]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/bmac.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / drivers / net / bmac.c
CommitLineData
1da177e4
LT
1/*
2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1998 Randy Gobbel.
6 *
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
9 */
10#include <linux/config.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/string.h>
17#include <linux/timer.h>
18#include <linux/proc_fs.h>
19#include <linux/init.h>
20#include <linux/spinlock.h>
21#include <linux/crc32.h>
22#include <asm/prom.h>
23#include <asm/dbdma.h>
24#include <asm/io.h>
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/machdep.h>
28#include <asm/pmac_feature.h>
29#include <asm/macio.h>
30#include <asm/irq.h>
31
32#include "bmac.h"
33
34#define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
35#define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
36
37/*
38 * CRC polynomial - used in working out multicast filter bits.
39 */
40#define ENET_CRCPOLY 0x04c11db7
41
42/* switch to use multicast code lifted from sunhme driver */
43#define SUNHME_MULTICAST
44
45#define N_RX_RING 64
46#define N_TX_RING 32
47#define MAX_TX_ACTIVE 1
48#define ETHERCRC 4
49#define ETHERMINPACKET 64
50#define ETHERMTU 1500
51#define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
52#define TX_TIMEOUT HZ /* 1 second */
53
54/* Bits in transmit DMA status */
55#define TX_DMA_ERR 0x80
56
57#define XXDEBUG(args)
58
59struct bmac_data {
60 /* volatile struct bmac *bmac; */
61 struct sk_buff_head *queue;
62 volatile struct dbdma_regs __iomem *tx_dma;
63 int tx_dma_intr;
64 volatile struct dbdma_regs __iomem *rx_dma;
65 int rx_dma_intr;
66 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
67 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
68 struct macio_dev *mdev;
69 int is_bmac_plus;
70 struct sk_buff *rx_bufs[N_RX_RING];
71 int rx_fill;
72 int rx_empty;
73 struct sk_buff *tx_bufs[N_TX_RING];
74 int tx_fill;
75 int tx_empty;
76 unsigned char tx_fullup;
77 struct net_device_stats stats;
78 struct timer_list tx_timeout;
79 int timeout_active;
80 int sleeping;
81 int opened;
82 unsigned short hash_use_count[64];
83 unsigned short hash_table_mask[4];
84 spinlock_t lock;
85};
86
87#if 0 /* Move that to ethtool */
88
89typedef struct bmac_reg_entry {
90 char *name;
91 unsigned short reg_offset;
92} bmac_reg_entry_t;
93
94#define N_REG_ENTRIES 31
95
96static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
97 {"MEMADD", MEMADD},
98 {"MEMDATAHI", MEMDATAHI},
99 {"MEMDATALO", MEMDATALO},
100 {"TXPNTR", TXPNTR},
101 {"RXPNTR", RXPNTR},
102 {"IPG1", IPG1},
103 {"IPG2", IPG2},
104 {"ALIMIT", ALIMIT},
105 {"SLOT", SLOT},
106 {"PALEN", PALEN},
107 {"PAPAT", PAPAT},
108 {"TXSFD", TXSFD},
109 {"JAM", JAM},
110 {"TXCFG", TXCFG},
111 {"TXMAX", TXMAX},
112 {"TXMIN", TXMIN},
113 {"PAREG", PAREG},
114 {"DCNT", DCNT},
115 {"NCCNT", NCCNT},
116 {"NTCNT", NTCNT},
117 {"EXCNT", EXCNT},
118 {"LTCNT", LTCNT},
119 {"TXSM", TXSM},
120 {"RXCFG", RXCFG},
121 {"RXMAX", RXMAX},
122 {"RXMIN", RXMIN},
123 {"FRCNT", FRCNT},
124 {"AECNT", AECNT},
125 {"FECNT", FECNT},
126 {"RXSM", RXSM},
127 {"RXCV", RXCV}
128};
129
130#endif
131
132static unsigned char *bmac_emergency_rxbuf;
133
134/*
135 * Number of bytes of private data per BMAC: allow enough for
136 * the rx and tx dma commands plus a branch dma command each,
137 * and another 16 bytes to allow us to align the dma command
138 * buffers on a 16 byte boundary.
139 */
140#define PRIV_BYTES (sizeof(struct bmac_data) \
141 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
142 + sizeof(struct sk_buff_head))
143
144static unsigned char bitrev(unsigned char b);
145static int bmac_open(struct net_device *dev);
146static int bmac_close(struct net_device *dev);
147static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
148static struct net_device_stats *bmac_stats(struct net_device *dev);
149static void bmac_set_multicast(struct net_device *dev);
150static void bmac_reset_and_enable(struct net_device *dev);
151static void bmac_start_chip(struct net_device *dev);
152static void bmac_init_chip(struct net_device *dev);
153static void bmac_init_registers(struct net_device *dev);
154static void bmac_enable_and_reset_chip(struct net_device *dev);
155static int bmac_set_address(struct net_device *dev, void *addr);
156static irqreturn_t bmac_misc_intr(int irq, void *dev_id, struct pt_regs *regs);
157static irqreturn_t bmac_txdma_intr(int irq, void *dev_id, struct pt_regs *regs);
158static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs);
159static void bmac_set_timeout(struct net_device *dev);
160static void bmac_tx_timeout(unsigned long data);
161static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162static void bmac_start(struct net_device *dev);
163
164#define DBDMA_SET(x) ( ((x) | (x) << 16) )
165#define DBDMA_CLEAR(x) ( (x) << 16)
166
167static inline void
168dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169{
170 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171 return;
172}
173
174static inline unsigned long
175dbdma_ld32(volatile __u32 __iomem *a)
176{
177 __u32 swap;
178 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
179 return swap;
180}
181
182static void
183dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
184{
185 dbdma_st32(&dmap->control,
186 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
187 eieio();
188}
189
190static void
191dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
192{
193 dbdma_st32(&dmap->control,
194 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
195 eieio();
196 while (dbdma_ld32(&dmap->status) & RUN)
197 eieio();
198}
199
200static void
201dbdma_setcmd(volatile struct dbdma_cmd *cp,
202 unsigned short cmd, unsigned count, unsigned long addr,
203 unsigned long cmd_dep)
204{
205 out_le16(&cp->command, cmd);
206 out_le16(&cp->req_count, count);
207 out_le32(&cp->phy_addr, addr);
208 out_le32(&cp->cmd_dep, cmd_dep);
209 out_le16(&cp->xfer_status, 0);
210 out_le16(&cp->res_count, 0);
211}
212
213static inline
214void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
215{
216 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
217}
218
219
220static inline
221volatile unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
222{
223 return in_le16((void __iomem *)dev->base_addr + reg_offset);
224}
225
226static void
227bmac_enable_and_reset_chip(struct net_device *dev)
228{
229 struct bmac_data *bp = netdev_priv(dev);
230 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
231 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
232
233 if (rd)
234 dbdma_reset(rd);
235 if (td)
236 dbdma_reset(td);
237
238 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
239}
240
241#define MIFDELAY udelay(10)
242
243static unsigned int
244bmac_mif_readbits(struct net_device *dev, int nb)
245{
246 unsigned int val = 0;
247
248 while (--nb >= 0) {
249 bmwrite(dev, MIFCSR, 0);
250 MIFDELAY;
251 if (bmread(dev, MIFCSR) & 8)
252 val |= 1 << nb;
253 bmwrite(dev, MIFCSR, 1);
254 MIFDELAY;
255 }
256 bmwrite(dev, MIFCSR, 0);
257 MIFDELAY;
258 bmwrite(dev, MIFCSR, 1);
259 MIFDELAY;
260 return val;
261}
262
263static void
264bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
265{
266 int b;
267
268 while (--nb >= 0) {
269 b = (val & (1 << nb))? 6: 4;
270 bmwrite(dev, MIFCSR, b);
271 MIFDELAY;
272 bmwrite(dev, MIFCSR, b|1);
273 MIFDELAY;
274 }
275}
276
277static unsigned int
278bmac_mif_read(struct net_device *dev, unsigned int addr)
279{
280 unsigned int val;
281
282 bmwrite(dev, MIFCSR, 4);
283 MIFDELAY;
284 bmac_mif_writebits(dev, ~0U, 32);
285 bmac_mif_writebits(dev, 6, 4);
286 bmac_mif_writebits(dev, addr, 10);
287 bmwrite(dev, MIFCSR, 2);
288 MIFDELAY;
289 bmwrite(dev, MIFCSR, 1);
290 MIFDELAY;
291 val = bmac_mif_readbits(dev, 17);
292 bmwrite(dev, MIFCSR, 4);
293 MIFDELAY;
294 return val;
295}
296
297static void
298bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
299{
300 bmwrite(dev, MIFCSR, 4);
301 MIFDELAY;
302 bmac_mif_writebits(dev, ~0U, 32);
303 bmac_mif_writebits(dev, 5, 4);
304 bmac_mif_writebits(dev, addr, 10);
305 bmac_mif_writebits(dev, 2, 2);
306 bmac_mif_writebits(dev, val, 16);
307 bmac_mif_writebits(dev, 3, 2);
308}
309
310static void
311bmac_init_registers(struct net_device *dev)
312{
313 struct bmac_data *bp = netdev_priv(dev);
314 volatile unsigned short regValue;
315 unsigned short *pWord16;
316 int i;
317
318 /* XXDEBUG(("bmac: enter init_registers\n")); */
319
320 bmwrite(dev, RXRST, RxResetValue);
321 bmwrite(dev, TXRST, TxResetBit);
322
323 i = 100;
324 do {
325 --i;
326 udelay(10000);
327 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
328 } while ((regValue & TxResetBit) && i > 0);
329
330 if (!bp->is_bmac_plus) {
331 regValue = bmread(dev, XCVRIF);
332 regValue |= ClkBit | SerialMode | COLActiveLow;
333 bmwrite(dev, XCVRIF, regValue);
334 udelay(10000);
335 }
336
337 bmwrite(dev, RSEED, (unsigned short)0x1968);
338
339 regValue = bmread(dev, XIFC);
340 regValue |= TxOutputEnable;
341 bmwrite(dev, XIFC, regValue);
342
343 bmread(dev, PAREG);
344
345 /* set collision counters to 0 */
346 bmwrite(dev, NCCNT, 0);
347 bmwrite(dev, NTCNT, 0);
348 bmwrite(dev, EXCNT, 0);
349 bmwrite(dev, LTCNT, 0);
350
351 /* set rx counters to 0 */
352 bmwrite(dev, FRCNT, 0);
353 bmwrite(dev, LECNT, 0);
354 bmwrite(dev, AECNT, 0);
355 bmwrite(dev, FECNT, 0);
356 bmwrite(dev, RXCV, 0);
357
358 /* set tx fifo information */
359 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
360
361 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
362 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
363
364 /* set rx fifo information */
365 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
366 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
367
368 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
369 bmread(dev, STATUS); /* read it just to clear it */
370
371 /* zero out the chip Hash Filter registers */
372 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
373 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
374 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
375 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
376 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
377
378 pWord16 = (unsigned short *)dev->dev_addr;
379 bmwrite(dev, MADD0, *pWord16++);
380 bmwrite(dev, MADD1, *pWord16++);
381 bmwrite(dev, MADD2, *pWord16);
382
383 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
384
385 bmwrite(dev, INTDISABLE, EnableNormal);
386
387 return;
388}
389
390#if 0
391static void
392bmac_disable_interrupts(struct net_device *dev)
393{
394 bmwrite(dev, INTDISABLE, DisableAll);
395}
396
397static void
398bmac_enable_interrupts(struct net_device *dev)
399{
400 bmwrite(dev, INTDISABLE, EnableNormal);
401}
402#endif
403
404
405static void
406bmac_start_chip(struct net_device *dev)
407{
408 struct bmac_data *bp = netdev_priv(dev);
409 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
410 unsigned short oldConfig;
411
412 /* enable rx dma channel */
413 dbdma_continue(rd);
414
415 oldConfig = bmread(dev, TXCFG);
416 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
417
418 /* turn on rx plus any other bits already on (promiscuous possibly) */
419 oldConfig = bmread(dev, RXCFG);
420 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
421 udelay(20000);
422}
423
424static void
425bmac_init_phy(struct net_device *dev)
426{
427 unsigned int addr;
428 struct bmac_data *bp = netdev_priv(dev);
429
430 printk(KERN_DEBUG "phy registers:");
431 for (addr = 0; addr < 32; ++addr) {
432 if ((addr & 7) == 0)
433 printk("\n" KERN_DEBUG);
434 printk(" %.4x", bmac_mif_read(dev, addr));
435 }
436 printk("\n");
437 if (bp->is_bmac_plus) {
438 unsigned int capable, ctrl;
439
440 ctrl = bmac_mif_read(dev, 0);
441 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
