spin_unlock(&ubi->wl_lock);
1149 return 0;
1150 } else {
5abde384
AB
1151 if (in_wl_tree(e, &ubi->used)) {
1152 paranoid_check_in_wl_tree(e, &ubi->used);
23553b2c 1153 rb_erase(&e->u.rb, &ubi->used);
5abde384
AB
1154 } else if (in_wl_tree(e, &ubi->scrub)) {
1155 paranoid_check_in_wl_tree(e, &ubi->scrub);
23553b2c 1156 rb_erase(&e->u.rb, &ubi->scrub);
b86a2c56
AB
1157 } else if (in_wl_tree(e, &ubi->erroneous)) {
1158 paranoid_check_in_wl_tree(e, &ubi->erroneous);
1159 rb_erase(&e->u.rb, &ubi->erroneous);
1160 ubi->erroneous_peb_count -= 1;
1161 ubi_assert(ubi->erroneous_peb_count >= 0);
1162 /* Erronious PEBs should be tortured */
1163 torture = 1;
43f9b25a 1164 } else {
7b6c32da 1165 err = prot_queue_del(ubi, e->pnum);
43f9b25a
AB
1166 if (err) {
1167 ubi_err("PEB %d not found", pnum);
1168 ubi_ro_mode(ubi);
1169 spin_unlock(&ubi->wl_lock);
1170 return err;
1171 }
1172 }
801c135c
AB
1173 }
1174 spin_unlock(&ubi->wl_lock);
1175
1176 err = schedule_erase(ubi, e, torture);
1177 if (err) {
1178 spin_lock(&ubi->wl_lock);
5abde384 1179 wl_tree_add(e, &ubi->used);
801c135c
AB
1180 spin_unlock(&ubi->wl_lock);
1181 }
1182
1183 return err;
1184}
1185
1186/**
1187 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1188 * @ubi: UBI device description object
1189 * @pnum: the physical eraseblock to schedule
1190 *
1191 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1192 * needs scrubbing. This function schedules a physical eraseblock for
1193 * scrubbing which is done in background. This function returns zero in case of
1194 * success and a negative error code in case of failure.
1195 */
1196int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1197{
1198 struct ubi_wl_entry *e;
1199
8c1e6ee1 1200 dbg_msg("schedule PEB %d for scrubbing", pnum);
801c135c
AB
1201
1202retry:
1203 spin_lock(&ubi->wl_lock);
1204 e = ubi->lookuptbl[pnum];
1205 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1206 spin_unlock(&ubi->wl_lock);
1207 return 0;
1208 }
1209
1210 if (e == ubi->move_to) {
1211 /*
1212 * This physical eraseblock was used to move data to. The data
1213 * was moved but the PEB was not yet inserted to the proper
1214 * tree. We should just wait a little and let the WL worker
1215 * proceed.
1216 */
1217 spin_unlock(&ubi->wl_lock);
1218 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1219 yield();
1220 goto retry;
1221 }
1222
5abde384
AB
1223 if (in_wl_tree(e, &ubi->used)) {
1224 paranoid_check_in_wl_tree(e, &ubi->used);
23553b2c 1225 rb_erase(&e->u.rb, &ubi->used);
43f9b25a
AB
1226 } else {
1227 int err;
1228
7b6c32da 1229 err = prot_queue_del(ubi, e->pnum);
43f9b25a
AB
1230 if (err) {
1231 ubi_err("PEB %d not found", pnum);
1232 ubi_ro_mode(ubi);
1233 spin_unlock(&ubi->wl_lock);
1234 return err;
1235 }
1236 }
801c135c 1237
5abde384 1238 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1239 spin_unlock(&ubi->wl_lock);
1240
1241 /*
1242 * Technically scrubbing is the same as wear-leveling, so it is done
1243 * by the WL worker.
1244 */
1245 return ensure_wear_leveling(ubi);
1246}
1247
1248/**
1249 * ubi_wl_flush - flush all pending works.
1250 * @ubi: UBI device description object
1251 *
1252 * This function returns zero in case of success and a negative error code in
1253 * case of failure.
