]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/net/au1000_eth.c
drivers/net/: all drivers/net/ cleanup with ARRAY_SIZE
[mirror_ubuntu-focal-kernel.git] / drivers / net / au1000_eth.c
CommitLineData
1da177e4
LT
1/*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
89be0501 5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
1da177e4
LT
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
6aa20a22
JG
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
1da177e4 11 * ioctls (SIOCGMIIPHY)
0638dec0
HVR
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
14 *
1da177e4
LT
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
6aa20a22 35 *
1da177e4 36 */
d791c2bd 37#include <linux/dma-mapping.h>
1da177e4
LT
38#include <linux/module.h>
39#include <linux/kernel.h>
1da177e4
LT
40#include <linux/string.h>
41#include <linux/timer.h>
42#include <linux/errno.h>
43#include <linux/in.h>
44#include <linux/ioport.h>
45#include <linux/bitops.h>
46#include <linux/slab.h>
47#include <linux/interrupt.h>
1da177e4
LT
48#include <linux/init.h>
49#include <linux/netdevice.h>
50#include <linux/etherdevice.h>
51#include <linux/ethtool.h>
52#include <linux/mii.h>
53#include <linux/skbuff.h>
54#include <linux/delay.h>
8cd35da0 55#include <linux/crc32.h>
0638dec0 56#include <linux/phy.h>
1da177e4
LT
57#include <asm/mipsregs.h>
58#include <asm/irq.h>
59#include <asm/io.h>
60#include <asm/processor.h>
61
62#include <asm/mach-au1x00/au1000.h>
63#include <asm/cpu.h>
64#include "au1000_eth.h"
65
66#ifdef AU1000_ETH_DEBUG
67static int au1000_debug = 5;
68#else
69static int au1000_debug = 3;
70#endif
71
89be0501 72#define DRV_NAME "au1000_eth"
d5b20697 73#define DRV_VERSION "1.6"
1da177e4
LT
74#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
75#define DRV_DESC "Au1xxx on-chip Ethernet driver"
76
77MODULE_AUTHOR(DRV_AUTHOR);
78MODULE_DESCRIPTION(DRV_DESC);
79MODULE_LICENSE("GPL");
80
81// prototypes
82static void hard_stop(struct net_device *);
83static void enable_rx_tx(struct net_device *dev);
89be0501 84static struct net_device * au1000_probe(int port_num);
1da177e4
LT
85static int au1000_init(struct net_device *);
86static int au1000_open(struct net_device *);
87static int au1000_close(struct net_device *);
88static int au1000_tx(struct sk_buff *, struct net_device *);
89static int au1000_rx(struct net_device *);
7d12e780 90static irqreturn_t au1000_interrupt(int, void *);
1da177e4 91static void au1000_tx_timeout(struct net_device *);
1da177e4
LT
92static void set_rx_mode(struct net_device *);
93static struct net_device_stats *au1000_get_stats(struct net_device *);
1da177e4
LT
94static int au1000_ioctl(struct net_device *, struct ifreq *, int);
95static int mdio_read(struct net_device *, int, int);
96static void mdio_write(struct net_device *, int, int, u16);
0638dec0
HVR
97static void au1000_adjust_link(struct net_device *);
98static void enable_mac(struct net_device *, int);
1da177e4
LT
99
100// externs
1da177e4
LT
101extern int get_ethernet_addr(char *ethernet_addr);
102extern void str2eaddr(unsigned char *ea, unsigned char *str);
c21e6d65 103extern char * prom_getcmdline(void);
1da177e4
LT
104
105/*
106 * Theory of operation
107 *
6aa20a22
JG
108 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
109 * There are four receive and four transmit descriptors. These
110 * descriptors are not in memory; rather, they are just a set of
1da177e4
LT
111 * hardware registers.
112 *
113 * Since the Au1000 has a coherent data cache, the receive and
6aa20a22 114 * transmit buffers are allocated from the KSEG0 segment. The
1da177e4
LT
115 * hardware registers, however, are still mapped at KSEG1 to
116 * make sure there's no out-of-order writes, and that all writes
117 * complete immediately.
118 */
119
120/* These addresses are only used if yamon doesn't tell us what
121 * the mac address is, and the mac address is not passed on the
122 * command line.
123 */
6aa20a22 124static unsigned char au1000_mac_addr[6] __devinitdata = {
1da177e4
LT
125 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
126};
127
1da177e4
LT
128struct au1000_private *au_macs[NUM_ETH_INTERFACES];
129
0638dec0
HVR
130/*
131 * board-specific configurations
132 *
133 * PHY detection algorithm
134 *
135 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
136 * autodetected:
137 *
138 * mii_probe() first searches the current MAC's MII bus for a PHY,
139 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
140 * defined) PHY address not already claimed by another netdev.
141 *
142 * If nothing was found that way when searching for the 2nd ethernet
143 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
144 * the first MII bus is searched as well for an unclaimed PHY; this is
145 * needed in case of a dual-PHY accessible only through the MAC0's MII
146 * bus.
147 *
148 * Finally, if no PHY is found, then the corresponding ethernet
149 * controller is not registered to the network subsystem.
1da177e4
LT
150 */
151
0638dec0
HVR
152/* autodetection defaults */
153#undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
154#define AU1XXX_PHY1_SEARCH_ON_MAC0
1da177e4 155
0638dec0
HVR
156/* static PHY setup
157 *
158 * most boards PHY setup should be detectable properly with the
159 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
160 * you have a switch attached, or want to use the PHY's interrupt
161 * notification capabilities) you can provide a static PHY
162 * configuration here
163 *
164 * IRQs may only be set, if a PHY address was configured
165 * If a PHY address is given, also a bus id is required to be set
166 *
167 * ps: make sure the used irqs are configured properly in the board
168 * specific irq-map
169 */
1da177e4 170
0638dec0
HVR
171#if defined(CONFIG_MIPS_BOSPORUS)
172/*
173 * Micrel/Kendin 5 port switch attached to MAC0,
174 * MAC0 is associated with PHY address 5 (== WAN port)
175 * MAC1 is not associated with any PHY, since it's connected directly
176 * to the switch.