442 if (bmac_mif_read(dev, 4) != capable
443 || (ctrl & 0x1000) == 0) {
444 bmac_mif_write(dev, 4, capable);
445 bmac_mif_write(dev, 0, 0x1200);
446 } else
447 bmac_mif_write(dev, 0, 0x1000);
448 }
449}
450
451static void bmac_init_chip(struct net_device *dev)
452{
453 bmac_init_phy(dev);
454 bmac_init_registers(dev);
455}
456
457#ifdef CONFIG_PM
458static int bmac_suspend(struct macio_dev *mdev, u32 state)
459{
460 struct net_device* dev = macio_get_drvdata(mdev);
461 struct bmac_data *bp = netdev_priv(dev);
462 unsigned long flags;
463 unsigned short config;
464 int i;
465
466 netif_device_detach(dev);
467 /* prolly should wait for dma to finish & turn off the chip */
468 spin_lock_irqsave(&bp->lock, flags);
469 if (bp->timeout_active) {
470 del_timer(&bp->tx_timeout);
471 bp->timeout_active = 0;
472 }
473 disable_irq(dev->irq);
474 disable_irq(bp->tx_dma_intr);
475 disable_irq(bp->rx_dma_intr);
476 bp->sleeping = 1;
477 spin_unlock_irqrestore(&bp->lock, flags);
478 if (bp->opened) {
479 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
480 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
481
482 config = bmread(dev, RXCFG);
483 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
484 config = bmread(dev, TXCFG);
485 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
486 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
487 /* disable rx and tx dma */
488 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
489 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
490 /* free some skb's */
491 for (i=0; i<N_RX_RING; i++) {
492 if (bp->rx_bufs[i] != NULL) {
493 dev_kfree_skb(bp->rx_bufs[i]);
494 bp->rx_bufs[i] = NULL;
495 }
496 }
497 for (i = 0; i<N_TX_RING; i++) {
498 if (bp->tx_bufs[i] != NULL) {
499 dev_kfree_skb(bp->tx_bufs[i]);
500 bp->tx_bufs[i] = NULL;
501 }
502 }
503 }
504 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
505 return 0;
506}
507
508static int bmac_resume(struct macio_dev *mdev)
509{
510 struct net_device* dev = macio_get_drvdata(mdev);
511 struct bmac_data *bp = netdev_priv(dev);
512
513 /* see if this is enough */
514 if (bp->opened)
515 bmac_reset_and_enable(dev);
516
517 enable_irq(dev->irq);
518 enable_irq(bp->tx_dma_intr);
519 enable_irq(bp->rx_dma_intr);
520 netif_device_attach(dev);
521
522 return 0;
523}
524#endif /* CONFIG_PM */
525
526static int bmac_set_address(struct net_device *dev, void *addr)
527{
528 struct bmac_data *bp = netdev_priv(dev);
529 unsigned char *p = addr;
530 unsigned short *pWord16;
531 unsigned long flags;
532 int i;
533
534 XXDEBUG(("bmac: enter set_address\n"));
535 spin_lock_irqsave(&bp->lock, flags);
536
537 for (i = 0; i < 6; ++i) {
538 dev->dev_addr[i] = p[i];
539 }
540 /* load up the hardware address */
541 pWord16 = (unsigned short *)dev->dev_addr;
542 bmwrite(dev, MADD0, *pWord16++);
543 bmwrite(dev, MADD1, *pWord16++);
544 bmwrite(dev, MADD2, *pWord16);
545
546 spin_unlock_irqrestore(&bp->lock, flags);
547 XXDEBUG(("bmac: exit set_address\n"));
548 return 0;
549}
550
551static inline void bmac_set_timeout(struct net_device *dev)
552{
553 struct bmac_data *bp = netdev_priv(dev);
554 unsigned long flags;
555
556 spin_lock_irqsave(&bp->lock, flags);
557 if (bp->timeout_active)
558 del_timer(&bp->tx_timeout);
559 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
560 bp->tx_timeout.function = bmac_tx_timeout;
561 bp->tx_timeout.data = (unsigned long) dev;
562 add_timer(&bp->tx_timeout);
563 bp->timeout_active = 1;
564 spin_unlock_irqrestore(&bp->lock, flags);
565}
566
567static void
568bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
569{
570 void *vaddr;
571 unsigned long baddr;
572 unsigned long len;
573
574 len = skb->len;
575 vaddr = skb->data;
576 baddr = virt_to_bus(vaddr);
577
578 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
579}
580
581static void
582bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
583{
584 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
585
586 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
587 virt_to_bus(addr), 0);
588}
589
590/* Bit-reverse one byte of an ethernet hardware address. */
591static unsigned char
592bitrev(unsigned char b)
593{
594 int d = 0, i;
595
596 for (i = 0; i < 8; ++i, b >>= 1)
597 d = (d << 1) | (b & 1);
598 return d;
599}
600
601
602static void
603bmac_init_tx_ring(struct bmac_data *bp)
604{
605 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
606
607 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
608
609 bp->tx_empty = 0;
610 bp->tx_fill = 0;
611 bp->tx_fullup = 0;
612
613 /* put a branch at the end of the tx command list */
614 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
615 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
616
617 /* reset tx dma */
618 dbdma_reset(td);
619 out_le32(&td->wait_sel, 0x00200020);
620 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
621}
622
623static int
624bmac_init_rx_ring(struct bmac_data *bp)
625{
626 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
627 int i;
628 struct sk_buff *skb;
629
630 /* initialize list of sk_buffs for receiving and set up recv dma */
631 memset((char *)bp->rx_cmds, 0,
632 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
633 for (i = 0; i < N_RX_RING; i++) {
634 if ((skb = bp->rx_bufs[i]) == NULL) {
635 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
636 if (skb != NULL)
637 skb_reserve(skb, 2);
638 }
639 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
640 }
641
642 bp->rx_empty = 0;
643 bp->rx_fill = i;
644
645 /* Put a branch back to the beginning of the receive command list */
646 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
647 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
648
649 /* start rx dma */
650 dbdma_reset(rd);
651 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
652
653 return 1;
654}
655
656
657static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
658{
