]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/mtd/ubi/wl.c
UBI: return -ENOMEM upon failing vmalloc
[mirror_ubuntu-eoan-kernel.git] / drivers / mtd / ubi / wl.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21/*
85c6e6e2 22 * UBI wear-leveling sub-system.
801c135c 23 *
85c6e6e2
AB
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical* eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
801c135c
AB
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
85c6e6e2 32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
801c135c 33 *
85c6e6e2 34 * When physical eraseblocks are returned to the WL sub-system by means of the
801c135c
AB
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
85c6e6e2 37 * which is also managed by the WL sub-system.
801c135c
AB
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
85c6e6e2
AB
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
801c135c 48 *
85c6e6e2
AB
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50 * bad.
801c135c 51 *
85c6e6e2
AB
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
801c135c 55 *
85c6e6e2
AB
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58 * used eraseblocks are kept in a set of different RB-trees: @wl->used,
801c135c
AB
59 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
60 *
61 * Note, in this implementation, we keep a small in-RAM object for each physical
62 * eraseblock. This is surely not a scalable solution. But it appears to be good
63 * enough for moderately large flashes and it is simple. In future, one may
85c6e6e2 64 * re-work this sub-system and make it more scalable.
801c135c 65 *
85c6e6e2
AB
66 * At the moment this sub-system does not utilize the sequence number, which
67 * was introduced relatively recently. But it would be wise to do this because
68 * the sequence number of a logical eraseblock characterizes how old is it. For
801c135c
AB
69 * example, when we move a PEB with low erase counter, and we need to pick the
70 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
71 * pick target PEB with an average EC if our PEB is not very "old". This is a
85c6e6e2 72 * room for future re-works of the WL sub-system.
801c135c 73 *
85c6e6e2
AB
74 * Note: the stuff with protection trees looks too complex and is difficult to
75 * understand. Should be fixed.
801c135c
AB
76 */
77
78#include <linux/slab.h>
79#include <linux/crc32.h>
80#include <linux/freezer.h>
81#include <linux/kthread.h>
82#include "ubi.h"
83
84/* Number of physical eraseblocks reserved for wear-leveling purposes */
85#define WL_RESERVED_PEBS 1
86
87/*
88 * How many erase cycles are short term, unknown, and long term physical
89 * eraseblocks protected.
90 */
91#define ST_PROTECTION 16
92#define U_PROTECTION 10
93#define LT_PROTECTION 4
94
95/*
96 * Maximum difference between two erase counters. If this threshold is
85c6e6e2
AB
97 * exceeded, the WL sub-system starts moving data from used physical
98 * eraseblocks with low erase counter to free physical eraseblocks with high
99 * erase counter.
801c135c
AB
100 */
101#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
102
103/*
85c6e6e2 104 * When a physical eraseblock is moved, the WL sub-system has to pick the target
801c135c
AB
105 * physical eraseblock to move to. The simplest way would be just to pick the
106 * one with the highest erase counter. But in certain workloads this could lead
107 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
108 * situation when the picked physical eraseblock is constantly erased after the
109 * data is written to it. So, we have a constant which limits the highest erase
85c6e6e2
AB
110 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
111 * does not pick eraseblocks with erase counter greater then the lowest erase
801c135c
AB
112 * counter plus %WL_FREE_MAX_DIFF.
113 */
114#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
115
116/*
117 * Maximum number of consecutive background thread failures which is enough to
118 * switch to read-only mode.
119 */
120#define WL_MAX_FAILURES 32
121
801c135c
AB
122/**
123 * struct ubi_wl_prot_entry - PEB protection entry.
124 * @rb_pnum: link in the @wl->prot.pnum RB-tree
125 * @rb_aec: link in the @wl->prot.aec RB-tree
126 * @abs_ec: the absolute erase counter value when the protection ends
127 * @e: the wear-leveling entry of the physical eraseblock under protection
128 *
85c6e6e2
AB
129 * When the WL sub-system returns a physical eraseblock, the physical
130 * eraseblock is protected from being moved for some "time". For this reason,
131 * the physical eraseblock is not directly moved from the @wl->free tree to the
132 * @wl->used tree. There is one more tree in between where this physical
133 * eraseblock is temporarily stored (@wl->prot).
801c135c
AB
134 *
135 * All this protection stuff is needed because:
136 * o we don't want to move physical eraseblocks just after we have given them
137 * to the user; instead, we first want to let users fill them up with data;
138 *
139 * o there is a chance that the user will put the physical eraseblock very
140 * soon, so it makes sense not to move it for some time, but wait; this is
141 * especially important in case of "short term" physical eraseblocks.
142 *
143 * Physical eraseblocks stay protected only for limited time. But the "time" is
144 * measured in erase cycles in this case. This is implemented with help of the
145 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
146 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
147 * the @wl->used tree.
148 *
149 * Protected physical eraseblocks are searched by physical eraseblock number
150 * (when they are put) and by the absolute erase counter (to check if it is
151 * time to move them to the @wl->used tree). So there are actually 2 RB-trees
152 * storing the protected physical eraseblocks: @wl->prot.pnum and
153 * @wl->prot.aec. They are referred to as the "protection" trees. The
154 * first one is indexed by the physical eraseblock number. The second one is
155 * indexed by the absolute erase counter. Both trees store
156 * &struct ubi_wl_prot_entry objects.
157 *
158 * Each physical eraseblock has 2 main states: free and used. The former state
159 * corresponds to the @wl->free tree. The latter state is split up on several
160 * sub-states:
161 * o the WL movement is allowed (@wl->used tree);
162 * o the WL movement is temporarily prohibited (@wl->prot.pnum and
163 * @wl->prot.aec trees);
164 * o scrubbing is needed (@wl->scrub tree).
165 *
166 * Depending on the sub-state, wear-leveling entries of the used physical
167 * eraseblocks may be kept in one of those trees.
168 */
169struct ubi_wl_prot_entry {
170 struct rb_node rb_pnum;
171 struct rb_node rb_aec;
172 unsigned long long abs_ec;
173 struct ubi_wl_entry *e;
174};
175
176/**
177 * struct ubi_work - UBI work description data structure.
178 * @list: a link in the list of pending works
179 * @func: worker function
180 * @priv: private data of the worker function
801c135c
AB
181 * @e: physical eraseblock to erase
182 * @torture: if the physical eraseblock has to be tortured
183 *
184 * The @func pointer points to the worker function. If the @cancel argument is
185 * not zero, the worker has to free the resources and exit immediately. The
186 * worker has to return zero in case of success and a negative error code in
187 * case of failure.
188 */
189struct ubi_work {
190 struct list_head list;
191 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
192 /* The below fields are only relevant to erasure works */
193 struct ubi_wl_entry *e;
194 int torture;
195};
196
197#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 198static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
801c135c
AB
199static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
200 struct rb_root *root);
201#else
202#define paranoid_check_ec(ubi, pnum, ec) 0
203#define paranoid_check_in_wl_tree(e, root)
204#endif
205
801c135c
AB
206/**
207 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
208 * @e: the wear-leveling entry to add
209 * @root: the root of the tree
210 *
211 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
212 * the @ubi->used and @ubi->free RB-trees.
213 */
214static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
215{
216 struct rb_node **p, *parent = NULL;
217
218 p = &root->rb_node;
219 while (*p) {
220 struct ubi_wl_entry *e1;
221
222 parent = *p;
223 e1 = rb_entry(parent, struct ubi_wl_entry, rb);
224
225 if (e->ec < e1->ec)
226 p = &(*p)->rb_left;
227 else if (e->ec > e1->ec)
228 p = &(*p)->rb_right;
229 else {
230 ubi_assert(e->pnum != e1->pnum);
231 if (e->pnum < e1->pnum)
232 p = &(*p)->rb_left;
233 else
234 p = &(*p)->rb_right;
235 }
236 }
237
238 rb_link_node(&e->rb, parent, p);
239 rb_insert_color(&e->rb, root);
240}
241
801c135c
AB
242/**
243 * do_work - do one pending work.
244 * @ubi: UBI device description object
245 *
246 * This function returns zero in case of success and a negative error code in
247 * case of failure.
248 */
249static int do_work(struct ubi_device *ubi)
250{
251 int err;
252 struct ubi_work *wrk;
253
43f9b25a
AB
254 cond_resched();
255
593dd33c
AB
256 /*
257 * @ubi->work_sem is used to synchronize with the workers. Workers take
258 * it in read mode, so many of them may be doing works at a time. But
259 * the queue flush code has to be sure the whole queue of works is
260 * done, and it takes the mutex in write mode.
261 */
262 down_read(&ubi->work_sem);
801c135c 263 spin_lock(&ubi->wl_lock);
801c135c
AB
264 if (list_empty(&ubi->works)) {
265 spin_unlock(&ubi->wl_lock);
593dd33c 266 up_read(&ubi->work_sem);
801c135c
AB
267 return 0;
268 }
269
270 wrk = list_entry(ubi->works.next, struct ubi_work, list);
271 list_del(&wrk->list);
16f557ec
AB
272 ubi->works_count -= 1;
273 ubi_assert(ubi->works_count >= 0);
801c135c
AB
274 spin_unlock(&ubi->wl_lock);
275
276 /*
277 * Call the worker function. Do not touch the work structure
278 * after this call as it will have been freed or reused by that
279 * time by the worker function.
280 */
281 err = wrk->func(ubi, wrk, 0);
282 if (err)
283 ubi_err("work failed with error code %d", err);
593dd33c 284 up_read(&ubi->work_sem);
16f557ec 285
801c135c
AB
286 return err;
287}
288
289/**
290 * produce_free_peb - produce a free physical eraseblock.
291 * @ubi: UBI device description object
292 *
293 * This function tries to make a free PEB by means of synchronous execution of
294 * pending works. This may be needed if, for example the background thread is
295 * disabled. Returns zero in case of success and a negative error code in case
296 * of failure.
297 */
298static int produce_free_peb(struct ubi_device *ubi)
299{
300 int err;
301
302 spin_lock(&ubi->wl_lock);
5abde384 303 while (!ubi->free.rb_node) {
801c135c
AB
304 spin_unlock(&ubi->wl_lock);
305
306 dbg_wl("do one work synchronously");
307 err = do_work(ubi);
308 if (err)
309 return err;
310
311 spin_lock(&ubi->wl_lock);
312 }
313 spin_unlock(&ubi->wl_lock);
314
315 return 0;
316}
317
318/**
319 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
320 * @e: the wear-leveling entry to check
321 * @root: the root of the tree
322 *
323 * This function returns non-zero if @e is in the @root RB-tree and zero if it
324 * is not.
325 */
326static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
327{
328 struct rb_node *p;
329
330 p = root->rb_node;
331 while (p) {
332 struct ubi_wl_entry *e1;
333
334 e1 = rb_entry(p, struct ubi_wl_entry, rb);
335
336 if (e->pnum == e1->pnum) {
337 ubi_assert(e == e1);
338 return 1;
339 }
340
341 if (e->ec < e1->ec)
342 p = p->rb_left;
343 else if (e->ec > e1->ec)
344 p = p->rb_right;
345 else {
346 ubi_assert(e->pnum != e1->pnum);
347 if (e->pnum < e1->pnum)
348 p = p->rb_left;
349 else
350 p = p->rb_right;
351 }
352 }
353
354 return 0;
355}
356
357/**
358 * prot_tree_add - add physical eraseblock to protection trees.
359 * @ubi: UBI device description object
360 * @e: the physical eraseblock to add
361 * @pe: protection entry object to use
6a8f483f 362 * @ec: for how many erase operations this PEB should be protected
801c135c
AB
363 *
364 * @wl->lock has to be locked.
365 */
366static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
6a8f483f 367 struct ubi_wl_prot_entry *pe, int ec)
801c135c
AB
368{
369 struct rb_node **p, *parent = NULL;
370 struct ubi_wl_prot_entry *pe1;
371
372 pe->e = e;
6a8f483f 373 pe->abs_ec = ubi->abs_ec + ec;
801c135c
AB
374
375 p = &ubi->prot.pnum.rb_node;
376 while (*p) {
377 parent = *p;
378 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
379
380 if (e->pnum < pe1->e->pnum)
381 p = &(*p)->rb_left;
382 else
383 p = &(*p)->rb_right;
384 }
385 rb_link_node(&pe->rb_pnum, parent, p);
386 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
387
388 p = &ubi->prot.aec.rb_node;
389 parent = NULL;
390 while (*p) {
391 parent = *p;
392 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
393
394 if (pe->abs_ec < pe1->abs_ec)
395 p = &(*p)->rb_left;
396 else
397 p = &(*p)->rb_right;
398 }
399 rb_link_node(&pe->rb_aec, parent, p);
400 rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
401}
402
403/**
404 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
405 * @root: the RB-tree where to look for
406 * @max: highest possible erase counter
407 *
408 * This function looks for a wear leveling entry with erase counter closest to
409 * @max and less then @max.
410 */
411static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
412{
413 struct rb_node *p;
414 struct ubi_wl_entry *e;
415
416 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
417 max += e->ec;
418
419 p = root->rb_node;
420 while (p) {
421 struct ubi_wl_entry *e1;
422
423 e1 = rb_entry(p, struct ubi_wl_entry, rb);
424 if (e1->ec >= max)
425 p = p->rb_left;
426 else {
427 p = p->rb_right;
428 e = e1;
429 }
430 }
431
432 return e;
433}
434
435/**
436 * ubi_wl_get_peb - get a physical eraseblock.
437 * @ubi: UBI device description object
438 * @dtype: type of data which will be stored in this physical eraseblock
439 *
440 * This function returns a physical eraseblock in case of success and a
441 * negative error code in case of failure. Might sleep.
442 */
443int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
444{
445 int err, protect, medium_ec;
446 struct ubi_wl_entry *e, *first, *last;
447 struct ubi_wl_prot_entry *pe;
448
449 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
450 dtype == UBI_UNKNOWN);
451
33818bbb 452 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
801c135c
AB
453 if (!pe)
454 return -ENOMEM;
455
456retry:
457 spin_lock(&ubi->wl_lock);
5abde384 458 if (!ubi->free.rb_node) {
801c135c
AB
459 if (ubi->works_count == 0) {
460 ubi_assert(list_empty(&ubi->works));
461 ubi_err("no free eraseblocks");
462 spin_unlock(&ubi->wl_lock);
463 kfree(pe);
464 return -ENOSPC;
465 }
466 spin_unlock(&ubi->wl_lock);
467
468 err = produce_free_peb(ubi);
469 if (err < 0) {
470 kfree(pe);
471 return err;
472 }
473 goto retry;
474 }
475
476 switch (dtype) {
9c9ec147
AB
477 case UBI_LONGTERM:
478 /*
479 * For long term data we pick a physical eraseblock with high
480 * erase counter. But the highest erase counter we can pick is
481 * bounded by the the lowest erase counter plus
482 * %WL_FREE_MAX_DIFF.
483 */
484 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
485 protect = LT_PROTECTION;
486 break;
487 case UBI_UNKNOWN:
488 /*
489 * For unknown data we pick a physical eraseblock with medium
490 * erase counter. But we by no means can pick a physical
491 * eraseblock with erase counter greater or equivalent than the
492 * lowest erase counter plus %WL_FREE_MAX_DIFF.
493 */
494 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
495 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, rb);
801c135c 496
9c9ec147
AB
497 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
498 e = rb_entry(ubi->free.rb_node,
499 struct ubi_wl_entry, rb);
500 else {
501 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
502 e = find_wl_entry(&ubi->free, medium_ec);
503 }
504 protect = U_PROTECTION;
505 break;
506 case UBI_SHORTTERM:
507 /*
508 * For short term data we pick a physical eraseblock with the
509 * lowest erase counter as we expect it will be erased soon.
510 */
511 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
512 protect = ST_PROTECTION;
513 break;
514 default:
515 protect = 0;
516 e = NULL;
517 BUG();
801c135c
AB
518 }
519
520 /*
521 * Move the physical eraseblock to the protection trees where it will
522 * be protected from being moved for some time.
523 */
5abde384
AB
524 paranoid_check_in_wl_tree(e, &ubi->free);
525 rb_erase(&e->rb, &ubi->free);
801c135c
AB
526 prot_tree_add(ubi, e, pe, protect);
527
528 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
529 spin_unlock(&ubi->wl_lock);
530
531 return e->pnum;
532}
533
534/**
535 * prot_tree_del - remove a physical eraseblock from the protection trees
536 * @ubi: UBI device description object
537 * @pnum: the physical eraseblock to remove
43f9b25a
AB
538 *
539 * This function returns PEB @pnum from the protection trees and returns zero
540 * in case of success and %-ENODEV if the PEB was not found in the protection
541 * trees.
801c135c 542 */
43f9b25a 543static int prot_tree_del(struct ubi_device *ubi, int pnum)
801c135c
AB
544{
545 struct rb_node *p;
546 struct ubi_wl_prot_entry *pe = NULL;
547
548 p = ubi->prot.pnum.rb_node;
549 while (p) {
550
551 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
552
553 if (pnum == pe->e->pnum)
43f9b25a 554 goto found;
801c135c
AB
555
556 if (pnum < pe->e->pnum)
557 p = p->rb_left;
558 else
559 p = p->rb_right;
560 }
561
43f9b25a
AB
562 return -ENODEV;
563
564found:
801c135c
AB
565 ubi_assert(pe->e->pnum == pnum);
566 rb_erase(&pe->rb_aec, &ubi->prot.aec);
567 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
568 kfree(pe);
43f9b25a 569 return 0;
801c135c
AB
570}
571
572/**
573 * sync_erase - synchronously erase a physical eraseblock.
574 * @ubi: UBI device description object
575 * @e: the the physical eraseblock to erase
576 * @torture: if the physical eraseblock has to be tortured
577 *
578 * This function returns zero in case of success and a negative error code in
579 * case of failure.
580 */
9c9ec147
AB
581static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
582 int torture)
801c135c
AB
583{
584 int err;
585 struct ubi_ec_hdr *ec_hdr;
586 unsigned long long ec = e->ec;
587
588 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
589
590 err = paranoid_check_ec(ubi, e->pnum, e->ec);
591 if (err > 0)
592 return -EINVAL;
593
33818bbb 594 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
595 if (!ec_hdr)
596 return -ENOMEM;
597
598 err = ubi_io_sync_erase(ubi, e->pnum, torture);
599 if (err < 0)
600 goto out_free;
601
602 ec += err;
603 if (ec > UBI_MAX_ERASECOUNTER) {
604 /*
605 * Erase counter overflow. Upgrade UBI and use 64-bit
606 * erase counters internally.
607 */
608 ubi_err("erase counter overflow at PEB %d, EC %llu",
609 e->pnum, ec);
610 err = -EINVAL;
611 goto out_free;
612 }
613
614 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
615
3261ebd7 616 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
617
618 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
619 if (err)
620 goto out_free;
621
622 e->ec = ec;
623 spin_lock(&ubi->wl_lock);
624 if (e->ec > ubi->max_ec)
625 ubi->max_ec = e->ec;
626 spin_unlock(&ubi->wl_lock);
627
628out_free:
629 kfree(ec_hdr);
630 return err;
631}
632
633/**
ebaaf1af 634 * check_protection_over - check if it is time to stop protecting some PEBs.
801c135c
AB
635 * @ubi: UBI device description object
636 *
637 * This function is called after each erase operation, when the absolute erase
638 * counter is incremented, to check if some physical eraseblock have not to be
639 * protected any longer. These physical eraseblocks are moved from the
640 * protection trees to the used tree.
641 */
642static void check_protection_over(struct ubi_device *ubi)
643{
644 struct ubi_wl_prot_entry *pe;
645
646 /*
647 * There may be several protected physical eraseblock to remove,
648 * process them all.
649 */
650 while (1) {
651 spin_lock(&ubi->wl_lock);
5abde384 652 if (!ubi->prot.aec.rb_node) {
801c135c
AB
653 spin_unlock(&ubi->wl_lock);
654 break;
655 }
656
657 pe = rb_entry(rb_first(&ubi->prot.aec),
658 struct ubi_wl_prot_entry, rb_aec);
659
660 if (pe->abs_ec > ubi->abs_ec) {
661 spin_unlock(&ubi->wl_lock);
662 break;
663 }
664
665 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
666 pe->e->pnum, ubi->abs_ec, pe->abs_ec);
667 rb_erase(&pe->rb_aec, &ubi->prot.aec);
668 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
5abde384 669 wl_tree_add(pe->e, &ubi->used);
801c135c
AB
670 spin_unlock(&ubi->wl_lock);
671
672 kfree(pe);
673 cond_resched();
674 }
675}
676
677/**
678 * schedule_ubi_work - schedule a work.
679 * @ubi: UBI device description object
680 * @wrk: the work to schedule
681 *
682 * This function enqueues a work defined by @wrk to the tail of the pending
683 * works list.
684 */
685static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
686{
687 spin_lock(&ubi->wl_lock);
688 list_add_tail(&wrk->list, &ubi->works);
689 ubi_assert(ubi->works_count >= 0);
690 ubi->works_count += 1;
691 if (ubi->thread_enabled)
692 wake_up_process(ubi->bgt_thread);
693 spin_unlock(&ubi->wl_lock);
694}
695
696static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
697 int cancel);
698
699/**
700 * schedule_erase - schedule an erase work.
701 * @ubi: UBI device description object
702 * @e: the WL entry of the physical eraseblock to erase
703 * @torture: if the physical eraseblock has to be tortured
704 *
705 * This function returns zero in case of success and a %-ENOMEM in case of
706 * failure.
707 */
708static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
709 int torture)
710{
711 struct ubi_work *wl_wrk;
712
713 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
714 e->pnum, e->ec, torture);
715
33818bbb 716 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
717 if (!wl_wrk)
718 return -ENOMEM;
719
720 wl_wrk->func = &erase_worker;
721 wl_wrk->e = e;
722 wl_wrk->torture = torture;
723
724 schedule_ubi_work(ubi, wl_wrk);
725 return 0;
726}
727
728/**
729 * wear_leveling_worker - wear-leveling worker function.
730 * @ubi: UBI device description object
731 * @wrk: the work object
732 * @cancel: non-zero if the worker has to free memory and exit
733 *
734 * This function copies a more worn out physical eraseblock to a less worn out
735 * one. Returns zero in case of success and a negative error code in case of
736 * failure.
737 */
738static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
739 int cancel)
740{
6fa6f5bb 741 int err, scrubbing = 0, torture = 0;
c18a8418 742 struct ubi_wl_prot_entry *uninitialized_var(pe);
801c135c
AB
743 struct ubi_wl_entry *e1, *e2;
744 struct ubi_vid_hdr *vid_hdr;
745
746 kfree(wrk);
801c135c
AB
747 if (cancel)
748 return 0;
749
33818bbb 750 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
751 if (!vid_hdr)
752 return -ENOMEM;
753
43f9b25a 754 mutex_lock(&ubi->move_mutex);
801c135c 755 spin_lock(&ubi->wl_lock);
43f9b25a
AB
756 ubi_assert(!ubi->move_from && !ubi->move_to);
757 ubi_assert(!ubi->move_to_put);
801c135c 758
43f9b25a 759 if (!ubi->free.rb_node ||
5abde384 760 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
801c135c 761 /*
43f9b25a
AB
762 * No free physical eraseblocks? Well, they must be waiting in
763 * the queue to be erased. Cancel movement - it will be
764 * triggered again when a free physical eraseblock appears.
801c135c
AB
765 *
766 * No used physical eraseblocks? They must be temporarily
767 * protected from being moved. They will be moved to the
768 * @ubi->used tree later and the wear-leveling will be
769 * triggered again.
770 */
771 dbg_wl("cancel WL, a list is empty: free %d, used %d",
5abde384 772 !ubi->free.rb_node, !ubi->used.rb_node);
43f9b25a 773 goto out_cancel;
801c135c
AB
774 }
775
5abde384 776 if (!ubi->scrub.rb_node) {
801c135c
AB
777 /*
778 * Now pick the least worn-out used physical eraseblock and a
779 * highly worn-out free physical eraseblock. If the erase
780 * counters differ much enough, start wear-leveling.
781 */
782 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
783 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
784
785 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
786 dbg_wl("no WL needed: min used EC %d, max free EC %d",
787 e1->ec, e2->ec);
43f9b25a 788 goto out_cancel;
801c135c 789 }
5abde384
AB
790 paranoid_check_in_wl_tree(e1, &ubi->used);
791 rb_erase(&e1->rb, &ubi->used);
801c135c
AB
792 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
793 e1->pnum, e1->ec, e2->pnum, e2->ec);
794 } else {
43f9b25a
AB
795 /* Perform scrubbing */
796 scrubbing = 1;
801c135c
AB
797 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
798 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
5abde384 799 paranoid_check_in_wl_tree(e1, &ubi->scrub);
d2c46855 800 rb_erase(&e1->rb, &ubi->scrub);
801c135c
AB
801 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
802 }
803
5abde384
AB
804 paranoid_check_in_wl_tree(e2, &ubi->free);
805 rb_erase(&e2->rb, &ubi->free);
801c135c
AB
806 ubi->move_from = e1;
807 ubi->move_to = e2;
808 spin_unlock(&ubi->wl_lock);
809
810 /*
811 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
812 * We so far do not know which logical eraseblock our physical
813 * eraseblock (@e1) belongs to. We have to read the volume identifier
814 * header first.
43f9b25a
AB
815 *
816 * Note, we are protected from this PEB being unmapped and erased. The
817 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
818 * which is being moved was unmapped.
801c135c
AB
819 */
820
821 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
822 if (err && err != UBI_IO_BITFLIPS) {
823 if (err == UBI_IO_PEB_FREE) {
824 /*
825 * We are trying to move PEB without a VID header. UBI
826 * always write VID headers shortly after the PEB was
827 * given, so we have a situation when it did not have
828 * chance to write it down because it was preempted.
829 * Just re-schedule the work, so that next time it will
830 * likely have the VID header in place.
831 */
832 dbg_wl("PEB %d has no VID header", e1->pnum);
43f9b25a 833 goto out_not_moved;
801c135c 834 }
43f9b25a
AB
835
836 ubi_err("error %d while reading VID header from PEB %d",
837 err, e1->pnum);
838 if (err > 0)
839 err = -EIO;
840 goto out_error;
801c135c
AB
841 }
842
843 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
844 if (err) {
6fa6f5bb
AB
845 if (err == -EAGAIN)
846 goto out_not_moved;
43f9b25a
AB
847 if (err < 0)
848 goto out_error;
6fa6f5bb
AB
849 if (err == 2) {
850 /* Target PEB write error, torture it */
851 torture = 1;
43f9b25a 852 goto out_not_moved;
6fa6f5bb 853 }
43f9b25a
AB
854
855 /*
6fa6f5bb
AB
856 * The LEB has not been moved because the volume is being
857 * deleted or the PEB has been put meanwhile. We should prevent
858 * this PEB from being selected for wear-leveling movement
859 * again, so put it to the protection tree.
43f9b25a
AB
860 */
861
6fa6f5bb
AB
862 dbg_wl("canceled moving PEB %d", e1->pnum);
863 ubi_assert(err == 1);
864
43f9b25a
AB
865 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
866 if (!pe) {
867 err = -ENOMEM;
868 goto out_error;
869 }
870
6a8f483f 871 ubi_free_vid_hdr(ubi, vid_hdr);
3c98b0a0
AB
872 vid_hdr = NULL;
873
6a8f483f
AB
874 spin_lock(&ubi->wl_lock);
875 prot_tree_add(ubi, e1, pe, U_PROTECTION);
876 ubi_assert(!ubi->move_to_put);
877 ubi->move_from = ubi->move_to = NULL;
878 ubi->wl_scheduled = 0;
879 spin_unlock(&ubi->wl_lock);
880
3c98b0a0 881 e1 = NULL;
6a8f483f
AB
882 err = schedule_erase(ubi, e2, 0);
883 if (err)
884 goto out_error;
885 mutex_unlock(&ubi->move_mutex);
886 return 0;
801c135c
AB
887 }
888
6a8f483f 889 /* The PEB has been successfully moved */
801c135c 890 ubi_free_vid_hdr(ubi, vid_hdr);
3c98b0a0 891 vid_hdr = NULL;
6a8f483f 892 if (scrubbing)
8c1e6ee1
AB
893 ubi_msg("scrubbed PEB %d, data moved to PEB %d",
894 e1->pnum, e2->pnum);
895
801c135c 896 spin_lock(&ubi->wl_lock);
3c98b0a0 897 if (!ubi->move_to_put) {
5abde384 898 wl_tree_add(e2, &ubi->used);
3c98b0a0
AB
899 e2 = NULL;
900 }
801c135c 901 ubi->move_from = ubi->move_to = NULL;
43f9b25a 902 ubi->move_to_put = ubi->wl_scheduled = 0;
801c135c
AB
903 spin_unlock(&ubi->wl_lock);
904
6a8f483f 905 err = schedule_erase(ubi, e1, 0);
3c98b0a0
AB
906 if (err) {
907 e1 = NULL;
6a8f483f 908 goto out_error;
3c98b0a0 909 }
6a8f483f 910
3c98b0a0 911 if (e2) {
801c135c
AB
912 /*
913 * Well, the target PEB was put meanwhile, schedule it for
914 * erasure.
915 */
916 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
917 err = schedule_erase(ubi, e2, 0);
43f9b25a
AB
918 if (err)
919 goto out_error;
801c135c
AB
920 }
921
801c135c 922 dbg_wl("done");
43f9b25a
AB
923 mutex_unlock(&ubi->move_mutex);
924 return 0;
801c135c
AB
925
926 /*
43f9b25a
AB
927 * For some reasons the LEB was not moved, might be an error, might be
928 * something else. @e1 was not changed, so return it back. @e2 might
6fa6f5bb 929 * have been changed, schedule it for erasure.
801c135c 930 */
43f9b25a 931out_not_moved:
6fa6f5bb 932 dbg_wl("canceled moving PEB %d", e1->pnum);
801c135c 933 ubi_free_vid_hdr(ubi, vid_hdr);
3c98b0a0 934 vid_hdr = NULL;
801c135c 935 spin_lock(&ubi->wl_lock);
43f9b25a
AB
936 if (scrubbing)
937 wl_tree_add(e1, &ubi->scrub);
801c135c 938 else
5abde384 939 wl_tree_add(e1, &ubi->used);
6fa6f5bb 940 ubi_assert(!ubi->move_to_put);
801c135c 941 ubi->move_from = ubi->move_to = NULL;
6fa6f5bb 942 ubi->wl_scheduled = 0;
801c135c
AB
943 spin_unlock(&ubi->wl_lock);
944
3c98b0a0 945 e1 = NULL;
6fa6f5bb 946 err = schedule_erase(ubi, e2, torture);
43f9b25a
AB
947 if (err)
948 goto out_error;
949
950 mutex_unlock(&ubi->move_mutex);
951 return 0;
952
953out_error:
954 ubi_err("error %d while moving PEB %d to PEB %d",
955 err, e1->pnum, e2->pnum);
801c135c 956
43f9b25a
AB
957 ubi_free_vid_hdr(ubi, vid_hdr);
958 spin_lock(&ubi->wl_lock);
959 ubi->move_from = ubi->move_to = NULL;
960 ubi->move_to_put = ubi->wl_scheduled = 0;
961 spin_unlock(&ubi->wl_lock);
962
3c98b0a0
AB
963 if (e1)
964 kmem_cache_free(ubi_wl_entry_slab, e1);
965 if (e2)
966 kmem_cache_free(ubi_wl_entry_slab, e2);
43f9b25a
AB
967 ubi_ro_mode(ubi);
968
969 mutex_unlock(&ubi->move_mutex);
801c135c 970 return err;
43f9b25a
AB
971
972out_cancel:
973 ubi->wl_scheduled = 0;
974 spin_unlock(&ubi->wl_lock);
975 mutex_unlock(&ubi->move_mutex);
976 ubi_free_vid_hdr(ubi, vid_hdr);
977 return 0;
801c135c
AB
978}
979
980/**
981 * ensure_wear_leveling - schedule wear-leveling if it is needed.
982 * @ubi: UBI device description object
983 *
984 * This function checks if it is time to start wear-leveling and schedules it
985 * if yes. This function returns zero in case of success and a negative error
986 * code in case of failure.
987 */
988static int ensure_wear_leveling(struct ubi_device *ubi)
989{
990 int err = 0;
991 struct ubi_wl_entry *e1;
992 struct ubi_wl_entry *e2;
993 struct ubi_work *wrk;
994
995 spin_lock(&ubi->wl_lock);
996 if (ubi->wl_scheduled)
997 /* Wear-leveling is already in the work queue */
998 goto out_unlock;
999
1000 /*
1001 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1002 * the WL worker has to be scheduled anyway.
1003 */
5abde384
AB
1004 if (!ubi->scrub.rb_node) {
1005 if (!ubi->used.rb_node || !ubi->free.rb_node)
801c135c
AB
1006 /* No physical eraseblocks - no deal */
1007 goto out_unlock;
1008
1009 /*
1010 * We schedule wear-leveling only if the difference between the
1011 * lowest erase counter of used physical eraseblocks and a high
1012 * erase counter of free physical eraseblocks is greater then
1013 * %UBI_WL_THRESHOLD.
1014 */
1015 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
1016 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
1017
1018 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1019 goto out_unlock;
1020 dbg_wl("schedule wear-leveling");
1021 } else
1022 dbg_wl("schedule scrubbing");
1023
1024 ubi->wl_scheduled = 1;
1025 spin_unlock(&ubi->wl_lock);
1026
33818bbb 1027 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
1028 if (!wrk) {
1029 err = -ENOMEM;
1030 goto out_cancel;
1031 }
1032
1033 wrk->func = &wear_leveling_worker;
1034 schedule_ubi_work(ubi, wrk);
1035 return err;
1036
1037out_cancel:
1038 spin_lock(&ubi->wl_lock);
1039 ubi->wl_scheduled = 0;
1040out_unlock:
1041 spin_unlock(&ubi->wl_lock);
1042 return err;
1043}
1044
1045/**
1046 * erase_worker - physical eraseblock erase worker function.
1047 * @ubi: UBI device description object
1048 * @wl_wrk: the work object
1049 * @cancel: non-zero if the worker has to free memory and exit
1050 *
1051 * This function erases a physical eraseblock and perform torture testing if
1052 * needed. It also takes care about marking the physical eraseblock bad if
1053 * needed. Returns zero in case of success and a negative error code in case of
1054 * failure.
1055 */
1056static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1057 int cancel)
1058{
801c135c 1059 struct ubi_wl_entry *e = wl_wrk->e;
784c1454 1060 int pnum = e->pnum, err, need;
801c135c
AB
1061
1062 if (cancel) {
1063 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1064 kfree(wl_wrk);
06b68ba1 1065 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1066 return 0;
1067 }
1068
1069 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1070
1071 err = sync_erase(ubi, e, wl_wrk->torture);
1072 if (!err) {
1073 /* Fine, we've erased it successfully */
1074 kfree(wl_wrk);
1075
1076 spin_lock(&ubi->wl_lock);
1077 ubi->abs_ec += 1;
5abde384 1078 wl_tree_add(e, &ubi->free);
801c135c
AB
1079 spin_unlock(&ubi->wl_lock);
1080
1081 /*
9c9ec147
AB
1082 * One more erase operation has happened, take care about
1083 * protected physical eraseblocks.
801c135c
AB
1084 */
1085 check_protection_over(ubi);
1086
1087 /* And take care about wear-leveling */
1088 err = ensure_wear_leveling(ubi);
1089 return err;
1090 }
1091
8d2d4011 1092 ubi_err("failed to erase PEB %d, error %d", pnum, err);
801c135c 1093 kfree(wl_wrk);
06b68ba1 1094 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c 1095
784c1454
AB
1096 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1097 err == -EBUSY) {
1098 int err1;
1099
1100 /* Re-schedule the LEB for erasure */
1101 err1 = schedule_erase(ubi, e, 0);
1102 if (err1) {
1103 err = err1;
1104 goto out_ro;
1105 }
1106 return err;
1107 } else if (err != -EIO) {
801c135c
AB
1108 /*
1109 * If this is not %-EIO, we have no idea what to do. Scheduling
1110 * this physical eraseblock for erasure again would cause
1111 * errors again and again. Well, lets switch to RO mode.
1112 */
784c1454 1113 goto out_ro;
801c135c
AB
1114 }
1115
1116 /* It is %-EIO, the PEB went bad */
1117
1118 if (!ubi->bad_allowed) {
1119 ubi_err("bad physical eraseblock %d detected", pnum);
784c1454
AB
1120 goto out_ro;
1121 }
801c135c 1122
784c1454
AB
1123 spin_lock(&ubi->volumes_lock);
1124 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1125 if (need > 0) {
1126 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1127 ubi->avail_pebs -= need;
1128 ubi->rsvd_pebs += need;
1129 ubi->beb_rsvd_pebs += need;
1130 if (need > 0)
1131 ubi_msg("reserve more %d PEBs", need);
1132 }
801c135c 1133
784c1454 1134 if (ubi->beb_rsvd_pebs == 0) {
801c135c 1135 spin_unlock(&ubi->volumes_lock);
784c1454
AB
1136 ubi_err("no reserved physical eraseblocks");
1137 goto out_ro;
1138 }
801c135c 1139
784c1454
AB
1140 spin_unlock(&ubi->volumes_lock);
1141 ubi_msg("mark PEB %d as bad", pnum);
801c135c 1142
784c1454
AB
1143 err = ubi_io_mark_bad(ubi, pnum);
1144 if (err)
1145 goto out_ro;
1146
1147 spin_lock(&ubi->volumes_lock);
1148 ubi->beb_rsvd_pebs -= 1;
1149 ubi->bad_peb_count += 1;
1150 ubi->good_peb_count -= 1;
1151 ubi_calculate_reserved(ubi);
1152 if (ubi->beb_rsvd_pebs == 0)
1153 ubi_warn("last PEB from the reserved pool was used");
1154 spin_unlock(&ubi->volumes_lock);
1155
1156 return err;
801c135c 1157
784c1454
AB
1158out_ro:
1159 ubi_ro_mode(ubi);
801c135c
AB
1160 return err;
1161}
1162
1163/**
85c6e6e2 1164 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
801c135c
AB
1165 * @ubi: UBI device description object
1166 * @pnum: physical eraseblock to return
1167 * @torture: if this physical eraseblock has to be tortured
1168 *
1169 * This function is called to return physical eraseblock @pnum to the pool of
1170 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1171 * occurred to this @pnum and it has to be tested. This function returns zero
43f9b25a 1172 * in case of success, and a negative error code in case of failure.
801c135c
AB
1173 */
1174int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1175{
1176 int err;
1177 struct ubi_wl_entry *e;
1178
1179 dbg_wl("PEB %d", pnum);
1180 ubi_assert(pnum >= 0);
1181 ubi_assert(pnum < ubi->peb_count);
1182
43f9b25a 1183retry:
801c135c 1184 spin_lock(&ubi->wl_lock);
801c135c
AB
1185 e = ubi->lookuptbl[pnum];
1186 if (e == ubi->move_from) {
1187 /*
1188 * User is putting the physical eraseblock which was selected to
1189 * be moved. It will be scheduled for erasure in the
1190 * wear-leveling worker.
1191 */
43f9b25a 1192 dbg_wl("PEB %d is being moved, wait", pnum);
801c135c 1193 spin_unlock(&ubi->wl_lock);
43f9b25a
AB
1194
1195 /* Wait for the WL worker by taking the @ubi->move_mutex */
1196 mutex_lock(&ubi->move_mutex);
1197 mutex_unlock(&ubi->move_mutex);
1198 goto retry;
801c135c
AB
1199 } else if (e == ubi->move_to) {
1200 /*
1201 * User is putting the physical eraseblock which was selected
1202 * as the target the data is moved to. It may happen if the EBA
85c6e6e2
AB
1203 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1204 * but the WL sub-system has not put the PEB to the "used" tree
1205 * yet, but it is about to do this. So we just set a flag which
1206 * will tell the WL worker that the PEB is not needed anymore
1207 * and should be scheduled for erasure.
801c135c
AB
1208 */
1209 dbg_wl("PEB %d is the target of data moving", pnum);
1210 ubi_assert(!ubi->move_to_put);
1211 ubi->move_to_put = 1;
1212 spin_unlock(&ubi->wl_lock);
1213 return 0;
1214 } else {
5abde384
AB
1215 if (in_wl_tree(e, &ubi->used)) {
1216 paranoid_check_in_wl_tree(e, &ubi->used);
1217 rb_erase(&e->rb, &ubi->used);
1218 } else if (in_wl_tree(e, &ubi->scrub)) {
1219 paranoid_check_in_wl_tree(e, &ubi->scrub);
1220 rb_erase(&e->rb, &ubi->scrub);
43f9b25a
AB
1221 } else {
1222 err = prot_tree_del(ubi, e->pnum);
1223 if (err) {
1224 ubi_err("PEB %d not found", pnum);
1225 ubi_ro_mode(ubi);
1226 spin_unlock(&ubi->wl_lock);
1227 return err;
1228 }
1229 }
801c135c
AB
1230 }
1231 spin_unlock(&ubi->wl_lock);
1232
1233 err = schedule_erase(ubi, e, torture);
1234 if (err) {
1235 spin_lock(&ubi->wl_lock);
5abde384 1236 wl_tree_add(e, &ubi->used);
801c135c
AB
1237 spin_unlock(&ubi->wl_lock);
1238 }
1239
1240 return err;
1241}
1242
1243/**
1244 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1245 * @ubi: UBI device description object
1246 * @pnum: the physical eraseblock to schedule
1247 *
1248 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1249 * needs scrubbing. This function schedules a physical eraseblock for
1250 * scrubbing which is done in background. This function returns zero in case of
1251 * success and a negative error code in case of failure.
1252 */
1253int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1254{
1255 struct ubi_wl_entry *e;
1256
8c1e6ee1 1257 dbg_msg("schedule PEB %d for scrubbing", pnum);
801c135c
AB
1258
1259retry:
1260 spin_lock(&ubi->wl_lock);
1261 e = ubi->lookuptbl[pnum];
1262 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1263 spin_unlock(&ubi->wl_lock);
1264 return 0;
1265 }
1266
1267 if (e == ubi->move_to) {
1268 /*
1269 * This physical eraseblock was used to move data to. The data
1270 * was moved but the PEB was not yet inserted to the proper
1271 * tree. We should just wait a little and let the WL worker
1272 * proceed.
1273 */
1274 spin_unlock(&ubi->wl_lock);
1275 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1276 yield();
1277 goto retry;
1278 }
1279
5abde384
AB
1280 if (in_wl_tree(e, &ubi->used)) {
1281 paranoid_check_in_wl_tree(e, &ubi->used);
1282 rb_erase(&e->rb, &ubi->used);
43f9b25a
AB
1283 } else {
1284 int err;
1285
1286 err = prot_tree_del(ubi, e->pnum);
1287 if (err) {
1288 ubi_err("PEB %d not found", pnum);
1289 ubi_ro_mode(ubi);
1290 spin_unlock(&ubi->wl_lock);
1291 return err;
1292 }
1293 }
801c135c 1294
5abde384 1295 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1296 spin_unlock(&ubi->wl_lock);
1297
1298 /*
1299 * Technically scrubbing is the same as wear-leveling, so it is done
1300 * by the WL worker.
1301 */
1302 return ensure_wear_leveling(ubi);
1303}
1304
1305/**
1306 * ubi_wl_flush - flush all pending works.
1307 * @ubi: UBI device description object
1308 *
1309 * This function returns zero in case of success and a negative error code in
1310 * case of failure.
1311 */
1312int ubi_wl_flush(struct ubi_device *ubi)
1313{
593dd33c 1314 int err;
801c135c
AB
1315
1316 /*
1317 * Erase while the pending works queue is not empty, but not more then
1318 * the number of currently pending works.
1319 */
593dd33c
AB
1320 dbg_wl("flush (%d pending works)", ubi->works_count);
1321 while (ubi->works_count) {
1322 err = do_work(ubi);
1323 if (err)
1324 return err;
1325 }
1326
1327 /*
1328 * Make sure all the works which have been done in parallel are
1329 * finished.
1330 */
1331 down_write(&ubi->work_sem);
1332 up_write(&ubi->work_sem);
1333
1334 /*
6fa6f5bb 1335 * And in case last was the WL worker and it canceled the LEB
593dd33c
AB
1336 * movement, flush again.
1337 */
1338 while (ubi->works_count) {
1339 dbg_wl("flush more (%d pending works)", ubi->works_count);
801c135c
AB
1340 err = do_work(ubi);
1341 if (err)
1342 return err;
1343 }
1344
1345 return 0;
1346}
1347
1348/**
1349 * tree_destroy - destroy an RB-tree.
1350 * @root: the root of the tree to destroy
1351 */
1352static void tree_destroy(struct rb_root *root)
1353{
1354 struct rb_node *rb;
1355 struct ubi_wl_entry *e;
1356
1357 rb = root->rb_node;
1358 while (rb) {
1359 if (rb->rb_left)
1360 rb = rb->rb_left;
1361 else if (rb->rb_right)
1362 rb = rb->rb_right;
1363 else {
1364 e = rb_entry(rb, struct ubi_wl_entry, rb);
1365
1366 rb = rb_parent(rb);
1367 if (rb) {
1368 if (rb->rb_left == &e->rb)
1369 rb->rb_left = NULL;
1370 else
1371 rb->rb_right = NULL;
1372 }
1373
06b68ba1 1374 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1375 }
1376 }
1377}
1378
1379/**
1380 * ubi_thread - UBI background thread.
1381 * @u: the UBI device description object pointer
1382 */
cdfa788a 1383int ubi_thread(void *u)
801c135c
AB
1384{
1385 int failures = 0;
1386 struct ubi_device *ubi = u;
1387
1388 ubi_msg("background thread \"%s\" started, PID %d",
ba25f9dc 1389 ubi->bgt_name, task_pid_nr(current));
801c135c 1390
83144186 1391 set_freezable();
801c135c
AB
1392 for (;;) {
1393 int err;
1394
1395 if (kthread_should_stop())
cadb40cc 1396 break;
801c135c
AB
1397
1398 if (try_to_freeze())
1399 continue;
1400
1401 spin_lock(&ubi->wl_lock);
1402 if (list_empty(&ubi->works) || ubi->ro_mode ||
1403 !ubi->thread_enabled) {
1404 set_current_state(TASK_INTERRUPTIBLE);
1405 spin_unlock(&ubi->wl_lock);
1406 schedule();
1407 continue;
1408 }
1409 spin_unlock(&ubi->wl_lock);
1410
1411 err = do_work(ubi);
1412 if (err) {
1413 ubi_err("%s: work failed with error code %d",
1414 ubi->bgt_name, err);
1415 if (failures++ > WL_MAX_FAILURES) {
1416 /*
1417 * Too many failures, disable the thread and
1418 * switch to read-only mode.
1419 */
1420 ubi_msg("%s: %d consecutive failures",
1421 ubi->bgt_name, WL_MAX_FAILURES);
1422 ubi_ro_mode(ubi);
2ad49887
VG
1423 ubi->thread_enabled = 0;
1424 continue;
801c135c
AB
1425 }
1426 } else
1427 failures = 0;
1428
1429 cond_resched();
1430 }
1431
801c135c
AB
1432 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1433 return 0;
1434}
1435
1436/**
1437 * cancel_pending - cancel all pending works.
1438 * @ubi: UBI device description object
1439 */
1440static void cancel_pending(struct ubi_device *ubi)
1441{
1442 while (!list_empty(&ubi->works)) {
1443 struct ubi_work *wrk;
1444
1445 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1446 list_del(&wrk->list);
1447 wrk->func(ubi, wrk, 1);
1448 ubi->works_count -= 1;
1449 ubi_assert(ubi->works_count >= 0);
1450 }
1451}
1452
1453/**
85c6e6e2 1454 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
801c135c
AB
1455 * @ubi: UBI device description object
1456 * @si: scanning information
1457 *
1458 * This function returns zero in case of success, and a negative error code in
1459 * case of failure.
1460 */
1461int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1462{
1463 int err;
1464 struct rb_node *rb1, *rb2;
1465 struct ubi_scan_volume *sv;
1466 struct ubi_scan_leb *seb, *tmp;
1467 struct ubi_wl_entry *e;
1468
1469
1470 ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1471 ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1472 spin_lock_init(&ubi->wl_lock);
43f9b25a 1473 mutex_init(&ubi->move_mutex);
593dd33c 1474 init_rwsem(&ubi->work_sem);
801c135c
AB
1475 ubi->max_ec = si->max_ec;
1476 INIT_LIST_HEAD(&ubi->works);
1477
1478 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1479
801c135c
AB
1480 err = -ENOMEM;
1481 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1482 if (!ubi->lookuptbl)
cdfa788a 1483 return err;
801c135c
AB
1484
1485 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1486 cond_resched();
1487
06b68ba1 1488 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1489 if (!e)
1490 goto out_free;
1491
1492 e->pnum = seb->pnum;
1493 e->ec = seb->ec;
1494 ubi->lookuptbl[e->pnum] = e;
1495 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1496 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1497 goto out_free;
1498 }
1499 }
1500
1501 list_for_each_entry(seb, &si->free, u.list) {
1502 cond_resched();
1503
06b68ba1 1504 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1505 if (!e)
1506 goto out_free;
1507
1508 e->pnum = seb->pnum;
1509 e->ec = seb->ec;
1510 ubi_assert(e->ec >= 0);
5abde384 1511 wl_tree_add(e, &ubi->free);
801c135c
AB
1512 ubi->lookuptbl[e->pnum] = e;
1513 }
1514
1515 list_for_each_entry(seb, &si->corr, u.list) {
1516 cond_resched();
1517
06b68ba1 1518 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1519 if (!e)
1520 goto out_free;
1521
1522 e->pnum = seb->pnum;
1523 e->ec = seb->ec;
1524 ubi->lookuptbl[e->pnum] = e;
1525 if (schedule_erase(ubi, e, 0)) {
06b68ba1 1526 kmem_cache_free(ubi_wl_entry_slab, e);
801c135c
AB
1527 goto out_free;
1528 }
1529 }
1530
1531 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1532 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1533 cond_resched();
1534
06b68ba1 1535 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1536 if (!e)
1537 goto out_free;
1538
1539 e->pnum = seb->pnum;
1540 e->ec = seb->ec;
1541 ubi->lookuptbl[e->pnum] = e;
1542 if (!seb->scrub) {
1543 dbg_wl("add PEB %d EC %d to the used tree",
1544 e->pnum, e->ec);
5abde384 1545 wl_tree_add(e, &ubi->used);
801c135c
AB
1546 } else {
1547 dbg_wl("add PEB %d EC %d to the scrub tree",
1548 e->pnum, e->ec);
5abde384 1549 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1550 }
1551 }
1552 }
1553
5abde384 1554 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
801c135c
AB
1555 ubi_err("no enough physical eraseblocks (%d, need %d)",
1556 ubi->avail_pebs, WL_RESERVED_PEBS);
1557 goto out_free;
1558 }
1559 ubi->avail_pebs -= WL_RESERVED_PEBS;
1560 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1561
1562 /* Schedule wear-leveling if needed */
1563 err = ensure_wear_leveling(ubi);
1564 if (err)
1565 goto out_free;
1566
1567 return 0;
1568
1569out_free:
1570 cancel_pending(ubi);
1571 tree_destroy(&ubi->used);
1572 tree_destroy(&ubi->free);
1573 tree_destroy(&ubi->scrub);
1574 kfree(ubi->lookuptbl);
801c135c
AB
1575 return err;
1576}
1577
1578/**
1579 * protection_trees_destroy - destroy the protection RB-trees.
1580 * @ubi: UBI device description object
1581 */
1582static void protection_trees_destroy(struct ubi_device *ubi)
1583{
1584 struct rb_node *rb;
1585 struct ubi_wl_prot_entry *pe;
1586
1587 rb = ubi->prot.aec.rb_node;
1588 while (rb) {
1589 if (rb->rb_left)
1590 rb = rb->rb_left;
1591 else if (rb->rb_right)
1592 rb = rb->rb_right;
1593 else {
1594 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1595
1596 rb = rb_parent(rb);
1597 if (rb) {
1598 if (rb->rb_left == &pe->rb_aec)
1599 rb->rb_left = NULL;
1600 else
1601 rb->rb_right = NULL;
1602 }
1603
06b68ba1 1604 kmem_cache_free(ubi_wl_entry_slab, pe->e);
801c135c
AB
1605 kfree(pe);
1606 }
1607 }
1608}
1609
1610/**
85c6e6e2 1611 * ubi_wl_close - close the wear-leveling sub-system.
801c135c
AB
1612 * @ubi: UBI device description object
1613 */
1614void ubi_wl_close(struct ubi_device *ubi)
1615{
85c6e6e2 1616 dbg_wl("close the WL sub-system");
801c135c
AB
1617 cancel_pending(ubi);
1618 protection_trees_destroy(ubi);
1619 tree_destroy(&ubi->used);
1620 tree_destroy(&ubi->free);
1621 tree_destroy(&ubi->scrub);
1622 kfree(ubi->lookuptbl);
801c135c
AB
1623}
1624
1625#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1626
1627/**
ebaaf1af 1628 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
801c135c
AB
1629 * @ubi: UBI device description object
1630 * @pnum: the physical eraseblock number to check
1631 * @ec: the erase counter to check
1632 *
1633 * This function returns zero if the erase counter of physical eraseblock @pnum
1634 * is equivalent to @ec, %1 if not, and a negative error code if an error
1635 * occurred.
1636 */
e88d6e10 1637static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
801c135c
AB
1638{
1639 int err;
1640 long long read_ec;
1641 struct ubi_ec_hdr *ec_hdr;
1642
33818bbb 1643 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1644 if (!ec_hdr)
1645 return -ENOMEM;
1646
1647 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1648 if (err && err != UBI_IO_BITFLIPS) {
1649 /* The header does not have to exist */
1650 err = 0;
1651 goto out_free;
1652 }
1653
3261ebd7 1654 read_ec = be64_to_cpu(ec_hdr->ec);
801c135c
AB
1655 if (ec != read_ec) {
1656 ubi_err("paranoid check failed for PEB %d", pnum);
1657 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1658 ubi_dbg_dump_stack();
1659 err = 1;
1660 } else
1661 err = 0;
1662
1663out_free:
1664 kfree(ec_hdr);
1665 return err;
1666}
1667
1668/**
ebaaf1af 1669 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
801c135c
AB
1670 * @e: the wear-leveling entry to check
1671 * @root: the root of the tree
1672 *
ebaaf1af
AB
1673 * This function returns zero if @e is in the @root RB-tree and %1 if it is
1674 * not.
801c135c
AB
1675 */
1676static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1677 struct rb_root *root)
1678{
1679 if (in_wl_tree(e, root))
1680 return 0;
1681
1682 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1683 e->pnum, e->ec, root);
1684 ubi_dbg_dump_stack();
1685 return 1;
1686}
1687
1688#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */