]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/net/acenic.c
[RT2x00]: add driver for Ralink wireless hardware
[mirror_ubuntu-eoan-kernel.git] / drivers / net / acenic.c
CommitLineData
1da177e4
LT
1/*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
4 *
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6 *
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
9 *
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51 */
52
1da177e4
LT
53#include <linux/module.h>
54#include <linux/moduleparam.h>
55#include <linux/version.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/mm.h>
68#include <linux/highmem.h>
69#include <linux/sockios.h>
70
71#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72#include <linux/if_vlan.h>
73#endif
74
75#ifdef SIOCETHTOOL
76#include <linux/ethtool.h>
77#endif
78
79#include <net/sock.h>
80#include <net/ip.h>
81
82#include <asm/system.h>
83#include <asm/io.h>
84#include <asm/irq.h>
85#include <asm/byteorder.h>
86#include <asm/uaccess.h>
87
88
89#define DRV_NAME "acenic"
90
91#undef INDEX_DEBUG
92
93#ifdef CONFIG_ACENIC_OMIT_TIGON_I
94#define ACE_IS_TIGON_I(ap) 0
95#define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
96#else
97#define ACE_IS_TIGON_I(ap) (ap->version == 1)
98#define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
99#endif
100
101#ifndef PCI_VENDOR_ID_ALTEON
6aa20a22 102#define PCI_VENDOR_ID_ALTEON 0x12ae
1da177e4
LT
103#endif
104#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
107#endif
108#ifndef PCI_DEVICE_ID_3COM_3C985
109#define PCI_DEVICE_ID_3COM_3C985 0x0001
110#endif
111#ifndef PCI_VENDOR_ID_NETGEAR
112#define PCI_VENDOR_ID_NETGEAR 0x1385
113#define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
114#endif
115#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116#define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
117#endif
118
119
120/*
121 * Farallon used the DEC vendor ID by mistake and they seem not
122 * to care - stinky!
123 */
124#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125#define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
126#endif
127#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128#define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
129#endif
130#ifndef PCI_VENDOR_ID_SGI
131#define PCI_VENDOR_ID_SGI 0x10a9
132#endif
133#ifndef PCI_DEVICE_ID_SGI_ACENIC
134#define PCI_DEVICE_ID_SGI_ACENIC 0x0009
135#endif
136
137static struct pci_device_id acenic_pci_tbl[] = {
138 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
139 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
141 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
143 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
145 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
147 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
148 /*
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
151 */
152 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
153 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
155 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
157 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
158 { }
159};
160MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
161
1da177e4 162#define ace_sync_irq(irq) synchronize_irq(irq)
1da177e4
LT
163
164#ifndef offset_in_page
165#define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
166#endif
167
168#define ACE_MAX_MOD_PARMS 8
169#define BOARD_IDX_STATIC 0
170#define BOARD_IDX_OVERFLOW -1
171
172#if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
173 defined(NETIF_F_HW_VLAN_RX)
174#define ACENIC_DO_VLAN 1
175#define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
176#else
177#define ACENIC_DO_VLAN 0
178#define ACE_RCB_VLAN_FLAG 0
179#endif
180
181#include "acenic.h"
182
183/*
184 * These must be defined before the firmware is included.
185 */
186#define MAX_TEXT_LEN 96*1024
187#define MAX_RODATA_LEN 8*1024
188#define MAX_DATA_LEN 2*1024
189
190#include "acenic_firmware.h"
191
192#ifndef tigon2FwReleaseLocal
193#define tigon2FwReleaseLocal 0
194#endif
195
196/*
197 * This driver currently supports Tigon I and Tigon II based cards
198 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
199 * GA620. The driver should also work on the SGI, DEC and Farallon
200 * versions of the card, however I have not been able to test that
201 * myself.
202 *
203 * This card is really neat, it supports receive hardware checksumming
204 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
205 * firmware. Also the programming interface is quite neat, except for
206 * the parts dealing with the i2c eeprom on the card ;-)
207 *
208 * Using jumbo frames:
209 *
210 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
211 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
212 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
213 * interface number and <MTU> being the MTU value.
214 *
215 * Module parameters:
216 *
217 * When compiled as a loadable module, the driver allows for a number
218 * of module parameters to be specified. The driver supports the
219 * following module parameters:
220 *
221 * trace=<val> - Firmware trace level. This requires special traced
222 * firmware to replace the firmware supplied with
223 * the driver - for debugging purposes only.
224 *
225 * link=<val> - Link state. Normally you want to use the default link
226 * parameters set by the driver. This can be used to
227 * override these in case your switch doesn't negotiate
228 * the link properly. Valid values are:
229 * 0x0001 - Force half duplex link.
230 * 0x0002 - Do not negotiate line speed with the other end.
231 * 0x0010 - 10Mbit/sec link.
232 * 0x0020 - 100Mbit/sec link.
233 * 0x0040 - 1000Mbit/sec link.
234 * 0x0100 - Do not negotiate flow control.
235 * 0x0200 - Enable RX flow control Y
236 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
237 * Default value is 0x0270, ie. enable link+flow
238 * control negotiation. Negotiating the highest
239 * possible link speed with RX flow control enabled.
240 *
241 * When disabling link speed negotiation, only one link
242 * speed is allowed to be specified!
243 *
244 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
245 * to wait for more packets to arive before
246 * interrupting the host, from the time the first
247 * packet arrives.
248 *
249 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
250 * to wait for more packets to arive in the transmit ring,
251 * before interrupting the host, after transmitting the
252 * first packet in the ring.
253 *
254 * max_tx_desc=<val> - maximum number of transmit descriptors
255 * (packets) transmitted before interrupting the host.
256 *
257 * max_rx_desc=<val> - maximum number of receive descriptors
258 * (packets) received before interrupting the host.
259 *
260 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
261 * increments of the NIC's on board memory to be used for
262 * transmit and receive buffers. For the 1MB NIC app. 800KB
263 * is available, on the 1/2MB NIC app. 300KB is available.
264 * 68KB will always be available as a minimum for both
265 * directions. The default value is a 50/50 split.
266 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
267 * operations, default (1) is to always disable this as
268 * that is what Alteon does on NT. I have not been able
269 * to measure any real performance differences with
270 * this on my systems. Set <val>=0 if you want to
271 * enable these operations.
272 *
273 * If you use more than one NIC, specify the parameters for the
274 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
275 * run tracing on NIC #2 but not on NIC #1 and #3.
276 *
277 * TODO:
278 *
279 * - Proper multicast support.
280 * - NIC dump support.
281 * - More tuning parameters.
282 *
283 * The mini ring is not used under Linux and I am not sure it makes sense
284 * to actually use it.
285 *
286 * New interrupt handler strategy:
287 *
288 * The old interrupt handler worked using the traditional method of
289 * replacing an skbuff with a new one when a packet arrives. However
290 * the rx rings do not need to contain a static number of buffer
291 * descriptors, thus it makes sense to move the memory allocation out
292 * of the main interrupt handler and do it in a bottom half handler
293 * and only allocate new buffers when the number of buffers in the
294 * ring is below a certain threshold. In order to avoid starving the
295 * NIC under heavy load it is however necessary to force allocation
296 * when hitting a minimum threshold. The strategy for alloction is as
297 * follows:
298 *
299 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
300 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
301 * the buffers in the interrupt handler
302 * RX_RING_THRES - maximum number of buffers in the rx ring
303 * RX_MINI_THRES - maximum number of buffers in the mini ring
304 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
305 *
306 * One advantagous side effect of this allocation approach is that the
307 * entire rx processing can be done without holding any spin lock
308 * since the rx rings and registers are totally independent of the tx
309 * ring and its registers. This of course includes the kmalloc's of
310 * new skb's. Thus start_xmit can run in parallel with rx processing
311 * and the memory allocation on SMP systems.
312 *
313 * Note that running the skb reallocation in a bottom half opens up
314 * another can of races which needs to be handled properly. In
315 * particular it can happen that the interrupt handler tries to run
316 * the reallocation while the bottom half is either running on another
317 * CPU or was interrupted on the same CPU. To get around this the
318 * driver uses bitops to prevent the reallocation routines from being
319 * reentered.
320 *
321 * TX handling can also be done without holding any spin lock, wheee
322 * this is fun! since tx_ret_csm is only written to by the interrupt
323 * handler. The case to be aware of is when shutting down the device
324 * and cleaning up where it is necessary to make sure that
325 * start_xmit() is not running while this is happening. Well DaveM
326 * informs me that this case is already protected against ... bye bye
327 * Mr. Spin Lock, it was nice to know you.
328 *
329 * TX interrupts are now partly disabled so the NIC will only generate
330 * TX interrupts for the number of coal ticks, not for the number of
331 * TX packets in the queue. This should reduce the number of TX only,
332 * ie. when no RX processing is done, interrupts seen.
333 */
334
335/*
336 * Threshold values for RX buffer allocation - the low water marks for
337 * when to start refilling the rings are set to 75% of the ring
338 * sizes. It seems to make sense to refill the rings entirely from the
339 * intrrupt handler once it gets below the panic threshold, that way
340 * we don't risk that the refilling is moved to another CPU when the
341 * one running the interrupt handler just got the slab code hot in its
342 * cache.
343 */
344#define RX_RING_SIZE 72
345#define RX_MINI_SIZE 64
346#define RX_JUMBO_SIZE 48
347
348#define RX_PANIC_STD_THRES 16
349#define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
350#define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
351#define RX_PANIC_MINI_THRES 12
352#define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
353#define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
354#define RX_PANIC_JUMBO_THRES 6
355#define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
356#define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
357
358
359/*
360 * Size of the mini ring entries, basically these just should be big
361 * enough to take TCP ACKs
362 */
363#define ACE_MINI_SIZE 100
364
365#define ACE_MINI_BUFSIZE ACE_MINI_SIZE
366#define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
367#define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
368
369/*
370 * There seems to be a magic difference in the effect between 995 and 996
371 * but little difference between 900 and 995 ... no idea why.
372 *
373 * There is now a default set of tuning parameters which is set, depending
374 * on whether or not the user enables Jumbo frames. It's assumed that if
375 * Jumbo frames are enabled, the user wants optimal tuning for that case.
376 */
377#define DEF_TX_COAL 400 /* 996 */
378#define DEF_TX_MAX_DESC 60 /* was 40 */
379#define DEF_RX_COAL 120 /* 1000 */
380#define DEF_RX_MAX_DESC 25
381#define DEF_TX_RATIO 21 /* 24 */
382
383#define DEF_JUMBO_TX_COAL 20
384#define DEF_JUMBO_TX_MAX_DESC 60
385#define DEF_JUMBO_RX_COAL 30
386#define DEF_JUMBO_RX_MAX_DESC 6
387#define DEF_JUMBO_TX_RATIO 21
388
389#if tigon2FwReleaseLocal < 20001118
390/*
391 * Standard firmware and early modifications duplicate
392 * IRQ load without this flag (coal timer is never reset).
393 * Note that with this flag tx_coal should be less than
394 * time to xmit full tx ring.
395 * 400usec is not so bad for tx ring size of 128.
396 */
397#define TX_COAL_INTS_ONLY 1 /* worth it */
398#else
399/*
400 * With modified firmware, this is not necessary, but still useful.
401 */
402#define TX_COAL_INTS_ONLY 1
403#endif
404
405#define DEF_TRACE 0
406#define DEF_STAT (2 * TICKS_PER_SEC)
407
408
409static int link[ACE_MAX_MOD_PARMS];
410static int trace[ACE_MAX_MOD_PARMS];
411static int tx_coal_tick[ACE_MAX_MOD_PARMS];
412static int rx_coal_tick[ACE_MAX_MOD_PARMS];
413static int max_tx_desc[ACE_MAX_MOD_PARMS];
414static int max_rx_desc[ACE_MAX_MOD_PARMS];
415static int tx_ratio[ACE_MAX_MOD_PARMS];
416static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
417
418MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
419MODULE_LICENSE("GPL");
420MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
421
422module_param_array(link, int, NULL, 0);
423module_param_array(trace, int, NULL, 0);
424module_param_array(tx_coal_tick, int, NULL, 0);
425module_param_array(max_tx_desc, int, NULL, 0);
426module_param_array(rx_coal_tick, int, NULL, 0);
427module_param_array(max_rx_desc, int, NULL, 0);
428module_param_array(tx_ratio, int, NULL, 0);
429MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
430MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
431MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
432MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
433MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
434MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
435MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
436
437
6aa20a22 438static char version[] __devinitdata =
1da177e4
LT
439 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
440 " http://home.cern.ch/~jes/gige/acenic.html\n";
441
442static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
443static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
444static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
445
7282d491 446static const struct ethtool_ops ace_ethtool_ops = {
1da177e4
LT
447 .get_settings = ace_get_settings,
448 .set_settings = ace_set_settings,
449 .get_drvinfo = ace_get_drvinfo,
450};
451
452static void ace_watchdog(struct net_device *dev);
453
454static int __devinit acenic_probe_one(struct pci_dev *pdev,
455 const struct pci_device_id *id)
456{
457 struct net_device *dev;
458 struct ace_private *ap;
459 static int boards_found;
460
461 dev = alloc_etherdev(sizeof(struct ace_private));
462 if (dev == NULL) {
463 printk(KERN_ERR "acenic: Unable to allocate "
464 "net_device structure!\n");
465 return -ENOMEM;
466 }
467
1da177e4
LT
468 SET_NETDEV_DEV(dev, &pdev->dev);
469
470 ap = dev->priv;
471 ap->pdev = pdev;
472 ap->name = pci_name(pdev);
473
474 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
475#if ACENIC_DO_VLAN
476 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
477 dev->vlan_rx_register = ace_vlan_rx_register;
1da177e4 478#endif
25805dcf
SH
479
480 dev->tx_timeout = &ace_watchdog;
481 dev->watchdog_timeo = 5*HZ;
1da177e4
LT
482
483 dev->open = &ace_open;
484 dev->stop = &ace_close;
485 dev->hard_start_xmit = &ace_start_xmit;
486 dev->get_stats = &ace_get_stats;
487 dev->set_multicast_list = &ace_set_multicast_list;
488 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
489 dev->set_mac_address = &ace_set_mac_addr;
490 dev->change_mtu = &ace_change_mtu;
491
492 /* we only display this string ONCE */
493 if (!boards_found)
494 printk(version);
495
496 if (pci_enable_device(pdev))
497 goto fail_free_netdev;
498
499 /*
500 * Enable master mode before we start playing with the
501 * pci_command word since pci_set_master() will modify
502 * it.
503 */
504 pci_set_master(pdev);
505
506 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
507
6aa20a22 508 /* OpenFirmware on Mac's does not set this - DOH.. */
1da177e4
LT
509 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
510 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
511 "access - was not enabled by BIOS/Firmware\n",
512 ap->name);
513 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
514 pci_write_config_word(ap->pdev, PCI_COMMAND,
515 ap->pci_command);
516 wmb();
517 }
518
519 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
520 if (ap->pci_latency <= 0x40) {
521 ap->pci_latency = 0x40;
522 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
523 }
524
525 /*
526 * Remap the regs into kernel space - this is abuse of
527 * dev->base_addr since it was means for I/O port
528 * addresses but who gives a damn.
529 */
530 dev->base_addr = pci_resource_start(pdev, 0);
531 ap->regs = ioremap(dev->base_addr, 0x4000);
532 if (!ap->regs) {
533 printk(KERN_ERR "%s: Unable to map I/O register, "
534 "AceNIC %i will be disabled.\n",
535 ap->name, boards_found);
536 goto fail_free_netdev;
537 }
538
539 switch(pdev->vendor) {
540 case PCI_VENDOR_ID_ALTEON:
541 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
542 printk(KERN_INFO "%s: Farallon PN9100-T ",
543 ap->name);
544 } else {
545 printk(KERN_INFO "%s: Alteon AceNIC ",
546 ap->name);
547 }
548 break;
549 case PCI_VENDOR_ID_3COM:
550 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
551 break;
552 case PCI_VENDOR_ID_NETGEAR:
553 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
554 break;
555 case PCI_VENDOR_ID_DEC:
556 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
557 printk(KERN_INFO "%s: Farallon PN9000-SX ",
558 ap->name);
559 break;
560 }
561 case PCI_VENDOR_ID_SGI:
562 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
563 break;
564 default:
565 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
566 break;
567 }
568
569 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
c6387a48 570 printk("irq %d\n", pdev->irq);
1da177e4
LT
571
572#ifdef CONFIG_ACENIC_OMIT_TIGON_I
573 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
574 printk(KERN_ERR "%s: Driver compiled without Tigon I"
575 " support - NIC disabled\n", dev->name);
576 goto fail_uninit;
577 }
578#endif
579
580 if (ace_allocate_descriptors(dev))
581 goto fail_free_netdev;
582
583#ifdef MODULE
584 if (boards_found >= ACE_MAX_MOD_PARMS)
585 ap->board_idx = BOARD_IDX_OVERFLOW;
586 else
587 ap->board_idx = boards_found;
588#else
589 ap->board_idx = BOARD_IDX_STATIC;
590#endif
591
592 if (ace_init(dev))
593 goto fail_free_netdev;
594
595 if (register_netdev(dev)) {
596 printk(KERN_ERR "acenic: device registration failed\n");
597 goto fail_uninit;
598 }
599 ap->name = dev->name;
600
601 if (ap->pci_using_dac)
602 dev->features |= NETIF_F_HIGHDMA;
603
604 pci_set_drvdata(pdev, dev);
605
606 boards_found++;
607 return 0;
608
609 fail_uninit:
610 ace_init_cleanup(dev);
611 fail_free_netdev:
612 free_netdev(dev);
613 return -ENODEV;
614}
615
616static void __devexit acenic_remove_one(struct pci_dev *pdev)
617{
618 struct net_device *dev = pci_get_drvdata(pdev);
619 struct ace_private *ap = netdev_priv(dev);
620 struct ace_regs __iomem *regs = ap->regs;
621 short i;
622
623 unregister_netdev(dev);
624
625 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
626 if (ap->version >= 2)
627 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
6aa20a22 628
1da177e4
LT
629 /*
630 * This clears any pending interrupts
631 */
632 writel(1, &regs->Mb0Lo);
633 readl(&regs->CpuCtrl); /* flush */
634
635 /*
636 * Make sure no other CPUs are processing interrupts
637 * on the card before the buffers are being released.
638 * Otherwise one might experience some `interesting'
639 * effects.
640 *
641 * Then release the RX buffers - jumbo buffers were
642 * already released in ace_close().
643 */
644 ace_sync_irq(dev->irq);
645
646 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
647 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
648
649 if (skb) {
650 struct ring_info *ringp;
651 dma_addr_t mapping;
652
653 ringp = &ap->skb->rx_std_skbuff[i];
654 mapping = pci_unmap_addr(ringp, mapping);
655 pci_unmap_page(ap->pdev, mapping,
656 ACE_STD_BUFSIZE,
657 PCI_DMA_FROMDEVICE);
658
659 ap->rx_std_ring[i].size = 0;
660 ap->skb->rx_std_skbuff[i].skb = NULL;
661 dev_kfree_skb(skb);
662 }
663 }
664
665 if (ap->version >= 2) {
666 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
667 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
668
669 if (skb) {
670 struct ring_info *ringp;
671 dma_addr_t mapping;
672
673 ringp = &ap->skb->rx_mini_skbuff[i];
674 mapping = pci_unmap_addr(ringp,mapping);
675 pci_unmap_page(ap->pdev, mapping,
676 ACE_MINI_BUFSIZE,
677 PCI_DMA_FROMDEVICE);
678
679 ap->rx_mini_ring[i].size = 0;
680 ap->skb->rx_mini_skbuff[i].skb = NULL;
681 dev_kfree_skb(skb);
682 }
683 }
684 }
685
686 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
687 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
688 if (skb) {
689 struct ring_info *ringp;
690 dma_addr_t mapping;
691
692 ringp = &ap->skb->rx_jumbo_skbuff[i];
693 mapping = pci_unmap_addr(ringp, mapping);
694 pci_unmap_page(ap->pdev, mapping,
695 ACE_JUMBO_BUFSIZE,
696 PCI_DMA_FROMDEVICE);
697
698 ap->rx_jumbo_ring[i].size = 0;
699 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
700 dev_kfree_skb(skb);
701 }
702 }
703
704 ace_init_cleanup(dev);
705 free_netdev(dev);
706}
707
708static struct pci_driver acenic_pci_driver = {
709 .name = "acenic",
710 .id_table = acenic_pci_tbl,
711 .probe = acenic_probe_one,
712 .remove = __devexit_p(acenic_remove_one),
713};
714
715static int __init acenic_init(void)
716{
29917620 717 return pci_register_driver(&acenic_pci_driver);
1da177e4
LT
718}
719
720static void __exit acenic_exit(void)
721{
722 pci_unregister_driver(&acenic_pci_driver);
723}
724
725module_init(acenic_init);
726module_exit(acenic_exit);
727
728static void ace_free_descriptors(struct net_device *dev)
729{
730 struct ace_private *ap = netdev_priv(dev);
731 int size;
732
733 if (ap->rx_std_ring != NULL) {
734 size = (sizeof(struct rx_desc) *
735 (RX_STD_RING_ENTRIES +
736 RX_JUMBO_RING_ENTRIES +
737 RX_MINI_RING_ENTRIES +
738 RX_RETURN_RING_ENTRIES));
739 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
740 ap->rx_ring_base_dma);
741 ap->rx_std_ring = NULL;
742 ap->rx_jumbo_ring = NULL;
743 ap->rx_mini_ring = NULL;
744 ap->rx_return_ring = NULL;
745 }
746 if (ap->evt_ring != NULL) {
747 size = (sizeof(struct event) * EVT_RING_ENTRIES);
748 pci_free_consistent(ap->pdev, size, ap->evt_ring,
749 ap->evt_ring_dma);
750 ap->evt_ring = NULL;
751 }
752 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
753 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
754 pci_free_consistent(ap->pdev, size, ap->tx_ring,
755 ap->tx_ring_dma);
756 }
757 ap->tx_ring = NULL;
758
759 if (ap->evt_prd != NULL) {
760 pci_free_consistent(ap->pdev, sizeof(u32),
761 (void *)ap->evt_prd, ap->evt_prd_dma);
762 ap->evt_prd = NULL;
763 }
764 if (ap->rx_ret_prd != NULL) {
765 pci_free_consistent(ap->pdev, sizeof(u32),
766 (void *)ap->rx_ret_prd,
767 ap->rx_ret_prd_dma);
768 ap->rx_ret_prd = NULL;
769 }
770 if (ap->tx_csm != NULL) {
771 pci_free_consistent(ap->pdev, sizeof(u32),
772 (void *)ap->tx_csm, ap->tx_csm_dma);
773 ap->tx_csm = NULL;
774 }
775}
776
777
778static int ace_allocate_descriptors(struct net_device *dev)
779{
780 struct ace_private *ap = netdev_priv(dev);
781 int size;
782
783 size = (sizeof(struct rx_desc) *
784 (RX_STD_RING_ENTRIES +
785 RX_JUMBO_RING_ENTRIES +
786 RX_MINI_RING_ENTRIES +
787 RX_RETURN_RING_ENTRIES));
788
789 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
790 &ap->rx_ring_base_dma);
791 if (ap->rx_std_ring == NULL)
792 goto fail;
793
794 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
795 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
796 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
797
798 size = (sizeof(struct event) * EVT_RING_ENTRIES);
799
800 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
801
802 if (ap->evt_ring == NULL)
803 goto fail;
804
805 /*
806 * Only allocate a host TX ring for the Tigon II, the Tigon I
807 * has to use PCI registers for this ;-(
808 */
809 if (!ACE_IS_TIGON_I(ap)) {
810 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
811
812 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
813 &ap->tx_ring_dma);
814
815 if (ap->tx_ring == NULL)
816 goto fail;
817 }
818
819 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
820 &ap->evt_prd_dma);
821 if (ap->evt_prd == NULL)
822 goto fail;
823
824 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
825 &ap->rx_ret_prd_dma);
826 if (ap->rx_ret_prd == NULL)
827 goto fail;
828
829 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
830 &ap->tx_csm_dma);
831 if (ap->tx_csm == NULL)
832 goto fail;
833
834 return 0;
835
836fail:
837 /* Clean up. */
838 ace_init_cleanup(dev);
839 return 1;
840}
841
842
843/*
844 * Generic cleanup handling data allocated during init. Used when the
845 * module is unloaded or if an error occurs during initialization
846 */
847static void ace_init_cleanup(struct net_device *dev)
848{
849 struct ace_private *ap;
850
851 ap = netdev_priv(dev);
852
853 ace_free_descriptors(dev);
854
855 if (ap->info)
856 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
857 ap->info, ap->info_dma);
b4558ea9
JJ
858 kfree(ap->skb);
859 kfree(ap->trace_buf);
1da177e4
LT
860
861 if (dev->irq)
862 free_irq(dev->irq, dev);
863
864 iounmap(ap->regs);
865}
866
867
868/*
869 * Commands are considered to be slow.
870 */
871static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
872{
873 u32 idx;
874
875 idx = readl(&regs->CmdPrd);
876
877 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
878 idx = (idx + 1) % CMD_RING_ENTRIES;
879
880 writel(idx, &regs->CmdPrd);
881}
882
883
884static int __devinit ace_init(struct net_device *dev)
885{
886 struct ace_private *ap;
887 struct ace_regs __iomem *regs;
888 struct ace_info *info = NULL;
889 struct pci_dev *pdev;
890 unsigned long myjif;
891 u64 tmp_ptr;
892 u32 tig_ver, mac1, mac2, tmp, pci_state;
893 int board_idx, ecode = 0;
894 short i;
895 unsigned char cache_size;
896
897 ap = netdev_priv(dev);
898 regs = ap->regs;
899
900 board_idx = ap->board_idx;
901
902 /*
903 * aman@sgi.com - its useful to do a NIC reset here to
904 * address the `Firmware not running' problem subsequent
905 * to any crashes involving the NIC
906 */
907 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
908 readl(&regs->HostCtrl); /* PCI write posting */
909 udelay(5);
910
911 /*
912 * Don't access any other registers before this point!
913 */
914#ifdef __BIG_ENDIAN
915 /*
916 * This will most likely need BYTE_SWAP once we switch
917 * to using __raw_writel()
918 */
919 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
920 &regs->HostCtrl);
921#else
922 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
923 &regs->HostCtrl);
924#endif
925 readl(&regs->HostCtrl); /* PCI write posting */
926
927 /*
928 * Stop the NIC CPU and clear pending interrupts
929 */
930 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
931 readl(&regs->CpuCtrl); /* PCI write posting */
932 writel(0, &regs->Mb0Lo);
933
934 tig_ver = readl(&regs->HostCtrl) >> 28;
935
936 switch(tig_ver){
937#ifndef CONFIG_ACENIC_OMIT_TIGON_I
938 case 4:
939 case 5:
940 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
941 tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
942 tigonFwReleaseFix);
943 writel(0, &regs->LocalCtrl);
944 ap->version = 1;
945 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
946 break;
947#endif
948 case 6:
949 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
950 tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
951 tigon2FwReleaseFix);
952 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
953 readl(&regs->CpuBCtrl); /* PCI write posting */
954 /*
955 * The SRAM bank size does _not_ indicate the amount
956 * of memory on the card, it controls the _bank_ size!
957 * Ie. a 1MB AceNIC will have two banks of 512KB.
958 */
959 writel(SRAM_BANK_512K, &regs->LocalCtrl);
960 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
961 ap->version = 2;
962 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
963 break;
964 default:
965 printk(KERN_WARNING " Unsupported Tigon version detected "
966 "(%i)\n", tig_ver);
967 ecode = -ENODEV;
968 goto init_error;
969 }
970
971 /*
972 * ModeStat _must_ be set after the SRAM settings as this change
973 * seems to corrupt the ModeStat and possible other registers.
974 * The SRAM settings survive resets and setting it to the same
975 * value a second time works as well. This is what caused the
976 * `Firmware not running' problem on the Tigon II.
977 */
978#ifdef __BIG_ENDIAN
979 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
980 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
981#else
982 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
983 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
984#endif
985 readl(&regs->ModeStat); /* PCI write posting */
986
987 mac1 = 0;
988 for(i = 0; i < 4; i++) {
6f9d4722
ES
989 int tmp;
990
1da177e4
LT
991 mac1 = mac1 << 8;
992 tmp = read_eeprom_byte(dev, 0x8c+i);
993 if (tmp < 0) {
994 ecode = -EIO;
995 goto init_error;
996 } else
997 mac1 |= (tmp & 0xff);
998 }
999 mac2 = 0;
1000 for(i = 4; i < 8; i++) {
6f9d4722
ES
1001 int tmp;
1002
1da177e4
LT
1003 mac2 = mac2 << 8;
1004 tmp = read_eeprom_byte(dev, 0x8c+i);
1005 if (tmp < 0) {
1006 ecode = -EIO;
1007 goto init_error;
1008 } else
1009 mac2 |= (tmp & 0xff);
1010 }
1011
1012 writel(mac1, &regs->MacAddrHi);
1013 writel(mac2, &regs->MacAddrLo);
1014
1015 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1016 (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff,
1017 (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff);
1018
1019 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1020 dev->dev_addr[1] = mac1 & 0xff;
1021 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1022 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1023 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1024 dev->dev_addr[5] = mac2 & 0xff;
1025
1026 /*
1027 * Looks like this is necessary to deal with on all architectures,
1028 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1029 * Ie. having two NICs in the machine, one will have the cache
1030 * line set at boot time, the other will not.
1031 */
1032 pdev = ap->pdev;
1033 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1034 cache_size <<= 2;
1035 if (cache_size != SMP_CACHE_BYTES) {
1036 printk(KERN_INFO " PCI cache line size set incorrectly "
1037 "(%i bytes) by BIOS/FW, ", cache_size);
1038 if (cache_size > SMP_CACHE_BYTES)
1039 printk("expecting %i\n", SMP_CACHE_BYTES);
1040 else {
1041 printk("correcting to %i\n", SMP_CACHE_BYTES);
1042 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1043 SMP_CACHE_BYTES >> 2);
1044 }
1045 }
1046
1047 pci_state = readl(&regs->PciState);
1048 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1049 "latency: %i clks\n",
1050 (pci_state & PCI_32BIT) ? 32 : 64,
6aa20a22 1051 (pci_state & PCI_66MHZ) ? 66 : 33,
1da177e4
LT
1052 ap->pci_latency);
1053
1054 /*
1055 * Set the max DMA transfer size. Seems that for most systems
1056 * the performance is better when no MAX parameter is
1057 * set. However for systems enabling PCI write and invalidate,
1058 * DMA writes must be set to the L1 cache line size to get
1059 * optimal performance.
1060 *
1061 * The default is now to turn the PCI write and invalidate off
1062 * - that is what Alteon does for NT.
1063 */
1064 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1065 if (ap->version >= 2) {
1066 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1067 /*
1068 * Tuning parameters only supported for 8 cards
1069 */
1070 if (board_idx == BOARD_IDX_OVERFLOW ||
1071 dis_pci_mem_inval[board_idx]) {
1072 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1073 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1074 pci_write_config_word(pdev, PCI_COMMAND,
1075 ap->pci_command);
1076 printk(KERN_INFO " Disabling PCI memory "
1077 "write and invalidate\n");
1078 }
1079 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1080 printk(KERN_INFO " PCI memory write & invalidate "
1081 "enabled by BIOS, enabling counter measures\n");
1082
1083 switch(SMP_CACHE_BYTES) {
1084 case 16:
1085 tmp |= DMA_WRITE_MAX_16;
1086 break;
1087 case 32:
1088 tmp |= DMA_WRITE_MAX_32;
1089 break;
1090 case 64:
1091 tmp |= DMA_WRITE_MAX_64;
1092 break;
1093 case 128:
1094 tmp |= DMA_WRITE_MAX_128;
1095 break;
1096 default:
1097 printk(KERN_INFO " Cache line size %i not "
1098 "supported, PCI write and invalidate "
1099 "disabled\n", SMP_CACHE_BYTES);
1100 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1101 pci_write_config_word(pdev, PCI_COMMAND,
1102 ap->pci_command);
1103 }
1104 }
1105 }
1106
1107#ifdef __sparc__
1108 /*
1109 * On this platform, we know what the best dma settings
1110 * are. We use 64-byte maximum bursts, because if we
1111 * burst larger than the cache line size (or even cross
1112 * a 64byte boundary in a single burst) the UltraSparc
1113 * PCI controller will disconnect at 64-byte multiples.
1114 *
1115 * Read-multiple will be properly enabled above, and when
1116 * set will give the PCI controller proper hints about
1117 * prefetching.
1118 */
1119 tmp &= ~DMA_READ_WRITE_MASK;
1120 tmp |= DMA_READ_MAX_64;
1121 tmp |= DMA_WRITE_MAX_64;
1122#endif
1123#ifdef __alpha__
1124 tmp &= ~DMA_READ_WRITE_MASK;
1125 tmp |= DMA_READ_MAX_128;
1126 /*
1127 * All the docs say MUST NOT. Well, I did.
1128 * Nothing terrible happens, if we load wrong size.
1129 * Bit w&i still works better!
1130 */
1131 tmp |= DMA_WRITE_MAX_128;
1132#endif
1133 writel(tmp, &regs->PciState);
1134
1135#if 0
1136 /*
1137 * The Host PCI bus controller driver has to set FBB.
1138 * If all devices on that PCI bus support FBB, then the controller
1139 * can enable FBB support in the Host PCI Bus controller (or on
1140 * the PCI-PCI bridge if that applies).
1141 * -ggg
1142 */
1143 /*
1144 * I have received reports from people having problems when this
1145 * bit is enabled.
1146 */
1147 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1148 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1149 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1150 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1151 }
1152#endif
6aa20a22 1153
1da177e4
LT
1154 /*
1155 * Configure DMA attributes.
1156 */
1e7f0bd8 1157 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4 1158 ap->pci_using_dac = 1;
1e7f0bd8 1159 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
1160 ap->pci_using_dac = 0;
1161 } else {
1162 ecode = -ENODEV;
1163 goto init_error;
1164 }
1165
1166 /*
1167 * Initialize the generic info block and the command+event rings
1168 * and the control blocks for the transmit and receive rings
1169 * as they need to be setup once and for all.
1170 */
1171 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1172 &ap->info_dma))) {
1173 ecode = -EAGAIN;
1174 goto init_error;
1175 }
1176 ap->info = info;
1177
1178 /*
1179 * Get the memory for the skb rings.
1180 */
1181 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1182 ecode = -EAGAIN;
1183 goto init_error;
1184 }
1185
1fb9df5d 1186 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1da177e4
LT
1187 DRV_NAME, dev);
1188 if (ecode) {
1189 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1190 DRV_NAME, pdev->irq);
1191 goto init_error;
1192 } else
1193 dev->irq = pdev->irq;
1194
1195#ifdef INDEX_DEBUG
1196 spin_lock_init(&ap->debug_lock);
1197 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1198 ap->last_std_rx = 0;
1199 ap->last_mini_rx = 0;
1200#endif
1201
1202 memset(ap->info, 0, sizeof(struct ace_info));
1203 memset(ap->skb, 0, sizeof(struct ace_skb));
1204
1205 ace_load_firmware(dev);
1206 ap->fw_running = 0;
1207
1208 tmp_ptr = ap->info_dma;
1209 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1210 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1211
1212 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1213
1214 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1215 info->evt_ctrl.flags = 0;
1216
1217 *(ap->evt_prd) = 0;
1218 wmb();
1219 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1220 writel(0, &regs->EvtCsm);
1221
1222 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1223 info->cmd_ctrl.flags = 0;
1224 info->cmd_ctrl.max_len = 0;
1225
1226 for (i = 0; i < CMD_RING_ENTRIES; i++)
1227 writel(0, &regs->CmdRng[i]);
1228
1229 writel(0, &regs->CmdPrd);
1230 writel(0, &regs->CmdCsm);
1231
1232 tmp_ptr = ap->info_dma;
1233 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1234 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1235
1236 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1237 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1238 info->rx_std_ctrl.flags =
1239 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1240
1241 memset(ap->rx_std_ring, 0,
1242 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1243
1244 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1245 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1246
1247 ap->rx_std_skbprd = 0;
1248 atomic_set(&ap->cur_rx_bufs, 0);
1249
1250 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1251 (ap->rx_ring_base_dma +
1252 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1253 info->rx_jumbo_ctrl.max_len = 0;
1254 info->rx_jumbo_ctrl.flags =
1255 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1256
1257 memset(ap->rx_jumbo_ring, 0,
1258 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1259
1260 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1261 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1262
1263 ap->rx_jumbo_skbprd = 0;
1264 atomic_set(&ap->cur_jumbo_bufs, 0);
1265
1266 memset(ap->rx_mini_ring, 0,
1267 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1268
1269 if (ap->version >= 2) {
1270 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1271 (ap->rx_ring_base_dma +
1272 (sizeof(struct rx_desc) *
1273 (RX_STD_RING_ENTRIES +
1274 RX_JUMBO_RING_ENTRIES))));
1275 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
6aa20a22 1276 info->rx_mini_ctrl.flags =
1da177e4
LT
1277 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1278
1279 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1280 ap->rx_mini_ring[i].flags =
1281 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1282 } else {
1283 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1284 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1285 info->rx_mini_ctrl.max_len = 0;
1286 }
1287
1288 ap->rx_mini_skbprd = 0;
1289 atomic_set(&ap->cur_mini_bufs, 0);
1290
1291 set_aceaddr(&info->rx_return_ctrl.rngptr,
1292 (ap->rx_ring_base_dma +
1293 (sizeof(struct rx_desc) *
1294 (RX_STD_RING_ENTRIES +
1295 RX_JUMBO_RING_ENTRIES +
1296 RX_MINI_RING_ENTRIES))));
1297 info->rx_return_ctrl.flags = 0;
1298 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1299
1300 memset(ap->rx_return_ring, 0,
1301 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1302
1303 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1304 *(ap->rx_ret_prd) = 0;
1305
1306 writel(TX_RING_BASE, &regs->WinBase);
1307
1308 if (ACE_IS_TIGON_I(ap)) {
1309 ap->tx_ring = (struct tx_desc *) regs->Window;
6aa20a22 1310 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1da177e4
LT
1311 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1312 writel(0, (void __iomem *)ap->tx_ring + i * 4);
1313
1314 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1315 } else {
1316 memset(ap->tx_ring, 0,
1317 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1318
1319 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1320 }
1321
1322 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1323 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1324
1325 /*
1326 * The Tigon I does not like having the TX ring in host memory ;-(
1327 */
1328 if (!ACE_IS_TIGON_I(ap))
1329 tmp |= RCB_FLG_TX_HOST_RING;
1330#if TX_COAL_INTS_ONLY
1331 tmp |= RCB_FLG_COAL_INT_ONLY;
1332#endif
1333 info->tx_ctrl.flags = tmp;
1334
1335 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1336
1337 /*
1338 * Potential item for tuning parameter
1339 */
1340#if 0 /* NO */
1341 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1342 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1343#else
1344 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1345 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1346#endif
1347
1348 writel(0, &regs->MaskInt);
1349 writel(1, &regs->IfIdx);
1350#if 0
1351 /*
1352 * McKinley boxes do not like us fiddling with AssistState
1353 * this early
1354 */
1355 writel(1, &regs->AssistState);
1356#endif
1357
1358 writel(DEF_STAT, &regs->TuneStatTicks);
1359 writel(DEF_TRACE, &regs->TuneTrace);
1360
1361 ace_set_rxtx_parms(dev, 0);
1362
1363 if (board_idx == BOARD_IDX_OVERFLOW) {
1364 printk(KERN_WARNING "%s: more than %i NICs detected, "
1365 "ignoring module parameters!\n",
1366 ap->name, ACE_MAX_MOD_PARMS);
1367 } else if (board_idx >= 0) {
1368 if (tx_coal_tick[board_idx])
1369 writel(tx_coal_tick[board_idx],
1370 &regs->TuneTxCoalTicks);
1371 if (max_tx_desc[board_idx])
1372 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1373
1374 if (rx_coal_tick[board_idx])
1375 writel(rx_coal_tick[board_idx],
1376 &regs->TuneRxCoalTicks);
1377 if (max_rx_desc[board_idx])
1378 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1379
1380 if (trace[board_idx])
1381 writel(trace[board_idx], &regs->TuneTrace);
1382
1383 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1384 writel(tx_ratio[board_idx], &regs->TxBufRat);
1385 }
1386
1387 /*
1388 * Default link parameters
1389 */
1390 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1391 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1392 if(ap->version >= 2)
1393 tmp |= LNK_TX_FLOW_CTL_Y;
1394
1395 /*
1396 * Override link default parameters
1397 */
1398 if ((board_idx >= 0) && link[board_idx]) {
1399 int option = link[board_idx];
1400
1401 tmp = LNK_ENABLE;
1402
1403 if (option & 0x01) {
1404 printk(KERN_INFO "%s: Setting half duplex link\n",
1405 ap->name);
1406 tmp &= ~LNK_FULL_DUPLEX;
1407 }
1408 if (option & 0x02)
1409 tmp &= ~LNK_NEGOTIATE;
1410 if (option & 0x10)
1411 tmp |= LNK_10MB;
1412 if (option & 0x20)
1413 tmp |= LNK_100MB;
1414 if (option & 0x40)
1415 tmp |= LNK_1000MB;
1416 if ((option & 0x70) == 0) {
1417 printk(KERN_WARNING "%s: No media speed specified, "
1418 "forcing auto negotiation\n", ap->name);
1419 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1420 LNK_100MB | LNK_10MB;
1421 }
1422 if ((option & 0x100) == 0)
1423 tmp |= LNK_NEG_FCTL;
1424 else
1425 printk(KERN_INFO "%s: Disabling flow control "
1426 "negotiation\n", ap->name);
1427 if (option & 0x200)
1428 tmp |= LNK_RX_FLOW_CTL_Y;
1429 if ((option & 0x400) && (ap->version >= 2)) {
1430 printk(KERN_INFO "%s: Enabling TX flow control\n",
1431 ap->name);
1432 tmp |= LNK_TX_FLOW_CTL_Y;
1433 }
1434 }
1435
1436 ap->link = tmp;
1437 writel(tmp, &regs->TuneLink);
1438 if (ap->version >= 2)
1439 writel(tmp, &regs->TuneFastLink);
1440
1441 if (ACE_IS_TIGON_I(ap))
1442 writel(tigonFwStartAddr, &regs->Pc);
1443 if (ap->version == 2)
1444 writel(tigon2FwStartAddr, &regs->Pc);
1445
1446 writel(0, &regs->Mb0Lo);
1447
1448 /*
1449 * Set tx_csm before we start receiving interrupts, otherwise
1450 * the interrupt handler might think it is supposed to process
1451 * tx ints before we are up and running, which may cause a null
1452 * pointer access in the int handler.
1453 */
1454 ap->cur_rx = 0;
1455 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1456
1457 wmb();
1458 ace_set_txprd(regs, ap, 0);
1459 writel(0, &regs->RxRetCsm);
1460
1461 /*
1462 * Zero the stats before starting the interface
1463 */
1464 memset(&ap->stats, 0, sizeof(ap->stats));
1465
1466 /*
1467 * Enable DMA engine now.
1468 * If we do this sooner, Mckinley box pukes.
1469 * I assume it's because Tigon II DMA engine wants to check
1470 * *something* even before the CPU is started.
1471 */
1472 writel(1, &regs->AssistState); /* enable DMA */
1473
1474 /*
1475 * Start the NIC CPU
1476 */
1477 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1478 readl(&regs->CpuCtrl);
1479
1480 /*
1481 * Wait for the firmware to spin up - max 3 seconds.
1482 */
1483 myjif = jiffies + 3 * HZ;
1484 while (time_before(jiffies, myjif) && !ap->fw_running)
1485 cpu_relax();
1486
1487 if (!ap->fw_running) {
1488 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1489
1490 ace_dump_trace(ap);
1491 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1492 readl(&regs->CpuCtrl);
1493
1494 /* aman@sgi.com - account for badly behaving firmware/NIC:
1495 * - have observed that the NIC may continue to generate
1496 * interrupts for some reason; attempt to stop it - halt
1497 * second CPU for Tigon II cards, and also clear Mb0
1498 * - if we're a module, we'll fail to load if this was
1499 * the only GbE card in the system => if the kernel does
1500 * see an interrupt from the NIC, code to handle it is
1501 * gone and OOps! - so free_irq also
1502 */
1503 if (ap->version >= 2)
1504 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1505 &regs->CpuBCtrl);
1506 writel(0, &regs->Mb0Lo);
1507 readl(&regs->Mb0Lo);
1508
1509 ecode = -EBUSY;
1510 goto init_error;
1511 }
1512
1513 /*
1514 * We load the ring here as there seem to be no way to tell the
1515 * firmware to wipe the ring without re-initializing it.
1516 */
1517 if (!test_and_set_bit(0, &ap->std_refill_busy))
1518 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1519 else
1520 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1521 ap->name);
1522 if (ap->version >= 2) {
1523 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1524 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1525 else
1526 printk(KERN_ERR "%s: Someone is busy refilling "
1527 "the RX mini ring\n", ap->name);
1528 }
1529 return 0;
1530
1531 init_error:
1532 ace_init_cleanup(dev);
1533 return ecode;
1534}
1535
1536
1537static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1538{
1539 struct ace_private *ap = netdev_priv(dev);
1540 struct ace_regs __iomem *regs = ap->regs;
1541 int board_idx = ap->board_idx;
1542
1543 if (board_idx >= 0) {
1544 if (!jumbo) {
1545 if (!tx_coal_tick[board_idx])
1546 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1547 if (!max_tx_desc[board_idx])
1548 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1549 if (!rx_coal_tick[board_idx])
1550 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1551 if (!max_rx_desc[board_idx])
1552 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1553 if (!tx_ratio[board_idx])
1554 writel(DEF_TX_RATIO, &regs->TxBufRat);
1555 } else {
1556 if (!tx_coal_tick[board_idx])
1557 writel(DEF_JUMBO_TX_COAL,
1558 &regs->TuneTxCoalTicks);
1559 if (!max_tx_desc[board_idx])
1560 writel(DEF_JUMBO_TX_MAX_DESC,
1561 &regs->TuneMaxTxDesc);
1562 if (!rx_coal_tick[board_idx])
1563 writel(DEF_JUMBO_RX_COAL,
1564 &regs->TuneRxCoalTicks);
1565 if (!max_rx_desc[board_idx])
1566 writel(DEF_JUMBO_RX_MAX_DESC,
1567 &regs->TuneMaxRxDesc);
1568 if (!tx_ratio[board_idx])
1569 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1570 }
1571 }
1572}
1573
1574
1575static void ace_watchdog(struct net_device *data)
1576{
1577 struct net_device *dev = data;
1578 struct ace_private *ap = netdev_priv(dev);
1579 struct ace_regs __iomem *regs = ap->regs;
1580
1581 /*
1582 * We haven't received a stats update event for more than 2.5
1583 * seconds and there is data in the transmit queue, thus we
1584 * asume the card is stuck.
1585 */
1586 if (*ap->tx_csm != ap->tx_ret_csm) {
1587 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1588 dev->name, (unsigned int)readl(&regs->HostCtrl));
1589 /* This can happen due to ieee flow control. */
1590 } else {
1591 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1592 dev->name);
1593#if 0
1594 netif_wake_queue(dev);
1595#endif
1596 }
1597}
1598
1599
1600static void ace_tasklet(unsigned long dev)
1601{
1602 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1603 int cur_size;
1604
1605 cur_size = atomic_read(&ap->cur_rx_bufs);
1606 if ((cur_size < RX_LOW_STD_THRES) &&
1607 !test_and_set_bit(0, &ap->std_refill_busy)) {
1608#ifdef DEBUG
1609 printk("refilling buffers (current %i)\n", cur_size);
1610#endif
1611 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1612 }
1613
1614 if (ap->version >= 2) {
1615 cur_size = atomic_read(&ap->cur_mini_bufs);
1616 if ((cur_size < RX_LOW_MINI_THRES) &&
1617 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1618#ifdef DEBUG
1619 printk("refilling mini buffers (current %i)\n",
1620 cur_size);
1621#endif
1622 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1623 }
1624 }
1625
1626 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1627 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1628 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1629#ifdef DEBUG
1630 printk("refilling jumbo buffers (current %i)\n", cur_size);
1631#endif
1632 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1633 }
1634 ap->tasklet_pending = 0;
1635}
1636
1637
1638/*
1639 * Copy the contents of the NIC's trace buffer to kernel memory.
1640 */
1641static void ace_dump_trace(struct ace_private *ap)
1642{
1643#if 0
1644 if (!ap->trace_buf)
1645 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1646 return;
1647#endif
1648}
1649
1650
1651/*
1652 * Load the standard rx ring.
1653 *
1654 * Loading rings is safe without holding the spin lock since this is
1655 * done only before the device is enabled, thus no interrupts are
1656 * generated and by the interrupt handler/tasklet handler.
1657 */
1658static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1659{
1660 struct ace_regs __iomem *regs = ap->regs;
1661 short i, idx;
6aa20a22 1662
1da177e4
LT
1663
1664 prefetchw(&ap->cur_rx_bufs);
1665
1666 idx = ap->rx_std_skbprd;
1667
1668 for (i = 0; i < nr_bufs; i++) {
1669 struct sk_buff *skb;
1670 struct rx_desc *rd;
1671 dma_addr_t mapping;
1672
1673 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1674 if (!skb)
1675 break;
1676
1677 skb_reserve(skb, NET_IP_ALIGN);
1678 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1679 offset_in_page(skb->data),
1680 ACE_STD_BUFSIZE,
1681 PCI_DMA_FROMDEVICE);
1682 ap->skb->rx_std_skbuff[idx].skb = skb;
1683 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1684 mapping, mapping);
1685
1686 rd = &ap->rx_std_ring[idx];
1687 set_aceaddr(&rd->addr, mapping);
1688 rd->size = ACE_STD_BUFSIZE;
1689 rd->idx = idx;
1690 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1691 }
1692
1693 if (!i)
1694 goto error_out;
1695
1696 atomic_add(i, &ap->cur_rx_bufs);
1697 ap->rx_std_skbprd = idx;
1698
1699 if (ACE_IS_TIGON_I(ap)) {
1700 struct cmd cmd;
1701 cmd.evt = C_SET_RX_PRD_IDX;
1702 cmd.code = 0;
1703 cmd.idx = ap->rx_std_skbprd;
1704 ace_issue_cmd(regs, &cmd);
1705 } else {
1706 writel(idx, &regs->RxStdPrd);
1707 wmb();
1708 }
1709
1710 out:
1711 clear_bit(0, &ap->std_refill_busy);
1712 return;
1713
1714 error_out:
1715 printk(KERN_INFO "Out of memory when allocating "
1716 "standard receive buffers\n");
1717 goto out;
1718}
1719
1720
1721static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1722{
1723 struct ace_regs __iomem *regs = ap->regs;
1724 short i, idx;
1725
1726 prefetchw(&ap->cur_mini_bufs);
1727
1728 idx = ap->rx_mini_skbprd;
1729 for (i = 0; i < nr_bufs; i++) {
1730 struct sk_buff *skb;
1731 struct rx_desc *rd;
1732 dma_addr_t mapping;
1733
1734 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1735 if (!skb)
1736 break;
1737
1738 skb_reserve(skb, NET_IP_ALIGN);
1739 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1740 offset_in_page(skb->data),
1741 ACE_MINI_BUFSIZE,
1742 PCI_DMA_FROMDEVICE);
1743 ap->skb->rx_mini_skbuff[idx].skb = skb;
1744 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1745 mapping, mapping);
1746
1747 rd = &ap->rx_mini_ring[idx];
1748 set_aceaddr(&rd->addr, mapping);
1749 rd->size = ACE_MINI_BUFSIZE;
1750 rd->idx = idx;
1751 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1752 }
1753
1754 if (!i)
1755 goto error_out;
1756
1757 atomic_add(i, &ap->cur_mini_bufs);
1758
1759 ap->rx_mini_skbprd = idx;
1760
1761 writel(idx, &regs->RxMiniPrd);
1762 wmb();
1763
1764 out:
1765 clear_bit(0, &ap->mini_refill_busy);
1766 return;
1767 error_out:
1768 printk(KERN_INFO "Out of memory when allocating "
1769 "mini receive buffers\n");
1770 goto out;
1771}
1772
1773
1774/*
1775 * Load the jumbo rx ring, this may happen at any time if the MTU
1776 * is changed to a value > 1500.
1777 */
1778static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1779{
1780 struct ace_regs __iomem *regs = ap->regs;
1781 short i, idx;
1782
1783 idx = ap->rx_jumbo_skbprd;
1784
1785 for (i = 0; i < nr_bufs; i++) {
1786 struct sk_buff *skb;
1787 struct rx_desc *rd;
1788 dma_addr_t mapping;
1789
1790 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1791 if (!skb)
1792 break;
1793
1794 skb_reserve(skb, NET_IP_ALIGN);
1795 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1796 offset_in_page(skb->data),
1797 ACE_JUMBO_BUFSIZE,
1798 PCI_DMA_FROMDEVICE);
1799 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1800 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1801 mapping, mapping);
1802
1803 rd = &ap->rx_jumbo_ring[idx];
1804 set_aceaddr(&rd->addr, mapping);
1805 rd->size = ACE_JUMBO_BUFSIZE;
1806 rd->idx = idx;
1807 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1808 }
1809
1810 if (!i)
1811 goto error_out;
1812
1813 atomic_add(i, &ap->cur_jumbo_bufs);
1814 ap->rx_jumbo_skbprd = idx;
1815
1816 if (ACE_IS_TIGON_I(ap)) {
1817 struct cmd cmd;
1818 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1819 cmd.code = 0;
1820 cmd.idx = ap->rx_jumbo_skbprd;
1821 ace_issue_cmd(regs, &cmd);
1822 } else {
1823 writel(idx, &regs->RxJumboPrd);
1824 wmb();
1825 }
1826
1827 out:
1828 clear_bit(0, &ap->jumbo_refill_busy);
1829 return;
1830 error_out:
1831 if (net_ratelimit())
1832 printk(KERN_INFO "Out of memory when allocating "
1833 "jumbo receive buffers\n");
1834 goto out;
1835}
1836
1837
1838/*
1839 * All events are considered to be slow (RX/TX ints do not generate
1840 * events) and are handled here, outside the main interrupt handler,
1841 * to reduce the size of the handler.
1842 */
1843static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1844{
1845 struct ace_private *ap;
1846
1847 ap = netdev_priv(dev);
1848
1849 while (evtcsm != evtprd) {
1850 switch (ap->evt_ring[evtcsm].evt) {
1851 case E_FW_RUNNING:
1852 printk(KERN_INFO "%s: Firmware up and running\n",
1853 ap->name);
1854 ap->fw_running = 1;
1855 wmb();
1856 break;
1857 case E_STATS_UPDATED:
1858 break;
1859 case E_LNK_STATE:
1860 {
1861 u16 code = ap->evt_ring[evtcsm].code;
1862 switch (code) {
1863 case E_C_LINK_UP:
1864 {
1865 u32 state = readl(&ap->regs->GigLnkState);
1866 printk(KERN_WARNING "%s: Optical link UP "
1867 "(%s Duplex, Flow Control: %s%s)\n",
1868 ap->name,
1869 state & LNK_FULL_DUPLEX ? "Full":"Half",
1870 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1871 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1872 break;
1873 }
1874 case E_C_LINK_DOWN:
1875 printk(KERN_WARNING "%s: Optical link DOWN\n",
1876 ap->name);
1877 break;
1878 case E_C_LINK_10_100:
1879 printk(KERN_WARNING "%s: 10/100BaseT link "
1880 "UP\n", ap->name);
1881 break;
1882 default:
1883 printk(KERN_ERR "%s: Unknown optical link "
1884 "state %02x\n", ap->name, code);
1885 }
1886 break;
1887 }
1888 case E_ERROR:
1889 switch(ap->evt_ring[evtcsm].code) {
1890 case E_C_ERR_INVAL_CMD:
1891 printk(KERN_ERR "%s: invalid command error\n",
1892 ap->name);
1893 break;
1894 case E_C_ERR_UNIMP_CMD:
1895 printk(KERN_ERR "%s: unimplemented command "
1896 "error\n", ap->name);
1897 break;
1898 case E_C_ERR_BAD_CFG:
1899 printk(KERN_ERR "%s: bad config error\n",
1900 ap->name);
1901 break;
1902 default:
1903 printk(KERN_ERR "%s: unknown error %02x\n",
1904 ap->name, ap->evt_ring[evtcsm].code);
1905 }
1906 break;
1907 case E_RESET_JUMBO_RNG:
1908 {
1909 int i;
1910 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1911 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1912 ap->rx_jumbo_ring[i].size = 0;
1913 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1914 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1915 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1916 }
1917 }
1918
1919 if (ACE_IS_TIGON_I(ap)) {
1920 struct cmd cmd;
1921 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1922 cmd.code = 0;
1923 cmd.idx = 0;
1924 ace_issue_cmd(ap->regs, &cmd);
1925 } else {
1926 writel(0, &((ap->regs)->RxJumboPrd));
1927 wmb();
1928 }
1929
1930 ap->jumbo = 0;
1931 ap->rx_jumbo_skbprd = 0;
1932 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1933 ap->name);
1934 clear_bit(0, &ap->jumbo_refill_busy);
1935 break;
1936 }
1937 default:
1938 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1939 ap->name, ap->evt_ring[evtcsm].evt);
1940 }
1941 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1942 }
1943
1944 return evtcsm;
1945}
1946
1947
1948static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1949{
1950 struct ace_private *ap = netdev_priv(dev);
1951 u32 idx;
1952 int mini_count = 0, std_count = 0;
1953
1954 idx = rxretcsm;
1955
1956 prefetchw(&ap->cur_rx_bufs);
1957 prefetchw(&ap->cur_mini_bufs);
6aa20a22 1958
1da177e4
LT
1959 while (idx != rxretprd) {
1960 struct ring_info *rip;
1961 struct sk_buff *skb;
1962 struct rx_desc *rxdesc, *retdesc;
1963 u32 skbidx;
1964 int bd_flags, desc_type, mapsize;
1965 u16 csum;
1966
1967
1968 /* make sure the rx descriptor isn't read before rxretprd */
6aa20a22 1969 if (idx == rxretcsm)
1da177e4
LT
1970 rmb();
1971
1972 retdesc = &ap->rx_return_ring[idx];
1973 skbidx = retdesc->idx;
1974 bd_flags = retdesc->flags;
1975 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1976
1977 switch(desc_type) {
1978 /*
1979 * Normal frames do not have any flags set
1980 *
1981 * Mini and normal frames arrive frequently,
1982 * so use a local counter to avoid doing
1983 * atomic operations for each packet arriving.
1984 */
1985 case 0:
1986 rip = &ap->skb->rx_std_skbuff[skbidx];
1987 mapsize = ACE_STD_BUFSIZE;
1988 rxdesc = &ap->rx_std_ring[skbidx];
1989 std_count++;
1990 break;
1991 case BD_FLG_JUMBO:
1992 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1993 mapsize = ACE_JUMBO_BUFSIZE;
1994 rxdesc = &ap->rx_jumbo_ring[skbidx];
1995 atomic_dec(&ap->cur_jumbo_bufs);
1996 break;
1997 case BD_FLG_MINI:
1998 rip = &ap->skb->rx_mini_skbuff[skbidx];
1999 mapsize = ACE_MINI_BUFSIZE;
2000 rxdesc = &ap->rx_mini_ring[skbidx];
6aa20a22 2001 mini_count++;
1da177e4
LT
2002 break;
2003 default:
2004 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2005 "returned by NIC\n", dev->name,
2006 retdesc->flags);
2007 goto error;
2008 }
2009
2010 skb = rip->skb;
2011 rip->skb = NULL;
2012 pci_unmap_page(ap->pdev,
2013 pci_unmap_addr(rip, mapping),
2014 mapsize,
2015 PCI_DMA_FROMDEVICE);
2016 skb_put(skb, retdesc->size);
2017
2018 /*
2019 * Fly baby, fly!
2020 */
2021 csum = retdesc->tcp_udp_csum;
2022
1da177e4
LT
2023 skb->protocol = eth_type_trans(skb, dev);
2024
2025 /*
2026 * Instead of forcing the poor tigon mips cpu to calculate
2027 * pseudo hdr checksum, we do this ourselves.
2028 */
2029 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2030 skb->csum = htons(csum);
84fa7933 2031 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
2032 } else {
2033 skb->ip_summed = CHECKSUM_NONE;
2034 }
2035
2036 /* send it up */
2037#if ACENIC_DO_VLAN
2038 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2039 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2040 } else
2041#endif
2042 netif_rx(skb);
2043
2044 dev->last_rx = jiffies;
2045 ap->stats.rx_packets++;
2046 ap->stats.rx_bytes += retdesc->size;
2047
2048 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2049 }
2050
2051 atomic_sub(std_count, &ap->cur_rx_bufs);
2052 if (!ACE_IS_TIGON_I(ap))
2053 atomic_sub(mini_count, &ap->cur_mini_bufs);
2054
2055 out:
2056 /*
2057 * According to the documentation RxRetCsm is obsolete with
2058 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2059 */
2060 if (ACE_IS_TIGON_I(ap)) {
2061 writel(idx, &ap->regs->RxRetCsm);
2062 }
2063 ap->cur_rx = idx;
2064
2065 return;
2066 error:
2067 idx = rxretprd;
2068 goto out;
2069}
2070
2071
2072static inline void ace_tx_int(struct net_device *dev,
2073 u32 txcsm, u32 idx)
2074{
2075 struct ace_private *ap = netdev_priv(dev);
2076
2077 do {
2078 struct sk_buff *skb;
2079 dma_addr_t mapping;
2080 struct tx_ring_info *info;
2081
2082 info = ap->skb->tx_skbuff + idx;
2083 skb = info->skb;
2084 mapping = pci_unmap_addr(info, mapping);
2085
2086 if (mapping) {
2087 pci_unmap_page(ap->pdev, mapping,
2088 pci_unmap_len(info, maplen),
2089 PCI_DMA_TODEVICE);
2090 pci_unmap_addr_set(info, mapping, 0);
2091 }
2092
2093 if (skb) {
2094 ap->stats.tx_packets++;
2095 ap->stats.tx_bytes += skb->len;
2096 dev_kfree_skb_irq(skb);
2097 info->skb = NULL;
2098 }
2099
2100 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2101 } while (idx != txcsm);
2102
2103 if (netif_queue_stopped(dev))
2104 netif_wake_queue(dev);
2105
2106 wmb();
2107 ap->tx_ret_csm = txcsm;
2108
2109 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2110 *
2111 * We could try to make it before. In this case we would get
2112 * the following race condition: hard_start_xmit on other cpu
2113 * enters after we advanced tx_ret_csm and fills space,
2114 * which we have just freed, so that we make illegal device wakeup.
2115 * There is no good way to workaround this (at entry
2116 * to ace_start_xmit detects this condition and prevents
2117 * ring corruption, but it is not a good workaround.)
2118 *
2119 * When tx_ret_csm is advanced after, we wake up device _only_
2120 * if we really have some space in ring (though the core doing
2121 * hard_start_xmit can see full ring for some period and has to
2122 * synchronize.) Superb.
2123 * BUT! We get another subtle race condition. hard_start_xmit
2124 * may think that ring is full between wakeup and advancing
2125 * tx_ret_csm and will stop device instantly! It is not so bad.
2126 * We are guaranteed that there is something in ring, so that
2127 * the next irq will resume transmission. To speedup this we could
2128 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2129 * (see ace_start_xmit).
2130 *
2131 * Well, this dilemma exists in all lock-free devices.
2132 * We, following scheme used in drivers by Donald Becker,
2133 * select the least dangerous.
2134 * --ANK
2135 */
2136}
2137
2138
7d12e780 2139static irqreturn_t ace_interrupt(int irq, void *dev_id)
1da177e4
LT
2140{
2141 struct net_device *dev = (struct net_device *)dev_id;
2142 struct ace_private *ap = netdev_priv(dev);
2143 struct ace_regs __iomem *regs = ap->regs;
2144 u32 idx;
2145 u32 txcsm, rxretcsm, rxretprd;
2146 u32 evtcsm, evtprd;
2147
2148 /*
2149 * In case of PCI shared interrupts or spurious interrupts,
2150 * we want to make sure it is actually our interrupt before
2151 * spending any time in here.
2152 */
2153 if (!(readl(&regs->HostCtrl) & IN_INT))
2154 return IRQ_NONE;
2155
2156 /*
2157 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2158 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2159 * writel(0, &regs->Mb0Lo).
2160 *
2161 * "IRQ avoidance" recommended in docs applies to IRQs served
2162 * threads and it is wrong even for that case.
2163 */
2164 writel(0, &regs->Mb0Lo);
2165 readl(&regs->Mb0Lo);
2166
2167 /*
2168 * There is no conflict between transmit handling in
2169 * start_xmit and receive processing, thus there is no reason
2170 * to take a spin lock for RX handling. Wait until we start
2171 * working on the other stuff - hey we don't need a spin lock
2172 * anymore.
2173 */
2174 rxretprd = *ap->rx_ret_prd;
2175 rxretcsm = ap->cur_rx;
2176
2177 if (rxretprd != rxretcsm)
2178 ace_rx_int(dev, rxretprd, rxretcsm);
2179
2180 txcsm = *ap->tx_csm;
2181 idx = ap->tx_ret_csm;
2182
2183 if (txcsm != idx) {
2184 /*
2185 * If each skb takes only one descriptor this check degenerates
2186 * to identity, because new space has just been opened.
2187 * But if skbs are fragmented we must check that this index
2188 * update releases enough of space, otherwise we just
2189 * wait for device to make more work.
2190 */
2191 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2192 ace_tx_int(dev, txcsm, idx);
2193 }
2194
2195 evtcsm = readl(&regs->EvtCsm);
2196 evtprd = *ap->evt_prd;
2197
2198 if (evtcsm != evtprd) {
2199 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2200 writel(evtcsm, &regs->EvtCsm);
2201 }
2202
2203 /*
2204 * This has to go last in the interrupt handler and run with
2205 * the spin lock released ... what lock?
2206 */
2207 if (netif_running(dev)) {
2208 int cur_size;
2209 int run_tasklet = 0;
2210
2211 cur_size = atomic_read(&ap->cur_rx_bufs);
2212 if (cur_size < RX_LOW_STD_THRES) {
2213 if ((cur_size < RX_PANIC_STD_THRES) &&
2214 !test_and_set_bit(0, &ap->std_refill_busy)) {
2215#ifdef DEBUG
2216 printk("low on std buffers %i\n", cur_size);
2217#endif
2218 ace_load_std_rx_ring(ap,
2219 RX_RING_SIZE - cur_size);
2220 } else
2221 run_tasklet = 1;
2222 }
2223
2224 if (!ACE_IS_TIGON_I(ap)) {
2225 cur_size = atomic_read(&ap->cur_mini_bufs);
2226 if (cur_size < RX_LOW_MINI_THRES) {
2227 if ((cur_size < RX_PANIC_MINI_THRES) &&
2228 !test_and_set_bit(0,
2229 &ap->mini_refill_busy)) {
2230#ifdef DEBUG
2231 printk("low on mini buffers %i\n",
2232 cur_size);
2233#endif
2234 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2235 } else
2236 run_tasklet = 1;
2237 }
2238 }
2239
2240 if (ap->jumbo) {
2241 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2242 if (cur_size < RX_LOW_JUMBO_THRES) {
2243 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2244 !test_and_set_bit(0,
2245 &ap->jumbo_refill_busy)){
2246#ifdef DEBUG
2247 printk("low on jumbo buffers %i\n",
2248 cur_size);
2249#endif
2250 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2251 } else
2252 run_tasklet = 1;
2253 }
2254 }
2255 if (run_tasklet && !ap->tasklet_pending) {
2256 ap->tasklet_pending = 1;
2257 tasklet_schedule(&ap->ace_tasklet);
2258 }
2259 }
2260
2261 return IRQ_HANDLED;
2262}
2263
2264
2265#if ACENIC_DO_VLAN
2266static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2267{
2268 struct ace_private *ap = netdev_priv(dev);
2269 unsigned long flags;
2270
2271 local_irq_save(flags);
2272 ace_mask_irq(dev);
2273
2274 ap->vlgrp = grp;
2275
2276 ace_unmask_irq(dev);
2277 local_irq_restore(flags);
2278}
1da177e4
LT
2279#endif /* ACENIC_DO_VLAN */
2280
2281
2282static int ace_open(struct net_device *dev)
2283{
2284 struct ace_private *ap = netdev_priv(dev);
2285 struct ace_regs __iomem *regs = ap->regs;
2286 struct cmd cmd;
2287
2288 if (!(ap->fw_running)) {
2289 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2290 return -EBUSY;
2291 }
2292
2293 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2294
2295 cmd.evt = C_CLEAR_STATS;
2296 cmd.code = 0;
2297 cmd.idx = 0;
2298 ace_issue_cmd(regs, &cmd);
2299
2300 cmd.evt = C_HOST_STATE;
2301 cmd.code = C_C_STACK_UP;
2302 cmd.idx = 0;
2303 ace_issue_cmd(regs, &cmd);
2304
2305 if (ap->jumbo &&
2306 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2307 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2308
2309 if (dev->flags & IFF_PROMISC) {
2310 cmd.evt = C_SET_PROMISC_MODE;
2311 cmd.code = C_C_PROMISC_ENABLE;
2312 cmd.idx = 0;
2313 ace_issue_cmd(regs, &cmd);
2314
2315 ap->promisc = 1;
2316 }else
2317 ap->promisc = 0;
2318 ap->mcast_all = 0;
2319
2320#if 0
2321 cmd.evt = C_LNK_NEGOTIATION;
2322 cmd.code = 0;
2323 cmd.idx = 0;
2324 ace_issue_cmd(regs, &cmd);
2325#endif
2326
2327 netif_start_queue(dev);
2328
2329 /*
2330 * Setup the bottom half rx ring refill handler
2331 */
2332 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2333 return 0;
2334}
2335
2336
2337static int ace_close(struct net_device *dev)
2338{
2339 struct ace_private *ap = netdev_priv(dev);
2340 struct ace_regs __iomem *regs = ap->regs;
2341 struct cmd cmd;
2342 unsigned long flags;
2343 short i;
2344
2345 /*
2346 * Without (or before) releasing irq and stopping hardware, this
2347 * is an absolute non-sense, by the way. It will be reset instantly
2348 * by the first irq.
2349 */
2350 netif_stop_queue(dev);
2351
6aa20a22 2352
1da177e4
LT
2353 if (ap->promisc) {
2354 cmd.evt = C_SET_PROMISC_MODE;
2355 cmd.code = C_C_PROMISC_DISABLE;
2356 cmd.idx = 0;
2357 ace_issue_cmd(regs, &cmd);
2358 ap->promisc = 0;
2359 }
2360
2361 cmd.evt = C_HOST_STATE;
2362 cmd.code = C_C_STACK_DOWN;
2363 cmd.idx = 0;
2364 ace_issue_cmd(regs, &cmd);
2365
2366 tasklet_kill(&ap->ace_tasklet);
2367
2368 /*
2369 * Make sure one CPU is not processing packets while
2370 * buffers are being released by another.
2371 */
2372
2373 local_irq_save(flags);
2374 ace_mask_irq(dev);
2375
2376 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2377 struct sk_buff *skb;
2378 dma_addr_t mapping;
2379 struct tx_ring_info *info;
2380
2381 info = ap->skb->tx_skbuff + i;
2382 skb = info->skb;
2383 mapping = pci_unmap_addr(info, mapping);
2384
2385 if (mapping) {
2386 if (ACE_IS_TIGON_I(ap)) {
6aa20a22 2387 struct tx_desc __iomem *tx
1da177e4
LT
2388 = (struct tx_desc __iomem *) &ap->tx_ring[i];
2389 writel(0, &tx->addr.addrhi);
2390 writel(0, &tx->addr.addrlo);
2391 writel(0, &tx->flagsize);
2392 } else
2393 memset(ap->tx_ring + i, 0,
2394 sizeof(struct tx_desc));
2395 pci_unmap_page(ap->pdev, mapping,
2396 pci_unmap_len(info, maplen),
2397 PCI_DMA_TODEVICE);
2398 pci_unmap_addr_set(info, mapping, 0);
2399 }
2400 if (skb) {
2401 dev_kfree_skb(skb);
2402 info->skb = NULL;
2403 }
2404 }
2405
2406 if (ap->jumbo) {
2407 cmd.evt = C_RESET_JUMBO_RNG;
2408 cmd.code = 0;
2409 cmd.idx = 0;
2410 ace_issue_cmd(regs, &cmd);
2411 }
2412
2413 ace_unmask_irq(dev);
2414 local_irq_restore(flags);
2415
2416 return 0;
2417}
2418
2419
2420static inline dma_addr_t
2421ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2422 struct sk_buff *tail, u32 idx)
2423{
2424 dma_addr_t mapping;
2425 struct tx_ring_info *info;
2426
2427 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2428 offset_in_page(skb->data),
2429 skb->len, PCI_DMA_TODEVICE);
2430
2431 info = ap->skb->tx_skbuff + idx;
2432 info->skb = tail;
2433 pci_unmap_addr_set(info, mapping, mapping);
2434 pci_unmap_len_set(info, maplen, skb->len);
2435 return mapping;
2436}
2437
2438
2439static inline void
2440ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2441 u32 flagsize, u32 vlan_tag)
2442{
2443#if !USE_TX_COAL_NOW
2444 flagsize &= ~BD_FLG_COAL_NOW;
2445#endif
2446
2447 if (ACE_IS_TIGON_I(ap)) {
2448 struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc;
2449 writel(addr >> 32, &io->addr.addrhi);
2450 writel(addr & 0xffffffff, &io->addr.addrlo);
2451 writel(flagsize, &io->flagsize);
2452#if ACENIC_DO_VLAN
2453 writel(vlan_tag, &io->vlanres);
2454#endif
2455 } else {
2456 desc->addr.addrhi = addr >> 32;
2457 desc->addr.addrlo = addr;
2458 desc->flagsize = flagsize;
2459#if ACENIC_DO_VLAN
2460 desc->vlanres = vlan_tag;
2461#endif
2462 }
2463}
2464
2465
2466static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2467{
2468 struct ace_private *ap = netdev_priv(dev);
2469 struct ace_regs __iomem *regs = ap->regs;
2470 struct tx_desc *desc;
2471 u32 idx, flagsize;
2472 unsigned long maxjiff = jiffies + 3*HZ;
2473
2474restart:
2475 idx = ap->tx_prd;
2476
2477 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2478 goto overflow;
2479
2480 if (!skb_shinfo(skb)->nr_frags) {
2481 dma_addr_t mapping;
2482 u32 vlan_tag = 0;
2483
2484 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2485 flagsize = (skb->len << 16) | (BD_FLG_END);
84fa7933 2486 if (skb->ip_summed == CHECKSUM_PARTIAL)
1da177e4
LT
2487 flagsize |= BD_FLG_TCP_UDP_SUM;
2488#if ACENIC_DO_VLAN
2489 if (vlan_tx_tag_present(skb)) {
2490 flagsize |= BD_FLG_VLAN_TAG;
2491 vlan_tag = vlan_tx_tag_get(skb);
2492 }
2493#endif
2494 desc = ap->tx_ring + idx;
2495 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2496
2497 /* Look at ace_tx_int for explanations. */
2498 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2499 flagsize |= BD_FLG_COAL_NOW;
2500
2501 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2502 } else {
2503 dma_addr_t mapping;
2504 u32 vlan_tag = 0;
2505 int i, len = 0;
2506
2507 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2508 flagsize = (skb_headlen(skb) << 16);
84fa7933 2509 if (skb->ip_summed == CHECKSUM_PARTIAL)
1da177e4
LT
2510 flagsize |= BD_FLG_TCP_UDP_SUM;
2511#if ACENIC_DO_VLAN
2512 if (vlan_tx_tag_present(skb)) {
2513 flagsize |= BD_FLG_VLAN_TAG;
2514 vlan_tag = vlan_tx_tag_get(skb);
2515 }
2516#endif
2517
2518 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2519
2520 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2521
2522 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2523 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2524 struct tx_ring_info *info;
2525
2526 len += frag->size;
2527 info = ap->skb->tx_skbuff + idx;
2528 desc = ap->tx_ring + idx;
2529
2530 mapping = pci_map_page(ap->pdev, frag->page,
2531 frag->page_offset, frag->size,
2532 PCI_DMA_TODEVICE);
2533
2534 flagsize = (frag->size << 16);
84fa7933 2535 if (skb->ip_summed == CHECKSUM_PARTIAL)
1da177e4
LT
2536 flagsize |= BD_FLG_TCP_UDP_SUM;
2537 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2538
2539 if (i == skb_shinfo(skb)->nr_frags - 1) {
2540 flagsize |= BD_FLG_END;
2541 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2542 flagsize |= BD_FLG_COAL_NOW;
2543
2544 /*
2545 * Only the last fragment frees
2546 * the skb!
2547 */
2548 info->skb = skb;
2549 } else {
2550 info->skb = NULL;
2551 }
2552 pci_unmap_addr_set(info, mapping, mapping);
2553 pci_unmap_len_set(info, maplen, frag->size);
2554 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2555 }
2556 }
2557
2558 wmb();
2559 ap->tx_prd = idx;
2560 ace_set_txprd(regs, ap, idx);
2561
2562 if (flagsize & BD_FLG_COAL_NOW) {
2563 netif_stop_queue(dev);
2564
2565 /*
2566 * A TX-descriptor producer (an IRQ) might have gotten
2567 * inbetween, making the ring free again. Since xmit is
2568 * serialized, this is the only situation we have to
2569 * re-test.
2570 */
2571 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2572 netif_wake_queue(dev);
2573 }
2574
2575 dev->trans_start = jiffies;
2576 return NETDEV_TX_OK;
2577
2578overflow:
2579 /*
2580 * This race condition is unavoidable with lock-free drivers.
2581 * We wake up the queue _before_ tx_prd is advanced, so that we can
2582 * enter hard_start_xmit too early, while tx ring still looks closed.
2583 * This happens ~1-4 times per 100000 packets, so that we can allow
2584 * to loop syncing to other CPU. Probably, we need an additional
2585 * wmb() in ace_tx_intr as well.
2586 *
2587 * Note that this race is relieved by reserving one more entry
2588 * in tx ring than it is necessary (see original non-SG driver).
2589 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2590 * is already overkill.
2591 *
2592 * Alternative is to return with 1 not throttling queue. In this
2593 * case loop becomes longer, no more useful effects.
2594 */
2595 if (time_before(jiffies, maxjiff)) {
2596 barrier();
2597 cpu_relax();
2598 goto restart;
2599 }
6aa20a22 2600
1da177e4
LT
2601 /* The ring is stuck full. */
2602 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2603 return NETDEV_TX_BUSY;
2604}
2605
2606
2607static int ace_change_mtu(struct net_device *dev, int new_mtu)
2608{
2609 struct ace_private *ap = netdev_priv(dev);
2610 struct ace_regs __iomem *regs = ap->regs;
2611
2612 if (new_mtu > ACE_JUMBO_MTU)
2613 return -EINVAL;
2614
2615 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2616 dev->mtu = new_mtu;
2617
2618 if (new_mtu > ACE_STD_MTU) {
2619 if (!(ap->jumbo)) {
2620 printk(KERN_INFO "%s: Enabling Jumbo frame "
2621 "support\n", dev->name);
2622 ap->jumbo = 1;
2623 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2624 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2625 ace_set_rxtx_parms(dev, 1);
2626 }
2627 } else {
2628 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2629 ace_sync_irq(dev->irq);
2630 ace_set_rxtx_parms(dev, 0);
2631 if (ap->jumbo) {
2632 struct cmd cmd;
2633
2634 cmd.evt = C_RESET_JUMBO_RNG;
2635 cmd.code = 0;
2636 cmd.idx = 0;
2637 ace_issue_cmd(regs, &cmd);
2638 }
2639 }
2640
2641 return 0;
2642}
2643
2644static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2645{
2646 struct ace_private *ap = netdev_priv(dev);
2647 struct ace_regs __iomem *regs = ap->regs;
2648 u32 link;
2649
2650 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2651 ecmd->supported =
2652 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2653 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2654 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2655 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2656
2657 ecmd->port = PORT_FIBRE;
2658 ecmd->transceiver = XCVR_INTERNAL;
2659
2660 link = readl(&regs->GigLnkState);
2661 if (link & LNK_1000MB)
2662 ecmd->speed = SPEED_1000;
2663 else {
2664 link = readl(&regs->FastLnkState);
2665 if (link & LNK_100MB)
2666 ecmd->speed = SPEED_100;
2667 else if (link & LNK_10MB)
2668 ecmd->speed = SPEED_10;
2669 else
2670 ecmd->speed = 0;
2671 }
2672 if (link & LNK_FULL_DUPLEX)
2673 ecmd->duplex = DUPLEX_FULL;
2674 else
2675 ecmd->duplex = DUPLEX_HALF;
2676
2677 if (link & LNK_NEGOTIATE)
2678 ecmd->autoneg = AUTONEG_ENABLE;
2679 else
2680 ecmd->autoneg = AUTONEG_DISABLE;
2681
2682#if 0
2683 /*
2684 * Current struct ethtool_cmd is insufficient
2685 */
2686 ecmd->trace = readl(&regs->TuneTrace);
2687
2688 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2689 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2690#endif
2691 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2692 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2693
2694 return 0;
2695}
2696
2697static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2698{
2699 struct ace_private *ap = netdev_priv(dev);
2700 struct ace_regs __iomem *regs = ap->regs;
2701 u32 link, speed;
2702
2703 link = readl(&regs->GigLnkState);
2704 if (link & LNK_1000MB)
2705 speed = SPEED_1000;
2706 else {
2707 link = readl(&regs->FastLnkState);
2708 if (link & LNK_100MB)
2709 speed = SPEED_100;
2710 else if (link & LNK_10MB)
2711 speed = SPEED_10;
2712 else
2713 speed = SPEED_100;
2714 }
2715
2716 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2717 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2718 if (!ACE_IS_TIGON_I(ap))
2719 link |= LNK_TX_FLOW_CTL_Y;
2720 if (ecmd->autoneg == AUTONEG_ENABLE)
2721 link |= LNK_NEGOTIATE;
2722 if (ecmd->speed != speed) {
2723 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2724 switch (speed) {
2725 case SPEED_1000:
2726 link |= LNK_1000MB;
2727 break;
2728 case SPEED_100:
2729 link |= LNK_100MB;
2730 break;
2731 case SPEED_10:
2732 link |= LNK_10MB;
2733 break;
2734 }
2735 }
2736
2737 if (ecmd->duplex == DUPLEX_FULL)
2738 link |= LNK_FULL_DUPLEX;
2739
2740 if (link != ap->link) {
2741 struct cmd cmd;
2742 printk(KERN_INFO "%s: Renegotiating link state\n",
2743 dev->name);
2744
2745 ap->link = link;
2746 writel(link, &regs->TuneLink);
2747 if (!ACE_IS_TIGON_I(ap))
2748 writel(link, &regs->TuneFastLink);
2749 wmb();
2750
2751 cmd.evt = C_LNK_NEGOTIATION;
2752 cmd.code = 0;
2753 cmd.idx = 0;
2754 ace_issue_cmd(regs, &cmd);
2755 }
2756 return 0;
2757}
2758
6aa20a22 2759static void ace_get_drvinfo(struct net_device *dev,
1da177e4
LT
2760 struct ethtool_drvinfo *info)
2761{
2762 struct ace_private *ap = netdev_priv(dev);
2763
2764 strlcpy(info->driver, "acenic", sizeof(info->driver));
6aa20a22 2765 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
1da177e4
LT
2766 tigonFwReleaseMajor, tigonFwReleaseMinor,
2767 tigonFwReleaseFix);
2768
2769 if (ap->pdev)
6aa20a22 2770 strlcpy(info->bus_info, pci_name(ap->pdev),
1da177e4
LT
2771 sizeof(info->bus_info));
2772
2773}
2774
2775/*
2776 * Set the hardware MAC address.
2777 */
2778static int ace_set_mac_addr(struct net_device *dev, void *p)
2779{
2780 struct ace_private *ap = netdev_priv(dev);
2781 struct ace_regs __iomem *regs = ap->regs;
2782 struct sockaddr *addr=p;
2783 u8 *da;
2784 struct cmd cmd;
2785
2786 if(netif_running(dev))
2787 return -EBUSY;
2788
2789 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2790
2791 da = (u8 *)dev->dev_addr;
2792
2793 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2794 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2795 &regs->MacAddrLo);
2796
2797 cmd.evt = C_SET_MAC_ADDR;
2798 cmd.code = 0;
2799 cmd.idx = 0;
2800 ace_issue_cmd(regs, &cmd);
2801
2802 return 0;
2803}
2804
2805
2806static void ace_set_multicast_list(struct net_device *dev)
2807{
2808 struct ace_private *ap = netdev_priv(dev);
2809 struct ace_regs __iomem *regs = ap->regs;
2810 struct cmd cmd;
2811
2812 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2813 cmd.evt = C_SET_MULTICAST_MODE;
2814 cmd.code = C_C_MCAST_ENABLE;
2815 cmd.idx = 0;
2816 ace_issue_cmd(regs, &cmd);
2817 ap->mcast_all = 1;
2818 } else if (ap->mcast_all) {
2819 cmd.evt = C_SET_MULTICAST_MODE;
2820 cmd.code = C_C_MCAST_DISABLE;
2821 cmd.idx = 0;
2822 ace_issue_cmd(regs, &cmd);
2823 ap->mcast_all = 0;
2824 }
2825
2826 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2827 cmd.evt = C_SET_PROMISC_MODE;
2828 cmd.code = C_C_PROMISC_ENABLE;
2829 cmd.idx = 0;
2830 ace_issue_cmd(regs, &cmd);
2831 ap->promisc = 1;
2832 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2833 cmd.evt = C_SET_PROMISC_MODE;
2834 cmd.code = C_C_PROMISC_DISABLE;
2835 cmd.idx = 0;
2836 ace_issue_cmd(regs, &cmd);
2837 ap->promisc = 0;
2838 }
2839
2840 /*
2841 * For the time being multicast relies on the upper layers
2842 * filtering it properly. The Firmware does not allow one to
2843 * set the entire multicast list at a time and keeping track of
2844 * it here is going to be messy.
2845 */
2846 if ((dev->mc_count) && !(ap->mcast_all)) {
2847 cmd.evt = C_SET_MULTICAST_MODE;
2848 cmd.code = C_C_MCAST_ENABLE;
2849 cmd.idx = 0;
2850 ace_issue_cmd(regs, &cmd);
2851 }else if (!ap->mcast_all) {
2852 cmd.evt = C_SET_MULTICAST_MODE;
2853 cmd.code = C_C_MCAST_DISABLE;
2854 cmd.idx = 0;
2855 ace_issue_cmd(regs, &cmd);
2856 }
2857}
2858
2859
2860static struct net_device_stats *ace_get_stats(struct net_device *dev)
2861{
2862 struct ace_private *ap = netdev_priv(dev);
2863 struct ace_mac_stats __iomem *mac_stats =
2864 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2865
2866 ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2867 ap->stats.multicast = readl(&mac_stats->kept_mc);
2868 ap->stats.collisions = readl(&mac_stats->coll);
2869
2870 return &ap->stats;
2871}
2872
2873
2874static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
2875 u32 dest, int size)
2876{
2877 void __iomem *tdest;
2878 u32 *wsrc;
2879 short tsize, i;
2880
2881 if (size <= 0)
2882 return;
2883
2884 while (size > 0) {
2885 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2886 min_t(u32, size, ACE_WINDOW_SIZE));
6aa20a22 2887 tdest = (void __iomem *) &regs->Window +
1da177e4
LT
2888 (dest & (ACE_WINDOW_SIZE - 1));
2889 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2890 /*
2891 * This requires byte swapping on big endian, however
2892 * writel does that for us
2893 */
2894 wsrc = src;
2895 for (i = 0; i < (tsize / 4); i++) {
2896 writel(wsrc[i], tdest + i*4);
2897 }
2898 dest += tsize;
2899 src += tsize;
2900 size -= tsize;
2901 }
2902
2903 return;
2904}
2905
2906
2907static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2908{
2909 void __iomem *tdest;
2910 short tsize = 0, i;
2911
2912 if (size <= 0)
2913 return;
2914
2915 while (size > 0) {
2916 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2917 min_t(u32, size, ACE_WINDOW_SIZE));
6aa20a22 2918 tdest = (void __iomem *) &regs->Window +
1da177e4
LT
2919 (dest & (ACE_WINDOW_SIZE - 1));
2920 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2921
2922 for (i = 0; i < (tsize / 4); i++) {
2923 writel(0, tdest + i*4);
2924 }
2925
2926 dest += tsize;
2927 size -= tsize;
2928 }
2929
2930 return;
2931}
2932
2933
2934/*
2935 * Download the firmware into the SRAM on the NIC
2936 *
2937 * This operation requires the NIC to be halted and is performed with
2938 * interrupts disabled and with the spinlock hold.
2939 */
2940int __devinit ace_load_firmware(struct net_device *dev)
2941{
2942 struct ace_private *ap = netdev_priv(dev);
2943 struct ace_regs __iomem *regs = ap->regs;
2944
2945 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2946 printk(KERN_ERR "%s: trying to download firmware while the "
2947 "CPU is running!\n", ap->name);
2948 return -EFAULT;
2949 }
2950
2951 /*
2952 * Do not try to clear more than 512KB or we end up seeing
2953 * funny things on NICs with only 512KB SRAM
2954 */
2955 ace_clear(regs, 0x2000, 0x80000-0x2000);
2956 if (ACE_IS_TIGON_I(ap)) {
2957 ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
2958 ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
2959 ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
2960 tigonFwRodataLen);
2961 ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
2962 ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
2963 }else if (ap->version == 2) {
2964 ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
2965 ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
2966 ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
2967 ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
2968 tigon2FwRodataLen);
2969 ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
2970 }
2971
2972 return 0;
2973}
2974
2975
2976/*
2977 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2978 *
2979 * Accessing the EEPROM is `interesting' to say the least - don't read
2980 * this code right after dinner.
2981 *
2982 * This is all about black magic and bit-banging the device .... I
2983 * wonder in what hospital they have put the guy who designed the i2c
2984 * specs.
2985 *
2986 * Oh yes, this is only the beginning!
2987 *
2988 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2989 * code i2c readout code by beta testing all my hacks.
2990 */
2991static void __devinit eeprom_start(struct ace_regs __iomem *regs)
2992{
2993 u32 local;
2994
2995 readl(&regs->LocalCtrl);
2996 udelay(ACE_SHORT_DELAY);
2997 local = readl(&regs->LocalCtrl);
2998 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2999 writel(local, &regs->LocalCtrl);
3000 readl(&regs->LocalCtrl);
3001 mb();
3002 udelay(ACE_SHORT_DELAY);
3003 local |= EEPROM_CLK_OUT;
3004 writel(local, &regs->LocalCtrl);
3005 readl(&regs->LocalCtrl);
3006 mb();
3007 udelay(ACE_SHORT_DELAY);
3008 local &= ~EEPROM_DATA_OUT;
3009 writel(local, &regs->LocalCtrl);
3010 readl(&regs->LocalCtrl);
3011 mb();
3012 udelay(ACE_SHORT_DELAY);
3013 local &= ~EEPROM_CLK_OUT;
3014 writel(local, &regs->LocalCtrl);
3015 readl(&regs->LocalCtrl);
3016 mb();
3017}
3018
3019
3020static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3021{
3022 short i;
3023 u32 local;
3024
3025 udelay(ACE_SHORT_DELAY);
3026 local = readl(&regs->LocalCtrl);
3027 local &= ~EEPROM_DATA_OUT;
3028 local |= EEPROM_WRITE_ENABLE;
3029 writel(local, &regs->LocalCtrl);
3030 readl(&regs->LocalCtrl);
3031 mb();
3032
3033 for (i = 0; i < 8; i++, magic <<= 1) {
3034 udelay(ACE_SHORT_DELAY);
6aa20a22 3035 if (magic & 0x80)
1da177e4
LT
3036 local |= EEPROM_DATA_OUT;
3037 else
3038 local &= ~EEPROM_DATA_OUT;
3039 writel(local, &regs->LocalCtrl);
3040 readl(&regs->LocalCtrl);
3041 mb();
3042
3043 udelay(ACE_SHORT_DELAY);
3044 local |= EEPROM_CLK_OUT;
3045 writel(local, &regs->LocalCtrl);
3046 readl(&regs->LocalCtrl);
3047 mb();
3048 udelay(ACE_SHORT_DELAY);
3049 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3050 writel(local, &regs->LocalCtrl);
3051 readl(&regs->LocalCtrl);
3052 mb();
3053 }
3054}
3055
3056
3057static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3058{
3059 int state;
3060 u32 local;
3061
3062 local = readl(&regs->LocalCtrl);
3063 local &= ~EEPROM_WRITE_ENABLE;
3064 writel(local, &regs->LocalCtrl);
3065 readl(&regs->LocalCtrl);
3066 mb();
3067 udelay(ACE_LONG_DELAY);
3068 local |= EEPROM_CLK_OUT;
3069 writel(local, &regs->LocalCtrl);
3070 readl(&regs->LocalCtrl);
3071 mb();
3072 udelay(ACE_SHORT_DELAY);
3073 /* sample data in middle of high clk */
3074 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3075 udelay(ACE_SHORT_DELAY);
3076 mb();
3077 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3078 readl(&regs->LocalCtrl);
3079 mb();
3080
3081 return state;
3082}
3083
3084
3085static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3086{
3087 u32 local;
3088
3089 udelay(ACE_SHORT_DELAY);
3090 local = readl(&regs->LocalCtrl);
3091 local |= EEPROM_WRITE_ENABLE;
3092 writel(local, &regs->LocalCtrl);
3093 readl(&regs->LocalCtrl);
3094 mb();
3095 udelay(ACE_SHORT_DELAY);
3096 local &= ~EEPROM_DATA_OUT;
3097 writel(local, &regs->LocalCtrl);
3098 readl(&regs->LocalCtrl);
3099 mb();
3100 udelay(ACE_SHORT_DELAY);
3101 local |= EEPROM_CLK_OUT;
3102 writel(local, &regs->LocalCtrl);
3103 readl(&regs->LocalCtrl);
3104 mb();
3105 udelay(ACE_SHORT_DELAY);
3106 local |= EEPROM_DATA_OUT;
3107 writel(local, &regs->LocalCtrl);
3108 readl(&regs->LocalCtrl);
3109 mb();
3110 udelay(ACE_LONG_DELAY);
3111 local &= ~EEPROM_CLK_OUT;
3112 writel(local, &regs->LocalCtrl);
3113 mb();
3114}
3115
3116
3117/*
3118 * Read a whole byte from the EEPROM.
3119 */
3120static int __devinit read_eeprom_byte(struct net_device *dev,
3121 unsigned long offset)
3122{
3123 struct ace_private *ap = netdev_priv(dev);
3124 struct ace_regs __iomem *regs = ap->regs;
3125 unsigned long flags;
3126 u32 local;
3127 int result = 0;
3128 short i;
3129
1da177e4
LT
3130 /*
3131 * Don't take interrupts on this CPU will bit banging
3132 * the %#%#@$ I2C device
3133 */
3134 local_irq_save(flags);
3135
3136 eeprom_start(regs);
3137
3138 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3139 if (eeprom_check_ack(regs)) {
3140 local_irq_restore(flags);
3141 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3142 result = -EIO;
3143 goto eeprom_read_error;
3144 }
3145
3146 eeprom_prep(regs, (offset >> 8) & 0xff);
3147 if (eeprom_check_ack(regs)) {
3148 local_irq_restore(flags);
3149 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3150 ap->name);
3151 result = -EIO;
3152 goto eeprom_read_error;
3153 }
3154
3155 eeprom_prep(regs, offset & 0xff);
3156 if (eeprom_check_ack(regs)) {
3157 local_irq_restore(flags);
3158 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3159 ap->name);
3160 result = -EIO;
3161 goto eeprom_read_error;
3162 }
3163
3164 eeprom_start(regs);
3165 eeprom_prep(regs, EEPROM_READ_SELECT);
3166 if (eeprom_check_ack(regs)) {
3167 local_irq_restore(flags);
3168 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3169 ap->name);
3170 result = -EIO;
3171 goto eeprom_read_error;
3172 }
3173
3174 for (i = 0; i < 8; i++) {
3175 local = readl(&regs->LocalCtrl);
3176 local &= ~EEPROM_WRITE_ENABLE;
3177 writel(local, &regs->LocalCtrl);
3178 readl(&regs->LocalCtrl);
3179 udelay(ACE_LONG_DELAY);
3180 mb();
3181 local |= EEPROM_CLK_OUT;
3182 writel(local, &regs->LocalCtrl);
3183 readl(&regs->LocalCtrl);
3184 mb();
3185 udelay(ACE_SHORT_DELAY);
3186 /* sample data mid high clk */
3187 result = (result << 1) |
3188 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3189 udelay(ACE_SHORT_DELAY);
3190 mb();
3191 local = readl(&regs->LocalCtrl);
3192 local &= ~EEPROM_CLK_OUT;
3193 writel(local, &regs->LocalCtrl);
3194 readl(&regs->LocalCtrl);
3195 udelay(ACE_SHORT_DELAY);
3196 mb();
3197 if (i == 7) {
3198 local |= EEPROM_WRITE_ENABLE;
3199 writel(local, &regs->LocalCtrl);
3200 readl(&regs->LocalCtrl);
3201 mb();
3202 udelay(ACE_SHORT_DELAY);
3203 }
3204 }
3205
3206 local |= EEPROM_DATA_OUT;
3207 writel(local, &regs->LocalCtrl);
3208 readl(&regs->LocalCtrl);
3209 mb();
3210 udelay(ACE_SHORT_DELAY);
3211 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3212 readl(&regs->LocalCtrl);
3213 udelay(ACE_LONG_DELAY);
3214 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3215 readl(&regs->LocalCtrl);
3216 mb();
3217 udelay(ACE_SHORT_DELAY);
3218 eeprom_stop(regs);
3219
3220 local_irq_restore(flags);
3221 out:
3222 return result;
3223
3224 eeprom_read_error:
3225 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3226 ap->name, offset);
3227 goto out;
3228}
3229
3230
3231/*
3232 * Local variables:
3233 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
3234 * End:
3235 */