659 struct bmac_data *bp = netdev_priv(dev);
660 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
661 int i;
662
663 /* see if there's a free slot in the tx ring */
664 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
665 /* bp->tx_empty, bp->tx_fill)); */
666 i = bp->tx_fill + 1;
667 if (i >= N_TX_RING)
668 i = 0;
669 if (i == bp->tx_empty) {
670 netif_stop_queue(dev);
671 bp->tx_fullup = 1;
672 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
673 return -1; /* can't take it at the moment */
674 }
675
676 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
677
678 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
679
680 bp->tx_bufs[bp->tx_fill] = skb;
681 bp->tx_fill = i;
682
683 bp->stats.tx_bytes += skb->len;
684
685 dbdma_continue(td);
686
687 return 0;
688}
689
690static int rxintcount;
691
692static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs)
693{
694 struct net_device *dev = (struct net_device *) dev_id;
695 struct bmac_data *bp = netdev_priv(dev);
696 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
697 volatile struct dbdma_cmd *cp;
698 int i, nb, stat;
699 struct sk_buff *skb;
700 unsigned int residual;
701 int last;
702 unsigned long flags;
703
704 spin_lock_irqsave(&bp->lock, flags);
705
706 if (++rxintcount < 10) {
707 XXDEBUG(("bmac_rxdma_intr\n"));
708 }
709
710 last = -1;
711 i = bp->rx_empty;
712
713 while (1) {
714 cp = &bp->rx_cmds[i];
715 stat = ld_le16(&cp->xfer_status);
716 residual = ld_le16(&cp->res_count);
717 if ((stat & ACTIVE) == 0)
718 break;
719 nb = RX_BUFLEN - residual - 2;
720 if (nb < (ETHERMINPACKET - ETHERCRC)) {
721 skb = NULL;
722 bp->stats.rx_length_errors++;
723 bp->stats.rx_errors++;
724 } else {
725 skb = bp->rx_bufs[i];
726 bp->rx_bufs[i] = NULL;
727 }
728 if (skb != NULL) {
729 nb -= ETHERCRC;
730 skb_put(skb, nb);
731 skb->dev = dev;
732 skb->protocol = eth_type_trans(skb, dev);
733 netif_rx(skb);
734 dev->last_rx = jiffies;
735 ++bp->stats.rx_packets;
736 bp->stats.rx_bytes += nb;
737 } else {
738 ++bp->stats.rx_dropped;
739 }
740 dev->last_rx = jiffies;
741 if ((skb = bp->rx_bufs[i]) == NULL) {
742 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
743 if (skb != NULL)
744 skb_reserve(bp->rx_bufs[i], 2);
745 }
746 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
747 st_le16(&cp->res_count, 0);
748 st_le16(&cp->xfer_status, 0);
749 last = i;
750 if (++i >= N_RX_RING) i = 0;
751 }
752
753 if (last != -1) {
754 bp->rx_fill = last;
755 bp->rx_empty = i;
756 }
757
758 dbdma_continue(rd);
759 spin_unlock_irqrestore(&bp->lock, flags);
760
761 if (rxintcount < 10) {
762 XXDEBUG(("bmac_rxdma_intr done\n"));
763 }
764 return IRQ_HANDLED;
765}
766
767static int txintcount;
768
769static irqreturn_t bmac_txdma_intr(int irq, void *dev_id, struct pt_regs *regs)
770{
771 struct net_device *dev = (struct net_device *) dev_id;
772 struct bmac_data *bp = netdev_priv(dev);
773 volatile struct dbdma_cmd *cp;
774 int stat;
775 unsigned long flags;
776
777 spin_lock_irqsave(&bp->lock, flags);
778
779 if (txintcount++ < 10) {
780 XXDEBUG(("bmac_txdma_intr\n"));
781 }
782
783 /* del_timer(&bp->tx_timeout); */
784 /* bp->timeout_active = 0; */
785
786 while (1) {
787 cp = &bp->tx_cmds[bp->tx_empty];
788 stat = ld_le16(&cp->xfer_status);
789 if (txintcount < 10) {
790 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
791 }
792 if (!(stat & ACTIVE)) {
793 /*
794 * status field might not have been filled by DBDMA
795 */
796 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
797 break;
798 }
799
800 if (bp->tx_bufs[bp->tx_empty]) {
801 ++bp->stats.tx_packets;
802 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
803 }
804 bp->tx_bufs[bp->tx_empty] = NULL;
805 bp->tx_fullup = 0;
806 netif_wake_queue(dev);
807 if (++bp->tx_empty >= N_TX_RING)
808 bp->tx_empty = 0;
809 if (bp->tx_empty == bp->tx_fill)
810 break;
811 }
812
813 spin_unlock_irqrestore(&bp->lock, flags);
814
815 if (txintcount < 10) {
816 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
817 }
818
819 bmac_start(dev);
820 return IRQ_HANDLED;
821}
822
823static struct net_device_stats *bmac_stats(struct net_device *dev)
824{
825 struct bmac_data *p = netdev_priv(dev);
826
827 return &p->stats;
828}
829
830#ifndef SUNHME_MULTICAST
831/* Real fast bit-reversal algorithm, 6-bit values */
832static int reverse6[64] = {
833 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
834 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
835 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
836 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
837 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
838 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
839 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
840 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
841};
842
843static unsigned int
844crc416(unsigned int curval, unsigned short nxtval)
845{
846 register unsigned int counter, cur = curval, next = nxtval;
847 register int high_crc_set, low_data_set;
848
849 /* Swap bytes */
850 next = ((next & 0x00FF) << 8) | (next >> 8);
851
852 /* Compute bit-by-bit */
853 for (counter = 0; counter < 16; ++counter) {
854 /* is high CRC bit set? */
855 if ((cur & 0x80000000) == 0) high_crc_set = 0;
856 else high_crc_set = 1;
857
858 cur = cur << 1;
859
860 if ((next & 0x0001) == 0) low_data_set = 0;
861 else low_data_set = 1;
862
863 next = next >> 1;
864
865 /* do the XOR */
866 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
867 }
868 return cur;
869}
870
871static unsigned int
872bmac_crc(unsigned short *address)
873{
874 unsigned int newcrc;
875
876 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
877 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
878 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
879 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
880
881 return(newcrc);
882}
883
884/*
885 * Add requested mcast addr to BMac's hash table filter.
886 *
887 */
888
889static void
890bmac_addhash(struct bmac_data *bp, unsigned char *addr)
891{
892 unsigned int crc;
893 unsigned short mask;
894
895 if (!(*addr)) return;
896 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
897 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
898 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
899 mask = crc % 16;
900 mask = (unsigned char)1 << mask;
901 bp->hash_use_count[crc/16] |= mask;
902}
903
904static void
905bmac_removehash(struct bmac_data *bp, unsigned char *addr)
906{
907 unsigned int crc;
908 unsigned char mask;
909
910 /* Now, delete the address from the filter copy, as indicated */
911 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
912 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
913 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
914 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
915 mask = crc % 16;
916 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
917 bp->hash_table_mask[crc/16] &= mask;
918}
919
920/*
921 * Sync the adapter with the software copy of the multicast mask
922 * (logical address filter).
923 */
924
925static void
926bmac_rx_off(struct net_device *dev)
927{
928 unsigned short rx_cfg;
929
930 rx_cfg = bmread(dev, RXCFG);
931 rx_cfg &= ~RxMACEnable;
932 bmwrite(dev, RXCFG, rx_cfg);
933 do {
934 rx_cfg = bmread(dev, RXCFG);
935 } while (rx_cfg & RxMACEnable);
936}
937
938unsigned short
939bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
940{
941 unsigned short rx_cfg;
942
943 rx_cfg = bmread(dev, RXCFG);
944 rx_cfg |= RxMACEnable;
945 if (hash_enable) rx_cfg |= RxHashFilterEnable;
946 else rx_cfg &= ~RxHashFilterEnable;
947 if (promisc_enable) rx_cfg |= RxPromiscEnable;
948 else rx_cfg &= ~RxPromiscEnable;
949 bmwrite(dev, RXRST, RxResetValue);
950 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
951 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
952 bmwrite(dev, RXCFG, rx_cfg );
953 return rx_cfg;
954}
955
956static void
957bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
958{
959 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
960 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
961 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
962 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
963}
964
965#if 0
966static void
967bmac_add_multi(struct net_device *dev,
968 struct bmac_data *bp, unsigned char *addr)
969{
970 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
971 bmac_addhash(bp, addr);
972 bmac_rx_off(dev);
973 bmac_update_hash_table_mask(dev, bp);
974 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
975 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
976}
977
978static void
979bmac_remove_multi(struct net_device *dev,
980 struct bmac_data *bp, unsigned char *addr)
981{
982 bmac_removehash(bp, addr);
983 bmac_rx_off(dev);
984 bmac_update_hash_table_mask(dev, bp);
985 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
986}
987#endif
988
989/* Set or clear the multicast filter for this adaptor.
990 num_addrs == -1 Promiscuous mode, receive all packets
991 num_addrs == 0 Normal mode, clear multicast list
992 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
993 best-effort filtering.
994 */
995static void bmac_set_multicast(struct net_device *dev)
996{
997 struct dev_mc_list *dmi;
998 struct bmac_data *bp = netdev_priv(dev);
999 int num_addrs = dev->mc_count;
1000 unsigned short rx_cfg;
1001 int i;
1002
1003 if (bp->sleeping)
1004 return;
1005
1006 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
1007
1008 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1009 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
1010 bmac_update_hash_table_mask(dev, bp);
1011 rx_cfg = bmac_rx_on(dev, 1, 0);
1012 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
1013 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
1014 rx_cfg = bmread(dev, RXCFG);
1015 rx_cfg |= RxPromiscEnable;
1016 bmwrite(dev, RXCFG, rx_cfg);
1017 rx_cfg = bmac_rx_on(dev, 0, 1);
1018 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
1019 } else {
1020 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
1021 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
1022 if (num_addrs == 0) {
1023 rx_cfg = bmac_rx_on(dev, 0, 0);
1024 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1025 } else {
1026 for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next)
1027 bmac_addhash(bp, dmi->dmi_addr);
1028 bmac_update_hash_table_mask(dev, bp);
1029 rx_cfg = bmac_rx_on(dev, 1, 0);
1030 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1031 }
1032 }
1033 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1034}
1035#else /* ifdef SUNHME_MULTICAST */
1036
1037/* The version of set_multicast below was lifted from sunhme.c */
1038
1039static void bmac_set_multicast(struct net_device *dev)
1040{
1041 struct dev_mc_list *dmi = dev->mc_list;
1042 char *addrs;
1043 int i;
1044 unsigned short rx_cfg;
1045 u32 crc;
1046
1047 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1048 bmwrite(dev, BHASH0, 0xffff);
1049 bmwrite(dev, BHASH1, 0xffff);
1050 bmwrite(dev, BHASH2, 0xffff);
1051 bmwrite(dev, BHASH3, 0xffff);
1052 } else if(dev->flags & IFF_PROMISC) {
1053 rx_cfg = bmread(dev, RXCFG);
1054 rx_cfg |= RxPromiscEnable;
1055 bmwrite(dev, RXCFG, rx_cfg);
1056 } else {
1057 u16 hash_table[4];
1058
1059 rx_cfg = bmread(dev, RXCFG);
1060 rx_cfg &= ~RxPromiscEnable;
1061 bmwrite(dev, RXCFG, rx_cfg);
1062
1063 for(i = 0; i < 4; i++) hash_table[i] = 0;
1064
1065 for(i = 0; i < dev->mc_count; i++) {
1066 addrs = dmi->dmi_addr;
1067 dmi = dmi->next;
1068
1069 if(!(*addrs & 1))
1070 continue;
1071
1072 crc = ether_crc_le(6, addrs);
1073 crc >>= 26;
1074 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1075 }
1076 bmwrite(dev, BHASH0, hash_table[0]);
1077 bmwrite(dev, BHASH1, hash_table[1]);
1078 bmwrite(dev, BHASH2, hash_table[2]);
1079 bmwrite(dev, BHASH3, hash_table[3]);
1080 }
1081}
1082#endif /* SUNHME_MULTICAST */
1083
1084static int miscintcount;
1085
1086static irqreturn_t bmac_misc_intr(int irq, void *dev_id, struct pt_regs *regs)
1087{
1088 struct net_device *dev = (struct net_device *) dev_id;
1089 struct bmac_data *bp = netdev_priv(dev);
1090 unsigned int status = bmread(dev, STATUS);
1091 if (miscintcount++ < 10) {
1092 XXDEBUG(("bmac_misc_intr\n"));
1093 }
1094 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1095 /* bmac_txdma_intr_inner(irq, dev_id, regs); */
1096 /* if (status & FrameReceived) bp->stats.rx_dropped++; */
1097 if (status & RxErrorMask) bp->stats.rx_errors++;
1098 if (status & RxCRCCntExp) bp->stats.rx_crc_errors++;
1099 if (status & RxLenCntExp) bp->stats.rx_length_errors++;
1100 if (status & RxOverFlow) bp->stats.rx_over_errors++;
1101 if (status & RxAlignCntExp) bp->stats.rx_frame_errors++;
1102
1103 /* if (status & FrameSent) bp->stats.tx_dropped++; */
1104 if (status & TxErrorMask) bp->stats.tx_errors++;
1105 if (status & TxUnderrun) bp->stats.tx_fifo_errors++;
1106 if (status & TxNormalCollExp) bp->stats.collisions++;
1107 return IRQ_HANDLED;
1108}
1109
1110/*
1111 * Procedure for reading EEPROM
1112 */
1113#define SROMAddressLength 5
1114#define DataInOn 0x0008
1115#define DataInOff 0x0000
1116#define Clk 0x0002
1117#define ChipSelect 0x0001
1118#define SDIShiftCount 3
1119#define SD0ShiftCount 2
1120#define DelayValue 1000 /* number of microseconds */
1121#define SROMStartOffset 10 /* this is in words */
1122#define SROMReadCount 3 /* number of words to read from SROM */
1123#define SROMAddressBits 6
1124#define EnetAddressOffset 20
1125
1126static unsigned char
1127bmac_clock_out_bit(struct net_device *dev)
1128{
1129 unsigned short data;
1130 unsigned short val;
1131
1132 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1133 udelay(DelayValue);
1134
1135 data = bmread(dev, SROMCSR);
1136 udelay(DelayValue);
1137 val = (data >> SD0ShiftCount) & 1;
1138
1139 bmwrite(dev, SROMCSR, ChipSelect);
1140 udelay(DelayValue);
1141
1142 return val;
1143}
1144
1145static void
1146bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1147{
1148 unsigned short data;
1149
1150 if (val != 0 && val != 1) return;
1151
1152 data = (val << SDIShiftCount);
1153 bmwrite(dev, SROMCSR, data | ChipSelect );
1154 udelay(DelayValue);
1155
1156 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1157 udelay(DelayValue);
1158
1159 bmwrite(dev, SROMCSR, data | ChipSelect);
1160 udelay(DelayValue);
1161}
1162
1163static void
1164reset_and_select_srom(struct net_device *dev)
1165{
1166 /* first reset */
1167 bmwrite(dev, SROMCSR, 0);
1168 udelay(DelayValue);
1169
1170 /* send it the read command (110) */
1171 bmac_clock_in_bit(dev, 1);
1172 bmac_clock_in_bit(dev, 1);
1173 bmac_clock_in_bit(dev, 0);
1174}
1175
1176static unsigned short
1177read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1178{
1179 unsigned short data, val;
1180 int i;
1181
1182 /* send out the address we want to read from */
1183 for (i = 0; i < addr_len; i++) {
1184 val = addr >> (addr_len-i-1);
1185 bmac_clock_in_bit(dev, val & 1);
1186 }
1187
1188 /* Now read in the 16-bit data */
1189 data = 0;
1190 for (i = 0; i < 16; i++) {
1191 val = bmac_clock_out_bit(dev);
1192 data <<= 1;
1193 data |= val;
1194 }
1195 bmwrite(dev, SROMCSR, 0);
1196
1197 return data;
1198}
1199
1200/*
1201 * It looks like Cogent and SMC use different methods for calculating
1202 * checksums. What a pain..
1203 */
1204
1205static int
1206bmac_verify_checksum(struct net_device *dev)
1207{
1208 unsigned short data, storedCS;
1209
1210 reset_and_select_srom(dev);
1211 data = read_srom(dev, 3, SROMAddressBits);
1212 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1213
1214 return 0;
1215}
1216
1217
1218static void
1219bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1220{
1221 int i;
1222 unsigned short data;
1223
1224 for (i = 0; i < 6; i++)
1225 {
1226 reset_and_select_srom(dev);
1227 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1228 ea[2*i] = bitrev(data & 0x0ff);
1229 ea[2*i+1] = bitrev((data >> 8) & 0x0ff);
1230 }
1231}
1232
1233static void bmac_reset_and_enable(struct net_device *dev)
1234{
1235 struct bmac_data *bp = netdev_priv(dev);
1236 unsigned long flags;
1237 struct sk_buff *skb;
1238 unsigned char *data;
1239
1240 spin_lock_irqsave(&bp->lock, flags);
1241 bmac_enable_and_reset_chip(dev);
1242 bmac_init_tx_ring(bp);
1243 bmac_init_rx_ring(bp);
1244 bmac_init_chip(dev);
1245 bmac_start_chip(dev);
1246 bmwrite(dev, INTDISABLE, EnableNormal);
1247 bp->sleeping = 0;
1248
1249 /*
1250 * It seems that the bmac can't receive until it's transmitted
1251 * a packet. So we give it a dummy packet to transmit.
1252 */
1253 skb = dev_alloc_skb(ETHERMINPACKET);
1254 if (skb != NULL) {
1255 data = skb_put(skb, ETHERMINPACKET);
1256 memset(data, 0, ETHERMINPACKET);
1257 memcpy(data, dev->dev_addr, 6);
1258 memcpy(data+6, dev->dev_addr, 6);
1259 bmac_transmit_packet(skb, dev);
1260 }
1261 spin_unlock_irqrestore(&bp->lock, flags);
1262}
1263
1264static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_match *match)
1265{
1266 int j, rev, ret;
1267 struct bmac_data *bp;
1268 unsigned char *addr;
1269 struct net_device *dev;
1270 int is_bmac_plus = ((int)match->data) != 0;
1271
1272 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1273 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1274 return -ENODEV;
1275 }
1276 addr = get_property(macio_get_of_node(mdev), "mac-address", NULL);
1277 if (addr == NULL) {
1278 addr = get_property(macio_get_of_node(mdev), "local-mac-address", NULL);
1279 if (addr == NULL) {
1280 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1281 return -ENODEV;
1282 }
1283 }
1284
1285 dev = alloc_etherdev(PRIV_BYTES);
1286 if (!dev) {
1287 printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
1288 return -ENOMEM;
1289 }
1290
1291 bp = netdev_priv(dev);
1292 SET_MODULE_OWNER(dev);
1293 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1294 macio_set_drvdata(mdev, dev);
1295
1296 bp->mdev = mdev;
1297 spin_lock_init(&bp->lock);
1298
1299 if (macio_request_resources(mdev, "bmac")) {
1300 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1301 goto out_free;
1302 }
1303
1304 dev->base_addr = (unsigned long)
1305 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1306 if (dev->base_addr == 0)
1307 goto out_release;
1308
1309 dev->irq = macio_irq(mdev, 0);
1310
1311 bmac_enable_and_reset_chip(dev);
1312 bmwrite(dev, INTDISABLE, DisableAll);
1313
1314 rev = addr[0] == 0 && addr[1] == 0xA0;
1315 for (j = 0; j < 6; ++j)
1316 dev->dev_addr[j] = rev? bitrev(addr[j]): addr[j];
1317
1318 /* Enable chip without interrupts for now */
1319 bmac_enable_and_reset_chip(dev);
1320 bmwrite(dev, INTDISABLE, DisableAll);
1321
1322 dev->open = bmac_open;
1323 dev->stop = bmac_close;
1324 dev->hard_start_xmit = bmac_output;
1325 dev->get_stats = bmac_stats;
1326 dev->set_multicast_list = bmac_set_multicast;
1327 dev->set_mac_address = bmac_set_address;
1328
1329 bmac_get_station_address(dev, addr);
1330 if (bmac_verify_checksum(dev) != 0)
1331 goto err_out_iounmap;
1332
1333 bp->is_bmac_plus = is_bmac_plus;
1334 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1335 if (!bp->tx_dma)
1336 goto err_out_iounmap;
1337 bp->tx_dma_intr = macio_irq(mdev, 1);
1338 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1339 if (!bp->rx_dma)
1340 goto err_out_iounmap_tx;
1341 bp->rx_dma_intr = macio_irq(mdev, 2);
1342
1343 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1344 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1345
1346 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1347 skb_queue_head_init(bp->queue);
1348
1349 init_timer(&bp->tx_timeout);
1350
1351 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1352 if (ret) {
1353 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1354 goto err_out_iounmap_rx;
1355 }
1356 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1357 if (ret) {
1358 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1359 goto err_out_irq0;
1360 }
1361 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1362 if (ret) {
1363 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1364 goto err_out_irq1;
1365 }
1366
1367 /* Mask chip interrupts and disable chip, will be
1368 * re-enabled on open()
1369 */
1370 disable_irq(dev->irq);
1371 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1372
1373 if (register_netdev(dev) != 0) {
1374 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1375 goto err_out_irq2;
1376 }
1377
1378 printk(KERN_INFO "%s: BMAC%s at", dev->name, (is_bmac_plus? "+": ""));
1379 for (j = 0; j < 6; ++j)
1380 printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
1381 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1382 printk("\n");
1383
1384 return 0;
1385
1386err_out_irq2:
1387 free_irq(bp->rx_dma_intr, dev);
1388err_out_irq1:
1389 free_irq(bp->tx_dma_intr, dev);
1390err_out_irq0:
1391 free_irq(dev->irq, dev);
1392err_out_iounmap_rx:
1393 iounmap(bp->rx_dma);
1394err_out_iounmap_tx:
1395 iounmap(bp->tx_dma);
1396err_out_iounmap:
1397 iounmap((void __iomem *)dev->base_addr);
1398out_release:
1399 macio_release_resources(mdev);
1400out_free:
1401 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1402 free_netdev(dev);
1403
1404 return -ENODEV;
1405}
1406
1407static int bmac_open(struct net_device *dev)
1408{
1409 struct bmac_data *bp = netdev_priv(dev);
1410 /* XXDEBUG(("bmac: enter open\n")); */
1411 /* reset the chip */
1412 bp->opened = 1;
1413 bmac_reset_and_enable(dev);
1414 enable_irq(dev->irq);
1415 dev->flags |= IFF_RUNNING;
1416 return 0;
1417}
1418
1419static int bmac_close(struct net_device *dev)
1420{
1421 struct bmac_data *bp = netdev_priv(dev);
1422 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1423 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1424 unsigned short config;
1425 int i;
1426
1427 bp->sleeping = 1;
1428 dev->flags &= ~(IFF_UP | IFF_RUNNING);
1429
1430 /* disable rx and tx */
1431 config = bmread(dev, RXCFG);
1432 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1433
1434 config = bmread(dev, TXCFG);
1435 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1436
1437 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1438
1439 /* disable rx and tx dma */
1440 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1441 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1442
1443 /* free some skb's */
1444 XXDEBUG(("bmac: free rx bufs\n"));
1445 for (i=0; i<N_RX_RING; i++) {
1446 if (bp->rx_bufs[i] != NULL) {
1447 dev_kfree_skb(bp->rx_bufs[i]);
1448 bp->rx_bufs[i] = NULL;
1449 }
1450 }
1451 XXDEBUG(("bmac: free tx bufs\n"));
1452 for (i = 0; i<N_TX_RING; i++) {
1453 if (bp->tx_bufs[i] != NULL) {
1454 dev_kfree_skb(bp->tx_bufs[i]);
1455 bp->tx_bufs[i] = NULL;
1456 }
1457 }
1458 XXDEBUG(("bmac: all bufs freed\n"));
1459
1460 bp->opened = 0;
1461 disable_irq(dev->irq);
1462 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1463
1464 return 0;
1465}
1466
1467static void
1468bmac_start(struct net_device *dev)
1469{
1470 struct bmac_data *bp = netdev_priv(dev);
1471 int i;
1472 struct sk_buff *skb;
1473 unsigned long flags;
1474
1475 if (bp->sleeping)
1476 return;
1477
1478 spin_lock_irqsave(&bp->lock, flags);
1479 while (1) {
1480 i = bp->tx_fill + 1;
1481 if (i >= N_TX_RING)
1482 i = 0;
1483 if (i == bp->tx_empty)
1484 break;
1485 skb = skb_dequeue(bp->queue);
1486 if (skb == NULL)
1487 break;
1488 bmac_transmit_packet(skb, dev);
1489 }
1490 spin_unlock_irqrestore(&bp->lock, flags);
1491}
1492
1493static int
1494bmac_output(struct sk_buff *skb, struct net_device *dev)
1495{
1496 struct bmac_data *bp = netdev_priv(dev);
1497 skb_queue_tail(bp->queue, skb);
1498 bmac_start(dev);
1499 return 0;
1500}
1501
1502static void bmac_tx_timeout(unsigned long data)
1503{
1504 struct net_device *dev = (struct net_device *) data;
1505 struct bmac_data *bp = netdev_priv(dev);
1506 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1507 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1508 volatile struct dbdma_cmd *cp;
1509 unsigned long flags;
1510 unsigned short config, oldConfig;
1511 int i;
1512
1513 XXDEBUG(("bmac: tx_timeout called\n"));
1514 spin_lock_irqsave(&bp->lock, flags);
1515 bp->timeout_active = 0;
1516
1517 /* update various counters */
1518/* bmac_handle_misc_intrs(bp, 0); */
1519
1520 cp = &bp->tx_cmds[bp->tx_empty];
1521/* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1522/* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1523/* mb->pr, mb->xmtfs, mb->fifofc)); */
1524
1525 /* turn off both tx and rx and reset the chip */
1526 config = bmread(dev, RXCFG);
1527 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1528 config = bmread(dev, TXCFG);
1529 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1530 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1531 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1532 bmac_enable_and_reset_chip(dev);
1533
1534 /* restart rx dma */
1535 cp = bus_to_virt(ld_le32(&rd->cmdptr));
1536 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1537 out_le16(&cp->xfer_status, 0);
1538 out_le32(&rd->cmdptr, virt_to_bus(cp));
1539 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1540
1541 /* fix up the transmit side */
1542 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1543 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1544 i = bp->tx_empty;
1545 ++bp->stats.tx_errors;
1546 if (i != bp->tx_fill) {
1547 dev_kfree_skb(bp->tx_bufs[i]);
1548 bp->tx_bufs[i] = NULL;
1549 if (++i >= N_TX_RING) i = 0;
1550 bp->tx_empty = i;
1551 }
1552 bp->tx_fullup = 0;
1553 netif_wake_queue(dev);
1554 if (i != bp->tx_fill) {
1555 cp = &bp->tx_cmds[i];
1556 out_le16(&cp->xfer_status, 0);
1557 out_le16(&cp->command, OUTPUT_LAST);
1558 out_le32(&td->cmdptr, virt_to_bus(cp));
1559 out_le32(&td->control, DBDMA_SET(RUN));
1560 /* bmac_set_timeout(dev); */
1561 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1562 }
1563
1564 /* turn it back on */
1565 oldConfig = bmread(dev, RXCFG);
1566 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1567 oldConfig = bmread(dev, TXCFG);
1568 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1569
1570 spin_unlock_irqrestore(&bp->lock, flags);
1571}
1572
1573#if 0
1574static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1575{
1576 int i,*ip;
1577
1578 for (i=0;i< count;i++) {
1579 ip = (int*)(cp+i);
1580
1581 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1582 ld_le32(ip+0),
1583 ld_le32(ip+1),
1584 ld_le32(ip+2),
1585 ld_le32(ip+3));
1586 }
1587
1588}
1589#endif
1590
1591#if 0
1592static int
1593bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1594{
1595 int len = 0;
1596 off_t pos = 0;
1597 off_t begin = 0;
1598 int i;
1599
1600 if (bmac_devs == NULL)
1601 return (-ENOSYS);
1602
1603 len += sprintf(buffer, "BMAC counters & registers\n");
1604
1605 for (i = 0; i<N_REG_ENTRIES; i++) {
1606 len += sprintf(buffer + len, "%s: %#08x\n",
1607 reg_entries[i].name,
1608 bmread(bmac_devs, reg_entries[i].reg_offset));
1609 pos = begin + len;
1610
1611 if (pos < offset) {
1612 len = 0;
1613 begin = pos;
1614 }
1615
1616 if (pos > offset+length) break;
1617 }
1618
1619 *start = buffer + (offset - begin);
1620 len -= (offset - begin);
1621
1622 if (len > length) len = length;
1623
1624 return len;
1625}
1626#endif
1627
1628static int __devexit bmac_remove(struct macio_dev *mdev)
1629{
1630 struct net_device *dev = macio_get_drvdata(mdev);
1631 struct bmac_data *bp = netdev_priv(dev);
1632
1633 unregister_netdev(dev);
1634
1635 free_irq(dev->irq, dev);
1636 free_irq(bp->tx_dma_intr, dev);
1637 free_irq(bp->rx_dma_intr, dev);
1638
1639 iounmap((void __iomem *)dev->base_addr);
1640 iounmap(bp->tx_dma);
1641 iounmap(bp->rx_dma);
1642
1643 macio_release_resources(mdev);
1644
1645 free_netdev(dev);
1646
1647 return 0;
1648}
1649
1650static struct of_match bmac_match[] =
1651{
1652 {
1653 .name = "bmac",
1654 .type = OF_ANY_MATCH,
1655 .compatible = OF_ANY_MATCH,
1656 .data = (void *)0,
1657 },
1658 {
1659 .name = OF_ANY_MATCH,
1660 .type = "network",
1661 .compatible = "bmac+",
1662 .data = (void *)1,
1663 },
1664 {},
1665};
1666
1667static struct macio_driver bmac_driver =
1668{
1669 .name = "bmac",
1670 .match_table = bmac_match,
1671 .probe = bmac_probe,
1672 .remove = bmac_remove,
1673#ifdef CONFIG_PM
1674 .suspend = bmac_suspend,
1675 .resume = bmac_resume,
1676#endif
1677};
1678
1679
1680static int __init bmac_init(void)
1681{
1682 if (bmac_emergency_rxbuf == NULL) {
1683 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1684 if (bmac_emergency_rxbuf == NULL) {
1685 printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
1686 return -ENOMEM;
1687 }
1688 }
1689
1690 return macio_register_driver(&bmac_driver);
1691}
1692
1693static void __exit bmac_exit(void)
1694{
1695 macio_unregister_driver(&bmac_driver);
1696
1697 if (bmac_emergency_rxbuf != NULL) {
1698 kfree(bmac_emergency_rxbuf);
1699 bmac_emergency_rxbuf = NULL;
1700 }
1701}
1702
1703MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1704MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1705MODULE_LICENSE("GPL");
1706
1707module_init(bmac_init);
1708module_exit(bmac_exit);