1254 */
1255int ubi_wl_flush(struct ubi_device *ubi)
1256{
593dd33c 1257 int err;
801c135c
AB
1258
1259 /*
7b6c32da 1260 * Erase while the pending works queue is not empty, but not more than
801c135c
AB
1261 * the number of currently pending works.
1262 */
593dd33c
AB
1263 dbg_wl("flush (%d pending works)", ubi->works_count);
1264 while (ubi->works_count) {
1265 err = do_work(ubi);
1266 if (err)
1267 return err;
1268 }
1269
1270 /*
1271 * Make sure all the works which have been done in parallel are
1272 * finished.
1273 */
1274 down_write(&ubi->work_sem);
1275 up_write(&ubi->work_sem);
1276
1277 /*
6fa6f5bb 1278 * And in case last was the WL worker and it canceled the LEB
593dd33c
AB
1279 * movement, flush again.
1280 */
1281 while (ubi->works_count) {
1282 dbg_wl("flush more (%d pending works)", ubi->works_count);
801c135c
AB
1283 err = do_work(ubi);
1284 if (err)
1285 return err;
1286 }
1287
1288 return 0;
1289}
1290
1291/**
1292 * tree_destroy - destroy an RB-tree.
1293 * @root: the root of the tree to destroy
1294 */
1295static void tree_destroy(struct rb_root *root)
1296{
1297 struct rb_node *rb;
1298 struct ubi_wl_entry *e;
1299
1300 rb = root->rb_node;
1301 while (rb) {
1302 if (rb->rb_left)
1303 rb = rb->rb_left;
1304 else if (rb->rb_right)
1305 rb = rb->rb_right;
1306 else {
23553b2c 1307 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
801c135c
AB
1308
1309 rb = rb_parent(rb);
1310 if (rb) {
23553b2c 1311 if (rb->rb_left == &e->u.rb)
801c135c
AB
1312 rb->rb_left = NULL;
1313 else
1314 rb->rb_right = NULL;
1315 }
1316
06b68ba1 1317 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1318 }
1319 }
1320}
1321
1322/**
1323 * ubi_thread - UBI background thread.
1324 * @u: the UBI device description object pointer
1325 */
cdfa788a 1326int ubi_thread(void *u)
801c135c
AB
1327{
1328 int failures = 0;
1329 struct ubi_device *ubi = u;
1330
1331 ubi_msg("background thread \"%s\" started, PID %d",
ba25f9dc 1332 ubi->bgt_name, task_pid_nr(current));
801c135c 1333
83144186 1334 set_freezable();
801c135c
AB
1335 for (;;) {
1336 int err;
1337
1338 if (kthread_should_stop())
cadb40cc 1339 break;
801c135c
AB
1340
1341 if (try_to_freeze())
1342 continue;
1343
1344 spin_lock(&ubi->wl_lock);
1345 if (list_empty(&ubi->works) || ubi->ro_mode ||
1346 !ubi->thread_enabled) {
1347 set_current_state(TASK_INTERRUPTIBLE);
1348 spin_unlock(&ubi->wl_lock);
1349 schedule();
1350 continue;
1351 }
1352 spin_unlock(&ubi->wl_lock);
1353
1354 err = do_work(ubi);
1355 if (err) {
1356 ubi_err("%s: work failed with error code %d",
1357 ubi->bgt_name, err);
1358 if (failures++ > WL_MAX_FAILURES) {
1359 /*
1360 * Too many failures, disable the thread and
1361 * switch to read-only mode.
1362 */
1363 ubi_msg("%s: %d consecutive failures",
1364 ubi->bgt_name, WL_MAX_FAILURES);
1365 ubi_ro_mode(ubi);
2ad49887
VG
1366 ubi->thread_enabled = 0;
1367 continue;
801c135c
AB
1368 }
1369 } else
1370 failures = 0;
1371
1372 cond_resched();
1373 }
1374
801c135c
AB
1375 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1376 return 0;
1377}
1378
1379/**
1380 * cancel_pending - cancel all pending works.