177 * no interrupts are used
178 */
179# define AU1XXX_PHY_STATIC_CONFIG
1da177e4 180
0638dec0
HVR
181# define AU1XXX_PHY0_ADDR 5
182# define AU1XXX_PHY0_BUSID 0
183# undef AU1XXX_PHY0_IRQ
1da177e4 184
0638dec0
HVR
185# undef AU1XXX_PHY1_ADDR
186# undef AU1XXX_PHY1_BUSID
187# undef AU1XXX_PHY1_IRQ
1da177e4
LT
188#endif
189
0638dec0
HVR
190#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
191# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
1da177e4 192#endif
1da177e4 193
0638dec0
HVR
194/*
195 * MII operations
196 */
197static int mdio_read(struct net_device *dev, int phy_addr, int reg)
1da177e4
LT
198{
199 struct au1000_private *aup = (struct au1000_private *) dev->priv;
0638dec0
HVR
200 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
201 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
1da177e4
LT
202 u32 timedout = 20;
203 u32 mii_control;
204
1da177e4
LT
205 while (*mii_control_reg & MAC_MII_BUSY) {
206 mdelay(1);
207 if (--timedout == 0) {
6aa20a22 208 printk(KERN_ERR "%s: read_MII busy timeout!!\n",
1da177e4
LT
209 dev->name);
210 return -1;
211 }
212 }
213
6aa20a22 214 mii_control = MAC_SET_MII_SELECT_REG(reg) |
0638dec0 215 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
1da177e4
LT
216
217 *mii_control_reg = mii_control;
218
219 timedout = 20;
220 while (*mii_control_reg & MAC_MII_BUSY) {
221 mdelay(1);
222 if (--timedout == 0) {
6aa20a22 223 printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
1da177e4
LT
224 dev->name);
225 return -1;
226 }
227 }
228 return (int)*mii_data_reg;
229}
230
0638dec0 231static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
1da177e4
LT
232{
233 struct au1000_private *aup = (struct au1000_private *) dev->priv;
0638dec0
HVR
234 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
235 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
1da177e4
LT
236 u32 timedout = 20;
237 u32 mii_control;
238
1da177e4
LT
239 while (*mii_control_reg & MAC_MII_BUSY) {
240 mdelay(1);
241 if (--timedout == 0) {
6aa20a22 242 printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
1da177e4
LT
243 dev->name);
244 return;
245 }
246 }
247
6aa20a22 248 mii_control = MAC_SET_MII_SELECT_REG(reg) |
0638dec0 249 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
1da177e4
LT
250
251 *mii_data_reg = value;
252 *mii_control_reg = mii_control;
253}
254
0638dec0
HVR
255static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
256{
257 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
258 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
259 struct net_device *const dev = bus->priv;
260
261 enable_mac(dev, 0); /* make sure the MAC associated with this
262 * mii_bus is enabled */
263 return mdio_read(dev, phy_addr, regnum);
264}
1da177e4 265
0638dec0
HVR
266static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
267 u16 value)
1da177e4 268{
0638dec0 269 struct net_device *const dev = bus->priv;
1da177e4 270
0638dec0
HVR
271 enable_mac(dev, 0); /* make sure the MAC associated with this
272 * mii_bus is enabled */
273 mdio_write(dev, phy_addr, regnum, value);
274 return 0;
1da177e4
LT
275}
276
0638dec0 277static int mdiobus_reset(struct mii_bus *bus)
1da177e4 278{
0638dec0 279 struct net_device *const dev = bus->priv;
1da177e4 280
0638dec0
HVR
281 enable_mac(dev, 0); /* make sure the MAC associated with this
282 * mii_bus is enabled */
283 return 0;
284}
1da177e4 285
0638dec0
HVR
286static int mii_probe (struct net_device *dev)
287{
288 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
289 struct phy_device *phydev = NULL;
290
291#if defined(AU1XXX_PHY_STATIC_CONFIG)
292 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
293
294 if(aup->mac_id == 0) { /* get PHY0 */
295# if defined(AU1XXX_PHY0_ADDR)
296 phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
297# else
298 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
299 dev->name);
300 return 0;
301# endif /* defined(AU1XXX_PHY0_ADDR) */
302 } else if (aup->mac_id == 1) { /* get PHY1 */
303# if defined(AU1XXX_PHY1_ADDR)
304 phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
305# else
306 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
307 dev->name);
308 return 0;
309# endif /* defined(AU1XXX_PHY1_ADDR) */
310 }
311
312#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
313 int phy_addr;
314
315 /* find the first (lowest address) PHY on the current MAC's MII bus */
316 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
317 if (aup->mii_bus.phy_map[phy_addr]) {
318 phydev = aup->mii_bus.phy_map[phy_addr];
319# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
320 break; /* break out with first one found */
321# endif
1da177e4 322 }
1da177e4 323
0638dec0
HVR
324# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
325 /* try harder to find a PHY */
326 if (!phydev && (aup->mac_id == 1)) {
327 /* no PHY found, maybe we have a dual PHY? */
328 printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
329 "let's see if it's attached to MAC0...\n");
330
331 BUG_ON(!au_macs[0]);
332
333 /* find the first (lowest address) non-attached PHY on
334 * the MAC0 MII bus */
335 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
336 struct phy_device *const tmp_phydev =
337 au_macs[0]->mii_bus.phy_map[phy_addr];
338
339 if (!tmp_phydev)
340 continue; /* no PHY here... */
341
342 if (tmp_phydev->attached_dev)
343 continue; /* already claimed by MAC0 */
344
345 phydev = tmp_phydev;
346 break; /* found it */
1da177e4
LT
347 }
348 }
0638dec0 349# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
1da177e4 350
0638dec0
HVR
351#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
352 if (!phydev) {
353 printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
1da177e4
LT
354 return -1;
355 }
356
0638dec0
HVR
357 /* now we are supposed to have a proper phydev, to attach to... */
358 BUG_ON(!phydev);
359 BUG_ON(phydev->attached_dev);
360
e8a2b6a4
AF
361 phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0,
362 PHY_INTERFACE_MODE_MII);
0638dec0
HVR
363
364 if (IS_ERR(phydev)) {
365 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
366 return PTR_ERR(phydev);
367 }
368
369 /* mask with MAC supported features */
370 phydev->supported &= (SUPPORTED_10baseT_Half
371 | SUPPORTED_10baseT_Full
372 | SUPPORTED_100baseT_Half
373 | SUPPORTED_100baseT_Full
374 | SUPPORTED_Autoneg
375 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
376 | SUPPORTED_MII
377 | SUPPORTED_TP);
378
379 phydev->advertising = phydev->supported;
380
381 aup->old_link = 0;
382 aup->old_speed = 0;
383 aup->old_duplex = -1;
384 aup->phy_dev = phydev;
385
386 printk(KERN_INFO "%s: attached PHY driver [%s] "
387 "(mii_bus:phy_addr=%s, irq=%d)\n",
388 dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
1da177e4
LT
389
390 return 0;
391}
392
393
394/*
395 * Buffer allocation/deallocation routines. The buffer descriptor returned
6aa20a22 396 * has the virtual and dma address of a buffer suitable for
1da177e4
LT
397 * both, receive and transmit operations.
398 */
399static db_dest_t *GetFreeDB(struct au1000_private *aup)
400{
401 db_dest_t *pDB;
402 pDB = aup->pDBfree;
403
404 if (pDB) {
405 aup->pDBfree = pDB->pnext;
406 }
407 return pDB;
408}
409
410void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
411{
412 db_dest_t *pDBfree = aup->pDBfree;
413 if (pDBfree)
414 pDBfree->pnext = pDB;
415 aup->pDBfree = pDB;
416}
417
418static void enable_rx_tx(struct net_device *dev)
419{
420 struct au1000_private *aup = (struct au1000_private *) dev->priv;
421
422 if (au1000_debug > 4)
423 printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
424
425 aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
426 au_sync_delay(10);
427}
428
429static void hard_stop(struct net_device *dev)
430{
431 struct au1000_private *aup = (struct au1000_private *) dev->priv;
432
433 if (au1000_debug > 4)
434 printk(KERN_INFO "%s: hard stop\n", dev->name);
435
436 aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
437 au_sync_delay(10);
438}
439
0638dec0 440static void enable_mac(struct net_device *dev, int force_reset)
1da177e4 441{
0638dec0 442 unsigned long flags;
1da177e4
LT
443 struct au1000_private *aup = (struct au1000_private *) dev->priv;
444
1da177e4 445 spin_lock_irqsave(&aup->lock, flags);
1da177e4 446
0638dec0 447 if(force_reset || (!aup->mac_enabled)) {
1da177e4
LT
448 *aup->enable = MAC_EN_CLOCK_ENABLE;
449 au_sync_delay(2);
0638dec0
HVR
450 *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
451 | MAC_EN_CLOCK_ENABLE);
1da177e4 452 au_sync_delay(2);
0638dec0
HVR
453
454 aup->mac_enabled = 1;
1da177e4 455 }
0638dec0
HVR
456
457 spin_unlock_irqrestore(&aup->lock, flags);
458}
459
460static void reset_mac_unlocked(struct net_device *dev)
461{
462 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
463 int i;
464
465 hard_stop(dev);
466
467 *aup->enable = MAC_EN_CLOCK_ENABLE;
468 au_sync_delay(2);
469 *aup->enable = 0;
470 au_sync_delay(2);
471
1da177e4
LT
472 aup->tx_full = 0;
473 for (i = 0; i < NUM_RX_DMA; i++) {
474 /* reset control bits */
475 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
476 }
477 for (i = 0; i < NUM_TX_DMA; i++) {
478 /* reset control bits */
479 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
480 }
0638dec0
HVR
481
482 aup->mac_enabled = 0;
483
1da177e4
LT
484}
485
0638dec0
HVR
486static void reset_mac(struct net_device *dev)
487{
488 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
489 unsigned long flags;
490
491 if (au1000_debug > 4)
492 printk(KERN_INFO "%s: reset mac, aup %x\n",
493 dev->name, (unsigned)aup);
494
495 spin_lock_irqsave(&aup->lock, flags);
496
497 reset_mac_unlocked (dev);
498
499 spin_unlock_irqrestore(&aup->lock, flags);
500}
1da177e4 501
6aa20a22 502/*
1da177e4
LT
503 * Setup the receive and transmit "rings". These pointers are the addresses
504 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
505 * these are not descriptors sitting in memory.
506 */
6aa20a22 507static void
1da177e4
LT
508setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
509{
510 int i;
511
512 for (i = 0; i < NUM_RX_DMA; i++) {
6aa20a22 513 aup->rx_dma_ring[i] =
1da177e4
LT
514 (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
515 }
516 for (i = 0; i < NUM_TX_DMA; i++) {
6aa20a22 517 aup->tx_dma_ring[i] =
1da177e4
LT
518 (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
519 }
520}
521
522static struct {
1da177e4
LT
523 u32 base_addr;
524 u32 macen_addr;
525 int irq;
526 struct net_device *dev;
89be0501
SS
527} iflist[2] = {
528#ifdef CONFIG_SOC_AU1000
529 {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
530 {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
531#endif
532#ifdef CONFIG_SOC_AU1100
533 {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
534#endif
535#ifdef CONFIG_SOC_AU1500
536 {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
537 {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
538#endif
539#ifdef CONFIG_SOC_AU1550
540 {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
541 {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
542#endif
543};
1da177e4
LT
544
545static int num_ifs;
546
547/*
548 * Setup the base address and interupt of the Au1xxx ethernet macs
549 * based on cpu type and whether the interface is enabled in sys_pinfunc
550 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
551 */
552static int __init au1000_init_module(void)
553{
1da177e4
LT
554 int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
555 struct net_device *dev;
556 int i, found_one = 0;
557
89be0501
SS
558 num_ifs = NUM_ETH_INTERFACES - ni;
559
1da177e4 560 for(i = 0; i < num_ifs; i++) {
89be0501 561 dev = au1000_probe(i);
1da177e4
LT
562 iflist[i].dev = dev;
563 if (dev)
564 found_one++;
565 }
566 if (!found_one)
567 return -ENODEV;
568 return 0;
569}
570
0638dec0
HVR
571/*
572 * ethtool operations
573 */
1da177e4 574
0638dec0 575static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1da177e4
LT
576{
577 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1da177e4 578
0638dec0
HVR
579 if (aup->phy_dev)
580 return phy_ethtool_gset(aup->phy_dev, cmd);
1da177e4 581
0638dec0 582 return -EINVAL;
1da177e4
LT
583}
584
0638dec0 585static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1da177e4
LT
586{
587 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1da177e4 588
0638dec0
HVR
589 if (!capable(CAP_NET_ADMIN))
590 return -EPERM;
1da177e4 591
0638dec0
HVR
592 if (aup->phy_dev)
593 return phy_ethtool_sset(aup->phy_dev, cmd);
1da177e4 594
0638dec0 595 return -EINVAL;
1da177e4
LT
596}
597
598static void
599au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
600{
601 struct au1000_private *aup = (struct au1000_private *)dev->priv;
602
603 strcpy(info->driver, DRV_NAME);
604 strcpy(info->version, DRV_VERSION);
605 info->fw_version[0] = '\0';
606 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
607 info->regdump_len = 0;
608}
609
7282d491 610static const struct ethtool_ops au1000_ethtool_ops = {
1da177e4
LT
611 .get_settings = au1000_get_settings,
612 .set_settings = au1000_set_settings,
613 .get_drvinfo = au1000_get_drvinfo,
0638dec0 614 .get_link = ethtool_op_get_link,
1da177e4
LT
615};
616
89be0501 617static struct net_device * au1000_probe(int port_num)
1da177e4
LT
618{
619 static unsigned version_printed = 0;
620 struct au1000_private *aup = NULL;
621 struct net_device *dev = NULL;
622 db_dest_t *pDB, *pDBfree;
623 char *pmac, *argptr;
624 char ethaddr[6];
89be0501
SS
625 int irq, i, err;
626 u32 base, macen;
627
628 if (port_num >= NUM_ETH_INTERFACES)
629 return NULL;
1da177e4 630
89be0501
SS
631 base = CPHYSADDR(iflist[port_num].base_addr );
632 macen = CPHYSADDR(iflist[port_num].macen_addr);
633 irq = iflist[port_num].irq;
634
635 if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
636 !request_mem_region(macen, 4, "Au1x00 ENET"))
1da177e4
LT
637 return NULL;
638
89be0501 639 if (version_printed++ == 0)
1da177e4
LT
640 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
641
642 dev = alloc_etherdev(sizeof(struct au1000_private));
643 if (!dev) {
89be0501 644 printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
1da177e4
LT
645 return NULL;
646 }
647
89be0501
SS
648 if ((err = register_netdev(dev)) != 0) {
649 printk(KERN_ERR "%s: Cannot register net device, error %d\n",
650 DRV_NAME, err);
1da177e4
LT
651 free_netdev(dev);
652 return NULL;
653 }
654
89be0501
SS
655 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
656 dev->name, base, irq);
1da177e4
LT
657
658 aup = dev->priv;
659
660 /* Allocate the data buffers */
661 /* Snooping works fine with eth on all au1xxx */
89be0501
SS
662 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
663 (NUM_TX_BUFFS + NUM_RX_BUFFS),
664 &aup->dma_addr, 0);
1da177e4
LT
665 if (!aup->vaddr) {
666 free_netdev(dev);
89be0501
SS
667 release_mem_region( base, MAC_IOSIZE);
668 release_mem_region(macen, 4);
1da177e4
LT
669 return NULL;
670 }
671
672 /* aup->mac is the base address of the MAC's registers */
89be0501
SS
673 aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
674
1da177e4 675 /* Setup some variables for quick register address access */
89be0501
SS
676 aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
677 aup->mac_id = port_num;
678 au_macs[port_num] = aup;
679
680 if (port_num == 0) {
681 /* Check the environment variables first */
682 if (get_ethernet_addr(ethaddr) == 0)
1da177e4 683 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
89be0501 684 else {
1da177e4
LT
685 /* Check command line */
686 argptr = prom_getcmdline();
89be0501
SS
687 if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
688 printk(KERN_INFO "%s: No MAC address found\n",
689 dev->name);
690 /* Use the hard coded MAC addresses */
691 else {
1da177e4 692 str2eaddr(ethaddr, pmac + strlen("ethaddr="));
6aa20a22 693 memcpy(au1000_mac_addr, ethaddr,
89be0501 694 sizeof(au1000_mac_addr));
1da177e4
LT
695 }
696 }
89be0501 697
1da177e4 698 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
89be0501 699 } else if (port_num == 1)
1da177e4 700 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
1da177e4 701
89be0501
SS
702 /*
703 * Assign to the Ethernet ports two consecutive MAC addresses
704 * to match those that are printed on their stickers
705 */
706 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
707 dev->dev_addr[5] += port_num;
708
0638dec0
HVR
709 *aup->enable = 0;
710 aup->mac_enabled = 0;
711
712 aup->mii_bus.priv = dev;
713 aup->mii_bus.read = mdiobus_read;
714 aup->mii_bus.write = mdiobus_write;
715 aup->mii_bus.reset = mdiobus_reset;
716 aup->mii_bus.name = "au1000_eth_mii";
717 aup->mii_bus.id = aup->mac_id;
718 aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
719 for(i = 0; i < PHY_MAX_ADDR; ++i)
720 aup->mii_bus.irq[i] = PHY_POLL;
721
722 /* if known, set corresponding PHY IRQs */
723#if defined(AU1XXX_PHY_STATIC_CONFIG)
724# if defined(AU1XXX_PHY0_IRQ)
725 if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
726 aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
727# endif
728# if defined(AU1XXX_PHY1_IRQ)
729 if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
730 aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
731# endif
732#endif
733 mdiobus_register(&aup->mii_bus);
1da177e4
LT
734
735 if (mii_probe(dev) != 0) {
736 goto err_out;
737 }
738
739 pDBfree = NULL;
740 /* setup the data buffer descriptors and attach a buffer to each one */
741 pDB = aup->db;
742 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
743 pDB->pnext = pDBfree;
744 pDBfree = pDB;
745 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
746 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
747 pDB++;
748 }
749 aup->pDBfree = pDBfree;
750
751 for (i = 0; i < NUM_RX_DMA; i++) {
752 pDB = GetFreeDB(aup);
753 if (!pDB) {
754 goto err_out;
755 }
756 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
757 aup->rx_db_inuse[i] = pDB;
758 }
759 for (i = 0; i < NUM_TX_DMA; i++) {
760 pDB = GetFreeDB(aup);
761 if (!pDB) {
762 goto err_out;
763 }
764 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
765 aup->tx_dma_ring[i]->len = 0;
766 aup->tx_db_inuse[i] = pDB;
767 }
768
769 spin_lock_init(&aup->lock);
89be0501 770 dev->base_addr = base;
1da177e4
LT
771 dev->irq = irq;
772 dev->open = au1000_open;
773 dev->hard_start_xmit = au1000_tx;
774 dev->stop = au1000_close;
775 dev->get_stats = au1000_get_stats;
776 dev->set_multicast_list = &set_rx_mode;
777 dev->do_ioctl = &au1000_ioctl;
778 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1da177e4
LT
779 dev->tx_timeout = au1000_tx_timeout;
780 dev->watchdog_timeo = ETH_TX_TIMEOUT;
781
6aa20a22
JG
782 /*
783 * The boot code uses the ethernet controller, so reset it to start
1da177e4
LT
784 * fresh. au1000_init() expects that the device is in reset state.
785 */
786 reset_mac(dev);
787
788 return dev;
789
790err_out:
791 /* here we should have a valid dev plus aup-> register addresses
792 * so we can reset the mac properly.*/
793 reset_mac(dev);
0638dec0 794
1da177e4
LT
795 for (i = 0; i < NUM_RX_DMA; i++) {
796 if (aup->rx_db_inuse[i])
797 ReleaseDB(aup, aup->rx_db_inuse[i]);
798 }
799 for (i = 0; i < NUM_TX_DMA; i++) {
800 if (aup->tx_db_inuse[i])
801 ReleaseDB(aup, aup->tx_db_inuse[i]);
802 }
89be0501
SS
803 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
804 (void *)aup->vaddr, aup->dma_addr);
1da177e4
LT
805 unregister_netdev(dev);
806 free_netdev(dev);
89be0501
SS
807 release_mem_region( base, MAC_IOSIZE);
808 release_mem_region(macen, 4);
1da177e4
LT
809 return NULL;
810}
811
6aa20a22 812/*
1da177e4
LT
813 * Initialize the interface.
814 *
815 * When the device powers up, the clocks are disabled and the
816 * mac is in reset state. When the interface is closed, we
817 * do the same -- reset the device and disable the clocks to
818 * conserve power. Thus, whenever au1000_init() is called,
819 * the device should already be in reset state.
820 */
821static int au1000_init(struct net_device *dev)
822{
823 struct au1000_private *aup = (struct au1000_private *) dev->priv;
824 u32 flags;
825 int i;
826 u32 control;
1da177e4 827
6aa20a22 828 if (au1000_debug > 4)
1da177e4
LT
829 printk("%s: au1000_init\n", dev->name);
830
1da177e4 831 /* bring the device out of reset */
0638dec0
HVR
832 enable_mac(dev, 1);
833
834 spin_lock_irqsave(&aup->lock, flags);
1da177e4
LT
835
836 aup->mac->control = 0;
837 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
838 aup->tx_tail = aup->tx_head;
839 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
840
841 aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
842 aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
843 dev->dev_addr[1]<<8 | dev->dev_addr[0];
844
845 for (i = 0; i < NUM_RX_DMA; i++) {
846 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
847 }
848 au_sync();
849
0638dec0 850 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
1da177e4
LT
851#ifndef CONFIG_CPU_LITTLE_ENDIAN
852 control |= MAC_BIG_ENDIAN;
853#endif
0638dec0
HVR
854 if (aup->phy_dev) {
855 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
856 control |= MAC_FULL_DUPLEX;
857 else
858 control |= MAC_DISABLE_RX_OWN;
859 } else { /* PHY-less op, assume full-duplex */
1da177e4
LT
860 control |= MAC_FULL_DUPLEX;
861 }
862
1da177e4
LT
863 aup->mac->control = control;
864 aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
865 au_sync();
866
867 spin_unlock_irqrestore(&aup->lock, flags);
868 return 0;
869}
870
0638dec0
HVR
871static void
872au1000_adjust_link(struct net_device *dev)
1da177e4 873{
1da177e4 874 struct au1000_private *aup = (struct au1000_private *) dev->priv;
0638dec0
HVR
875 struct phy_device *phydev = aup->phy_dev;
876 unsigned long flags;
1da177e4 877
0638dec0 878 int status_change = 0;
1da177e4 879
0638dec0
HVR
880 BUG_ON(!aup->phy_dev);
881
882 spin_lock_irqsave(&aup->lock, flags);
883
884 if (phydev->link && (aup->old_speed != phydev->speed)) {
885 // speed changed
886
887 switch(phydev->speed) {
888 case SPEED_10:
889 case SPEED_100:
890 break;
891 default:
892 printk(KERN_WARNING
893 "%s: Speed (%d) is not 10/100 ???\n",
894 dev->name, phydev->speed);
895 break;
1da177e4 896 }
0638dec0
HVR
897
898 aup->old_speed = phydev->speed;
899
900 status_change = 1;
1da177e4
LT
901 }
902
0638dec0
HVR
903 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
904 // duplex mode changed
905
906 /* switching duplex mode requires to disable rx and tx! */
1da177e4 907 hard_stop(dev);
0638dec0
HVR
908
909 if (DUPLEX_FULL == phydev->duplex)
910 aup->mac->control = ((aup->mac->control
911 | MAC_FULL_DUPLEX)
912 & ~MAC_DISABLE_RX_OWN);
913 else
914 aup->mac->control = ((aup->mac->control
915 & ~MAC_FULL_DUPLEX)
916 | MAC_DISABLE_RX_OWN);
917 au_sync_delay(1);
918
1da177e4 919 enable_rx_tx(dev);
0638dec0
HVR
920 aup->old_duplex = phydev->duplex;
921
922 status_change = 1;
923 }
924
925 if(phydev->link != aup->old_link) {
926 // link state changed
927
928 if (phydev->link) // link went up
929 netif_schedule(dev);
930 else { // link went down
931 aup->old_speed = 0;
932 aup->old_duplex = -1;
933 }
934
935 aup->old_link = phydev->link;
936 status_change = 1;
1da177e4
LT
937 }
938
0638dec0 939 spin_unlock_irqrestore(&aup->lock, flags);
1da177e4 940
0638dec0
HVR
941 if (status_change) {
942 if (phydev->link)
943 printk(KERN_INFO "%s: link up (%d/%s)\n",
944 dev->name, phydev->speed,
945 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
946 else
947 printk(KERN_INFO "%s: link down\n", dev->name);
948 }
1da177e4
LT
949}
950
951static int au1000_open(struct net_device *dev)
952{
953 int retval;
954 struct au1000_private *aup = (struct au1000_private *) dev->priv;
955
956 if (au1000_debug > 4)
957 printk("%s: open: dev=%p\n", dev->name, dev);
958
0638dec0
HVR
959 if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
960 dev->name, dev))) {
961 printk(KERN_ERR "%s: unable to get IRQ %d\n",
962 dev->name, dev->irq);
963 return retval;
964 }
965
1da177e4
LT
966 if ((retval = au1000_init(dev))) {
967 printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
968 free_irq(dev->irq, dev);
969 return retval;
970 }
1da177e4 971
0638dec0
HVR
972 if (aup->phy_dev) {
973 /* cause the PHY state machine to schedule a link state check */
974 aup->phy_dev->state = PHY_CHANGELINK;
975 phy_start(aup->phy_dev);
1da177e4
LT
976 }
977
0638dec0 978 netif_start_queue(dev);
1da177e4
LT
979
980 if (au1000_debug > 4)
981 printk("%s: open: Initialization done.\n", dev->name);
982
983 return 0;
984}
985
986static int au1000_close(struct net_device *dev)
987{
0638dec0
HVR
988 unsigned long flags;
989 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
1da177e4
LT
990
991 if (au1000_debug > 4)
992 printk("%s: close: dev=%p\n", dev->name, dev);
993
0638dec0
HVR
994 if (aup->phy_dev)
995 phy_stop(aup->phy_dev);
1da177e4
LT
996
997 spin_lock_irqsave(&aup->lock, flags);
0638dec0
HVR
998
999 reset_mac_unlocked (dev);
1000
1da177e4
LT
1001 /* stop the device */
1002 netif_stop_queue(dev);
1003
1004 /* disable the interrupt */
1005 free_irq(dev->irq, dev);
1006 spin_unlock_irqrestore(&aup->lock, flags);
1007
1008 return 0;
1009}
1010
1011static void __exit au1000_cleanup_module(void)
1012{
1013 int i, j;
1014 struct net_device *dev;
1015 struct au1000_private *aup;
1016
1017 for (i = 0; i < num_ifs; i++) {
1018 dev = iflist[i].dev;
1019 if (dev) {
1020 aup = (struct au1000_private *) dev->priv;
1021 unregister_netdev(dev);
89be0501 1022 for (j = 0; j < NUM_RX_DMA; j++)
1da177e4
LT
1023 if (aup->rx_db_inuse[j])
1024 ReleaseDB(aup, aup->rx_db_inuse[j]);
89be0501 1025 for (j = 0; j < NUM_TX_DMA; j++)
1da177e4
LT
1026 if (aup->tx_db_inuse[j])
1027 ReleaseDB(aup, aup->tx_db_inuse[j]);
89be0501
SS
1028 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1029 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1030 (void *)aup->vaddr, aup->dma_addr);
1031 release_mem_region(dev->base_addr, MAC_IOSIZE);
1032 release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
1da177e4 1033 free_netdev(dev);
1da177e4
LT
1034 }
1035 }
1036}
1037
c2d3d4b9 1038static void update_tx_stats(struct net_device *dev, u32 status)
1da177e4
LT
1039{
1040 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1041 struct net_device_stats *ps = &aup->stats;
1042
1da177e4 1043 if (status & TX_FRAME_ABORTED) {
0638dec0 1044 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
1da177e4
LT
1045 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1046 /* any other tx errors are only valid
1047 * in half duplex mode */
1048 ps->tx_errors++;
1049 ps->tx_aborted_errors++;
1050 }
1051 }
1052 else {
1053 ps->tx_errors++;
1054 ps->tx_aborted_errors++;
1055 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
1056 ps->tx_carrier_errors++;
1057 }
1058 }
1059}
1060
1061
1062/*
1063 * Called from the interrupt service routine to acknowledge
1064 * the TX DONE bits. This is a must if the irq is setup as
1065 * edge triggered.
1066 */
1067static void au1000_tx_ack(struct net_device *dev)
1068{
1069 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1070 volatile tx_dma_t *ptxd;
1071
1072 ptxd = aup->tx_dma_ring[aup->tx_tail];
1073
1074 while (ptxd->buff_stat & TX_T_DONE) {
c2d3d4b9 1075 update_tx_stats(dev, ptxd->status);
1da177e4
LT
1076 ptxd->buff_stat &= ~TX_T_DONE;
1077 ptxd->len = 0;
1078 au_sync();
1079
1080 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
1081 ptxd = aup->tx_dma_ring[aup->tx_tail];
1082
1083 if (aup->tx_full) {
1084 aup->tx_full = 0;
1085 netif_wake_queue(dev);
1086 }
1087 }
1088}
1089
1090
1091/*
1092 * Au1000 transmit routine.
1093 */
1094static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
1095{
1096 struct au1000_private *aup = (struct au1000_private *) dev->priv;
c2d3d4b9 1097 struct net_device_stats *ps = &aup->stats;
1da177e4
LT
1098 volatile tx_dma_t *ptxd;
1099 u32 buff_stat;
1100 db_dest_t *pDB;
1101 int i;
1102
1103 if (au1000_debug > 5)
6aa20a22
JG
1104 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1105 dev->name, (unsigned)aup, skb->len,
1da177e4
LT
1106 skb->data, aup->tx_head);
1107
1108 ptxd = aup->tx_dma_ring[aup->tx_head];
1109 buff_stat = ptxd->buff_stat;
1110 if (buff_stat & TX_DMA_ENABLE) {
1111 /* We've wrapped around and the transmitter is still busy */
1112 netif_stop_queue(dev);
1113 aup->tx_full = 1;
1114 return 1;
1115 }
1116 else if (buff_stat & TX_T_DONE) {
c2d3d4b9 1117 update_tx_stats(dev, ptxd->status);
1da177e4
LT
1118 ptxd->len = 0;
1119 }
1120
1121 if (aup->tx_full) {
1122 aup->tx_full = 0;
1123 netif_wake_queue(dev);
1124 }
1125
1126 pDB = aup->tx_db_inuse[aup->tx_head];
d626f62b 1127 skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
1da177e4 1128 if (skb->len < ETH_ZLEN) {
6aa20a22 1129 for (i=skb->len; i<ETH_ZLEN; i++) {
1da177e4
LT
1130 ((char *)pDB->vaddr)[i] = 0;
1131 }
1132 ptxd->len = ETH_ZLEN;
1133 }
1134 else
1135 ptxd->len = skb->len;
1136
c2d3d4b9
SS
1137 ps->tx_packets++;
1138 ps->tx_bytes += ptxd->len;
1139
1da177e4
LT
1140 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1141 au_sync();
1142 dev_kfree_skb(skb);
1143 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1144 dev->trans_start = jiffies;
1145 return 0;
1146}
1147
1da177e4
LT
1148static inline void update_rx_stats(struct net_device *dev, u32 status)
1149{
1150 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1151 struct net_device_stats *ps = &aup->stats;
1152
1153 ps->rx_packets++;
1154 if (status & RX_MCAST_FRAME)
1155 ps->multicast++;
1156
1157 if (status & RX_ERROR) {
1158 ps->rx_errors++;
1159 if (status & RX_MISSED_FRAME)
1160 ps->rx_missed_errors++;
1161 if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
1162 ps->rx_length_errors++;
1163 if (status & RX_CRC_ERROR)
1164 ps->rx_crc_errors++;
1165 if (status & RX_COLL)
1166 ps->collisions++;
1167 }
6aa20a22 1168 else
1da177e4
LT
1169 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
1170
1171}
1172
1173/*
1174 * Au1000 receive routine.
1175 */
1176static int au1000_rx(struct net_device *dev)
1177{
1178 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1179 struct sk_buff *skb;
1180 volatile rx_dma_t *prxd;
1181 u32 buff_stat, status;
1182 db_dest_t *pDB;
1183 u32 frmlen;
1184
1185 if (au1000_debug > 5)
1186 printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
1187
1188 prxd = aup->rx_dma_ring[aup->rx_head];
1189 buff_stat = prxd->buff_stat;
1190 while (buff_stat & RX_T_DONE) {
1191 status = prxd->status;
1192 pDB = aup->rx_db_inuse[aup->rx_head];
1193 update_rx_stats(dev, status);
1194 if (!(status & RX_ERROR)) {
1195
1196 /* good frame */
1197 frmlen = (status & RX_FRAME_LEN_MASK);
1198 frmlen -= 4; /* Remove FCS */
1199 skb = dev_alloc_skb(frmlen + 2);
1200 if (skb == NULL) {
1201 printk(KERN_ERR
1202 "%s: Memory squeeze, dropping packet.\n",
1203 dev->name);
1204 aup->stats.rx_dropped++;
1205 continue;
1206 }
1da177e4 1207 skb_reserve(skb, 2); /* 16 byte IP header align */
8c7b7faa
DM
1208 skb_copy_to_linear_data(skb,
1209 (unsigned char *)pDB->vaddr, frmlen);
1da177e4
LT
1210 skb_put(skb, frmlen);
1211 skb->protocol = eth_type_trans(skb, dev);
1212 netif_rx(skb); /* pass the packet to upper layers */
1213 }
1214 else {
1215 if (au1000_debug > 4) {
6aa20a22 1216 if (status & RX_MISSED_FRAME)
1da177e4 1217 printk("rx miss\n");
6aa20a22 1218 if (status & RX_WDOG_TIMER)
1da177e4 1219 printk("rx wdog\n");
6aa20a22 1220 if (status & RX_RUNT)
1da177e4 1221 printk("rx runt\n");
6aa20a22 1222 if (status & RX_OVERLEN)
1da177e4
LT
1223 printk("rx overlen\n");
1224 if (status & RX_COLL)
1225 printk("rx coll\n");
1226 if (status & RX_MII_ERROR)
1227 printk("rx mii error\n");
1228 if (status & RX_CRC_ERROR)
1229 printk("rx crc error\n");
1230 if (status & RX_LEN_ERROR)
1231 printk("rx len error\n");
1232 if (status & RX_U_CNTRL_FRAME)
1233 printk("rx u control frame\n");
1234 if (status & RX_MISSED_FRAME)
1235 printk("rx miss\n");
1236 }
1237 }
1238 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
1239 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
1240 au_sync();
1241
1242 /* next descriptor */
1243 prxd = aup->rx_dma_ring[aup->rx_head];
1244 buff_stat = prxd->buff_stat;
1245 dev->last_rx = jiffies;
1246 }
1247 return 0;
1248}
1249
1250
1251/*
1252 * Au1000 interrupt service routine.
1253 */
7d12e780 1254static irqreturn_t au1000_interrupt(int irq, void *dev_id)
1da177e4
LT
1255{
1256 struct net_device *dev = (struct net_device *) dev_id;
1257
1258 if (dev == NULL) {
1259 printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
1260 return IRQ_RETVAL(1);
1261 }
1262
1263 /* Handle RX interrupts first to minimize chance of overrun */
1264
1265 au1000_rx(dev);
1266 au1000_tx_ack(dev);
1267 return IRQ_RETVAL(1);
1268}
1269
1270
1271/*
1272 * The Tx ring has been full longer than the watchdog timeout
1273 * value. The transmitter must be hung?
1274 */
1275static void au1000_tx_timeout(struct net_device *dev)
1276{
1277 printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
1278 reset_mac(dev);
1279 au1000_init(dev);
1280 dev->trans_start = jiffies;
1281 netif_wake_queue(dev);
1282}
1283
1da177e4
LT
1284static void set_rx_mode(struct net_device *dev)
1285{
1286 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1287
6aa20a22 1288 if (au1000_debug > 4)
1da177e4
LT
1289 printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
1290
1291 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1292 aup->mac->control |= MAC_PROMISCUOUS;
1da177e4
LT
1293 } else if ((dev->flags & IFF_ALLMULTI) ||
1294 dev->mc_count > MULTICAST_FILTER_LIMIT) {
1295 aup->mac->control |= MAC_PASS_ALL_MULTI;
1296 aup->mac->control &= ~MAC_PROMISCUOUS;
1297 printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
1298 } else {
1299 int i;
1300 struct dev_mc_list *mclist;
1301 u32 mc_filter[2]; /* Multicast hash filter */
1302
1303 mc_filter[1] = mc_filter[0] = 0;
1304 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1305 i++, mclist = mclist->next) {
6aa20a22 1306 set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
1da177e4
LT
1307 (long *)mc_filter);
1308 }
1309 aup->mac->multi_hash_high = mc_filter[1];
1310 aup->mac->multi_hash_low = mc_filter[0];
1311 aup->mac->control &= ~MAC_PROMISCUOUS;
1312 aup->mac->control |= MAC_HASH_MODE;
1313 }
1314}
1315
1da177e4
LT
1316static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1317{
1318 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1da177e4 1319
0638dec0 1320 if (!netif_running(dev)) return -EINVAL;
1da177e4 1321
0638dec0 1322 if (!aup->phy_dev) return -EINVAL; // PHY not controllable
1da177e4 1323
0638dec0 1324 return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
1da177e4
LT
1325}
1326
1327static struct net_device_stats *au1000_get_stats(struct net_device *dev)
1328{
1329 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1330
1331 if (au1000_debug > 4)
1332 printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
1333
1334 if (netif_device_present(dev)) {
1335 return &aup->stats;
1336 }
1337 return 0;
1338}
1339
1340module_init(au1000_init_module);
1341module_exit(au1000_cleanup_module);