]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/mtd/ubi/wl.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / ubi / wl.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21/*
85c6e6e2 22 * UBI wear-leveling sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for wear-leveling. It works in terms of
7b6c32da 25 * physical eraseblocks and erase counters and knows nothing about logical
85c6e6e2
AB
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
801c135c
AB
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
85c6e6e2 32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
801c135c 33 *
85c6e6e2 34 * When physical eraseblocks are returned to the WL sub-system by means of the
801c135c
AB
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
85c6e6e2 37 * which is also managed by the WL sub-system.
801c135c
AB
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
85c6e6e2
AB
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44 * bad.
801c135c 45 *
85c6e6e2
AB
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
801c135c 49 *
85c6e6e2
AB
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
b86a2c56
AB
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
7b6c32da
XX
54 *
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
60 *
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
64 *
65 * o there is a chance that the user will put the physical eraseblock very
44156267 66 * soon, so it makes sense not to move it for some time, but wait.
7b6c32da
XX
67 *
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
74 *
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
815bc5f8 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
b86a2c56 80 * erroneous - e.g., there was a read error;
7b6c32da
XX
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
83 *
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
801c135c
AB
86 *
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
85c6e6e2 90 * re-work this sub-system and make it more scalable.
801c135c 91 *
85c6e6e2
AB
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
801c135c
AB
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
85c6e6e2 98 * room for future re-works of the WL sub-system.
801c135c
AB
99 */
100
101#include <linux/slab.h>
102#include <linux/crc32.h>
103#include <linux/freezer.h>
104#include <linux/kthread.h>
105#include "ubi.h"
78d6d497 106#include "wl.h"
801c135c
AB
107
108/* Number of physical eraseblocks reserved for wear-leveling purposes */
109#define WL_RESERVED_PEBS 1
110
801c135c
AB
111/*
112 * Maximum difference between two erase counters. If this threshold is
85c6e6e2
AB
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
801c135c
AB
116 */
117#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119/*
85c6e6e2 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
801c135c
AB
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
85c6e6e2 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
025dfdaf 127 * does not pick eraseblocks with erase counter greater than the lowest erase
801c135c
AB
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132/*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136#define WL_MAX_FAILURES 32
137
7bf523ae
AB
138static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 struct ubi_wl_entry *e, struct rb_root *root);
141static int self_check_in_pq(const struct ubi_device *ubi,
142 struct ubi_wl_entry *e);
801c135c 143
801c135c
AB
144/**
145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146 * @e: the wear-leveling entry to add
147 * @root: the root of the tree
148 *
149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150 * the @ubi->used and @ubi->free RB-trees.
151 */
152static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153{
154 struct rb_node **p, *parent = NULL;
155
156 p = &root->rb_node;
157 while (*p) {
158 struct ubi_wl_entry *e1;
159
160 parent = *p;
23553b2c 161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
801c135c
AB
162
163 if (e->ec < e1->ec)
164 p = &(*p)->rb_left;
165 else if (e->ec > e1->ec)
166 p = &(*p)->rb_right;
167 else {
168 ubi_assert(e->pnum != e1->pnum);
169 if (e->pnum < e1->pnum)
170 p = &(*p)->rb_left;
171 else
172 p = &(*p)->rb_right;
173 }
174 }
175
23553b2c
XX
176 rb_link_node(&e->u.rb, parent, p);
177 rb_insert_color(&e->u.rb, root);
801c135c
AB
178}
179
ee59ba8b
RW
180/**
181 * wl_tree_destroy - destroy a wear-leveling entry.
182 * @ubi: UBI device description object
183 * @e: the wear-leveling entry to add
184 *
185 * This function destroys a wear leveling entry and removes
186 * the reference from the lookup table.
187 */
188static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189{
190 ubi->lookuptbl[e->pnum] = NULL;
191 kmem_cache_free(ubi_wl_entry_slab, e);
192}
193
801c135c
AB
194/**
195 * do_work - do one pending work.
196 * @ubi: UBI device description object
197 *
198 * This function returns zero in case of success and a negative error code in
199 * case of failure.
200 */
201static int do_work(struct ubi_device *ubi)
202{
203 int err;
204 struct ubi_work *wrk;
205
43f9b25a
AB
206 cond_resched();
207
593dd33c
AB
208 /*
209 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 * it in read mode, so many of them may be doing works at a time. But
211 * the queue flush code has to be sure the whole queue of works is
212 * done, and it takes the mutex in write mode.
213 */
214 down_read(&ubi->work_sem);
801c135c 215 spin_lock(&ubi->wl_lock);
801c135c
AB
216 if (list_empty(&ubi->works)) {
217 spin_unlock(&ubi->wl_lock);
593dd33c 218 up_read(&ubi->work_sem);
801c135c
AB
219 return 0;
220 }
221
222 wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 list_del(&wrk->list);
16f557ec
AB
224 ubi->works_count -= 1;
225 ubi_assert(ubi->works_count >= 0);
801c135c
AB
226 spin_unlock(&ubi->wl_lock);
227
228 /*
229 * Call the worker function. Do not touch the work structure
230 * after this call as it will have been freed or reused by that
231 * time by the worker function.
232 */
233 err = wrk->func(ubi, wrk, 0);
234 if (err)
32608703 235 ubi_err(ubi, "work failed with error code %d", err);
593dd33c 236 up_read(&ubi->work_sem);
16f557ec 237
801c135c
AB
238 return err;
239}
240
801c135c
AB
241/**
242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243 * @e: the wear-leveling entry to check
244 * @root: the root of the tree
245 *
246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
247 * is not.
248 */
249static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250{
251 struct rb_node *p;
252
253 p = root->rb_node;
254 while (p) {
255 struct ubi_wl_entry *e1;
256
23553b2c 257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
258
259 if (e->pnum == e1->pnum) {
260 ubi_assert(e == e1);
261 return 1;
262 }
263
264 if (e->ec < e1->ec)
265 p = p->rb_left;
266 else if (e->ec > e1->ec)
267 p = p->rb_right;
268 else {
269 ubi_assert(e->pnum != e1->pnum);
270 if (e->pnum < e1->pnum)
271 p = p->rb_left;
272 else
273 p = p->rb_right;
274 }
275 }
276
277 return 0;
278}
279
280/**
7b6c32da 281 * prot_queue_add - add physical eraseblock to the protection queue.
801c135c
AB
282 * @ubi: UBI device description object
283 * @e: the physical eraseblock to add
801c135c 284 *
7b6c32da
XX
285 * This function adds @e to the tail of the protection queue @ubi->pq, where
286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288 * be locked.
801c135c 289 */
7b6c32da 290static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
801c135c 291{
7b6c32da 292 int pq_tail = ubi->pq_head - 1;
801c135c 293
7b6c32da
XX
294 if (pq_tail < 0)
295 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
801c135c
AB
299}
300
301/**
302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
8199b901 303 * @ubi: UBI device description object
801c135c 304 * @root: the RB-tree where to look for
add8287e 305 * @diff: maximum possible difference from the smallest erase counter
801c135c
AB
306 *
307 * This function looks for a wear leveling entry with erase counter closest to
add8287e 308 * min + @diff, where min is the smallest erase counter.
801c135c 309 */
8199b901
RW
310static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311 struct rb_root *root, int diff)
801c135c
AB
312{
313 struct rb_node *p;
8199b901 314 struct ubi_wl_entry *e, *prev_e = NULL;
add8287e 315 int max;
801c135c 316
23553b2c 317 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
add8287e 318 max = e->ec + diff;
801c135c
AB
319
320 p = root->rb_node;
321 while (p) {
322 struct ubi_wl_entry *e1;
323
23553b2c 324 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
801c135c
AB
325 if (e1->ec >= max)
326 p = p->rb_left;
327 else {
328 p = p->rb_right;
8199b901 329 prev_e = e;
801c135c
AB
330 e = e1;
331 }
332 }
333
8199b901
RW
334 /* If no fastmap has been written and this WL entry can be used
335 * as anchor PEB, hold it back and return the second best WL entry
336 * such that fastmap can use the anchor PEB later. */
337 if (prev_e && !ubi->fm_disabled &&
338 !ubi->fm && e->pnum < UBI_FM_MAX_START)
339 return prev_e;
340
801c135c
AB
341 return e;
342}
343
344/**
8199b901
RW
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355{
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
8199b901
RW
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
2f84c246 367 e = may_reserve_for_fm(ubi, e, root);
8199b901
RW
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372}
373
8199b901 374/**
78d6d497 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
691a8705
RW
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383{
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403}
404
801c135c 405/**
7b6c32da 406 * prot_queue_del - remove a physical eraseblock from the protection queue.
801c135c
AB
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
43f9b25a 409 *
7b6c32da
XX
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
801c135c 412 */
7b6c32da 413static int prot_queue_del(struct ubi_device *ubi, int pnum)
801c135c 414{
7b6c32da 415 struct ubi_wl_entry *e;
801c135c 416
7b6c32da
XX
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
801c135c 420
7bf523ae 421 if (self_check_in_pq(ubi, e))
7b6c32da 422 return -ENODEV;
43f9b25a 423
7b6c32da
XX
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
43f9b25a 426 return 0;
801c135c
AB
427}
428
429/**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
9c9ec147
AB
438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
801c135c
AB
440{
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
7bf523ae 447 err = self_check_ec(ubi, e->pnum, e->ec);
adbf05e3 448 if (err)
801c135c
AB
449 return -EINVAL;
450
33818bbb 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
32608703 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
801c135c
AB
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
3261ebd7 473 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485out_free:
486 kfree(ec_hdr);
487 return err;
488}
489
490/**
7b6c32da 491 * serve_prot_queue - check if it is time to stop protecting PEBs.
801c135c
AB
492 * @ubi: UBI device description object
493 *
7b6c32da
XX
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
801c135c 497 */
7b6c32da 498static void serve_prot_queue(struct ubi_device *ubi)
801c135c 499{
7b6c32da
XX
500 struct ubi_wl_entry *e, *tmp;
501 int count;
801c135c
AB
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
7b6c32da
XX
507repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
801c135c 513
7b6c32da
XX
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
801c135c 521 spin_unlock(&ubi->wl_lock);
7b6c32da
XX
522 cond_resched();
523 goto repeat;
801c135c 524 }
801c135c 525 }
7b6c32da
XX
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
801c135c
AB
532}
533
534/**
8199b901 535 * __schedule_ubi_work - schedule a work.
801c135c
AB
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
7b6c32da 539 * This function adds a work defined by @wrk to the tail of the pending works
e3e00445 540 * list. Can only be used if ubi->work_sem is already held in read mode!
801c135c 541 */
8199b901 542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
801c135c
AB
543{
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
27a0f2a3 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
801c135c
AB
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551}
552
8199b901
RW
553/**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562{
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566}
567
801c135c 568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
849271a4 569 int shutdown);
801c135c
AB
570
571/**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
d36e59e6
JR
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
801c135c
AB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
582static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
2e8f08de 583 int vol_id, int lnum, int torture, bool nested)
801c135c
AB
584{
585 struct ubi_work *wl_wrk;
586
8199b901 587 ubi_assert(e);
8199b901 588
801c135c
AB
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
591
33818bbb 592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
593 if (!wl_wrk)
594 return -ENOMEM;
595
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
d36e59e6
JR
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
801c135c
AB
600 wl_wrk->torture = torture;
601
2e8f08de
RW
602 if (nested)
603 __schedule_ubi_work(ubi, wl_wrk);
604 else
605 schedule_ubi_work(ubi, wl_wrk);
801c135c
AB
606 return 0;
607}
608
1a31b20c 609static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
8199b901
RW
610/**
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
617 *
618 */
619static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 int vol_id, int lnum, int torture)
621{
1a31b20c 622 struct ubi_work wl_wrk;
8199b901
RW
623
624 dbg_wl("sync erase of PEB %i", e->pnum);
625
1a31b20c
SS
626 wl_wrk.e = e;
627 wl_wrk.vol_id = vol_id;
628 wl_wrk.lnum = lnum;
629 wl_wrk.torture = torture;
8199b901 630
1a31b20c 631 return __erase_worker(ubi, &wl_wrk);
8199b901
RW
632}
633
34b89df9 634static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
801c135c
AB
635/**
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
849271a4
RW
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
801c135c
AB
641 *
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
644 * failure.
645 */
646static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
849271a4 647 int shutdown)
801c135c 648{
b86a2c56 649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
23654188 650 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
8199b901
RW
651#ifdef CONFIG_MTD_UBI_FASTMAP
652 int anchor = wrk->anchor;
653#endif
801c135c 654 struct ubi_wl_entry *e1, *e2;
3291b52f 655 struct ubi_vid_io_buf *vidb;
801c135c 656 struct ubi_vid_hdr *vid_hdr;
34b89df9 657 int dst_leb_clean = 0;
801c135c
AB
658
659 kfree(wrk);
849271a4 660 if (shutdown)
801c135c
AB
661 return 0;
662
3291b52f
BB
663 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
664 if (!vidb)
801c135c
AB
665 return -ENOMEM;
666
3291b52f
BB
667 vid_hdr = ubi_get_vid_hdr(vidb);
668
2e8f08de 669 down_read(&ubi->fm_eba_sem);
43f9b25a 670 mutex_lock(&ubi->move_mutex);
801c135c 671 spin_lock(&ubi->wl_lock);
43f9b25a
AB
672 ubi_assert(!ubi->move_from && !ubi->move_to);
673 ubi_assert(!ubi->move_to_put);
801c135c 674
43f9b25a 675 if (!ubi->free.rb_node ||
5abde384 676 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
801c135c 677 /*
43f9b25a
AB
678 * No free physical eraseblocks? Well, they must be waiting in
679 * the queue to be erased. Cancel movement - it will be
680 * triggered again when a free physical eraseblock appears.
801c135c
AB
681 *
682 * No used physical eraseblocks? They must be temporarily
683 * protected from being moved. They will be moved to the
684 * @ubi->used tree later and the wear-leveling will be
685 * triggered again.
686 */
687 dbg_wl("cancel WL, a list is empty: free %d, used %d",
5abde384 688 !ubi->free.rb_node, !ubi->used.rb_node);
43f9b25a 689 goto out_cancel;
801c135c
AB
690 }
691
8199b901
RW
692#ifdef CONFIG_MTD_UBI_FASTMAP
693 /* Check whether we need to produce an anchor PEB */
694 if (!anchor)
695 anchor = !anchor_pebs_avalible(&ubi->free);
696
697 if (anchor) {
698 e1 = find_anchor_wl_entry(&ubi->used);
699 if (!e1)
700 goto out_cancel;
701 e2 = get_peb_for_wl(ubi);
702 if (!e2)
703 goto out_cancel;
704
705 self_check_in_wl_tree(ubi, e1, &ubi->used);
706 rb_erase(&e1->u.rb, &ubi->used);
707 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
708 } else if (!ubi->scrub.rb_node) {
709#else
5abde384 710 if (!ubi->scrub.rb_node) {
8199b901 711#endif
801c135c
AB
712 /*
713 * Now pick the least worn-out used physical eraseblock and a
714 * highly worn-out free physical eraseblock. If the erase
715 * counters differ much enough, start wear-leveling.
716 */
23553b2c 717 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
8199b901
RW
718 e2 = get_peb_for_wl(ubi);
719 if (!e2)
720 goto out_cancel;
801c135c
AB
721
722 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
723 dbg_wl("no WL needed: min used EC %d, max free EC %d",
724 e1->ec, e2->ec);
5ef4414f
RW
725
726 /* Give the unused PEB back */
727 wl_tree_add(e2, &ubi->free);
3d21bb76 728 ubi->free_count++;
43f9b25a 729 goto out_cancel;
801c135c 730 }
7bf523ae 731 self_check_in_wl_tree(ubi, e1, &ubi->used);
23553b2c 732 rb_erase(&e1->u.rb, &ubi->used);
801c135c
AB
733 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
734 e1->pnum, e1->ec, e2->pnum, e2->ec);
735 } else {
43f9b25a
AB
736 /* Perform scrubbing */
737 scrubbing = 1;
23553b2c 738 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
8199b901
RW
739 e2 = get_peb_for_wl(ubi);
740 if (!e2)
741 goto out_cancel;
742
7bf523ae 743 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
23553b2c 744 rb_erase(&e1->u.rb, &ubi->scrub);
801c135c
AB
745 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
746 }
747
801c135c
AB
748 ubi->move_from = e1;
749 ubi->move_to = e2;
750 spin_unlock(&ubi->wl_lock);
751
752 /*
753 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
754 * We so far do not know which logical eraseblock our physical
755 * eraseblock (@e1) belongs to. We have to read the volume identifier
756 * header first.
43f9b25a
AB
757 *
758 * Note, we are protected from this PEB being unmapped and erased. The
759 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
760 * which is being moved was unmapped.
801c135c
AB
761 */
762
3291b52f 763 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
801c135c 764 if (err && err != UBI_IO_BITFLIPS) {
34b89df9 765 dst_leb_clean = 1;
74d82d26 766 if (err == UBI_IO_FF) {
801c135c
AB
767 /*
768 * We are trying to move PEB without a VID header. UBI
769 * always write VID headers shortly after the PEB was
87960c0b
AB
770 * given, so we have a situation when it has not yet
771 * had a chance to write it, because it was preempted.
772 * So add this PEB to the protection queue so far,
815bc5f8
AB
773 * because presumably more data will be written there
774 * (including the missing VID header), and then we'll
87960c0b 775 * move it.
801c135c
AB
776 */
777 dbg_wl("PEB %d has no VID header", e1->pnum);
87960c0b 778 protect = 1;
43f9b25a 779 goto out_not_moved;
92e1a7d9
AB
780 } else if (err == UBI_IO_FF_BITFLIPS) {
781 /*
782 * The same situation as %UBI_IO_FF, but bit-flips were
783 * detected. It is better to schedule this PEB for
784 * scrubbing.
785 */
786 dbg_wl("PEB %d has no VID header but has bit-flips",
787 e1->pnum);
788 scrubbing = 1;
789 goto out_not_moved;
23654188
RW
790 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
791 /*
792 * While a full scan would detect interrupted erasures
793 * at attach time we can face them here when attached from
794 * Fastmap.
795 */
796 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
797 e1->pnum);
798 erase = 1;
799 goto out_not_moved;
801c135c 800 }
43f9b25a 801
32608703 802 ubi_err(ubi, "error %d while reading VID header from PEB %d",
43f9b25a 803 err, e1->pnum);
43f9b25a 804 goto out_error;
801c135c
AB
805 }
806
9c259a52
AB
807 vol_id = be32_to_cpu(vid_hdr->vol_id);
808 lnum = be32_to_cpu(vid_hdr->lnum);
809
3291b52f 810 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
801c135c 811 if (err) {
87960c0b
AB
812 if (err == MOVE_CANCEL_RACE) {
813 /*
814 * The LEB has not been moved because the volume is
815 * being deleted or the PEB has been put meanwhile. We
816 * should prevent this PEB from being selected for
817 * wear-leveling movement again, so put it to the
818 * protection queue.
819 */
820 protect = 1;
34b89df9 821 dst_leb_clean = 1;
87960c0b
AB
822 goto out_not_moved;
823 }
e801e128
BP
824 if (err == MOVE_RETRY) {
825 scrubbing = 1;
34b89df9 826 dst_leb_clean = 1;
e801e128
BP
827 goto out_not_moved;
828 }
cc831464 829 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
b86a2c56 830 err == MOVE_TARGET_RD_ERR) {
9c259a52
AB
831 /*
832 * Target PEB had bit-flips or write error - torture it.
833 */
6fa6f5bb 834 torture = 1;
23654188 835 keep = 1;
43f9b25a 836 goto out_not_moved;
6fa6f5bb 837 }
87960c0b 838
b86a2c56
AB
839 if (err == MOVE_SOURCE_RD_ERR) {
840 /*
841 * An error happened while reading the source PEB. Do
842 * not switch to R/O mode in this case, and give the
843 * upper layers a possibility to recover from this,
844 * e.g. by unmapping corresponding LEB. Instead, just
815bc5f8
AB
845 * put this PEB to the @ubi->erroneous list to prevent
846 * UBI from trying to move it over and over again.
b86a2c56
AB
847 */
848 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
32608703 849 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
b86a2c56
AB
850 ubi->erroneous_peb_count);
851 goto out_error;
852 }
34b89df9 853 dst_leb_clean = 1;
b86a2c56
AB
854 erroneous = 1;
855 goto out_not_moved;
856 }
857
90bf0265
AB
858 if (err < 0)
859 goto out_error;
43f9b25a 860
87960c0b 861 ubi_assert(0);
801c135c
AB
862 }
863
6a8f483f 864 /* The PEB has been successfully moved */
6a8f483f 865 if (scrubbing)
32608703 866 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
9c259a52 867 e1->pnum, vol_id, lnum, e2->pnum);
3291b52f 868 ubi_free_vid_buf(vidb);
8c1e6ee1 869
801c135c 870 spin_lock(&ubi->wl_lock);
3c98b0a0 871 if (!ubi->move_to_put) {
5abde384 872 wl_tree_add(e2, &ubi->used);
3c98b0a0
AB
873 e2 = NULL;
874 }
801c135c 875 ubi->move_from = ubi->move_to = NULL;
43f9b25a 876 ubi->move_to_put = ubi->wl_scheduled = 0;
801c135c
AB
877 spin_unlock(&ubi->wl_lock);
878
8199b901 879 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
3c98b0a0 880 if (err) {
21d08bbc 881 if (e2)
ee59ba8b 882 wl_entry_destroy(ubi, e2);
87960c0b 883 goto out_ro;
3c98b0a0 884 }
6a8f483f 885
3c98b0a0 886 if (e2) {
801c135c
AB
887 /*
888 * Well, the target PEB was put meanwhile, schedule it for
889 * erasure.
890 */
9c259a52
AB
891 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
892 e2->pnum, vol_id, lnum);
8199b901 893 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
aa5ad3b6 894 if (err)
87960c0b 895 goto out_ro;
801c135c
AB
896 }
897
801c135c 898 dbg_wl("done");
43f9b25a 899 mutex_unlock(&ubi->move_mutex);
2e8f08de 900 up_read(&ubi->fm_eba_sem);
43f9b25a 901 return 0;
801c135c
AB
902
903 /*
43f9b25a
AB
904 * For some reasons the LEB was not moved, might be an error, might be
905 * something else. @e1 was not changed, so return it back. @e2 might
6fa6f5bb 906 * have been changed, schedule it for erasure.
801c135c 907 */
43f9b25a 908out_not_moved:
9c259a52
AB
909 if (vol_id != -1)
910 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
911 e1->pnum, vol_id, lnum, e2->pnum, err);
912 else
913 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
914 e1->pnum, e2->pnum, err);
801c135c 915 spin_lock(&ubi->wl_lock);
87960c0b
AB
916 if (protect)
917 prot_queue_add(ubi, e1);
b86a2c56
AB
918 else if (erroneous) {
919 wl_tree_add(e1, &ubi->erroneous);
920 ubi->erroneous_peb_count += 1;
921 } else if (scrubbing)
43f9b25a 922 wl_tree_add(e1, &ubi->scrub);
23654188 923 else if (keep)
5abde384 924 wl_tree_add(e1, &ubi->used);
34b89df9
SS
925 if (dst_leb_clean) {
926 wl_tree_add(e2, &ubi->free);
927 ubi->free_count++;
928 }
929
6fa6f5bb 930 ubi_assert(!ubi->move_to_put);
801c135c 931 ubi->move_from = ubi->move_to = NULL;
6fa6f5bb 932 ubi->wl_scheduled = 0;
801c135c
AB
933 spin_unlock(&ubi->wl_lock);
934
3291b52f 935 ubi_free_vid_buf(vidb);
34b89df9
SS
936 if (dst_leb_clean) {
937 ensure_wear_leveling(ubi, 1);
938 } else {
939 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
940 if (err)
941 goto out_ro;
942 }
aa5ad3b6 943
23654188
RW
944 if (erase) {
945 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
946 if (err)
947 goto out_ro;
948 }
949
43f9b25a 950 mutex_unlock(&ubi->move_mutex);
2e8f08de 951 up_read(&ubi->fm_eba_sem);
43f9b25a
AB
952 return 0;
953
954out_error:
9c259a52 955 if (vol_id != -1)
32608703 956 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
9c259a52
AB
957 err, e1->pnum, e2->pnum);
958 else
32608703 959 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
9c259a52 960 err, e1->pnum, vol_id, lnum, e2->pnum);
43f9b25a
AB
961 spin_lock(&ubi->wl_lock);
962 ubi->move_from = ubi->move_to = NULL;
963 ubi->move_to_put = ubi->wl_scheduled = 0;
964 spin_unlock(&ubi->wl_lock);
965
3291b52f 966 ubi_free_vid_buf(vidb);
ee59ba8b
RW
967 wl_entry_destroy(ubi, e1);
968 wl_entry_destroy(ubi, e2);
43f9b25a 969
87960c0b
AB
970out_ro:
971 ubi_ro_mode(ubi);
43f9b25a 972 mutex_unlock(&ubi->move_mutex);
2e8f08de 973 up_read(&ubi->fm_eba_sem);
87960c0b
AB
974 ubi_assert(err != 0);
975 return err < 0 ? err : -EIO;
43f9b25a
AB
976
977out_cancel:
978 ubi->wl_scheduled = 0;
979 spin_unlock(&ubi->wl_lock);
980 mutex_unlock(&ubi->move_mutex);
2e8f08de 981 up_read(&ubi->fm_eba_sem);
3291b52f 982 ubi_free_vid_buf(vidb);
43f9b25a 983 return 0;
801c135c
AB
984}
985
986/**
987 * ensure_wear_leveling - schedule wear-leveling if it is needed.
988 * @ubi: UBI device description object
8199b901 989 * @nested: set to non-zero if this function is called from UBI worker
801c135c
AB
990 *
991 * This function checks if it is time to start wear-leveling and schedules it
992 * if yes. This function returns zero in case of success and a negative error
993 * code in case of failure.
994 */
8199b901 995static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
801c135c
AB
996{
997 int err = 0;
998 struct ubi_wl_entry *e1;
999 struct ubi_wl_entry *e2;
1000 struct ubi_work *wrk;
1001
1002 spin_lock(&ubi->wl_lock);
1003 if (ubi->wl_scheduled)
1004 /* Wear-leveling is already in the work queue */
1005 goto out_unlock;
1006
1007 /*
1008 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009 * the WL worker has to be scheduled anyway.
1010 */
5abde384
AB
1011 if (!ubi->scrub.rb_node) {
1012 if (!ubi->used.rb_node || !ubi->free.rb_node)
801c135c
AB
1013 /* No physical eraseblocks - no deal */
1014 goto out_unlock;
1015
1016 /*
1017 * We schedule wear-leveling only if the difference between the
1018 * lowest erase counter of used physical eraseblocks and a high
025dfdaf 1019 * erase counter of free physical eraseblocks is greater than
801c135c
AB
1020 * %UBI_WL_THRESHOLD.
1021 */
23553b2c 1022 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
8199b901 1023 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
801c135c
AB
1024
1025 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1026 goto out_unlock;
1027 dbg_wl("schedule wear-leveling");
1028 } else
1029 dbg_wl("schedule scrubbing");
1030
1031 ubi->wl_scheduled = 1;
1032 spin_unlock(&ubi->wl_lock);
1033
33818bbb 1034 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
801c135c
AB
1035 if (!wrk) {
1036 err = -ENOMEM;
1037 goto out_cancel;
1038 }
1039
8199b901 1040 wrk->anchor = 0;
801c135c 1041 wrk->func = &wear_leveling_worker;
8199b901
RW
1042 if (nested)
1043 __schedule_ubi_work(ubi, wrk);
1044 else
1045 schedule_ubi_work(ubi, wrk);
801c135c
AB
1046 return err;
1047
1048out_cancel:
1049 spin_lock(&ubi->wl_lock);
1050 ubi->wl_scheduled = 0;
1051out_unlock:
1052 spin_unlock(&ubi->wl_lock);
1053 return err;
1054}
1055
1056/**
1a31b20c 1057 * __erase_worker - physical eraseblock erase worker function.
801c135c
AB
1058 * @ubi: UBI device description object
1059 * @wl_wrk: the work object
849271a4
RW
1060 * @shutdown: non-zero if the worker has to free memory and exit
1061 * because the WL sub-system is shutting down
801c135c
AB
1062 *
1063 * This function erases a physical eraseblock and perform torture testing if
1064 * needed. It also takes care about marking the physical eraseblock bad if
1065 * needed. Returns zero in case of success and a negative error code in case of
1066 * failure.
1067 */
1a31b20c 1068static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
801c135c 1069{
801c135c 1070 struct ubi_wl_entry *e = wl_wrk->e;
37f758a0 1071 int pnum = e->pnum;
d36e59e6
JR
1072 int vol_id = wl_wrk->vol_id;
1073 int lnum = wl_wrk->lnum;
37f758a0 1074 int err, available_consumed = 0;
801c135c 1075
d36e59e6
JR
1076 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
801c135c
AB
1078
1079 err = sync_erase(ubi, e, wl_wrk->torture);
1080 if (!err) {
801c135c 1081 spin_lock(&ubi->wl_lock);
5abde384 1082 wl_tree_add(e, &ubi->free);
8199b901 1083 ubi->free_count++;
801c135c
AB
1084 spin_unlock(&ubi->wl_lock);
1085
1086 /*
9c9ec147
AB
1087 * One more erase operation has happened, take care about
1088 * protected physical eraseblocks.
801c135c 1089 */
7b6c32da 1090 serve_prot_queue(ubi);
801c135c
AB
1091
1092 /* And take care about wear-leveling */
8199b901 1093 err = ensure_wear_leveling(ubi, 1);
801c135c
AB
1094 return err;
1095 }
1096
32608703 1097 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
801c135c 1098
784c1454
AB
1099 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1100 err == -EBUSY) {
1101 int err1;
1102
1103 /* Re-schedule the LEB for erasure */
2e8f08de 1104 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
784c1454 1105 if (err1) {
6b238de1 1106 wl_entry_destroy(ubi, e);
784c1454
AB
1107 err = err1;
1108 goto out_ro;
1109 }
1110 return err;
e57e0d8e
AB
1111 }
1112
ee59ba8b 1113 wl_entry_destroy(ubi, e);
e57e0d8e 1114 if (err != -EIO)
801c135c
AB
1115 /*
1116 * If this is not %-EIO, we have no idea what to do. Scheduling
1117 * this physical eraseblock for erasure again would cause
815bc5f8 1118 * errors again and again. Well, lets switch to R/O mode.
801c135c 1119 */
784c1454 1120 goto out_ro;
801c135c
AB
1121
1122 /* It is %-EIO, the PEB went bad */
1123
1124 if (!ubi->bad_allowed) {
32608703 1125 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
784c1454
AB
1126 goto out_ro;
1127 }
801c135c 1128
784c1454 1129 spin_lock(&ubi->volumes_lock);
784c1454 1130 if (ubi->beb_rsvd_pebs == 0) {
37f758a0
SL
1131 if (ubi->avail_pebs == 0) {
1132 spin_unlock(&ubi->volumes_lock);
32608703 1133 ubi_err(ubi, "no reserved/available physical eraseblocks");
37f758a0
SL
1134 goto out_ro;
1135 }
1136 ubi->avail_pebs -= 1;
1137 available_consumed = 1;
784c1454 1138 }
784c1454 1139 spin_unlock(&ubi->volumes_lock);
801c135c 1140
32608703 1141 ubi_msg(ubi, "mark PEB %d as bad", pnum);
784c1454
AB
1142 err = ubi_io_mark_bad(ubi, pnum);
1143 if (err)
1144 goto out_ro;
1145
1146 spin_lock(&ubi->volumes_lock);
37f758a0
SL
1147 if (ubi->beb_rsvd_pebs > 0) {
1148 if (available_consumed) {
1149 /*
1150 * The amount of reserved PEBs increased since we last
1151 * checked.
1152 */
1153 ubi->avail_pebs += 1;
1154 available_consumed = 0;
1155 }
1156 ubi->beb_rsvd_pebs -= 1;
1157 }
784c1454
AB
1158 ubi->bad_peb_count += 1;
1159 ubi->good_peb_count -= 1;
1160 ubi_calculate_reserved(ubi);
37f758a0 1161 if (available_consumed)
32608703 1162 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
37f758a0 1163 else if (ubi->beb_rsvd_pebs)
32608703
TB
1164 ubi_msg(ubi, "%d PEBs left in the reserve",
1165 ubi->beb_rsvd_pebs);
52b605d1 1166 else
32608703 1167 ubi_warn(ubi, "last PEB from the reserve was used");
784c1454
AB
1168 spin_unlock(&ubi->volumes_lock);
1169
1170 return err;
801c135c 1171
784c1454 1172out_ro:
37f758a0
SL
1173 if (available_consumed) {
1174 spin_lock(&ubi->volumes_lock);
1175 ubi->avail_pebs += 1;
1176 spin_unlock(&ubi->volumes_lock);
1177 }
784c1454 1178 ubi_ro_mode(ubi);
801c135c
AB
1179 return err;
1180}
1181
1a31b20c
SS
1182static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1183 int shutdown)
1184{
1185 int ret;
1186
1187 if (shutdown) {
1188 struct ubi_wl_entry *e = wl_wrk->e;
1189
1190 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1191 kfree(wl_wrk);
1192 wl_entry_destroy(ubi, e);
1193 return 0;
1194 }
1195
1196 ret = __erase_worker(ubi, wl_wrk);
1197 kfree(wl_wrk);
1198 return ret;
1199}
1200
801c135c 1201/**
85c6e6e2 1202 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
801c135c 1203 * @ubi: UBI device description object
d36e59e6
JR
1204 * @vol_id: the volume ID that last used this PEB
1205 * @lnum: the last used logical eraseblock number for the PEB
801c135c
AB
1206 * @pnum: physical eraseblock to return
1207 * @torture: if this physical eraseblock has to be tortured
1208 *
1209 * This function is called to return physical eraseblock @pnum to the pool of
1210 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1211 * occurred to this @pnum and it has to be tested. This function returns zero
43f9b25a 1212 * in case of success, and a negative error code in case of failure.
801c135c 1213 */
d36e59e6
JR
1214int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1215 int pnum, int torture)
801c135c
AB
1216{
1217 int err;
1218 struct ubi_wl_entry *e;
1219
1220 dbg_wl("PEB %d", pnum);
1221 ubi_assert(pnum >= 0);
1222 ubi_assert(pnum < ubi->peb_count);
1223
111ab0b2
RW
1224 down_read(&ubi->fm_protect);
1225
43f9b25a 1226retry:
801c135c 1227 spin_lock(&ubi->wl_lock);
801c135c
AB
1228 e = ubi->lookuptbl[pnum];
1229 if (e == ubi->move_from) {
1230 /*
1231 * User is putting the physical eraseblock which was selected to
1232 * be moved. It will be scheduled for erasure in the
1233 * wear-leveling worker.
1234 */
43f9b25a 1235 dbg_wl("PEB %d is being moved, wait", pnum);
801c135c 1236 spin_unlock(&ubi->wl_lock);
43f9b25a
AB
1237
1238 /* Wait for the WL worker by taking the @ubi->move_mutex */
1239 mutex_lock(&ubi->move_mutex);
1240 mutex_unlock(&ubi->move_mutex);
1241 goto retry;
801c135c
AB
1242 } else if (e == ubi->move_to) {
1243 /*
1244 * User is putting the physical eraseblock which was selected
1245 * as the target the data is moved to. It may happen if the EBA
85c6e6e2
AB
1246 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1247 * but the WL sub-system has not put the PEB to the "used" tree
1248 * yet, but it is about to do this. So we just set a flag which
1249 * will tell the WL worker that the PEB is not needed anymore
1250 * and should be scheduled for erasure.
801c135c
AB
1251 */
1252 dbg_wl("PEB %d is the target of data moving", pnum);
1253 ubi_assert(!ubi->move_to_put);
1254 ubi->move_to_put = 1;
1255 spin_unlock(&ubi->wl_lock);
111ab0b2 1256 up_read(&ubi->fm_protect);
801c135c
AB
1257 return 0;
1258 } else {
5abde384 1259 if (in_wl_tree(e, &ubi->used)) {
7bf523ae 1260 self_check_in_wl_tree(ubi, e, &ubi->used);
23553b2c 1261 rb_erase(&e->u.rb, &ubi->used);
5abde384 1262 } else if (in_wl_tree(e, &ubi->scrub)) {
7bf523ae 1263 self_check_in_wl_tree(ubi, e, &ubi->scrub);
23553b2c 1264 rb_erase(&e->u.rb, &ubi->scrub);
b86a2c56 1265 } else if (in_wl_tree(e, &ubi->erroneous)) {
7bf523ae 1266 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
b86a2c56
AB
1267 rb_erase(&e->u.rb, &ubi->erroneous);
1268 ubi->erroneous_peb_count -= 1;
1269 ubi_assert(ubi->erroneous_peb_count >= 0);
815bc5f8 1270 /* Erroneous PEBs should be tortured */
b86a2c56 1271 torture = 1;
43f9b25a 1272 } else {
7b6c32da 1273 err = prot_queue_del(ubi, e->pnum);
43f9b25a 1274 if (err) {
32608703 1275 ubi_err(ubi, "PEB %d not found", pnum);
43f9b25a
AB
1276 ubi_ro_mode(ubi);
1277 spin_unlock(&ubi->wl_lock);
111ab0b2 1278 up_read(&ubi->fm_protect);
43f9b25a
AB
1279 return err;
1280 }
1281 }
801c135c
AB
1282 }
1283 spin_unlock(&ubi->wl_lock);
1284
2e8f08de 1285 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
801c135c
AB
1286 if (err) {
1287 spin_lock(&ubi->wl_lock);
5abde384 1288 wl_tree_add(e, &ubi->used);
801c135c
AB
1289 spin_unlock(&ubi->wl_lock);
1290 }
1291
111ab0b2 1292 up_read(&ubi->fm_protect);
801c135c
AB
1293 return err;
1294}
1295
1296/**
1297 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1298 * @ubi: UBI device description object
1299 * @pnum: the physical eraseblock to schedule
1300 *
1301 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1302 * needs scrubbing. This function schedules a physical eraseblock for
1303 * scrubbing which is done in background. This function returns zero in case of
1304 * success and a negative error code in case of failure.
1305 */
1306int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1307{
1308 struct ubi_wl_entry *e;
1309
32608703 1310 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
801c135c
AB
1311
1312retry:
1313 spin_lock(&ubi->wl_lock);
1314 e = ubi->lookuptbl[pnum];
d3f6e6c6
AB
1315 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1316 in_wl_tree(e, &ubi->erroneous)) {
801c135c
AB
1317 spin_unlock(&ubi->wl_lock);
1318 return 0;
1319 }
1320
1321 if (e == ubi->move_to) {
1322 /*
1323 * This physical eraseblock was used to move data to. The data
1324 * was moved but the PEB was not yet inserted to the proper
1325 * tree. We should just wait a little and let the WL worker
1326 * proceed.
1327 */
1328 spin_unlock(&ubi->wl_lock);
1329 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1330 yield();
1331 goto retry;
1332 }
1333
5abde384 1334 if (in_wl_tree(e, &ubi->used)) {
7bf523ae 1335 self_check_in_wl_tree(ubi, e, &ubi->used);
23553b2c 1336 rb_erase(&e->u.rb, &ubi->used);
43f9b25a
AB
1337 } else {
1338 int err;
1339
7b6c32da 1340 err = prot_queue_del(ubi, e->pnum);
43f9b25a 1341 if (err) {
32608703 1342 ubi_err(ubi, "PEB %d not found", pnum);
43f9b25a
AB
1343 ubi_ro_mode(ubi);
1344 spin_unlock(&ubi->wl_lock);
1345 return err;
1346 }
1347 }
801c135c 1348
5abde384 1349 wl_tree_add(e, &ubi->scrub);
801c135c
AB
1350 spin_unlock(&ubi->wl_lock);
1351
1352 /*
1353 * Technically scrubbing is the same as wear-leveling, so it is done
1354 * by the WL worker.
1355 */
8199b901 1356 return ensure_wear_leveling(ubi, 0);
801c135c
AB
1357}
1358
1359/**
1360 * ubi_wl_flush - flush all pending works.
1361 * @ubi: UBI device description object
62f38455
JR
1362 * @vol_id: the volume id to flush for
1363 * @lnum: the logical eraseblock number to flush for
801c135c 1364 *
62f38455
JR
1365 * This function executes all pending works for a particular volume id /
1366 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1367 * acts as a wildcard for all of the corresponding volume numbers or logical
1368 * eraseblock numbers. It returns zero in case of success and a negative error
1369 * code in case of failure.
801c135c 1370 */
62f38455 1371int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
801c135c 1372{
62f38455
JR
1373 int err = 0;
1374 int found = 1;
801c135c
AB
1375
1376 /*
7b6c32da 1377 * Erase while the pending works queue is not empty, but not more than
801c135c
AB
1378 * the number of currently pending works.
1379 */
62f38455
JR
1380 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1381 vol_id, lnum, ubi->works_count);
593dd33c 1382
62f38455 1383 while (found) {
49e236bc 1384 struct ubi_work *wrk, *tmp;
62f38455 1385 found = 0;
593dd33c 1386
12027f1b 1387 down_read(&ubi->work_sem);
62f38455 1388 spin_lock(&ubi->wl_lock);
49e236bc 1389 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
62f38455
JR
1390 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1391 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1392 list_del(&wrk->list);
1393 ubi->works_count -= 1;
1394 ubi_assert(ubi->works_count >= 0);
1395 spin_unlock(&ubi->wl_lock);
1396
1397 err = wrk->func(ubi, wrk, 0);
12027f1b
AB
1398 if (err) {
1399 up_read(&ubi->work_sem);
1400 return err;
1401 }
1402
62f38455
JR
1403 spin_lock(&ubi->wl_lock);
1404 found = 1;
1405 break;
1406 }
1407 }
1408 spin_unlock(&ubi->wl_lock);
12027f1b 1409 up_read(&ubi->work_sem);
801c135c
AB
1410 }
1411
12027f1b
AB
1412 /*
1413 * Make sure all the works which have been done in parallel are
1414 * finished.
1415 */
1416 down_write(&ubi->work_sem);
62f38455 1417 up_write(&ubi->work_sem);
12027f1b 1418
62f38455 1419 return err;
801c135c
AB
1420}
1421
1422/**
1423 * tree_destroy - destroy an RB-tree.
ee59ba8b 1424 * @ubi: UBI device description object
801c135c
AB
1425 * @root: the root of the tree to destroy
1426 */
ee59ba8b 1427static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
801c135c
AB
1428{
1429 struct rb_node *rb;
1430 struct ubi_wl_entry *e;
1431
1432 rb = root->rb_node;
1433 while (rb) {
1434 if (rb->rb_left)
1435 rb = rb->rb_left;
1436 else if (rb->rb_right)
1437 rb = rb->rb_right;
1438 else {
23553b2c 1439 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
801c135c
AB
1440
1441 rb = rb_parent(rb);
1442 if (rb) {
23553b2c 1443 if (rb->rb_left == &e->u.rb)
801c135c
AB
1444 rb->rb_left = NULL;
1445 else
1446 rb->rb_right = NULL;
1447 }
1448
ee59ba8b 1449 wl_entry_destroy(ubi, e);
801c135c
AB
1450 }
1451 }
1452}
1453
1454/**
1455 * ubi_thread - UBI background thread.
1456 * @u: the UBI device description object pointer
1457 */
cdfa788a 1458int ubi_thread(void *u)
801c135c
AB
1459{
1460 int failures = 0;
1461 struct ubi_device *ubi = u;
1462
32608703 1463 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
ba25f9dc 1464 ubi->bgt_name, task_pid_nr(current));
801c135c 1465
83144186 1466 set_freezable();
801c135c
AB
1467 for (;;) {
1468 int err;
1469
45fc5c81 1470 if (kthread_should_stop())
cadb40cc 1471 break;
801c135c
AB
1472
1473 if (try_to_freeze())
1474 continue;
1475
1476 spin_lock(&ubi->wl_lock);
1477 if (list_empty(&ubi->works) || ubi->ro_mode ||
27a0f2a3 1478 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
801c135c
AB
1479 set_current_state(TASK_INTERRUPTIBLE);
1480 spin_unlock(&ubi->wl_lock);
1481 schedule();
1482 continue;
1483 }
1484 spin_unlock(&ubi->wl_lock);
1485
1486 err = do_work(ubi);
1487 if (err) {
32608703 1488 ubi_err(ubi, "%s: work failed with error code %d",
801c135c
AB
1489 ubi->bgt_name, err);
1490 if (failures++ > WL_MAX_FAILURES) {
1491 /*
1492 * Too many failures, disable the thread and
1493 * switch to read-only mode.
1494 */
32608703 1495 ubi_msg(ubi, "%s: %d consecutive failures",
801c135c
AB
1496 ubi->bgt_name, WL_MAX_FAILURES);
1497 ubi_ro_mode(ubi);
2ad49887
VG
1498 ubi->thread_enabled = 0;
1499 continue;
801c135c
AB
1500 }
1501 } else
1502 failures = 0;
1503
1504 cond_resched();
1505 }
1506
801c135c
AB
1507 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1508 return 0;
1509}
1510
1511/**
849271a4 1512 * shutdown_work - shutdown all pending works.
801c135c
AB
1513 * @ubi: UBI device description object
1514 */
849271a4 1515static void shutdown_work(struct ubi_device *ubi)
801c135c 1516{
399a9fee
RW
1517#ifdef CONFIG_MTD_UBI_FASTMAP
1518 flush_work(&ubi->fm_work);
1519#endif
801c135c
AB
1520 while (!list_empty(&ubi->works)) {
1521 struct ubi_work *wrk;
1522
1523 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1524 list_del(&wrk->list);
1525 wrk->func(ubi, wrk, 1);
1526 ubi->works_count -= 1;
1527 ubi_assert(ubi->works_count >= 0);
1528 }
1529}
1530
1531/**
41e0cd9d 1532 * ubi_wl_init - initialize the WL sub-system using attaching information.
801c135c 1533 * @ubi: UBI device description object
a4e6042f 1534 * @ai: attaching information
801c135c
AB
1535 *
1536 * This function returns zero in case of success, and a negative error code in
1537 * case of failure.
1538 */
41e0cd9d 1539int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
801c135c 1540{
8199b901 1541 int err, i, reserved_pebs, found_pebs = 0;
801c135c 1542 struct rb_node *rb1, *rb2;
517af48c 1543 struct ubi_ainf_volume *av;
2c5ec5ce 1544 struct ubi_ainf_peb *aeb, *tmp;
801c135c
AB
1545 struct ubi_wl_entry *e;
1546
b86a2c56 1547 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
801c135c 1548 spin_lock_init(&ubi->wl_lock);
43f9b25a 1549 mutex_init(&ubi->move_mutex);
593dd33c 1550 init_rwsem(&ubi->work_sem);
a4e6042f 1551 ubi->max_ec = ai->max_ec;
801c135c
AB
1552 INIT_LIST_HEAD(&ubi->works);
1553
1554 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1555
801c135c
AB
1556 err = -ENOMEM;
1557 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1558 if (!ubi->lookuptbl)
cdfa788a 1559 return err;
801c135c 1560
7b6c32da
XX
1561 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1562 INIT_LIST_HEAD(&ubi->pq[i]);
1563 ubi->pq_head = 0;
1564
73b0cd57 1565 ubi->free_count = 0;
a4e6042f 1566 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
801c135c
AB
1567 cond_resched();
1568
06b68ba1 1569 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1570 if (!e)
1571 goto out_free;
1572
2c5ec5ce
AB
1573 e->pnum = aeb->pnum;
1574 e->ec = aeb->ec;
801c135c 1575 ubi->lookuptbl[e->pnum] = e;
2e8f08de 1576 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false)) {
ee59ba8b 1577 wl_entry_destroy(ubi, e);
801c135c
AB
1578 goto out_free;
1579 }
8199b901
RW
1580
1581 found_pebs++;
801c135c
AB
1582 }
1583
a4e6042f 1584 list_for_each_entry(aeb, &ai->free, u.list) {
801c135c
AB
1585 cond_resched();
1586
06b68ba1 1587 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1588 if (!e)
1589 goto out_free;
1590
2c5ec5ce
AB
1591 e->pnum = aeb->pnum;
1592 e->ec = aeb->ec;
801c135c 1593 ubi_assert(e->ec >= 0);
8199b901 1594
5abde384 1595 wl_tree_add(e, &ubi->free);
8199b901
RW
1596 ubi->free_count++;
1597
801c135c 1598 ubi->lookuptbl[e->pnum] = e;
8199b901
RW
1599
1600 found_pebs++;
801c135c
AB
1601 }
1602
517af48c
AB
1603 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1604 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1605 cond_resched();
1606
06b68ba1 1607 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
801c135c
AB
1608 if (!e)
1609 goto out_free;
1610
2c5ec5ce
AB
1611 e->pnum = aeb->pnum;
1612 e->ec = aeb->ec;
801c135c 1613 ubi->lookuptbl[e->pnum] = e;
8199b901 1614
2c5ec5ce 1615 if (!aeb->scrub) {
801c135c
AB
1616 dbg_wl("add PEB %d EC %d to the used tree",
1617 e->pnum, e->ec);
5abde384 1618 wl_tree_add(e, &ubi->used);
801c135c
AB
1619 } else {
1620 dbg_wl("add PEB %d EC %d to the scrub tree",
1621 e->pnum, e->ec);
5abde384 1622 wl_tree_add(e, &ubi->scrub);
801c135c 1623 }
8199b901
RW
1624
1625 found_pebs++;
801c135c
AB
1626 }
1627 }
1628
fdf10ed7
RW
1629 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1630 cond_resched();
1631
1632 e = ubi_find_fm_block(ubi, aeb->pnum);
8199b901 1633
fdf10ed7
RW
1634 if (e) {
1635 ubi_assert(!ubi->lookuptbl[e->pnum]);
1636 ubi->lookuptbl[e->pnum] = e;
1637 } else {
1638 /*
1639 * Usually old Fastmap PEBs are scheduled for erasure
1640 * and we don't have to care about them but if we face
1641 * an power cut before scheduling them we need to
1642 * take care of them here.
1643 */
1644 if (ubi->lookuptbl[aeb->pnum])
1645 continue;
1646
1647 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1648 if (!e)
1649 goto out_free;
68303564 1650
fdf10ed7
RW
1651 e->pnum = aeb->pnum;
1652 e->ec = aeb->ec;
1653 ubi_assert(!ubi->lookuptbl[e->pnum]);
68303564 1654 ubi->lookuptbl[e->pnum] = e;
2e8f08de 1655 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false)) {
fdf10ed7
RW
1656 wl_entry_destroy(ubi, e);
1657 goto out_free;
1658 }
68303564 1659 }
fdf10ed7
RW
1660
1661 found_pebs++;
68303564 1662 }
fdf10ed7
RW
1663
1664 dbg_wl("found %i PEBs", found_pebs);
1665
1666 ubi_assert(ubi->good_peb_count == found_pebs);
8199b901
RW
1667
1668 reserved_pebs = WL_RESERVED_PEBS;
acfda79f 1669 ubi_fastmap_init(ubi, &reserved_pebs);
8199b901
RW
1670
1671 if (ubi->avail_pebs < reserved_pebs) {
32608703 1672 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
8199b901 1673 ubi->avail_pebs, reserved_pebs);
5fc01ab6 1674 if (ubi->corr_peb_count)
32608703 1675 ubi_err(ubi, "%d PEBs are corrupted and not used",
5fc01ab6 1676 ubi->corr_peb_count);
7c7feb2e 1677 err = -ENOSPC;
801c135c
AB
1678 goto out_free;
1679 }
8199b901
RW
1680 ubi->avail_pebs -= reserved_pebs;
1681 ubi->rsvd_pebs += reserved_pebs;
801c135c
AB
1682
1683 /* Schedule wear-leveling if needed */
8199b901 1684 err = ensure_wear_leveling(ubi, 0);
801c135c
AB
1685 if (err)
1686 goto out_free;
1687
1688 return 0;
1689
1690out_free:
849271a4 1691 shutdown_work(ubi);
ee59ba8b
RW
1692 tree_destroy(ubi, &ubi->used);
1693 tree_destroy(ubi, &ubi->free);
1694 tree_destroy(ubi, &ubi->scrub);
801c135c 1695 kfree(ubi->lookuptbl);
801c135c
AB
1696 return err;
1697}
1698
1699/**
7b6c32da 1700 * protection_queue_destroy - destroy the protection queue.
801c135c
AB
1701 * @ubi: UBI device description object
1702 */
7b6c32da 1703static void protection_queue_destroy(struct ubi_device *ubi)
801c135c 1704{
7b6c32da
XX
1705 int i;
1706 struct ubi_wl_entry *e, *tmp;
801c135c 1707
7b6c32da
XX
1708 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1709 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1710 list_del(&e->u.list);
ee59ba8b 1711 wl_entry_destroy(ubi, e);
801c135c
AB
1712 }
1713 }
1714}
1715
1716/**
85c6e6e2 1717 * ubi_wl_close - close the wear-leveling sub-system.
801c135c
AB
1718 * @ubi: UBI device description object
1719 */
1720void ubi_wl_close(struct ubi_device *ubi)
1721{
85c6e6e2 1722 dbg_wl("close the WL sub-system");
74cdaf24 1723 ubi_fastmap_close(ubi);
849271a4 1724 shutdown_work(ubi);
7b6c32da 1725 protection_queue_destroy(ubi);
ee59ba8b
RW
1726 tree_destroy(ubi, &ubi->used);
1727 tree_destroy(ubi, &ubi->erroneous);
1728 tree_destroy(ubi, &ubi->free);
1729 tree_destroy(ubi, &ubi->scrub);
801c135c 1730 kfree(ubi->lookuptbl);
801c135c
AB
1731}
1732
801c135c 1733/**
7bf523ae 1734 * self_check_ec - make sure that the erase counter of a PEB is correct.
801c135c
AB
1735 * @ubi: UBI device description object
1736 * @pnum: the physical eraseblock number to check
1737 * @ec: the erase counter to check
1738 *
1739 * This function returns zero if the erase counter of physical eraseblock @pnum
feddbb34
AB
1740 * is equivalent to @ec, and a negative error code if not or if an error
1741 * occurred.
801c135c 1742 */
7bf523ae 1743static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
801c135c
AB
1744{
1745 int err;
1746 long long read_ec;
1747 struct ubi_ec_hdr *ec_hdr;
1748
64575574 1749 if (!ubi_dbg_chk_gen(ubi))
92d124f5
AB
1750 return 0;
1751
33818bbb 1752 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1753 if (!ec_hdr)
1754 return -ENOMEM;
1755
1756 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1757 if (err && err != UBI_IO_BITFLIPS) {
1758 /* The header does not have to exist */
1759 err = 0;
1760 goto out_free;
1761 }
1762
3261ebd7 1763 read_ec = be64_to_cpu(ec_hdr->ec);
8199b901 1764 if (ec != read_ec && read_ec - ec > 1) {
32608703
TB
1765 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1766 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
25886a36 1767 dump_stack();
801c135c
AB
1768 err = 1;
1769 } else
1770 err = 0;
1771
1772out_free:
1773 kfree(ec_hdr);
1774 return err;
1775}
1776
1777/**
7bf523ae 1778 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
d99383b0 1779 * @ubi: UBI device description object
801c135c
AB
1780 * @e: the wear-leveling entry to check
1781 * @root: the root of the tree
1782 *
adbf05e3
AB
1783 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1784 * is not.
801c135c 1785 */
7bf523ae
AB
1786static int self_check_in_wl_tree(const struct ubi_device *ubi,
1787 struct ubi_wl_entry *e, struct rb_root *root)
801c135c 1788{
64575574 1789 if (!ubi_dbg_chk_gen(ubi))
92d124f5
AB
1790 return 0;
1791
801c135c
AB
1792 if (in_wl_tree(e, root))
1793 return 0;
1794
32608703 1795 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
801c135c 1796 e->pnum, e->ec, root);
25886a36 1797 dump_stack();
adbf05e3 1798 return -EINVAL;
801c135c
AB
1799}
1800
7b6c32da 1801/**
7bf523ae 1802 * self_check_in_pq - check if wear-leveling entry is in the protection
7b6c32da
XX
1803 * queue.
1804 * @ubi: UBI device description object
1805 * @e: the wear-leveling entry to check
1806 *
adbf05e3 1807 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
7b6c32da 1808 */
7bf523ae
AB
1809static int self_check_in_pq(const struct ubi_device *ubi,
1810 struct ubi_wl_entry *e)
7b6c32da
XX
1811{
1812 struct ubi_wl_entry *p;
1813 int i;
1814
64575574 1815 if (!ubi_dbg_chk_gen(ubi))
92d124f5
AB
1816 return 0;
1817
7b6c32da
XX
1818 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1819 list_for_each_entry(p, &ubi->pq[i], u.list)
1820 if (p == e)
1821 return 0;
1822
32608703 1823 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
7b6c32da 1824 e->pnum, e->ec);
25886a36 1825 dump_stack();
adbf05e3 1826 return -EINVAL;
7b6c32da 1827}
78d6d497
RW
1828#ifndef CONFIG_MTD_UBI_FASTMAP
1829static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1830{
1831 struct ubi_wl_entry *e;
1832
1833 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1834 self_check_in_wl_tree(ubi, e, &ubi->free);
1835 ubi->free_count--;
1836 ubi_assert(ubi->free_count >= 0);
1837 rb_erase(&e->u.rb, &ubi->free);
1838
1839 return e;
1840}
1841
1842/**
1843 * produce_free_peb - produce a free physical eraseblock.
1844 * @ubi: UBI device description object
1845 *
1846 * This function tries to make a free PEB by means of synchronous execution of
1847 * pending works. This may be needed if, for example the background thread is
1848 * disabled. Returns zero in case of success and a negative error code in case
1849 * of failure.
1850 */
1851static int produce_free_peb(struct ubi_device *ubi)
1852{
1853 int err;
1854
1855 while (!ubi->free.rb_node && ubi->works_count) {
1856 spin_unlock(&ubi->wl_lock);
1857
1858 dbg_wl("do one work synchronously");
1859 err = do_work(ubi);
1860
1861 spin_lock(&ubi->wl_lock);
1862 if (err)
1863 return err;
1864 }
1865
1866 return 0;
1867}
1868
1869/**
1870 * ubi_wl_get_peb - get a physical eraseblock.
1871 * @ubi: UBI device description object
1872 *
1873 * This function returns a physical eraseblock in case of success and a
1874 * negative error code in case of failure.
1875 * Returns with ubi->fm_eba_sem held in read mode!
1876 */
1877int ubi_wl_get_peb(struct ubi_device *ubi)
1878{
1879 int err;
1880 struct ubi_wl_entry *e;
1881
1882retry:
1883 down_read(&ubi->fm_eba_sem);
1884 spin_lock(&ubi->wl_lock);
1885 if (!ubi->free.rb_node) {
1886 if (ubi->works_count == 0) {
1887 ubi_err(ubi, "no free eraseblocks");
1888 ubi_assert(list_empty(&ubi->works));
1889 spin_unlock(&ubi->wl_lock);
1890 return -ENOSPC;
1891 }
1892
1893 err = produce_free_peb(ubi);
1894 if (err < 0) {
1895 spin_unlock(&ubi->wl_lock);
1896 return err;
1897 }
1898 spin_unlock(&ubi->wl_lock);
1899 up_read(&ubi->fm_eba_sem);
1900 goto retry;
1901
1902 }
1903 e = wl_get_wle(ubi);
1904 prot_queue_add(ubi, e);
1905 spin_unlock(&ubi->wl_lock);
1906
1907 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1908 ubi->peb_size - ubi->vid_hdr_aloffset);
1909 if (err) {
1910 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1911 return err;
1912 }
1913
1914 return e->pnum;
1915}
1916#else
1917#include "fastmap-wl.c"
1918#endif