1381 * @ubi: UBI device description object
1382 */
1383static void cancel_pending(struct ubi_device *ubi)
1384{
1385 while (!list_empty(&ubi->works)) {
1386 struct ubi_work *wrk;
1387
1388 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1389 list_del(&wrk->list);
1390 wrk->func(ubi, wrk, 1);
1391 ubi->works_count -= 1;
1392 ubi_assert(ubi->works_count >= 0);
1393 }
1394}
1395
1396/**
85c6e6e2 1397 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
801c135c
AB
1398 * @ubi: UBI device description object
1399 * @si: scanning information
1400 *
1401 * This function returns zero in case of success, and a negative error code in
1402 * case of failure.
1403 */
1404int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1405{
7b6c32da 1406 int err, i;
801c135c
AB
1407 struct rb_node *rb1, *rb2;
1408 struct ubi_scan_volume *sv;
1409 struct ubi_scan_leb *seb, *tmp;
1410 struct ubi_wl_entry *e;
1411
b86a2c56 1412 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
801c135c 1413 spin_lock_init(&ubi->wl_lock);
43f9b25a 1414 mutex_init(&ubi->move_mutex);
593dd33c 1415 init_rwsem(&ubi->work_sem);
801c135c
AB
1416 ubi->max_ec = si->max_ec;
1417 INIT_LIST_HEAD(&ubi->works);
1418
1419 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1420
801c135c
AB
1421 err = -ENOMEM;
1422 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1423 if (!ubi->lookuptbl)
cdfa788a 1424 return err;
801c135c 1425
7b6c32da
XX
1426 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1427 INIT_LIST_HEAD(&ubi->pq[i]);
1428 ubi->pq_head = 0;
1429
801c135c
AB
1430 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1431 cond_resched();
1432
06b68ba1 1433 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1434 if (!e)
1435 goto out_free;
1436
1437 e->pnum = seb->pnum;
1438 e->ec = seb->ec;
1439 ubi->lookuptbl[e->pnum] = e;
1440 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1441 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1442 goto out_free;
1443 }
1444 }
1445
1446 list_for_each_entry(seb, &si->free, u.list) {
1447 cond_resched();
1448
06b68ba1 1449 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1450 if (!e)
1451 goto out_free;
1452
1453 e->pnum = seb->pnum;
1454 e->ec = seb->ec;
1455 ubi_assert(e->ec >= 0);
5abde384 1456 wl_tree_add(e, &ubi->free);
801c135c
AB
1457 ubi->lookuptbl[e->pnum] = e;
1458 }
1459
1460 list_for_each_entry(seb, &si->corr, u.list) {
1461 cond_resched();
1462
06b68ba1 1463 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1464 if (!e)
1465 goto out_free;
1466
1467 e->pnum = seb->pnum;
1468 e->ec = seb->ec;
1469 ubi->lookuptbl[e->pnum] = e;
1470 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1471 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1472 goto out_free;
1473 }
1474 }
1475
1476 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1477 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1478 cond_resched();
1479
06b68ba1 1480 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1481 if (!e)
1482 goto out_free;
1483
1484 e->pnum = seb->pnum;
1485 e->ec = seb->ec;
1486 ubi->lookuptbl[e->pnum] = e;
1487 if (!seb->scrub) {
1488 dbg_wl("add PEB %d EC %d to the used tree",
1489 e->pnum, e->ec);
5abde384 1490 wl_tree_add(e, &ubi->used);
801c135c
AB
1491 } else {
1492 dbg_wl("add PEB %d EC %d to the scrub tree",
1493 e->pnum, e->ec);
5abde384 1494 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1495 }
1496 }
1497 }
1498
5abde384 1499 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
801c135c
AB
1500 ubi_err("no enough physical eraseblocks (%d, need %d)",
1501 ubi->avail_pebs, WL_RESERVED_PEBS);
1502 goto out_free;
1503 }
1504 ubi->avail_pebs -= WL_RESERVED_PEBS;
1505 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1506
1507 /* Schedule wear-leveling if needed */
1508 err = ensure_wear_leveling(ubi);
1509 if (err)
1510 goto out_free;
1511
1512 return 0;
1513
1514out_free:
1515 cancel_pending(ubi);
1516 tree_destroy(&ubi->used);
1517 tree_destroy(&ubi->free);
1518 tree_destroy(&ubi->scrub);
1519 kfree(ubi->lookuptbl);
801c135c
AB
1520 return err;
1521}
1522
1523/**
7b6c32da 1524 * protection_queue_destroy - destroy the protection queue.
801c135c
AB
1525 * @ubi: UBI device description object
1526 */
7b6c32da 1527static void protection_queue_destroy(struct ubi_device *ubi)
801c135c 1528{
7b6c32da
XX
1529 int i;
1530 struct ubi_wl_entry *e, *tmp;
801c135c 1531
7b6c32da
XX
1532 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1533 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1534 list_del(&e->u.list);
1535 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1536 }
1537 }
1538}
1539
1540/**
85c6e6e2 1541 * ubi_wl_close - close the wear-leveling sub-system.
801c135c
AB
1542 * @ubi: UBI device description object
1543 */
1544void ubi_wl_close(struct ubi_device *ubi)
1545{
85c6e6e2 1546 dbg_wl("close the WL sub-system");
801c135c 1547 cancel_pending(ubi);
7b6c32da 1548 protection_queue_destroy(ubi);
801c135c 1549 tree_destroy(&ubi->used);
b86a2c56 1550 tree_destroy(&ubi->erroneous);
801c135c
AB
1551 tree_destroy(&ubi->free);
1552 tree_destroy(&ubi->scrub);
1553 kfree(ubi->lookuptbl);
801c135c
AB
1554}
1555
1556#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1557
1558/**
ebaaf1af 1559 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
801c135c
AB
1560 * @ubi: UBI device description object
1561 * @pnum: the physical eraseblock number to check
1562 * @ec: the erase counter to check
1563 *
1564 * This function returns zero if the erase counter of physical eraseblock @pnum
1565 * is equivalent to @ec, %1 if not, and a negative error code if an error
1566 * occurred.
1567 */
e88d6e10 1568static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
801c135c
AB
1569{
1570 int err;
1571 long long read_ec;
1572 struct ubi_ec_hdr *ec_hdr;
1573
33818bbb 1574 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1575 if (!ec_hdr)
1576 return -ENOMEM;
1577
1578 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1579 if (err && err != UBI_IO_BITFLIPS) {
1580 /* The header does not have to exist */
1581 err = 0;
1582 goto out_free;
1583 }
1584
3261ebd7 1585 read_ec = be64_to_cpu(ec_hdr->ec);
801c135c
AB
1586 if (ec != read_ec) {
1587 ubi_err("paranoid check failed for PEB %d", pnum);
1588 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1589 ubi_dbg_dump_stack();
1590 err = 1;
1591 } else
1592 err = 0;
1593
1594out_free:
1595 kfree(ec_hdr);
1596 return err;
1597}
1598
1599/**
ebaaf1af 1600 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
801c135c
AB
1601 * @e: the wear-leveling entry to check
1602 * @root: the root of the tree
1603 *
ebaaf1af
AB
1604 * This function returns zero if @e is in the @root RB-tree and %1 if it is
1605 * not.
801c135c
AB
1606 */
1607static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1608 struct rb_root *root)
1609{
1610 if (in_wl_tree(e, root))
1611 return 0;
1612
1613 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1614 e->pnum, e->ec, root);
1615 ubi_dbg_dump_stack();
1616 return 1;
1617}
1618
7b6c32da
XX
1619/**
1620 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1621 * queue.
1622 * @ubi: UBI device description object
1623 * @e: the wear-leveling entry to check
1624 *
1625 * This function returns zero if @e is in @ubi->pq and %1 if it is not.
1626 */
1627static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e)
1628{
1629 struct ubi_wl_entry *p;
1630 int i;
1631
1632 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1633 list_for_each_entry(p, &ubi->pq[i], u.list)
1634 if (p == e)
1635 return 0;
1636
1637 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1638 e->pnum, e->ec);
1639 ubi_dbg_dump_stack();
1640 return 1;
1641}
801c135c 1642#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */