]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/cassini.c
[NET]: Introduce and use print_mac() and DECLARE_MAC_BUF()
[mirror_ubuntu-zesty-kernel.git] / drivers / net / cassini.c
CommitLineData
1f26dac3
DM
1/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
6aa20a22 46 * the page.
1f26dac3
DM
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
6aa20a22 63 * encrypted and non-encrypted packets, but we use them for buffering
1f26dac3
DM
64 * instead.
65 *
6aa20a22 66 * by default, the selective clear mask is set up to process rx packets.
1f26dac3
DM
67 */
68
1f26dac3
DM
69
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/types.h>
73#include <linux/compiler.h>
74#include <linux/slab.h>
75#include <linux/delay.h>
76#include <linux/init.h>
77#include <linux/ioport.h>
78#include <linux/pci.h>
79#include <linux/mm.h>
80#include <linux/highmem.h>
81#include <linux/list.h>
82#include <linux/dma-mapping.h>
83
84#include <linux/netdevice.h>
85#include <linux/etherdevice.h>
86#include <linux/skbuff.h>
87#include <linux/ethtool.h>
88#include <linux/crc32.h>
89#include <linux/random.h>
90#include <linux/mii.h>
91#include <linux/ip.h>
92#include <linux/tcp.h>
758df69e 93#include <linux/mutex.h>
1f26dac3
DM
94
95#include <net/checksum.h>
96
97#include <asm/atomic.h>
98#include <asm/system.h>
99#include <asm/io.h>
100#include <asm/byteorder.h>
101#include <asm/uaccess.h>
102
103#define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104#define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105#define CAS_NCPUS num_online_cpus()
106
107#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108#define USE_NAPI
109#define cas_skb_release(x) netif_receive_skb(x)
110#else
111#define cas_skb_release(x) netif_rx(x)
112#endif
113
114/* select which firmware to use */
6aa20a22 115#define USE_HP_WORKAROUND
1f26dac3
DM
116#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
118
119#include "cassini.h"
120
121#define USE_TX_COMPWB /* use completion writeback registers */
122#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123#define USE_RX_BLANK /* hw interrupt mitigation */
124#undef USE_ENTROPY_DEV /* don't test for entropy device */
125
126/* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
128 */
129#undef USE_PCI_INTB
130#undef USE_PCI_INTC
131#undef USE_PCI_INTD
132#undef USE_QOS
133
134#undef USE_VPD_DEBUG /* debug vpd information if defined */
135
136/* rx processing options */
137#define USE_PAGE_ORDER /* specify to allocate large rx pages */
138#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139#define RX_COPY_ALWAYS 0 /* if 0, use frags */
140#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
142
143#define DRV_MODULE_NAME "cassini"
144#define PFX DRV_MODULE_NAME ": "
145#define DRV_MODULE_VERSION "1.4"
146#define DRV_MODULE_RELDATE "1 July 2004"
147
148#define CAS_DEF_MSG_ENABLE \
149 (NETIF_MSG_DRV | \
150 NETIF_MSG_PROBE | \
151 NETIF_MSG_LINK | \
152 NETIF_MSG_TIMER | \
153 NETIF_MSG_IFDOWN | \
154 NETIF_MSG_IFUP | \
155 NETIF_MSG_RX_ERR | \
156 NETIF_MSG_TX_ERR)
157
158/* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
160 */
161#define CAS_TX_TIMEOUT (HZ)
162#define CAS_LINK_TIMEOUT (22*HZ/10)
163#define CAS_LINK_FAST_TIMEOUT (1)
164
165/* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
167 */
168#define STOP_TRIES_PHY 1000
169#define STOP_TRIES 5000
170
6aa20a22 171/* specify a minimum frame size to deal with some fifo issues
1f26dac3
DM
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
174 */
175#define CAS_MIN_FRAME 97
176#define CAS_1000MB_MIN_FRAME 255
177#define CAS_MIN_MTU 60
178#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
179
180#if 1
181/*
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
184 */
185#else
186#define CAS_RESET_MTU 1
187#define CAS_RESET_ALL 2
188#define CAS_RESET_SPARE 3
189#endif
190
191static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
193
8d3b33f6
RR
194static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195static int link_mode;
196
1f26dac3
DM
197MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199MODULE_LICENSE("GPL");
8d3b33f6 200module_param(cassini_debug, int, 0);
1f26dac3 201MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
8d3b33f6 202module_param(link_mode, int, 0);
1f26dac3
DM
203MODULE_PARM_DESC(link_mode, "default link mode");
204
205/*
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
208 */
209#define DEFAULT_LINKDOWN_TIMEOUT 5
6aa20a22 210/*
1f26dac3
DM
211 * Value in seconds, for user input.
212 */
213static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
8d3b33f6 214module_param(linkdown_timeout, int, 0);
1f26dac3
DM
215MODULE_PARM_DESC(linkdown_timeout,
216"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217
218/*
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
222 */
223static int link_transition_timeout;
224
225
1f26dac3
DM
226
227static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234};
235
236static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241 { 0, }
242};
243
244MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245
246static void cas_set_link_modes(struct cas *cp);
247
248static inline void cas_lock_tx(struct cas *cp)
249{
250 int i;
251
6aa20a22 252 for (i = 0; i < N_TX_RINGS; i++)
1f26dac3
DM
253 spin_lock(&cp->tx_lock[i]);
254}
255
256static inline void cas_lock_all(struct cas *cp)
257{
258 spin_lock_irq(&cp->lock);
259 cas_lock_tx(cp);
260}
261
262/* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
268 * places.
269 */
270#define cas_lock_all_save(cp, flags) \
271do { \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
275} while (0)
276
277static inline void cas_unlock_tx(struct cas *cp)
278{
279 int i;
280
6aa20a22
JG
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
1f26dac3
DM
283}
284
285static inline void cas_unlock_all(struct cas *cp)
286{
287 cas_unlock_tx(cp);
288 spin_unlock_irq(&cp->lock);
289}
290
291#define cas_unlock_all_restore(cp, flags) \
292do { \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296} while (0)
297
298static void cas_disable_irq(struct cas *cp, const int ring)
299{
300 /* Make sure we won't get any more interrupts */
301 if (ring == 0) {
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303 return;
304 }
305
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308 switch (ring) {
309#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310#ifdef USE_PCI_INTB
311 case 1:
312#endif
313#ifdef USE_PCI_INTC
314 case 2:
315#endif
316#ifdef USE_PCI_INTD
317 case 3:
318#endif
6aa20a22 319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
1f26dac3
DM
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
321 break;
322#endif
323 default:
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
326 break;
327 }
328 }
329}
330
331static inline void cas_mask_intr(struct cas *cp)
332{
333 int i;
334
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
337}
338
fa4f0774
NP
339static inline void cas_buffer_init(cas_page_t *cp)
340{
341 struct page *page = cp->buffer;
342 atomic_set((atomic_t *)&page->lru.next, 1);
343}
344
345static inline int cas_buffer_count(cas_page_t *cp)
346{
347 struct page *page = cp->buffer;
348 return atomic_read((atomic_t *)&page->lru.next);
349}
350
351static inline void cas_buffer_inc(cas_page_t *cp)
352{
353 struct page *page = cp->buffer;
354 atomic_inc((atomic_t *)&page->lru.next);
355}
356
357static inline void cas_buffer_dec(cas_page_t *cp)
358{
359 struct page *page = cp->buffer;
360 atomic_dec((atomic_t *)&page->lru.next);
361}
362
1f26dac3
DM
363static void cas_enable_irq(struct cas *cp, const int ring)
364{
365 if (ring == 0) { /* all but TX_DONE */
366 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
367 return;
368 }
369
370 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
371 switch (ring) {
372#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
373#ifdef USE_PCI_INTB
374 case 1:
375#endif
376#ifdef USE_PCI_INTC
377 case 2:
378#endif
379#ifdef USE_PCI_INTD
380 case 3:
381#endif
382 writel(INTRN_MASK_RX_EN, cp->regs +
383 REG_PLUS_INTRN_MASK(ring));
384 break;
385#endif
386 default:
387 break;
388 }
389 }
390}
391
392static inline void cas_unmask_intr(struct cas *cp)
393{
394 int i;
395
396 for (i = 0; i < N_RX_COMP_RINGS; i++)
397 cas_enable_irq(cp, i);
398}
399
400static inline void cas_entropy_gather(struct cas *cp)
401{
402#ifdef USE_ENTROPY_DEV
403 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
404 return;
405
406 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
407 readl(cp->regs + REG_ENTROPY_IV),
408 sizeof(uint64_t)*8);
409#endif
410}
411
412static inline void cas_entropy_reset(struct cas *cp)
413{
414#ifdef USE_ENTROPY_DEV
415 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
416 return;
417
6aa20a22 418 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
1f26dac3
DM
419 cp->regs + REG_BIM_LOCAL_DEV_EN);
420 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
421 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
422
423 /* if we read back 0x0, we don't have an entropy device */
424 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
425 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
426#endif
427}
428
6aa20a22 429/* access to the phy. the following assumes that we've initialized the MIF to
1f26dac3
DM
430 * be in frame rather than bit-bang mode
431 */
432static u16 cas_phy_read(struct cas *cp, int reg)
433{
434 u32 cmd;
435 int limit = STOP_TRIES_PHY;
436
437 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
438 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440 cmd |= MIF_FRAME_TURN_AROUND_MSB;
441 writel(cmd, cp->regs + REG_MIF_FRAME);
6aa20a22 442
1f26dac3
DM
443 /* poll for completion */
444 while (limit-- > 0) {
445 udelay(10);
446 cmd = readl(cp->regs + REG_MIF_FRAME);
447 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
448 return (cmd & MIF_FRAME_DATA_MASK);
449 }
450 return 0xFFFF; /* -1 */
451}
452
453static int cas_phy_write(struct cas *cp, int reg, u16 val)
454{
455 int limit = STOP_TRIES_PHY;
456 u32 cmd;
457
458 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
459 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
460 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
461 cmd |= MIF_FRAME_TURN_AROUND_MSB;
462 cmd |= val & MIF_FRAME_DATA_MASK;
463 writel(cmd, cp->regs + REG_MIF_FRAME);
6aa20a22 464
1f26dac3
DM
465 /* poll for completion */
466 while (limit-- > 0) {
467 udelay(10);
468 cmd = readl(cp->regs + REG_MIF_FRAME);
469 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
470 return 0;
471 }
472 return -1;
473}
474
475static void cas_phy_powerup(struct cas *cp)
476{
6aa20a22 477 u16 ctl = cas_phy_read(cp, MII_BMCR);
1f26dac3
DM
478
479 if ((ctl & BMCR_PDOWN) == 0)
480 return;
481 ctl &= ~BMCR_PDOWN;
482 cas_phy_write(cp, MII_BMCR, ctl);
483}
484
485static void cas_phy_powerdown(struct cas *cp)
486{
6aa20a22 487 u16 ctl = cas_phy_read(cp, MII_BMCR);
1f26dac3
DM
488
489 if (ctl & BMCR_PDOWN)
490 return;
491 ctl |= BMCR_PDOWN;
492 cas_phy_write(cp, MII_BMCR, ctl);
493}
494
495/* cp->lock held. note: the last put_page will free the buffer */
496static int cas_page_free(struct cas *cp, cas_page_t *page)
497{
6aa20a22 498 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
1f26dac3 499 PCI_DMA_FROMDEVICE);
fa4f0774 500 cas_buffer_dec(page);
1f26dac3
DM
501 __free_pages(page->buffer, cp->page_order);
502 kfree(page);
503 return 0;
504}
505
506#ifdef RX_COUNT_BUFFERS
507#define RX_USED_ADD(x, y) ((x)->used += (y))
508#define RX_USED_SET(x, y) ((x)->used = (y))
509#else
6aa20a22 510#define RX_USED_ADD(x, y)
1f26dac3
DM
511#define RX_USED_SET(x, y)
512#endif
513
514/* local page allocation routines for the receive buffers. jumbo pages
515 * require at least 8K contiguous and 8K aligned buffers.
516 */
9e24974d 517static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
1f26dac3
DM
518{
519 cas_page_t *page;
520
521 page = kmalloc(sizeof(cas_page_t), flags);
522 if (!page)
523 return NULL;
524
525 INIT_LIST_HEAD(&page->list);
526 RX_USED_SET(page, 0);
527 page->buffer = alloc_pages(flags, cp->page_order);
528 if (!page->buffer)
529 goto page_err;
fa4f0774 530 cas_buffer_init(page);
1f26dac3
DM
531 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
532 cp->page_size, PCI_DMA_FROMDEVICE);
533 return page;
534
535page_err:
536 kfree(page);
537 return NULL;
538}
539
540/* initialize spare pool of rx buffers, but allocate during the open */
541static void cas_spare_init(struct cas *cp)
542{
543 spin_lock(&cp->rx_inuse_lock);
544 INIT_LIST_HEAD(&cp->rx_inuse_list);
545 spin_unlock(&cp->rx_inuse_lock);
546
547 spin_lock(&cp->rx_spare_lock);
548 INIT_LIST_HEAD(&cp->rx_spare_list);
549 cp->rx_spares_needed = RX_SPARE_COUNT;
550 spin_unlock(&cp->rx_spare_lock);
551}
552
553/* used on close. free all the spare buffers. */
554static void cas_spare_free(struct cas *cp)
555{
556 struct list_head list, *elem, *tmp;
557
558 /* free spare buffers */
559 INIT_LIST_HEAD(&list);
560 spin_lock(&cp->rx_spare_lock);
561 list_splice(&cp->rx_spare_list, &list);
562 INIT_LIST_HEAD(&cp->rx_spare_list);
563 spin_unlock(&cp->rx_spare_lock);
564 list_for_each_safe(elem, tmp, &list) {
565 cas_page_free(cp, list_entry(elem, cas_page_t, list));
566 }
567
568 INIT_LIST_HEAD(&list);
569#if 1
570 /*
571 * Looks like Adrian had protected this with a different
572 * lock than used everywhere else to manipulate this list.
573 */
574 spin_lock(&cp->rx_inuse_lock);
575 list_splice(&cp->rx_inuse_list, &list);
576 INIT_LIST_HEAD(&cp->rx_inuse_list);
577 spin_unlock(&cp->rx_inuse_lock);
578#else
579 spin_lock(&cp->rx_spare_lock);
580 list_splice(&cp->rx_inuse_list, &list);
581 INIT_LIST_HEAD(&cp->rx_inuse_list);
582 spin_unlock(&cp->rx_spare_lock);
583#endif
584 list_for_each_safe(elem, tmp, &list) {
585 cas_page_free(cp, list_entry(elem, cas_page_t, list));
586 }
587}
588
589/* replenish spares if needed */
9e24974d 590static void cas_spare_recover(struct cas *cp, const gfp_t flags)
1f26dac3
DM
591{
592 struct list_head list, *elem, *tmp;
593 int needed, i;
594
595 /* check inuse list. if we don't need any more free buffers,
596 * just free it
597 */
598
599 /* make a local copy of the list */
600 INIT_LIST_HEAD(&list);
601 spin_lock(&cp->rx_inuse_lock);
602 list_splice(&cp->rx_inuse_list, &list);
603 INIT_LIST_HEAD(&cp->rx_inuse_list);
604 spin_unlock(&cp->rx_inuse_lock);
6aa20a22 605
1f26dac3
DM
606 list_for_each_safe(elem, tmp, &list) {
607 cas_page_t *page = list_entry(elem, cas_page_t, list);
608
fa4f0774 609 if (cas_buffer_count(page) > 1)
1f26dac3
DM
610 continue;
611
612 list_del(elem);
613 spin_lock(&cp->rx_spare_lock);
614 if (cp->rx_spares_needed > 0) {
615 list_add(elem, &cp->rx_spare_list);
616 cp->rx_spares_needed--;
617 spin_unlock(&cp->rx_spare_lock);
618 } else {
619 spin_unlock(&cp->rx_spare_lock);
620 cas_page_free(cp, page);
621 }
622 }
623
624 /* put any inuse buffers back on the list */
625 if (!list_empty(&list)) {
626 spin_lock(&cp->rx_inuse_lock);
627 list_splice(&list, &cp->rx_inuse_list);
628 spin_unlock(&cp->rx_inuse_lock);
629 }
6aa20a22 630
1f26dac3
DM
631 spin_lock(&cp->rx_spare_lock);
632 needed = cp->rx_spares_needed;
633 spin_unlock(&cp->rx_spare_lock);
634 if (!needed)
635 return;
636
637 /* we still need spares, so try to allocate some */
638 INIT_LIST_HEAD(&list);
639 i = 0;
640 while (i < needed) {
641 cas_page_t *spare = cas_page_alloc(cp, flags);
6aa20a22 642 if (!spare)
1f26dac3
DM
643 break;
644 list_add(&spare->list, &list);
645 i++;
646 }
647
648 spin_lock(&cp->rx_spare_lock);
649 list_splice(&list, &cp->rx_spare_list);
650 cp->rx_spares_needed -= i;
651 spin_unlock(&cp->rx_spare_lock);
652}
653
654/* pull a page from the list. */
655static cas_page_t *cas_page_dequeue(struct cas *cp)
656{
657 struct list_head *entry;
658 int recover;
659
660 spin_lock(&cp->rx_spare_lock);
661 if (list_empty(&cp->rx_spare_list)) {
662 /* try to do a quick recovery */
663 spin_unlock(&cp->rx_spare_lock);
664 cas_spare_recover(cp, GFP_ATOMIC);
665 spin_lock(&cp->rx_spare_lock);
666 if (list_empty(&cp->rx_spare_list)) {
667 if (netif_msg_rx_err(cp))
668 printk(KERN_ERR "%s: no spare buffers "
669 "available.\n", cp->dev->name);
670 spin_unlock(&cp->rx_spare_lock);
671 return NULL;
672 }
673 }
674
675 entry = cp->rx_spare_list.next;
676 list_del(entry);
677 recover = ++cp->rx_spares_needed;
678 spin_unlock(&cp->rx_spare_lock);
679
680 /* trigger the timer to do the recovery */
681 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
682#if 1
683 atomic_inc(&cp->reset_task_pending);
684 atomic_inc(&cp->reset_task_pending_spare);
685 schedule_work(&cp->reset_task);
686#else
687 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
688 schedule_work(&cp->reset_task);
689#endif
690 }
691 return list_entry(entry, cas_page_t, list);
692}
693
694
695static void cas_mif_poll(struct cas *cp, const int enable)
696{
697 u32 cfg;
6aa20a22
JG
698
699 cfg = readl(cp->regs + REG_MIF_CFG);
1f26dac3
DM
700 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
701
702 if (cp->phy_type & CAS_PHY_MII_MDIO1)
6aa20a22 703 cfg |= MIF_CFG_PHY_SELECT;
1f26dac3
DM
704
705 /* poll and interrupt on link status change. */
706 if (enable) {
707 cfg |= MIF_CFG_POLL_EN;
708 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
709 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
710 }
6aa20a22
JG
711 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
712 cp->regs + REG_MIF_MASK);
1f26dac3
DM
713 writel(cfg, cp->regs + REG_MIF_CFG);
714}
715
716/* Must be invoked under cp->lock */
717static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
718{
719 u16 ctl;
720#if 1
721 int lcntl;
722 int changed = 0;
723 int oldstate = cp->lstate;
724 int link_was_not_down = !(oldstate == link_down);
725#endif
726 /* Setup link parameters */
727 if (!ep)
728 goto start_aneg;
729 lcntl = cp->link_cntl;
730 if (ep->autoneg == AUTONEG_ENABLE)
731 cp->link_cntl = BMCR_ANENABLE;
732 else {
733 cp->link_cntl = 0;
734 if (ep->speed == SPEED_100)
735 cp->link_cntl |= BMCR_SPEED100;
736 else if (ep->speed == SPEED_1000)
737 cp->link_cntl |= CAS_BMCR_SPEED1000;
738 if (ep->duplex == DUPLEX_FULL)
739 cp->link_cntl |= BMCR_FULLDPLX;
740 }
741#if 1
742 changed = (lcntl != cp->link_cntl);
743#endif
744start_aneg:
745 if (cp->lstate == link_up) {
746 printk(KERN_INFO "%s: PCS link down.\n",
747 cp->dev->name);
748 } else {
749 if (changed) {
750 printk(KERN_INFO "%s: link configuration changed\n",
751 cp->dev->name);
752 }
753 }
754 cp->lstate = link_down;
755 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
756 if (!cp->hw_running)
757 return;
758#if 1
759 /*
760 * WTZ: If the old state was link_up, we turn off the carrier
761 * to replicate everything we do elsewhere on a link-down
6aa20a22 762 * event when we were already in a link-up state..
1f26dac3
DM
763 */
764 if (oldstate == link_up)
765 netif_carrier_off(cp->dev);
766 if (changed && link_was_not_down) {
767 /*
768 * WTZ: This branch will simply schedule a full reset after
769 * we explicitly changed link modes in an ioctl. See if this
6aa20a22 770 * fixes the link-problems we were having for forced mode.
1f26dac3
DM
771 */
772 atomic_inc(&cp->reset_task_pending);
773 atomic_inc(&cp->reset_task_pending_all);
774 schedule_work(&cp->reset_task);
775 cp->timer_ticks = 0;
776 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
777 return;
778 }
779#endif
780 if (cp->phy_type & CAS_PHY_SERDES) {
781 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
782
783 if (cp->link_cntl & BMCR_ANENABLE) {
784 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
785 cp->lstate = link_aneg;
786 } else {
787 if (cp->link_cntl & BMCR_FULLDPLX)
788 val |= PCS_MII_CTRL_DUPLEX;
789 val &= ~PCS_MII_AUTONEG_EN;
790 cp->lstate = link_force_ok;
791 }
792 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
793 writel(val, cp->regs + REG_PCS_MII_CTRL);
794
795 } else {
796 cas_mif_poll(cp, 0);
797 ctl = cas_phy_read(cp, MII_BMCR);
6aa20a22 798 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
1f26dac3
DM
799 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
800 ctl |= cp->link_cntl;
801 if (ctl & BMCR_ANENABLE) {
802 ctl |= BMCR_ANRESTART;
803 cp->lstate = link_aneg;
804 } else {
805 cp->lstate = link_force_ok;
806 }
807 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
808 cas_phy_write(cp, MII_BMCR, ctl);
809 cas_mif_poll(cp, 1);
810 }
811
812 cp->timer_ticks = 0;
813 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
814}
815
816/* Must be invoked under cp->lock. */
817static int cas_reset_mii_phy(struct cas *cp)
818{
819 int limit = STOP_TRIES_PHY;
820 u16 val;
6aa20a22 821
1f26dac3
DM
822 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
823 udelay(100);
824 while (limit--) {
825 val = cas_phy_read(cp, MII_BMCR);
826 if ((val & BMCR_RESET) == 0)
827 break;
828 udelay(10);
829 }
830 return (limit <= 0);
831}
832
833static void cas_saturn_firmware_load(struct cas *cp)
834{
835 cas_saturn_patch_t *patch = cas_saturn_patch;
836
837 cas_phy_powerdown(cp);
838
839 /* expanded memory access mode */
840 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
841
842 /* pointer configuration for new firmware */
843 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
844 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
846 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
847 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
848 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
849 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
850 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
851
852 /* download new firmware */
853 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
854 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
855 while (patch->addr) {
856 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
857 patch++;
858 }
859
860 /* enable firmware */
861 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
862 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
863}
864
865
866/* phy initialization */
867static void cas_phy_init(struct cas *cp)
868{
869 u16 val;
870
871 /* if we're in MII/GMII mode, set up phy */
872 if (CAS_PHY_MII(cp->phy_type)) {
873 writel(PCS_DATAPATH_MODE_MII,
874 cp->regs + REG_PCS_DATAPATH_MODE);
875
876 cas_mif_poll(cp, 0);
877 cas_reset_mii_phy(cp); /* take out of isolate mode */
878
879 if (PHY_LUCENT_B0 == cp->phy_id) {
880 /* workaround link up/down issue with lucent */
881 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
882 cas_phy_write(cp, MII_BMCR, 0x00f1);
883 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
884
885 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
886 /* workarounds for broadcom phy */
887 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
888 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
889 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
890 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
891 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
892 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
893 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
894 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
895 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
896 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
897 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
898
899 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
900 val = cas_phy_read(cp, BROADCOM_MII_REG4);
901 val = cas_phy_read(cp, BROADCOM_MII_REG4);
902 if (val & 0x0080) {
903 /* link workaround */
6aa20a22 904 cas_phy_write(cp, BROADCOM_MII_REG4,
1f26dac3
DM
905 val & ~0x0080);
906 }
6aa20a22 907
1f26dac3 908 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
6aa20a22
JG
909 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
910 SATURN_PCFG_FSI : 0x0,
1f26dac3
DM
911 cp->regs + REG_SATURN_PCFG);
912
913 /* load firmware to address 10Mbps auto-negotiation
6aa20a22 914 * issue. NOTE: this will need to be changed if the
1f26dac3
DM
915 * default firmware gets fixed.
916 */
917 if (PHY_NS_DP83065 == cp->phy_id) {
918 cas_saturn_firmware_load(cp);
919 }
920 cas_phy_powerup(cp);
921 }
922
923 /* advertise capabilities */
924 val = cas_phy_read(cp, MII_BMCR);
925 val &= ~BMCR_ANENABLE;
926 cas_phy_write(cp, MII_BMCR, val);
927 udelay(10);
928
929 cas_phy_write(cp, MII_ADVERTISE,
930 cas_phy_read(cp, MII_ADVERTISE) |
931 (ADVERTISE_10HALF | ADVERTISE_10FULL |
932 ADVERTISE_100HALF | ADVERTISE_100FULL |
6aa20a22 933 CAS_ADVERTISE_PAUSE |
1f26dac3 934 CAS_ADVERTISE_ASYM_PAUSE));
6aa20a22 935
1f26dac3
DM
936 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
937 /* make sure that we don't advertise half
938 * duplex to avoid a chip issue
939 */
940 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
941 val &= ~CAS_ADVERTISE_1000HALF;
942 val |= CAS_ADVERTISE_1000FULL;
943 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
944 }
945
946 } else {
947 /* reset pcs for serdes */
948 u32 val;
949 int limit;
950
951 writel(PCS_DATAPATH_MODE_SERDES,
952 cp->regs + REG_PCS_DATAPATH_MODE);
953
954 /* enable serdes pins on saturn */
955 if (cp->cas_flags & CAS_FLAG_SATURN)
956 writel(0, cp->regs + REG_SATURN_PCFG);
957
958 /* Reset PCS unit. */
959 val = readl(cp->regs + REG_PCS_MII_CTRL);
960 val |= PCS_MII_RESET;
961 writel(val, cp->regs + REG_PCS_MII_CTRL);
962
963 limit = STOP_TRIES;
964 while (limit-- > 0) {
965 udelay(10);
6aa20a22 966 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
1f26dac3
DM
967 PCS_MII_RESET) == 0)
968 break;
969 }
970 if (limit <= 0)
971 printk(KERN_WARNING "%s: PCS reset bit would not "
972 "clear [%08x].\n", cp->dev->name,
973 readl(cp->regs + REG_PCS_STATE_MACHINE));
974
975 /* Make sure PCS is disabled while changing advertisement
976 * configuration.
977 */
978 writel(0x0, cp->regs + REG_PCS_CFG);
979
980 /* Advertise all capabilities except half-duplex. */
981 val = readl(cp->regs + REG_PCS_MII_ADVERT);
982 val &= ~PCS_MII_ADVERT_HD;
6aa20a22 983 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
1f26dac3
DM
984 PCS_MII_ADVERT_ASYM_PAUSE);
985 writel(val, cp->regs + REG_PCS_MII_ADVERT);
986
987 /* enable PCS */
988 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
989
990 /* pcs workaround: enable sync detect */
991 writel(PCS_SERDES_CTRL_SYNCD_EN,
992 cp->regs + REG_PCS_SERDES_CTRL);
993 }
994}
995
996
997static int cas_pcs_link_check(struct cas *cp)
998{
999 u32 stat, state_machine;
1000 int retval = 0;
1001
1002 /* The link status bit latches on zero, so you must
1003 * read it twice in such a case to see a transition
1004 * to the link being up.
1005 */
1006 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1007 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1008 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1009
1010 /* The remote-fault indication is only valid
1011 * when autoneg has completed.
1012 */
1013 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1014 PCS_MII_STATUS_REMOTE_FAULT)) ==
1015 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1016 if (netif_msg_link(cp))
6aa20a22 1017 printk(KERN_INFO "%s: PCS RemoteFault\n",
1f26dac3
DM
1018 cp->dev->name);
1019 }
1020
1021 /* work around link detection issue by querying the PCS state
1022 * machine directly.
1023 */
1024 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1025 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1026 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1027 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1028 stat |= PCS_MII_STATUS_LINK_STATUS;
1029 }
1030
1031 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1032 if (cp->lstate != link_up) {
1033 if (cp->opened) {
1034 cp->lstate = link_up;
1035 cp->link_transition = LINK_TRANSITION_LINK_UP;
6aa20a22 1036
1f26dac3
DM
1037 cas_set_link_modes(cp);
1038 netif_carrier_on(cp->dev);
1039 }
1040 }
1041 } else if (cp->lstate == link_up) {
1042 cp->lstate = link_down;
1043 if (link_transition_timeout != 0 &&
1044 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1045 !cp->link_transition_jiffies_valid) {
1046 /*
6aa20a22
JG
1047 * force a reset, as a workaround for the
1048 * link-failure problem. May want to move this to a
1f26dac3
DM
1049 * point a bit earlier in the sequence. If we had
1050 * generated a reset a short time ago, we'll wait for
1051 * the link timer to check the status until a
1052 * timer expires (link_transistion_jiffies_valid is
1053 * true when the timer is running.) Instead of using
1054 * a system timer, we just do a check whenever the
1055 * link timer is running - this clears the flag after
1056 * a suitable delay.
1057 */
1058 retval = 1;
1059 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1060 cp->link_transition_jiffies = jiffies;
1061 cp->link_transition_jiffies_valid = 1;
1062 } else {
1063 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1064 }
1065 netif_carrier_off(cp->dev);
1066 if (cp->opened && netif_msg_link(cp)) {
1067 printk(KERN_INFO "%s: PCS link down.\n",
1068 cp->dev->name);
1069 }
1070
1071 /* Cassini only: if you force a mode, there can be
1072 * sync problems on link down. to fix that, the following
1073 * things need to be checked:
1074 * 1) read serialink state register
1075 * 2) read pcs status register to verify link down.
1076 * 3) if link down and serial link == 0x03, then you need
1077 * to global reset the chip.
1078 */
1079 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1080 /* should check to see if we're in a forced mode */
1081 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1082 if (stat == 0x03)
1083 return 1;
1084 }
1085 } else if (cp->lstate == link_down) {
1086 if (link_transition_timeout != 0 &&
1087 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1088 !cp->link_transition_jiffies_valid) {
1089 /* force a reset, as a workaround for the
1090 * link-failure problem. May want to move
1091 * this to a point a bit earlier in the
1092 * sequence.
1093 */
1094 retval = 1;
1095 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1096 cp->link_transition_jiffies = jiffies;
1097 cp->link_transition_jiffies_valid = 1;
1098 } else {
1099 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1100 }
1101 }
1102
1103 return retval;
1104}
1105
6aa20a22 1106static int cas_pcs_interrupt(struct net_device *dev,
1f26dac3
DM
1107 struct cas *cp, u32 status)
1108{
1109 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1110
6aa20a22 1111 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1f26dac3
DM
1112 return 0;
1113 return cas_pcs_link_check(cp);
1114}
1115
6aa20a22 1116static int cas_txmac_interrupt(struct net_device *dev,
1f26dac3
DM
1117 struct cas *cp, u32 status)
1118{
1119 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1120
1121 if (!txmac_stat)
1122 return 0;
1123
1124 if (netif_msg_intr(cp))
1125 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1126 cp->dev->name, txmac_stat);
1127
1128 /* Defer timer expiration is quite normal,
1129 * don't even log the event.
1130 */
1131 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133 return 0;
1134
1135 spin_lock(&cp->stat_lock[0]);
1136 if (txmac_stat & MAC_TX_UNDERRUN) {
1137 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1138 dev->name);
1139 cp->net_stats[0].tx_fifo_errors++;
1140 }
1141
1142 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1143 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1144 dev->name);
1145 cp->net_stats[0].tx_errors++;
1146 }
1147
1148 /* The rest are all cases of one of the 16-bit TX
1149 * counters expiring.
1150 */
1151 if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 cp->net_stats[0].collisions += 0x10000;
1153
1154 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 cp->net_stats[0].collisions += 0x10000;
1157 }
1158
1159 if (txmac_stat & MAC_TX_COLL_LATE) {
1160 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 cp->net_stats[0].collisions += 0x10000;
1162 }
1163 spin_unlock(&cp->stat_lock[0]);
1164
1165 /* We do not keep track of MAC_TX_COLL_FIRST and
1166 * MAC_TX_PEAK_ATTEMPTS events.
1167 */
1168 return 0;
1169}
1170
6aa20a22 1171static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1f26dac3
DM
1172{
1173 cas_hp_inst_t *inst;
1174 u32 val;
1175 int i;
1176
1177 i = 0;
1178 while ((inst = firmware) && inst->note) {
1179 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1180
1181 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1184
1185 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1193
1194 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199 ++firmware;
1200 ++i;
1201 }
1202}
1203
1204static void cas_init_rx_dma(struct cas *cp)
1205{
6aa20a22 1206 u64 desc_dma = cp->block_dvma;
1f26dac3
DM
1207 u32 val;
1208 int i, size;
1209
1210 /* rx free descriptors */
6aa20a22 1211 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1f26dac3
DM
1212 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 if ((N_RX_DESC_RINGS > 1) &&
1215 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1216 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 writel(val, cp->regs + REG_RX_CFG);
1218
6aa20a22 1219 val = (unsigned long) cp->init_rxds[0] -
1f26dac3
DM
1220 (unsigned long) cp->init_block;
1221 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1224
1225 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
6aa20a22 1226 /* rx desc 2 is for IPSEC packets. however,
1f26dac3
DM
1227 * we don't it that for that purpose.
1228 */
6aa20a22 1229 val = (unsigned long) cp->init_rxds[1] -
1f26dac3
DM
1230 (unsigned long) cp->init_block;
1231 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
6aa20a22 1232 writel((desc_dma + val) & 0xffffffff, cp->regs +
1f26dac3 1233 REG_PLUS_RX_DB1_LOW);
6aa20a22 1234 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1f26dac3
DM
1235 REG_PLUS_RX_KICK1);
1236 }
6aa20a22 1237
1f26dac3 1238 /* rx completion registers */
6aa20a22 1239 val = (unsigned long) cp->init_rxcs[0] -
1f26dac3
DM
1240 (unsigned long) cp->init_block;
1241 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1243
1244 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245 /* rx comp 2-4 */
1246 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
6aa20a22 1247 val = (unsigned long) cp->init_rxcs[i] -
1f26dac3 1248 (unsigned long) cp->init_block;
6aa20a22 1249 writel((desc_dma + val) >> 32, cp->regs +
1f26dac3 1250 REG_PLUS_RX_CBN_HI(i));
6aa20a22 1251 writel((desc_dma + val) & 0xffffffff, cp->regs +
1f26dac3
DM
1252 REG_PLUS_RX_CBN_LOW(i));
1253 }
1254 }
1255
1256 /* read selective clear regs to prevent spurious interrupts
1257 * on reset because complete == kick.
1258 * selective clear set up to prevent interrupts on resets
1259 */
1260 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1265
1266 /* 2 is different from 3 and 4 */
1267 if (N_RX_COMP_RINGS > 1)
6aa20a22 1268 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1f26dac3
DM
1269 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1270
6aa20a22
JG
1271 for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 writel(INTR_RX_DONE_ALT,
1f26dac3
DM
1273 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1274 }
1275
1276 /* set up pause thresholds */
1277 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
6aa20a22 1279 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1f26dac3
DM
1280 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
6aa20a22 1282
1f26dac3
DM
1283 /* zero out dma reassembly buffers */
1284 for (i = 0; i < 64; i++) {
1285 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1289 }
1290
1291 /* make sure address register is 0 for normal operation */
1292 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1294
1295 /* interrupt mitigation */
1296#ifdef USE_RX_BLANK
1297 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 writel(val, cp->regs + REG_RX_BLANK);
1300#else
1301 writel(0x0, cp->regs + REG_RX_BLANK);
1302#endif
1303
1304 /* interrupt generation as a function of low water marks for
1305 * free desc and completion entries. these are used to trigger
1306 * housekeeping for rx descs. we don't use the free interrupt
1307 * as it's not very useful
1308 */
1309 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 writel(val, cp->regs + REG_RX_AE_THRESH);
1312 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1315 }
1316
1317 /* Random early detect registers. useful for congestion avoidance.
1318 * this should be tunable.
1319 */
1320 writel(0x0, cp->regs + REG_RX_RED);
6aa20a22 1321
1f26dac3
DM
1322 /* receive page sizes. default == 2K (0x800) */
1323 val = 0;
1324 if (cp->page_size == 0x1000)
1325 val = 0x1;
1326 else if (cp->page_size == 0x2000)
1327 val = 0x2;
1328 else if (cp->page_size == 0x4000)
1329 val = 0x3;
6aa20a22 1330
1f26dac3
DM
1331 /* round mtu + offset. constrain to page size. */
1332 size = cp->dev->mtu + 64;
1333 if (size > cp->page_size)
1334 size = cp->page_size;
1335
1336 if (size <= 0x400)
1337 i = 0x0;
1338 else if (size <= 0x800)
1339 i = 0x1;
1340 else if (size <= 0x1000)
1341 i = 0x2;
1342 else
1343 i = 0x3;
1344
1345 cp->mtu_stride = 1 << (i + 10);
1346 val = CAS_BASE(RX_PAGE_SIZE, val);
6aa20a22 1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1f26dac3
DM
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 writel(val, cp->regs + REG_RX_PAGE_SIZE);
6aa20a22 1351
1f26dac3
DM
1352 /* enable the header parser if desired */
1353 if (CAS_HP_FIRMWARE == cas_prog_null)
1354 return;
1355
1356 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 writel(val, cp->regs + REG_HP_CFG);
1360}
1361
1362static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1363{
1364 memset(rxc, 0, sizeof(*rxc));
6aa20a22 1365 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1f26dac3
DM
1366}
1367
1368/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369 * flipping is protected by the fact that the chip will not
1370 * hand back the same page index while it's being processed.
1371 */
1372static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1373{
1374 cas_page_t *page = cp->rx_pages[1][index];
1375 cas_page_t *new;
1376
fa4f0774 1377 if (cas_buffer_count(page) == 1)
1f26dac3
DM
1378 return page;
1379
1380 new = cas_page_dequeue(cp);
1381 if (new) {
1382 spin_lock(&cp->rx_inuse_lock);
1383 list_add(&page->list, &cp->rx_inuse_list);
1384 spin_unlock(&cp->rx_inuse_lock);
1385 }
1386 return new;
1387}
6aa20a22 1388
1f26dac3 1389/* this needs to be changed if we actually use the ENC RX DESC ring */
6aa20a22 1390static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1f26dac3
DM
1391 const int index)
1392{
1393 cas_page_t **page0 = cp->rx_pages[0];
1394 cas_page_t **page1 = cp->rx_pages[1];
1395
1396 /* swap if buffer is in use */
fa4f0774 1397 if (cas_buffer_count(page0[index]) > 1) {
1f26dac3
DM
1398 cas_page_t *new = cas_page_spare(cp, index);
1399 if (new) {
1400 page1[index] = page0[index];
1401 page0[index] = new;
1402 }
6aa20a22 1403 }
1f26dac3
DM
1404 RX_USED_SET(page0[index], 0);
1405 return page0[index];
1406}
1407
1408static void cas_clean_rxds(struct cas *cp)
1409{
1410 /* only clean ring 0 as ring 1 is used for spare buffers */
1411 struct cas_rx_desc *rxd = cp->init_rxds[0];
1412 int i, size;
1413
1414 /* release all rx flows */
1415 for (i = 0; i < N_RX_FLOWS; i++) {
1416 struct sk_buff *skb;
1417 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 cas_skb_release(skb);
1419 }
1420 }
1421
1422 /* initialize descriptors */
1423 size = RX_DESC_RINGN_SIZE(0);
1424 for (i = 0; i < size; i++) {
1425 cas_page_t *page = cas_page_swap(cp, 0, i);
1426 rxd[i].buffer = cpu_to_le64(page->dma_addr);
6aa20a22 1427 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1f26dac3
DM
1428 CAS_BASE(RX_INDEX_RING, 0));
1429 }
1430
6aa20a22 1431 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1f26dac3
DM
1432 cp->rx_last[0] = 0;
1433 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1434}
1435
1436static void cas_clean_rxcs(struct cas *cp)
1437{
1438 int i, j;
1439
1440 /* take ownership of rx comp descriptors */
1441 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 cas_rxc_init(rxc + j);
1447 }
1448 }
1449}
1450
1451#if 0
1452/* When we get a RX fifo overflow, the RX unit is probably hung
1453 * so we do the following.
1454 *
1455 * If any part of the reset goes wrong, we return 1 and that causes the
1456 * whole chip to be reset.
1457 */
1458static int cas_rxmac_reset(struct cas *cp)
1459{
1460 struct net_device *dev = cp->dev;
1461 int limit;
1462 u32 val;
1463
1464 /* First, reset MAC RX. */
1465 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 for (limit = 0; limit < STOP_TRIES; limit++) {
1467 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468 break;
1469 udelay(10);
1470 }
1471 if (limit == STOP_TRIES) {
1472 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1473 "chip.\n", dev->name);
1474 return 1;
1475 }
1476
1477 /* Second, disable RX DMA. */
1478 writel(0, cp->regs + REG_RX_CFG);
1479 for (limit = 0; limit < STOP_TRIES; limit++) {
1480 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481 break;
1482 udelay(10);
1483 }
1484 if (limit == STOP_TRIES) {
1485 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1486 "chip.\n", dev->name);
1487 return 1;
1488 }
1489
1490 mdelay(5);
1491
1492 /* Execute RX reset command. */
1493 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494 for (limit = 0; limit < STOP_TRIES; limit++) {
1495 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1496 break;
1497 udelay(10);
1498 }
1499 if (limit == STOP_TRIES) {
1500 printk(KERN_ERR "%s: RX reset command will not execute, "
1501 "resetting whole chip.\n", dev->name);
1502 return 1;
1503 }
1504
1505 /* reset driver rx state */
1506 cas_clean_rxds(cp);
1507 cas_clean_rxcs(cp);
1508
1509 /* Now, reprogram the rest of RX unit. */
1510 cas_init_rx_dma(cp);
1511
1512 /* re-enable */
1513 val = readl(cp->regs + REG_RX_CFG);
1514 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516 val = readl(cp->regs + REG_MAC_RX_CFG);
1517 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1518 return 0;
1519}
1520#endif
1521
1522static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1523 u32 status)
1524{
1525 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526
1527 if (!stat)
1528 return 0;
1529
1530 if (netif_msg_intr(cp))
1531 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1532 cp->dev->name, stat);
1533
1534 /* these are all rollovers */
1535 spin_lock(&cp->stat_lock[0]);
6aa20a22 1536 if (stat & MAC_RX_ALIGN_ERR)
1f26dac3
DM
1537 cp->net_stats[0].rx_frame_errors += 0x10000;
1538
1539 if (stat & MAC_RX_CRC_ERR)
1540 cp->net_stats[0].rx_crc_errors += 0x10000;
1541
1542 if (stat & MAC_RX_LEN_ERR)
1543 cp->net_stats[0].rx_length_errors += 0x10000;
1544
1545 if (stat & MAC_RX_OVERFLOW) {
1546 cp->net_stats[0].rx_over_errors++;
1547 cp->net_stats[0].rx_fifo_errors++;
1548 }
1549
1550 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1551 * events.
1552 */
1553 spin_unlock(&cp->stat_lock[0]);
1554 return 0;
1555}
1556
1557static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1558 u32 status)
1559{
1560 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1561
1562 if (!stat)
1563 return 0;
1564
1565 if (netif_msg_intr(cp))
1566 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1567 cp->dev->name, stat);
1568
1569 /* This interrupt is just for pause frame and pause
1570 * tracking. It is useful for diagnostics and debug
1571 * but probably by default we will mask these events.
1572 */
1573 if (stat & MAC_CTRL_PAUSE_STATE)
1574 cp->pause_entered++;
1575
1576 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1577 cp->pause_last_time_recvd = (stat >> 16);
1578
1579 return 0;
1580}
1581
6aa20a22 1582
1f26dac3
DM
1583/* Must be invoked under cp->lock. */
1584static inline int cas_mdio_link_not_up(struct cas *cp)
1585{
1586 u16 val;
6aa20a22 1587
1f26dac3
DM
1588 switch (cp->lstate) {
1589 case link_force_ret:
1590 if (netif_msg_link(cp))
1591 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1592 " forced mode\n", cp->dev->name);
1593 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1594 cp->timer_ticks = 5;
1595 cp->lstate = link_force_ok;
1596 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1597 break;
6aa20a22 1598
1f26dac3
DM
1599 case link_aneg:
1600 val = cas_phy_read(cp, MII_BMCR);
1601
1602 /* Try forced modes. we try things in the following order:
1603 * 1000 full -> 100 full/half -> 10 half
1604 */
1605 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1606 val |= BMCR_FULLDPLX;
6aa20a22 1607 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1f26dac3
DM
1608 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1609 cas_phy_write(cp, MII_BMCR, val);
1610 cp->timer_ticks = 5;
1611 cp->lstate = link_force_try;
1612 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1613 break;
1614
1615 case link_force_try:
1616 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1617 val = cas_phy_read(cp, MII_BMCR);
1618 cp->timer_ticks = 5;
1619 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1620 val &= ~CAS_BMCR_SPEED1000;
1621 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1622 cas_phy_write(cp, MII_BMCR, val);
1623 break;
1624 }
1625
1626 if (val & BMCR_SPEED100) {
1627 if (val & BMCR_FULLDPLX) /* fd failed */
1628 val &= ~BMCR_FULLDPLX;
1629 else { /* 100Mbps failed */
1630 val &= ~BMCR_SPEED100;
1631 }
1632 cas_phy_write(cp, MII_BMCR, val);
1633 break;
1634 }
1635 default:
1636 break;
1637 }
1638 return 0;
1639}
1640
1641
1642/* must be invoked with cp->lock held */
1643static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1644{
1645 int restart;
1646
1647 if (bmsr & BMSR_LSTATUS) {
1648 /* Ok, here we got a link. If we had it due to a forced
6aa20a22 1649 * fallback, and we were configured for autoneg, we
1f26dac3
DM
1650 * retry a short autoneg pass. If you know your hub is
1651 * broken, use ethtool ;)
1652 */
6aa20a22 1653 if ((cp->lstate == link_force_try) &&
1f26dac3
DM
1654 (cp->link_cntl & BMCR_ANENABLE)) {
1655 cp->lstate = link_force_ret;
1656 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1657 cas_mif_poll(cp, 0);
1658 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1659 cp->timer_ticks = 5;
1660 if (cp->opened && netif_msg_link(cp))
1661 printk(KERN_INFO "%s: Got link after fallback, retrying"
1662 " autoneg once...\n", cp->dev->name);
1663 cas_phy_write(cp, MII_BMCR,
1664 cp->link_fcntl | BMCR_ANENABLE |
1665 BMCR_ANRESTART);
1666 cas_mif_poll(cp, 1);
1667
1668 } else if (cp->lstate != link_up) {
1669 cp->lstate = link_up;
1670 cp->link_transition = LINK_TRANSITION_LINK_UP;
1671
1672 if (cp->opened) {
1673 cas_set_link_modes(cp);
1674 netif_carrier_on(cp->dev);
1675 }
1676 }
1677 return 0;
1678 }
1679
1680 /* link not up. if the link was previously up, we restart the
1681 * whole process
1682 */
1683 restart = 0;
1684 if (cp->lstate == link_up) {
1685 cp->lstate = link_down;
1686 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1687
1688 netif_carrier_off(cp->dev);
1689 if (cp->opened && netif_msg_link(cp))
1690 printk(KERN_INFO "%s: Link down\n",
1691 cp->dev->name);
1692 restart = 1;
6aa20a22 1693
1f26dac3
DM
1694 } else if (++cp->timer_ticks > 10)
1695 cas_mdio_link_not_up(cp);
6aa20a22 1696
1f26dac3
DM
1697 return restart;
1698}
1699
1700static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1701 u32 status)
1702{
1703 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1704 u16 bmsr;
1705
1706 /* check for a link change */
1707 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1708 return 0;
1709
1710 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1711 return cas_mii_link_check(cp, bmsr);
1712}
1713
1714static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1715 u32 status)
1716{
1717 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1718
1719 if (!stat)
1720 return 0;
1721
1722 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1723 readl(cp->regs + REG_BIM_DIAG));
1724
1725 /* cassini+ has this reserved */
1726 if ((stat & PCI_ERR_BADACK) &&
1727 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1728 printk("<No ACK64# during ABS64 cycle> ");
1729
1730 if (stat & PCI_ERR_DTRTO)
1731 printk("<Delayed transaction timeout> ");
1732 if (stat & PCI_ERR_OTHER)
1733 printk("<other> ");
1734 if (stat & PCI_ERR_BIM_DMA_WRITE)
1735 printk("<BIM DMA 0 write req> ");
1736 if (stat & PCI_ERR_BIM_DMA_READ)
1737 printk("<BIM DMA 0 read req> ");
1738 printk("\n");
1739
1740 if (stat & PCI_ERR_OTHER) {
1741 u16 cfg;
1742
1743 /* Interrogate PCI config space for the
1744 * true cause.
1745 */
1746 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1747 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1748 dev->name, cfg);
1749 if (cfg & PCI_STATUS_PARITY)
1750 printk(KERN_ERR "%s: PCI parity error detected.\n",
1751 dev->name);
1752 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1753 printk(KERN_ERR "%s: PCI target abort.\n",
1754 dev->name);
1755 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1756 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1757 dev->name);
1758 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1759 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1760 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1761 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1762 dev->name);
1763 if (cfg & PCI_STATUS_DETECTED_PARITY)
1764 printk(KERN_ERR "%s: PCI parity error.\n",
1765 dev->name);
1766
1767 /* Write the error bits back to clear them. */
1768 cfg &= (PCI_STATUS_PARITY |
1769 PCI_STATUS_SIG_TARGET_ABORT |
1770 PCI_STATUS_REC_TARGET_ABORT |
1771 PCI_STATUS_REC_MASTER_ABORT |
1772 PCI_STATUS_SIG_SYSTEM_ERROR |
1773 PCI_STATUS_DETECTED_PARITY);
1774 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1775 }
1776
1777 /* For all PCI errors, we should reset the chip. */
1778 return 1;
1779}
1780
1781/* All non-normal interrupt conditions get serviced here.
1782 * Returns non-zero if we should just exit the interrupt
1783 * handler right now (ie. if we reset the card which invalidates
1784 * all of the other original irq status bits).
1785 */
1786static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1787 u32 status)
1788{
1789 if (status & INTR_RX_TAG_ERROR) {
1790 /* corrupt RX tag framing */
1791 if (netif_msg_rx_err(cp))
1792 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1793 cp->dev->name);
1794 spin_lock(&cp->stat_lock[0]);
1795 cp->net_stats[0].rx_errors++;
1796 spin_unlock(&cp->stat_lock[0]);
1797 goto do_reset;
1798 }
1799
1800 if (status & INTR_RX_LEN_MISMATCH) {
1801 /* length mismatch. */
1802 if (netif_msg_rx_err(cp))
1803 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1804 cp->dev->name);
1805 spin_lock(&cp->stat_lock[0]);
1806 cp->net_stats[0].rx_errors++;
1807 spin_unlock(&cp->stat_lock[0]);
1808 goto do_reset;
1809 }
1810
1811 if (status & INTR_PCS_STATUS) {
1812 if (cas_pcs_interrupt(dev, cp, status))
1813 goto do_reset;
1814 }
1815
1816 if (status & INTR_TX_MAC_STATUS) {
1817 if (cas_txmac_interrupt(dev, cp, status))
1818 goto do_reset;
1819 }
1820
1821 if (status & INTR_RX_MAC_STATUS) {
1822 if (cas_rxmac_interrupt(dev, cp, status))
1823 goto do_reset;
1824 }
1825
1826 if (status & INTR_MAC_CTRL_STATUS) {
1827 if (cas_mac_interrupt(dev, cp, status))
1828 goto do_reset;
1829 }
1830
1831 if (status & INTR_MIF_STATUS) {
1832 if (cas_mif_interrupt(dev, cp, status))
1833 goto do_reset;
1834 }
1835
1836 if (status & INTR_PCI_ERROR_STATUS) {
1837 if (cas_pci_interrupt(dev, cp, status))
1838 goto do_reset;
1839 }
1840 return 0;
1841
1842do_reset:
1843#if 1
1844 atomic_inc(&cp->reset_task_pending);
1845 atomic_inc(&cp->reset_task_pending_all);
1846 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1847 dev->name, status);
1848 schedule_work(&cp->reset_task);
1849#else
1850 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1851 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1852 schedule_work(&cp->reset_task);
1853#endif
1854 return 1;
1855}
1856
1857/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1858 * determining whether to do a netif_stop/wakeup
1859 */
1860#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1861#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1862static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1863 const int len)
1864{
1865 unsigned long off = addr + len;
1866
1867 if (CAS_TABORT(cp) == 1)
1868 return 0;
1869 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1870 return 0;
1871 return TX_TARGET_ABORT_LEN;
1872}
1873
1874static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1875{
1876 struct cas_tx_desc *txds;
1877 struct sk_buff **skbs;
1878 struct net_device *dev = cp->dev;
1879 int entry, count;
1880
1881 spin_lock(&cp->tx_lock[ring]);
1882 txds = cp->init_txds[ring];
1883 skbs = cp->tx_skbs[ring];
1884 entry = cp->tx_old[ring];
1885
1886 count = TX_BUFF_COUNT(ring, entry, limit);
1887 while (entry != limit) {
1888 struct sk_buff *skb = skbs[entry];
1889 dma_addr_t daddr;
1890 u32 dlen;
1891 int frag;
1892
1893 if (!skb) {
1894 /* this should never occur */
1895 entry = TX_DESC_NEXT(ring, entry);
1896 continue;
1897 }
1898
1899 /* however, we might get only a partial skb release. */
1900 count -= skb_shinfo(skb)->nr_frags +
1901 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1902 if (count < 0)
1903 break;
1904
1905 if (netif_msg_tx_done(cp))
1906 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1907 cp->dev->name, ring, entry);
1908
1909 skbs[entry] = NULL;
1910 cp->tx_tiny_use[ring][entry].nbufs = 0;
6aa20a22 1911
1f26dac3
DM
1912 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1913 struct cas_tx_desc *txd = txds + entry;
1914
1915 daddr = le64_to_cpu(txd->buffer);
1916 dlen = CAS_VAL(TX_DESC_BUFLEN,
1917 le64_to_cpu(txd->control));
1918 pci_unmap_page(cp->pdev, daddr, dlen,
1919 PCI_DMA_TODEVICE);
1920 entry = TX_DESC_NEXT(ring, entry);
1921
1922 /* tiny buffer may follow */
1923 if (cp->tx_tiny_use[ring][entry].used) {
1924 cp->tx_tiny_use[ring][entry].used = 0;
1925 entry = TX_DESC_NEXT(ring, entry);
6aa20a22 1926 }
1f26dac3
DM
1927 }
1928
1929 spin_lock(&cp->stat_lock[ring]);
1930 cp->net_stats[ring].tx_packets++;
1931 cp->net_stats[ring].tx_bytes += skb->len;
1932 spin_unlock(&cp->stat_lock[ring]);
1933 dev_kfree_skb_irq(skb);
1934 }
1935 cp->tx_old[ring] = entry;
1936
1937 /* this is wrong for multiple tx rings. the net device needs
1938 * multiple queues for this to do the right thing. we wait
1939 * for 2*packets to be available when using tiny buffers
1940 */
1941 if (netif_queue_stopped(dev) &&
1942 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1943 netif_wake_queue(dev);
1944 spin_unlock(&cp->tx_lock[ring]);
1945}
1946
1947static void cas_tx(struct net_device *dev, struct cas *cp,
1948 u32 status)
1949{
1950 int limit, ring;
1951#ifdef USE_TX_COMPWB
1952 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1953#endif
1954 if (netif_msg_intr(cp))
64af4c13
AM
1955 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1956 cp->dev->name, status, (unsigned long long)compwb);
1f26dac3
DM
1957 /* process all the rings */
1958 for (ring = 0; ring < N_TX_RINGS; ring++) {
1959#ifdef USE_TX_COMPWB
1960 /* use the completion writeback registers */
1961 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1962 CAS_VAL(TX_COMPWB_LSB, compwb);
1963 compwb = TX_COMPWB_NEXT(compwb);
1964#else
1965 limit = readl(cp->regs + REG_TX_COMPN(ring));
1966#endif
6aa20a22 1967 if (cp->tx_old[ring] != limit)
1f26dac3
DM
1968 cas_tx_ringN(cp, ring, limit);
1969 }
1970}
1971
1972
6aa20a22
JG
1973static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1974 int entry, const u64 *words,
1f26dac3
DM
1975 struct sk_buff **skbref)
1976{
1977 int dlen, hlen, len, i, alloclen;
1978 int off, swivel = RX_SWIVEL_OFF_VAL;
1979 struct cas_page *page;
1980 struct sk_buff *skb;
1981 void *addr, *crcaddr;
6aa20a22 1982 char *p;
1f26dac3
DM
1983
1984 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1985 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1986 len = hlen + dlen;
1987
6aa20a22 1988 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1f26dac3 1989 alloclen = len;
6aa20a22 1990 else
1f26dac3
DM
1991 alloclen = max(hlen, RX_COPY_MIN);
1992
1993 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
6aa20a22 1994 if (skb == NULL)
1f26dac3
DM
1995 return -1;
1996
1997 *skbref = skb;
1f26dac3
DM
1998 skb_reserve(skb, swivel);
1999
2000 p = skb->data;
2001 addr = crcaddr = NULL;
2002 if (hlen) { /* always copy header pages */
2003 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2004 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
6aa20a22 2005 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1f26dac3
DM
2006 swivel;
2007
2008 i = hlen;
2009 if (!dlen) /* attach FCS */
2010 i += cp->crc_size;
2011 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2012 PCI_DMA_FROMDEVICE);
2013 addr = cas_page_map(page->buffer);
2014 memcpy(p, addr + off, i);
2015 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2016 PCI_DMA_FROMDEVICE);
2017 cas_page_unmap(addr);
2018 RX_USED_ADD(page, 0x100);
2019 p += hlen;
2020 swivel = 0;
6aa20a22 2021 }
1f26dac3
DM
2022
2023
2024 if (alloclen < (hlen + dlen)) {
2025 skb_frag_t *frag = skb_shinfo(skb)->frags;
2026
2027 /* normal or jumbo packets. we use frags */
2028 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2029 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2030 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2031
2032 hlen = min(cp->page_size - off, dlen);
2033 if (hlen < 0) {
2034 if (netif_msg_rx_err(cp)) {
2035 printk(KERN_DEBUG "%s: rx page overflow: "
2036 "%d\n", cp->dev->name, hlen);
2037 }
2038 dev_kfree_skb_irq(skb);
2039 return -1;
2040 }
2041 i = hlen;
2042 if (i == dlen) /* attach FCS */
2043 i += cp->crc_size;
2044 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2045 PCI_DMA_FROMDEVICE);
2046
2047 /* make sure we always copy a header */
2048 swivel = 0;
2049 if (p == (char *) skb->data) { /* not split */
2050 addr = cas_page_map(page->buffer);
2051 memcpy(p, addr + off, RX_COPY_MIN);
2052 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2053 PCI_DMA_FROMDEVICE);
2054 cas_page_unmap(addr);
2055 off += RX_COPY_MIN;
2056 swivel = RX_COPY_MIN;
2057 RX_USED_ADD(page, cp->mtu_stride);
2058 } else {
2059 RX_USED_ADD(page, hlen);
2060 }
2061 skb_put(skb, alloclen);
2062
2063 skb_shinfo(skb)->nr_frags++;
2064 skb->data_len += hlen - swivel;
2065 skb->len += hlen - swivel;
2066
2067 get_page(page->buffer);
fa4f0774 2068 cas_buffer_inc(page);
1f26dac3
DM
2069 frag->page = page->buffer;
2070 frag->page_offset = off;
2071 frag->size = hlen - swivel;
6aa20a22 2072
1f26dac3
DM
2073 /* any more data? */
2074 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2075 hlen = dlen;
2076 off = 0;
2077
2078 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2079 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
6aa20a22
JG
2080 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2081 hlen + cp->crc_size,
1f26dac3
DM
2082 PCI_DMA_FROMDEVICE);
2083 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2084 hlen + cp->crc_size,
2085 PCI_DMA_FROMDEVICE);
2086
2087 skb_shinfo(skb)->nr_frags++;
2088 skb->data_len += hlen;
6aa20a22 2089 skb->len += hlen;
1f26dac3
DM
2090 frag++;
2091
2092 get_page(page->buffer);
fa4f0774 2093 cas_buffer_inc(page);
1f26dac3
DM
2094 frag->page = page->buffer;
2095 frag->page_offset = 0;
2096 frag->size = hlen;
2097 RX_USED_ADD(page, hlen + cp->crc_size);
2098 }
2099
2100 if (cp->crc_size) {
2101 addr = cas_page_map(page->buffer);
2102 crcaddr = addr + off + hlen;
2103 }
2104
2105 } else {
2106 /* copying packet */
2107 if (!dlen)
2108 goto end_copy_pkt;
2109
2110 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2111 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2112 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2113 hlen = min(cp->page_size - off, dlen);
2114 if (hlen < 0) {
2115 if (netif_msg_rx_err(cp)) {
2116 printk(KERN_DEBUG "%s: rx page overflow: "
2117 "%d\n", cp->dev->name, hlen);
2118 }
2119 dev_kfree_skb_irq(skb);
2120 return -1;
2121 }
2122 i = hlen;
2123 if (i == dlen) /* attach FCS */
2124 i += cp->crc_size;
2125 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2126 PCI_DMA_FROMDEVICE);
2127 addr = cas_page_map(page->buffer);
2128 memcpy(p, addr + off, i);
2129 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2130 PCI_DMA_FROMDEVICE);
2131 cas_page_unmap(addr);
2132 if (p == (char *) skb->data) /* not split */
2133 RX_USED_ADD(page, cp->mtu_stride);
2134 else
2135 RX_USED_ADD(page, i);
6aa20a22 2136
1f26dac3
DM
2137 /* any more data? */
2138 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2139 p += hlen;
2140 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2141 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
6aa20a22
JG
2142 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2143 dlen + cp->crc_size,
1f26dac3
DM
2144 PCI_DMA_FROMDEVICE);
2145 addr = cas_page_map(page->buffer);
2146 memcpy(p, addr, dlen + cp->crc_size);
2147 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2148 dlen + cp->crc_size,
2149 PCI_DMA_FROMDEVICE);
2150 cas_page_unmap(addr);
6aa20a22 2151 RX_USED_ADD(page, dlen + cp->crc_size);
1f26dac3
DM
2152 }
2153end_copy_pkt:
2154 if (cp->crc_size) {
2155 addr = NULL;
2156 crcaddr = skb->data + alloclen;
2157 }
2158 skb_put(skb, alloclen);
2159 }
2160
2161 i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2162 if (cp->crc_size) {
2163 /* checksum includes FCS. strip it out. */
2164 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2165 if (addr)
2166 cas_page_unmap(addr);
2167 }
2168 skb->csum = ntohs(i ^ 0xffff);
84fa7933 2169 skb->ip_summed = CHECKSUM_COMPLETE;
1f26dac3
DM
2170 skb->protocol = eth_type_trans(skb, cp->dev);
2171 return len;
2172}
2173
2174
2175/* we can handle up to 64 rx flows at a time. we do the same thing
6aa20a22 2176 * as nonreassm except that we batch up the buffers.
1f26dac3
DM
2177 * NOTE: we currently just treat each flow as a bunch of packets that
2178 * we pass up. a better way would be to coalesce the packets
2179 * into a jumbo packet. to do that, we need to do the following:
2180 * 1) the first packet will have a clean split between header and
2181 * data. save both.
2182 * 2) each time the next flow packet comes in, extend the
2183 * data length and merge the checksums.
2184 * 3) on flow release, fix up the header.
2185 * 4) make sure the higher layer doesn't care.
6aa20a22 2186 * because packets get coalesced, we shouldn't run into fragment count
1f26dac3
DM
2187 * issues.
2188 */
2189static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2190 struct sk_buff *skb)
2191{
2192 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2193 struct sk_buff_head *flow = &cp->rx_flows[flowid];
6aa20a22
JG
2194
2195 /* this is protected at a higher layer, so no need to
1f26dac3
DM
2196 * do any additional locking here. stick the buffer
2197 * at the end.
2198 */
2199 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2200 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2201 while ((skb = __skb_dequeue(flow))) {
2202 cas_skb_release(skb);
2203 }
2204 }
2205}
2206
2207/* put rx descriptor back on ring. if a buffer is in use by a higher
2208 * layer, this will need to put in a replacement.
2209 */
2210static void cas_post_page(struct cas *cp, const int ring, const int index)
2211{
2212 cas_page_t *new;
2213 int entry;
2214
2215 entry = cp->rx_old[ring];
2216
2217 new = cas_page_swap(cp, ring, index);
2218 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2219 cp->init_rxds[ring][entry].index =
6aa20a22 2220 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
1f26dac3
DM
2221 CAS_BASE(RX_INDEX_RING, ring));
2222
2223 entry = RX_DESC_ENTRY(ring, entry + 1);
2224 cp->rx_old[ring] = entry;
6aa20a22 2225
1f26dac3
DM
2226 if (entry % 4)
2227 return;
2228
2229 if (ring == 0)
2230 writel(entry, cp->regs + REG_RX_KICK);
2231 else if ((N_RX_DESC_RINGS > 1) &&
6aa20a22 2232 (cp->cas_flags & CAS_FLAG_REG_PLUS))
1f26dac3
DM
2233 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2234}
2235
2236
2237/* only when things are bad */
2238static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2239{
2240 unsigned int entry, last, count, released;
2241 int cluster;
2242 cas_page_t **page = cp->rx_pages[ring];
2243
2244 entry = cp->rx_old[ring];
2245
2246 if (netif_msg_intr(cp))
2247 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2248 cp->dev->name, ring, entry);
2249
2250 cluster = -1;
6aa20a22 2251 count = entry & 0x3;
1f26dac3
DM
2252 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2253 released = 0;
2254 while (entry != last) {
2255 /* make a new buffer if it's still in use */
fa4f0774 2256 if (cas_buffer_count(page[entry]) > 1) {
1f26dac3
DM
2257 cas_page_t *new = cas_page_dequeue(cp);
2258 if (!new) {
6aa20a22 2259 /* let the timer know that we need to
1f26dac3
DM
2260 * do this again
2261 */
2262 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2263 if (!timer_pending(&cp->link_timer))
6aa20a22 2264 mod_timer(&cp->link_timer, jiffies +
1f26dac3
DM
2265 CAS_LINK_FAST_TIMEOUT);
2266 cp->rx_old[ring] = entry;
2267 cp->rx_last[ring] = num ? num - released : 0;
2268 return -ENOMEM;
2269 }
2270 spin_lock(&cp->rx_inuse_lock);
2271 list_add(&page[entry]->list, &cp->rx_inuse_list);
2272 spin_unlock(&cp->rx_inuse_lock);
6aa20a22 2273 cp->init_rxds[ring][entry].buffer =
1f26dac3
DM
2274 cpu_to_le64(new->dma_addr);
2275 page[entry] = new;
6aa20a22 2276
1f26dac3
DM
2277 }
2278
2279 if (++count == 4) {
2280 cluster = entry;
2281 count = 0;
2282 }
2283 released++;
2284 entry = RX_DESC_ENTRY(ring, entry + 1);
2285 }
2286 cp->rx_old[ring] = entry;
2287
6aa20a22 2288 if (cluster < 0)
1f26dac3
DM
2289 return 0;
2290
2291 if (ring == 0)
2292 writel(cluster, cp->regs + REG_RX_KICK);
2293 else if ((N_RX_DESC_RINGS > 1) &&
6aa20a22 2294 (cp->cas_flags & CAS_FLAG_REG_PLUS))
1f26dac3
DM
2295 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2296 return 0;
2297}
2298
2299
2300/* process a completion ring. packets are set up in three basic ways:
2301 * small packets: should be copied header + data in single buffer.
2302 * large packets: header and data in a single buffer.
6aa20a22 2303 * split packets: header in a separate buffer from data.
1f26dac3 2304 * data may be in multiple pages. data may be > 256
6aa20a22 2305 * bytes but in a single page.
1f26dac3
DM
2306 *
2307 * NOTE: RX page posting is done in this routine as well. while there's
2308 * the capability of using multiple RX completion rings, it isn't
2309 * really worthwhile due to the fact that the page posting will
6aa20a22 2310 * force serialization on the single descriptor ring.
1f26dac3
DM
2311 */
2312static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2313{
2314 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2315 int entry, drops;
2316 int npackets = 0;
2317
2318 if (netif_msg_intr(cp))
2319 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2320 cp->dev->name, ring,
6aa20a22 2321 readl(cp->regs + REG_RX_COMP_HEAD),
1f26dac3
DM
2322 cp->rx_new[ring]);
2323
2324 entry = cp->rx_new[ring];
2325 drops = 0;
2326 while (1) {
2327 struct cas_rx_comp *rxc = rxcs + entry;
2328 struct sk_buff *skb;
2329 int type, len;
2330 u64 words[4];
2331 int i, dring;
2332
2333 words[0] = le64_to_cpu(rxc->word1);
2334 words[1] = le64_to_cpu(rxc->word2);
2335 words[2] = le64_to_cpu(rxc->word3);
2336 words[3] = le64_to_cpu(rxc->word4);
2337
2338 /* don't touch if still owned by hw */
2339 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2340 if (type == 0)
2341 break;
2342
2343 /* hw hasn't cleared the zero bit yet */
2344 if (words[3] & RX_COMP4_ZERO) {
2345 break;
2346 }
2347
2348 /* get info on the packet */
2349 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2350 spin_lock(&cp->stat_lock[ring]);
2351 cp->net_stats[ring].rx_errors++;
2352 if (words[3] & RX_COMP4_LEN_MISMATCH)
2353 cp->net_stats[ring].rx_length_errors++;
2354 if (words[3] & RX_COMP4_BAD)
2355 cp->net_stats[ring].rx_crc_errors++;
2356 spin_unlock(&cp->stat_lock[ring]);
2357
2358 /* We'll just return it to Cassini. */
2359 drop_it:
2360 spin_lock(&cp->stat_lock[ring]);
2361 ++cp->net_stats[ring].rx_dropped;
2362 spin_unlock(&cp->stat_lock[ring]);
2363 goto next;
2364 }
2365
2366 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2367 if (len < 0) {
2368 ++drops;
2369 goto drop_it;
2370 }
2371
2372 /* see if it's a flow re-assembly or not. the driver
2373 * itself handles release back up.
2374 */
2375 if (RX_DONT_BATCH || (type == 0x2)) {
2376 /* non-reassm: these always get released */
6aa20a22 2377 cas_skb_release(skb);
1f26dac3
DM
2378 } else {
2379 cas_rx_flow_pkt(cp, words, skb);
2380 }
2381
2382 spin_lock(&cp->stat_lock[ring]);
2383 cp->net_stats[ring].rx_packets++;
2384 cp->net_stats[ring].rx_bytes += len;
2385 spin_unlock(&cp->stat_lock[ring]);
2386 cp->dev->last_rx = jiffies;
2387
2388 next:
2389 npackets++;
2390
2391 /* should it be released? */
2392 if (words[0] & RX_COMP1_RELEASE_HDR) {
2393 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2394 dring = CAS_VAL(RX_INDEX_RING, i);
2395 i = CAS_VAL(RX_INDEX_NUM, i);
2396 cas_post_page(cp, dring, i);
2397 }
6aa20a22 2398
1f26dac3
DM
2399 if (words[0] & RX_COMP1_RELEASE_DATA) {
2400 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2401 dring = CAS_VAL(RX_INDEX_RING, i);
2402 i = CAS_VAL(RX_INDEX_NUM, i);
2403 cas_post_page(cp, dring, i);
2404 }
2405
2406 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2407 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2408 dring = CAS_VAL(RX_INDEX_RING, i);
2409 i = CAS_VAL(RX_INDEX_NUM, i);
2410 cas_post_page(cp, dring, i);
2411 }
2412
2413 /* skip to the next entry */
6aa20a22 2414 entry = RX_COMP_ENTRY(ring, entry + 1 +
1f26dac3
DM
2415 CAS_VAL(RX_COMP1_SKIP, words[0]));
2416#ifdef USE_NAPI
2417 if (budget && (npackets >= budget))
2418 break;
2419#endif
2420 }
2421 cp->rx_new[ring] = entry;
2422
2423 if (drops)
2424 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2425 cp->dev->name);
2426 return npackets;
2427}
2428
2429
2430/* put completion entries back on the ring */
2431static void cas_post_rxcs_ringN(struct net_device *dev,
2432 struct cas *cp, int ring)
2433{
2434 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2435 int last, entry;
2436
2437 last = cp->rx_cur[ring];
6aa20a22 2438 entry = cp->rx_new[ring];
1f26dac3
DM
2439 if (netif_msg_intr(cp))
2440 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2441 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2442 entry);
6aa20a22 2443
1f26dac3
DM
2444 /* zero and re-mark descriptors */
2445 while (last != entry) {
2446 cas_rxc_init(rxc + last);
2447 last = RX_COMP_ENTRY(ring, last + 1);
2448 }
2449 cp->rx_cur[ring] = last;
2450
2451 if (ring == 0)
2452 writel(last, cp->regs + REG_RX_COMP_TAIL);
6aa20a22 2453 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
1f26dac3
DM
2454 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2455}
2456
2457
2458
6aa20a22 2459/* cassini can use all four PCI interrupts for the completion ring.
1f26dac3
DM
2460 * rings 3 and 4 are identical
2461 */
2462#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
6aa20a22 2463static inline void cas_handle_irqN(struct net_device *dev,
1f26dac3
DM
2464 struct cas *cp, const u32 status,
2465 const int ring)
2466{
6aa20a22 2467 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
1f26dac3
DM
2468 cas_post_rxcs_ringN(dev, cp, ring);
2469}
2470
7d12e780 2471static irqreturn_t cas_interruptN(int irq, void *dev_id)
1f26dac3
DM
2472{
2473 struct net_device *dev = dev_id;
2474 struct cas *cp = netdev_priv(dev);
2475 unsigned long flags;
2476 int ring;
2477 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2478
2479 /* check for shared irq */
2480 if (status == 0)
2481 return IRQ_NONE;
2482
2483 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2484 spin_lock_irqsave(&cp->lock, flags);
2485 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2486#ifdef USE_NAPI
2487 cas_mask_intr(cp);
bea3348e 2488 netif_rx_schedule(dev, &cp->napi);
1f26dac3
DM
2489#else
2490 cas_rx_ringN(cp, ring, 0);
2491#endif
2492 status &= ~INTR_RX_DONE_ALT;
2493 }
2494
2495 if (status)
2496 cas_handle_irqN(dev, cp, status, ring);
2497 spin_unlock_irqrestore(&cp->lock, flags);
2498 return IRQ_HANDLED;
2499}
2500#endif
2501
2502#ifdef USE_PCI_INTB
2503/* everything but rx packets */
2504static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2505{
2506 if (status & INTR_RX_BUF_UNAVAIL_1) {
6aa20a22 2507 /* Frame arrived, no free RX buffers available.
1f26dac3
DM
2508 * NOTE: we can get this on a link transition. */
2509 cas_post_rxds_ringN(cp, 1, 0);
2510 spin_lock(&cp->stat_lock[1]);
2511 cp->net_stats[1].rx_dropped++;
2512 spin_unlock(&cp->stat_lock[1]);
2513 }
2514
6aa20a22
JG
2515 if (status & INTR_RX_BUF_AE_1)
2516 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
1f26dac3
DM
2517 RX_AE_FREEN_VAL(1));
2518
2519 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2520 cas_post_rxcs_ringN(cp, 1);
2521}
2522
2523/* ring 2 handles a few more events than 3 and 4 */
7d12e780 2524static irqreturn_t cas_interrupt1(int irq, void *dev_id)
1f26dac3
DM
2525{
2526 struct net_device *dev = dev_id;
2527 struct cas *cp = netdev_priv(dev);
2528 unsigned long flags;
2529 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2530
2531 /* check for shared interrupt */
2532 if (status == 0)
2533 return IRQ_NONE;
2534
2535 spin_lock_irqsave(&cp->lock, flags);
2536 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2537#ifdef USE_NAPI
2538 cas_mask_intr(cp);
bea3348e 2539 netif_rx_schedule(dev, &cp->napi);
1f26dac3
DM
2540#else
2541 cas_rx_ringN(cp, 1, 0);
2542#endif
2543 status &= ~INTR_RX_DONE_ALT;
2544 }
2545 if (status)
2546 cas_handle_irq1(cp, status);
2547 spin_unlock_irqrestore(&cp->lock, flags);
2548 return IRQ_HANDLED;
2549}
2550#endif
2551
2552static inline void cas_handle_irq(struct net_device *dev,
2553 struct cas *cp, const u32 status)
2554{
2555 /* housekeeping interrupts */
2556 if (status & INTR_ERROR_MASK)
2557 cas_abnormal_irq(dev, cp, status);
2558
2559 if (status & INTR_RX_BUF_UNAVAIL) {
6aa20a22 2560 /* Frame arrived, no free RX buffers available.
1f26dac3
DM
2561 * NOTE: we can get this on a link transition.
2562 */
2563 cas_post_rxds_ringN(cp, 0, 0);
2564 spin_lock(&cp->stat_lock[0]);
2565 cp->net_stats[0].rx_dropped++;
2566 spin_unlock(&cp->stat_lock[0]);
2567 } else if (status & INTR_RX_BUF_AE) {
2568 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2569 RX_AE_FREEN_VAL(0));
2570 }
2571
2572 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2573 cas_post_rxcs_ringN(dev, cp, 0);
2574}
2575
7d12e780 2576static irqreturn_t cas_interrupt(int irq, void *dev_id)
1f26dac3
DM
2577{
2578 struct net_device *dev = dev_id;
2579 struct cas *cp = netdev_priv(dev);
2580 unsigned long flags;
2581 u32 status = readl(cp->regs + REG_INTR_STATUS);
2582
2583 if (status == 0)
2584 return IRQ_NONE;
2585
2586 spin_lock_irqsave(&cp->lock, flags);
2587 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2588 cas_tx(dev, cp, status);
2589 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2590 }
2591
2592 if (status & INTR_RX_DONE) {
2593#ifdef USE_NAPI
2594 cas_mask_intr(cp);
bea3348e 2595 netif_rx_schedule(dev, &cp->napi);
1f26dac3
DM
2596#else
2597 cas_rx_ringN(cp, 0, 0);
2598#endif
2599 status &= ~INTR_RX_DONE;
2600 }
2601
2602 if (status)
2603 cas_handle_irq(dev, cp, status);
2604 spin_unlock_irqrestore(&cp->lock, flags);
2605 return IRQ_HANDLED;
2606}
2607
2608
2609#ifdef USE_NAPI
bea3348e 2610static int cas_poll(struct napi_struct *napi, int budget)
1f26dac3 2611{
bea3348e
SH
2612 struct cas *cp = container_of(napi, struct cas, napi);
2613 struct net_device *dev = cp->dev;
1f26dac3
DM
2614 int i, enable_intr, todo, credits;
2615 u32 status = readl(cp->regs + REG_INTR_STATUS);
2616 unsigned long flags;
2617
2618 spin_lock_irqsave(&cp->lock, flags);
2619 cas_tx(dev, cp, status);
2620 spin_unlock_irqrestore(&cp->lock, flags);
2621
2622 /* NAPI rx packets. we spread the credits across all of the
2623 * rxc rings
bea3348e
SH
2624 *
2625 * to make sure we're fair with the work we loop through each
6aa20a22 2626 * ring N_RX_COMP_RING times with a request of
bea3348e 2627 * budget / N_RX_COMP_RINGS
1f26dac3
DM
2628 */
2629 enable_intr = 1;
2630 credits = 0;
2631 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2632 int j;
2633 for (j = 0; j < N_RX_COMP_RINGS; j++) {
bea3348e
SH
2634 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2635 if (credits >= budget) {
1f26dac3
DM
2636 enable_intr = 0;
2637 goto rx_comp;
2638 }
2639 }
2640 }
2641
2642rx_comp:
1f26dac3
DM
2643 /* final rx completion */
2644 spin_lock_irqsave(&cp->lock, flags);
2645 if (status)
2646 cas_handle_irq(dev, cp, status);
2647
2648#ifdef USE_PCI_INTB
2649 if (N_RX_COMP_RINGS > 1) {
2650 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2651 if (status)
2652 cas_handle_irq1(dev, cp, status);
2653 }
2654#endif
2655
2656#ifdef USE_PCI_INTC
2657 if (N_RX_COMP_RINGS > 2) {
2658 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2659 if (status)
2660 cas_handle_irqN(dev, cp, status, 2);
2661 }
2662#endif
2663
2664#ifdef USE_PCI_INTD
2665 if (N_RX_COMP_RINGS > 3) {
2666 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2667 if (status)
2668 cas_handle_irqN(dev, cp, status, 3);
2669 }
2670#endif
2671 spin_unlock_irqrestore(&cp->lock, flags);
2672 if (enable_intr) {
bea3348e 2673 netif_rx_complete(dev, napi);
1f26dac3 2674 cas_unmask_intr(cp);
1f26dac3 2675 }
bea3348e 2676 return credits;
1f26dac3
DM
2677}
2678#endif
2679
2680#ifdef CONFIG_NET_POLL_CONTROLLER
2681static void cas_netpoll(struct net_device *dev)
2682{
2683 struct cas *cp = netdev_priv(dev);
2684
2685 cas_disable_irq(cp, 0);
7d12e780 2686 cas_interrupt(cp->pdev->irq, dev);
1f26dac3
DM
2687 cas_enable_irq(cp, 0);
2688
2689#ifdef USE_PCI_INTB
2690 if (N_RX_COMP_RINGS > 1) {
2691 /* cas_interrupt1(); */
2692 }
2693#endif
2694#ifdef USE_PCI_INTC
2695 if (N_RX_COMP_RINGS > 2) {
2696 /* cas_interruptN(); */
2697 }
2698#endif
2699#ifdef USE_PCI_INTD
2700 if (N_RX_COMP_RINGS > 3) {
2701 /* cas_interruptN(); */
2702 }
2703#endif
2704}
2705#endif
2706
2707static void cas_tx_timeout(struct net_device *dev)
2708{
2709 struct cas *cp = netdev_priv(dev);
2710
2711 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2712 if (!cp->hw_running) {
2713 printk("%s: hrm.. hw not running!\n", dev->name);
2714 return;
2715 }
2716
2717 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2718 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2719
2720 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2721 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2722
2723 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2724 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2725 dev->name,
2726 readl(cp->regs + REG_TX_CFG),
2727 readl(cp->regs + REG_MAC_TX_STATUS),
2728 readl(cp->regs + REG_MAC_TX_CFG),
2729 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2730 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2731 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2732 readl(cp->regs + REG_TX_SM_1),
2733 readl(cp->regs + REG_TX_SM_2));
2734
2735 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2736 dev->name,
2737 readl(cp->regs + REG_RX_CFG),
2738 readl(cp->regs + REG_MAC_RX_STATUS),
2739 readl(cp->regs + REG_MAC_RX_CFG));
2740
2741 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2742 dev->name,
2743 readl(cp->regs + REG_HP_STATE_MACHINE),
2744 readl(cp->regs + REG_HP_STATUS0),
2745 readl(cp->regs + REG_HP_STATUS1),
2746 readl(cp->regs + REG_HP_STATUS2));
2747
2748#if 1
2749 atomic_inc(&cp->reset_task_pending);
2750 atomic_inc(&cp->reset_task_pending_all);
2751 schedule_work(&cp->reset_task);
2752#else
2753 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2754 schedule_work(&cp->reset_task);
2755#endif
2756}
2757
2758static inline int cas_intme(int ring, int entry)
2759{
2760 /* Algorithm: IRQ every 1/2 of descriptors. */
2761 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2762 return 1;
2763 return 0;
2764}
2765
2766
2767static void cas_write_txd(struct cas *cp, int ring, int entry,
2768 dma_addr_t mapping, int len, u64 ctrl, int last)
2769{
2770 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2771
2772 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2773 if (cas_intme(ring, entry))
2774 ctrl |= TX_DESC_INTME;
2775 if (last)
2776 ctrl |= TX_DESC_EOF;
2777 txd->control = cpu_to_le64(ctrl);
2778 txd->buffer = cpu_to_le64(mapping);
2779}
2780
6aa20a22 2781static inline void *tx_tiny_buf(struct cas *cp, const int ring,
1f26dac3
DM
2782 const int entry)
2783{
2784 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2785}
2786
6aa20a22 2787static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
1f26dac3
DM
2788 const int entry, const int tentry)
2789{
2790 cp->tx_tiny_use[ring][tentry].nbufs++;
2791 cp->tx_tiny_use[ring][entry].used = 1;
2792 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2793}
2794
6aa20a22 2795static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
1f26dac3
DM
2796 struct sk_buff *skb)
2797{
2798 struct net_device *dev = cp->dev;
2799 int entry, nr_frags, frag, tabort, tentry;
2800 dma_addr_t mapping;
2801 unsigned long flags;
2802 u64 ctrl;
2803 u32 len;
2804
2805 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2806
2807 /* This is a hard error, log it. */
6aa20a22 2808 if (TX_BUFFS_AVAIL(cp, ring) <=
1f26dac3
DM
2809 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2810 netif_stop_queue(dev);
2811 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2812 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2813 "queue awake!\n", dev->name);
2814 return 1;
2815 }
2816
2817 ctrl = 0;
84fa7933 2818 if (skb->ip_summed == CHECKSUM_PARTIAL) {
ea2ae17d
ACM
2819 const u64 csum_start_off = skb_transport_offset(skb);
2820 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1f26dac3 2821
6aa20a22 2822 ctrl = TX_DESC_CSUM_EN |
1f26dac3
DM
2823 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2824 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2825 }
2826
2827 entry = cp->tx_new[ring];
2828 cp->tx_skbs[ring][entry] = skb;
2829
2830 nr_frags = skb_shinfo(skb)->nr_frags;
2831 len = skb_headlen(skb);
2832 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2833 offset_in_page(skb->data), len,
2834 PCI_DMA_TODEVICE);
2835
2836 tentry = entry;
2837 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2838 if (unlikely(tabort)) {
2839 /* NOTE: len is always > tabort */
6aa20a22 2840 cas_write_txd(cp, ring, entry, mapping, len - tabort,
1f26dac3
DM
2841 ctrl | TX_DESC_SOF, 0);
2842 entry = TX_DESC_NEXT(ring, entry);
2843
d626f62b
ACM
2844 skb_copy_from_linear_data_offset(skb, len - tabort,
2845 tx_tiny_buf(cp, ring, entry), tabort);
1f26dac3
DM
2846 mapping = tx_tiny_map(cp, ring, entry, tentry);
2847 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2848 (nr_frags == 0));
2849 } else {
6aa20a22 2850 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
1f26dac3
DM
2851 TX_DESC_SOF, (nr_frags == 0));
2852 }
2853 entry = TX_DESC_NEXT(ring, entry);
2854
2855 for (frag = 0; frag < nr_frags; frag++) {
2856 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2857
2858 len = fragp->size;
2859 mapping = pci_map_page(cp->pdev, fragp->page,
2860 fragp->page_offset, len,
2861 PCI_DMA_TODEVICE);
2862
2863 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2864 if (unlikely(tabort)) {
2865 void *addr;
2866
2867 /* NOTE: len is always > tabort */
2868 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2869 ctrl, 0);
2870 entry = TX_DESC_NEXT(ring, entry);
6aa20a22 2871
1f26dac3
DM
2872 addr = cas_page_map(fragp->page);
2873 memcpy(tx_tiny_buf(cp, ring, entry),
6aa20a22 2874 addr + fragp->page_offset + len - tabort,
1f26dac3
DM
2875 tabort);
2876 cas_page_unmap(addr);
2877 mapping = tx_tiny_map(cp, ring, entry, tentry);
2878 len = tabort;
2879 }
2880
2881 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2882 (frag + 1 == nr_frags));
2883 entry = TX_DESC_NEXT(ring, entry);
2884 }
2885
2886 cp->tx_new[ring] = entry;
2887 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2888 netif_stop_queue(dev);
2889
2890 if (netif_msg_tx_queued(cp))
2891 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2892 "avail %d\n",
6aa20a22 2893 dev->name, ring, entry, skb->len,
1f26dac3
DM
2894 TX_BUFFS_AVAIL(cp, ring));
2895 writel(entry, cp->regs + REG_TX_KICKN(ring));
2896 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2897 return 0;
6aa20a22 2898}
1f26dac3
DM
2899
2900static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2901{
2902 struct cas *cp = netdev_priv(dev);
2903
2904 /* this is only used as a load-balancing hint, so it doesn't
2905 * need to be SMP safe
2906 */
6aa20a22 2907 static int ring;
1f26dac3 2908
5b057c6b 2909 if (skb_padto(skb, cp->min_frame_size))
1f26dac3
DM
2910 return 0;
2911
2912 /* XXX: we need some higher-level QoS hooks to steer packets to
2913 * individual queues.
2914 */
2915 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2916 return 1;
2917 dev->trans_start = jiffies;
2918 return 0;
2919}
2920
2921static void cas_init_tx_dma(struct cas *cp)
2922{
2923 u64 desc_dma = cp->block_dvma;
2924 unsigned long off;
2925 u32 val;
2926 int i;
2927
2928 /* set up tx completion writeback registers. must be 8-byte aligned */
2929#ifdef USE_TX_COMPWB
2930 off = offsetof(struct cas_init_block, tx_compwb);
2931 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2932 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2933#endif
2934
2935 /* enable completion writebacks, enable paced mode,
2936 * disable read pipe, and disable pre-interrupt compwbs
2937 */
6aa20a22 2938 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
1f26dac3 2939 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
6aa20a22 2940 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
1f26dac3
DM
2941 TX_CFG_INTR_COMPWB_DIS;
2942
2943 /* write out tx ring info and tx desc bases */
2944 for (i = 0; i < MAX_TX_RINGS; i++) {
6aa20a22 2945 off = (unsigned long) cp->init_txds[i] -
1f26dac3
DM
2946 (unsigned long) cp->init_block;
2947
2948 val |= CAS_TX_RINGN_BASE(i);
2949 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2950 writel((desc_dma + off) & 0xffffffff, cp->regs +
2951 REG_TX_DBN_LOW(i));
2952 /* don't zero out the kick register here as the system
2953 * will wedge
2954 */
2955 }
2956 writel(val, cp->regs + REG_TX_CFG);
2957
2958 /* program max burst sizes. these numbers should be different
2959 * if doing QoS.
2960 */
2961#ifdef USE_QOS
2962 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2963 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2964 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2965 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2966#else
2967 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2968 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2969 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2970 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2971#endif
2972}
2973
2974/* Must be invoked under cp->lock. */
2975static inline void cas_init_dma(struct cas *cp)
2976{
2977 cas_init_tx_dma(cp);
2978 cas_init_rx_dma(cp);
2979}
2980
2981/* Must be invoked under cp->lock. */
2982static u32 cas_setup_multicast(struct cas *cp)
2983{
2984 u32 rxcfg = 0;
2985 int i;
6aa20a22 2986
1f26dac3
DM
2987 if (cp->dev->flags & IFF_PROMISC) {
2988 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2989
2990 } else if (cp->dev->flags & IFF_ALLMULTI) {
2991 for (i=0; i < 16; i++)
2992 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2993 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2994
2995 } else {
2996 u16 hash_table[16];
2997 u32 crc;
2998 struct dev_mc_list *dmi = cp->dev->mc_list;
2999 int i;
3000
3001 /* use the alternate mac address registers for the
3002 * first 15 multicast addresses
3003 */
3004 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3005 if (!dmi) {
3006 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3007 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3008 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3009 continue;
3010 }
6aa20a22 3011 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
1f26dac3 3012 cp->regs + REG_MAC_ADDRN(i*3 + 0));
6aa20a22 3013 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
1f26dac3 3014 cp->regs + REG_MAC_ADDRN(i*3 + 1));
6aa20a22 3015 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
1f26dac3
DM
3016 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3017 dmi = dmi->next;
3018 }
3019
6aa20a22 3020 /* use hw hash table for the next series of
1f26dac3
DM
3021 * multicast addresses
3022 */
3023 memset(hash_table, 0, sizeof(hash_table));
3024 while (dmi) {
3025 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3026 crc >>= 24;
3027 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3028 dmi = dmi->next;
3029 }
3030 for (i=0; i < 16; i++)
6aa20a22 3031 writel(hash_table[i], cp->regs +
1f26dac3
DM
3032 REG_MAC_HASH_TABLEN(i));
3033 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3034 }
3035
3036 return rxcfg;
3037}
3038
3039/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3040static void cas_clear_mac_err(struct cas *cp)
3041{
3042 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3043 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3044 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3045 writel(0, cp->regs + REG_MAC_COLL_LATE);
3046 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3047 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3048 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3049 writel(0, cp->regs + REG_MAC_LEN_ERR);
3050 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3051 writel(0, cp->regs + REG_MAC_FCS_ERR);
3052 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3053}
3054
3055
3056static void cas_mac_reset(struct cas *cp)
3057{
3058 int i;
3059
3060 /* do both TX and RX reset */
3061 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3062 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3063
3064 /* wait for TX */
3065 i = STOP_TRIES;
3066 while (i-- > 0) {
3067 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3068 break;
3069 udelay(10);
3070 }
3071
3072 /* wait for RX */
3073 i = STOP_TRIES;
3074 while (i-- > 0) {
3075 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3076 break;
3077 udelay(10);
3078 }
3079
3080 if (readl(cp->regs + REG_MAC_TX_RESET) |
3081 readl(cp->regs + REG_MAC_RX_RESET))
3082 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3083 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3084 readl(cp->regs + REG_MAC_RX_RESET),
3085 readl(cp->regs + REG_MAC_STATE_MACHINE));
3086}
3087
3088
3089/* Must be invoked under cp->lock. */
3090static void cas_init_mac(struct cas *cp)
3091{
3092 unsigned char *e = &cp->dev->dev_addr[0];
3093 int i;
3094#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3095 u32 rxcfg;
3096#endif
3097 cas_mac_reset(cp);
3098
3099 /* setup core arbitration weight register */
3100 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3101
3102 /* XXX Use pci_dma_burst_advice() */
3103#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3104 /* set the infinite burst register for chips that don't have
3105 * pci issues.
3106 */
3107 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3108 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3109#endif
3110
3111 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3112
3113 writel(0x00, cp->regs + REG_MAC_IPG0);
3114 writel(0x08, cp->regs + REG_MAC_IPG1);
3115 writel(0x04, cp->regs + REG_MAC_IPG2);
6aa20a22 3116
1f26dac3 3117 /* change later for 802.3z */
6aa20a22 3118 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
1f26dac3
DM
3119
3120 /* min frame + FCS */
3121 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3122
3123 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
6aa20a22 3124 * specify the maximum frame size to prevent RX tag errors on
1f26dac3
DM
3125 * oversized frames.
3126 */
3127 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
6aa20a22
JG
3128 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3129 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
1f26dac3
DM
3130 cp->regs + REG_MAC_FRAMESIZE_MAX);
3131
6aa20a22 3132 /* NOTE: crc_size is used as a surrogate for half-duplex.
1f26dac3
DM
3133 * workaround saturn half-duplex issue by increasing preamble
3134 * size to 65 bytes.
3135 */
3136 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3137 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3138 else
3139 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3140 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3141 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3142 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3143
3144 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3145
3146 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3147 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3148 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3149 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3150 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3151
3152 /* setup mac address in perfect filter array */
3153 for (i = 0; i < 45; i++)
3154 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3155
3156 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3157 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3158 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3159
3160 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3161 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3162 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3163
3164#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3165 cp->mac_rx_cfg = cas_setup_multicast(cp);
3166#else
3167 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3168 * a writel does not seem to be necessary because Cassini
3169 * seems to preserve the configuration when we do the reset.
3170 * If the chip is in trouble, though, it is not clear if we
3171 * can really count on this behavior. cas_set_multicast uses
3172 * spin_lock_irqsave, but we are called only in cas_init_hw and
3173 * cas_init_hw is protected by cas_lock_all, which calls
3174 * spin_lock_irq (so it doesn't need to save the flags, and
6aa20a22 3175 * we should be OK for the writel, as that is the only
1f26dac3
DM
3176 * difference).
3177 */
3178 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3179 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3180#endif
3181 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3182 cas_clear_mac_err(cp);
3183 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3184
3185 /* Setup MAC interrupts. We want to get all of the interesting
3186 * counter expiration events, but we do not want to hear about
3187 * normal rx/tx as the DMA engine tells us that.
3188 */
3189 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3190 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3191
3192 /* Don't enable even the PAUSE interrupts for now, we
3193 * make no use of those events other than to record them.
3194 */
3195 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3196}
3197
3198/* Must be invoked under cp->lock. */
3199static void cas_init_pause_thresholds(struct cas *cp)
3200{
3201 /* Calculate pause thresholds. Setting the OFF threshold to the
3202 * full RX fifo size effectively disables PAUSE generation
3203 */
3204 if (cp->rx_fifo_size <= (2 * 1024)) {
3205 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3206 } else {
3207 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3208 if (max_frame * 3 > cp->rx_fifo_size) {
3209 cp->rx_pause_off = 7104;
3210 cp->rx_pause_on = 960;
3211 } else {
3212 int off = (cp->rx_fifo_size - (max_frame * 2));
3213 int on = off - max_frame;
3214 cp->rx_pause_off = off;
3215 cp->rx_pause_on = on;
3216 }
3217 }
3218}
3219
3220static int cas_vpd_match(const void __iomem *p, const char *str)
3221{
3222 int len = strlen(str) + 1;
3223 int i;
6aa20a22 3224
1f26dac3
DM
3225 for (i = 0; i < len; i++) {
3226 if (readb(p + i) != str[i])
3227 return 0;
3228 }
3229 return 1;
3230}
3231
3232
3233/* get the mac address by reading the vpd information in the rom.
3234 * also get the phy type and determine if there's an entropy generator.
3235 * NOTE: this is a bit convoluted for the following reasons:
3236 * 1) vpd info has order-dependent mac addresses for multinic cards
3237 * 2) the only way to determine the nic order is to use the slot
3238 * number.
3239 * 3) fiber cards don't have bridges, so their slot numbers don't
3240 * mean anything.
6aa20a22 3241 * 4) we don't actually know we have a fiber card until after
1f26dac3
DM
3242 * the mac addresses are parsed.
3243 */
3244static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3245 const int offset)
3246{
3247 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3248 void __iomem *base, *kstart;
3249 int i, len;
3250 int found = 0;
3251#define VPD_FOUND_MAC 0x01
3252#define VPD_FOUND_PHY 0x02
3253
3254 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3255 int mac_off = 0;
3256
3257 /* give us access to the PROM */
3258 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3259 cp->regs + REG_BIM_LOCAL_DEV_EN);
3260
3261 /* check for an expansion rom */
3262 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3263 goto use_random_mac_addr;
3264
3265 /* search for beginning of vpd */
46d7031e 3266 base = NULL;
1f26dac3
DM
3267 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3268 /* check for PCIR */
3269 if ((readb(p + i + 0) == 0x50) &&
3270 (readb(p + i + 1) == 0x43) &&
3271 (readb(p + i + 2) == 0x49) &&
3272 (readb(p + i + 3) == 0x52)) {
6aa20a22 3273 base = p + (readb(p + i + 8) |
1f26dac3
DM
3274 (readb(p + i + 9) << 8));
3275 break;
6aa20a22 3276 }
1f26dac3
DM
3277 }
3278
3279 if (!base || (readb(base) != 0x82))
3280 goto use_random_mac_addr;
6aa20a22 3281
1f26dac3
DM
3282 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3283 while (i < EXPANSION_ROM_SIZE) {
3284 if (readb(base + i) != 0x90) /* no vpd found */
3285 goto use_random_mac_addr;
3286
3287 /* found a vpd field */
3288 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3289
3290 /* extract keywords */
3291 kstart = base + i + 3;
3292 p = kstart;
3293 while ((p - kstart) < len) {
3294 int klen = readb(p + 2);
3295 int j;
3296 char type;
3297
3298 p += 3;
6aa20a22 3299
1f26dac3
DM
3300 /* look for the following things:
3301 * -- correct length == 29
6aa20a22
JG
3302 * 3 (type) + 2 (size) +
3303 * 18 (strlen("local-mac-address") + 1) +
3304 * 6 (mac addr)
1f26dac3
DM
3305 * -- VPD Instance 'I'
3306 * -- VPD Type Bytes 'B'
3307 * -- VPD data length == 6
3308 * -- property string == local-mac-address
6aa20a22 3309 *
1f26dac3 3310 * -- correct length == 24
6aa20a22
JG
3311 * 3 (type) + 2 (size) +
3312 * 12 (strlen("entropy-dev") + 1) +
1f26dac3
DM
3313 * 7 (strlen("vms110") + 1)
3314 * -- VPD Instance 'I'
3315 * -- VPD Type String 'B'
3316 * -- VPD data length == 7
3317 * -- property string == entropy-dev
3318 *
3319 * -- correct length == 18
6aa20a22
JG
3320 * 3 (type) + 2 (size) +
3321 * 9 (strlen("phy-type") + 1) +
1f26dac3
DM
3322 * 4 (strlen("pcs") + 1)
3323 * -- VPD Instance 'I'
3324 * -- VPD Type String 'S'
3325 * -- VPD data length == 4
3326 * -- property string == phy-type
6aa20a22 3327 *
1f26dac3 3328 * -- correct length == 23
6aa20a22
JG
3329 * 3 (type) + 2 (size) +
3330 * 14 (strlen("phy-interface") + 1) +
1f26dac3
DM
3331 * 4 (strlen("pcs") + 1)
3332 * -- VPD Instance 'I'
3333 * -- VPD Type String 'S'
3334 * -- VPD data length == 4
3335 * -- property string == phy-interface
3336 */
3337 if (readb(p) != 'I')
3338 goto next;
3339
3340 /* finally, check string and length */
3341 type = readb(p + 3);
3342 if (type == 'B') {
3343 if ((klen == 29) && readb(p + 4) == 6 &&
6aa20a22 3344 cas_vpd_match(p + 5,
1f26dac3 3345 "local-mac-address")) {
6aa20a22 3346 if (mac_off++ > offset)
1f26dac3
DM
3347 goto next;
3348
3349 /* set mac address */
6aa20a22
JG
3350 for (j = 0; j < 6; j++)
3351 dev_addr[j] =
1f26dac3
DM
3352 readb(p + 23 + j);
3353 goto found_mac;
3354 }
3355 }
3356
3357 if (type != 'S')
3358 goto next;
3359
3360#ifdef USE_ENTROPY_DEV
6aa20a22 3361 if ((klen == 24) &&
1f26dac3
DM
3362 cas_vpd_match(p + 5, "entropy-dev") &&
3363 cas_vpd_match(p + 17, "vms110")) {
3364 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3365 goto next;
3366 }
3367#endif
3368
3369 if (found & VPD_FOUND_PHY)
3370 goto next;
3371
3372 if ((klen == 18) && readb(p + 4) == 4 &&
3373 cas_vpd_match(p + 5, "phy-type")) {
3374 if (cas_vpd_match(p + 14, "pcs")) {
3375 phy_type = CAS_PHY_SERDES;
3376 goto found_phy;
3377 }
3378 }
6aa20a22 3379
1f26dac3
DM
3380 if ((klen == 23) && readb(p + 4) == 4 &&
3381 cas_vpd_match(p + 5, "phy-interface")) {
3382 if (cas_vpd_match(p + 19, "pcs")) {
3383 phy_type = CAS_PHY_SERDES;
3384 goto found_phy;
3385 }
3386 }
3387found_mac:
3388 found |= VPD_FOUND_MAC;
3389 goto next;
3390
3391found_phy:
3392 found |= VPD_FOUND_PHY;
3393
3394next:
3395 p += klen;
3396 }
3397 i += len + 3;
3398 }
3399
3400use_random_mac_addr:
3401 if (found & VPD_FOUND_MAC)
3402 goto done;
3403
3404 /* Sun MAC prefix then 3 random bytes. */
3405 printk(PFX "MAC address not found in ROM VPD\n");
3406 dev_addr[0] = 0x08;
3407 dev_addr[1] = 0x00;
3408 dev_addr[2] = 0x20;
3409 get_random_bytes(dev_addr + 3, 3);
3410
3411done:
3412 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3413 return phy_type;
3414}
3415
3416/* check pci invariants */
3417static void cas_check_pci_invariants(struct cas *cp)
3418{
3419 struct pci_dev *pdev = cp->pdev;
1f26dac3
DM
3420
3421 cp->cas_flags = 0;
1f26dac3
DM
3422 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3423 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
44c10138 3424 if (pdev->revision >= CAS_ID_REVPLUS)
1f26dac3 3425 cp->cas_flags |= CAS_FLAG_REG_PLUS;
44c10138 3426 if (pdev->revision < CAS_ID_REVPLUS02u)
1f26dac3
DM
3427 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3428
3429 /* Original Cassini supports HW CSUM, but it's not
3430 * enabled by default as it can trigger TX hangs.
3431 */
44c10138 3432 if (pdev->revision < CAS_ID_REV2)
1f26dac3
DM
3433 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3434 } else {
3435 /* Only sun has original cassini chips. */
3436 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3437
3438 /* We use a flag because the same phy might be externally
3439 * connected.
3440 */
3441 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3442 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3443 cp->cas_flags |= CAS_FLAG_SATURN;
3444 }
3445}
3446
3447
3448static int cas_check_invariants(struct cas *cp)
3449{
3450 struct pci_dev *pdev = cp->pdev;
3451 u32 cfg;
3452 int i;
3453
3454 /* get page size for rx buffers. */
6aa20a22 3455 cp->page_order = 0;
1f26dac3
DM
3456#ifdef USE_PAGE_ORDER
3457 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3458 /* see if we can allocate larger pages */
6aa20a22
JG
3459 struct page *page = alloc_pages(GFP_ATOMIC,
3460 CAS_JUMBO_PAGE_SHIFT -
1f26dac3
DM
3461 PAGE_SHIFT);
3462 if (page) {
3463 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3464 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3465 } else {
3466 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3467 }
3468 }
3469#endif
3470 cp->page_size = (PAGE_SIZE << cp->page_order);
3471
3472 /* Fetch the FIFO configurations. */
3473 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3474 cp->rx_fifo_size = RX_FIFO_SIZE;
3475
6aa20a22 3476 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
1f26dac3
DM
3477 * they're both connected.
3478 */
6aa20a22 3479 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
1f26dac3
DM
3480 PCI_SLOT(pdev->devfn));
3481 if (cp->phy_type & CAS_PHY_SERDES) {
3482 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3483 return 0; /* no more checking needed */
6aa20a22 3484 }
1f26dac3
DM
3485
3486 /* MII */
3487 cfg = readl(cp->regs + REG_MIF_CFG);
3488 if (cfg & MIF_CFG_MDIO_1) {
3489 cp->phy_type = CAS_PHY_MII_MDIO1;
3490 } else if (cfg & MIF_CFG_MDIO_0) {
3491 cp->phy_type = CAS_PHY_MII_MDIO0;
3492 }
3493
3494 cas_mif_poll(cp, 0);
3495 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3496
3497 for (i = 0; i < 32; i++) {
3498 u32 phy_id;
3499 int j;
3500
3501 for (j = 0; j < 3; j++) {
3502 cp->phy_addr = i;
3503 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3504 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3505 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3506 cp->phy_id = phy_id;
3507 goto done;
3508 }
3509 }
3510 }
3511 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3512 readl(cp->regs + REG_MIF_STATE_MACHINE));
3513 return -1;
3514
3515done:
3516 /* see if we can do gigabit */
3517 cfg = cas_phy_read(cp, MII_BMSR);
6aa20a22 3518 if ((cfg & CAS_BMSR_1000_EXTEND) &&
1f26dac3
DM
3519 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3520 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3521 return 0;
3522}
3523
3524/* Must be invoked under cp->lock. */
3525static inline void cas_start_dma(struct cas *cp)
3526{
3527 int i;
3528 u32 val;
3529 int txfailed = 0;
6aa20a22 3530
1f26dac3
DM
3531 /* enable dma */
3532 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3533 writel(val, cp->regs + REG_TX_CFG);
3534 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3535 writel(val, cp->regs + REG_RX_CFG);
3536
3537 /* enable the mac */
3538 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3539 writel(val, cp->regs + REG_MAC_TX_CFG);
3540 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3541 writel(val, cp->regs + REG_MAC_RX_CFG);
3542
3543 i = STOP_TRIES;
3544 while (i-- > 0) {
3545 val = readl(cp->regs + REG_MAC_TX_CFG);
3546 if ((val & MAC_TX_CFG_EN))
3547 break;
3548 udelay(10);
3549 }
3550 if (i < 0) txfailed = 1;
3551 i = STOP_TRIES;
3552 while (i-- > 0) {
3553 val = readl(cp->regs + REG_MAC_RX_CFG);
3554 if ((val & MAC_RX_CFG_EN)) {
3555 if (txfailed) {
6aa20a22
JG
3556 printk(KERN_ERR
3557 "%s: enabling mac failed [tx:%08x:%08x].\n",
1f26dac3
DM
3558 cp->dev->name,
3559 readl(cp->regs + REG_MIF_STATE_MACHINE),
3560 readl(cp->regs + REG_MAC_STATE_MACHINE));
3561 }
3562 goto enable_rx_done;
3563 }
3564 udelay(10);
3565 }
6aa20a22 3566 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
1f26dac3
DM
3567 cp->dev->name,
3568 (txfailed? "tx,rx":"rx"),
3569 readl(cp->regs + REG_MIF_STATE_MACHINE),
3570 readl(cp->regs + REG_MAC_STATE_MACHINE));
3571
3572enable_rx_done:
3573 cas_unmask_intr(cp); /* enable interrupts */
3574 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3575 writel(0, cp->regs + REG_RX_COMP_TAIL);
3576
3577 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
6aa20a22
JG
3578 if (N_RX_DESC_RINGS > 1)
3579 writel(RX_DESC_RINGN_SIZE(1) - 4,
1f26dac3
DM
3580 cp->regs + REG_PLUS_RX_KICK1);
3581
6aa20a22 3582 for (i = 1; i < N_RX_COMP_RINGS; i++)
1f26dac3
DM
3583 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3584 }
3585}
3586
3587/* Must be invoked under cp->lock. */
3588static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3589 int *pause)
3590{
3591 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3592 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3593 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3594 if (val & PCS_MII_LPA_ASYM_PAUSE)
3595 *pause |= 0x10;
3596 *spd = 1000;
3597}
3598
3599/* Must be invoked under cp->lock. */
3600static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3601 int *pause)
3602{
3603 u32 val;
3604
3605 *fd = 0;
3606 *spd = 10;
3607 *pause = 0;
6aa20a22 3608
1f26dac3
DM
3609 /* use GMII registers */
3610 val = cas_phy_read(cp, MII_LPA);
3611 if (val & CAS_LPA_PAUSE)
3612 *pause = 0x01;
3613
3614 if (val & CAS_LPA_ASYM_PAUSE)
3615 *pause |= 0x10;
3616
3617 if (val & LPA_DUPLEX)
3618 *fd = 1;
3619 if (val & LPA_100)
3620 *spd = 100;
3621
3622 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3623 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3624 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3625 *spd = 1000;
3626 if (val & CAS_LPA_1000FULL)
3627 *fd = 1;
3628 }
3629}
3630
3631/* A link-up condition has occurred, initialize and enable the
3632 * rest of the chip.
3633 *
3634 * Must be invoked under cp->lock.
3635 */
3636static void cas_set_link_modes(struct cas *cp)
3637{
3638 u32 val;
3639 int full_duplex, speed, pause;
3640
3641 full_duplex = 0;
3642 speed = 10;
3643 pause = 0;
3644
3645 if (CAS_PHY_MII(cp->phy_type)) {
3646 cas_mif_poll(cp, 0);
3647 val = cas_phy_read(cp, MII_BMCR);
3648 if (val & BMCR_ANENABLE) {
6aa20a22 3649 cas_read_mii_link_mode(cp, &full_duplex, &speed,
1f26dac3
DM
3650 &pause);
3651 } else {
3652 if (val & BMCR_FULLDPLX)
3653 full_duplex = 1;
3654
3655 if (val & BMCR_SPEED100)
3656 speed = 100;
3657 else if (val & CAS_BMCR_SPEED1000)
3658 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3659 1000 : 100;
3660 }
3661 cas_mif_poll(cp, 1);
3662
3663 } else {
3664 val = readl(cp->regs + REG_PCS_MII_CTRL);
3665 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3666 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3667 if (val & PCS_MII_CTRL_DUPLEX)
3668 full_duplex = 1;
3669 }
3670 }
3671
3672 if (netif_msg_link(cp))
3673 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3674 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3675
3676 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3677 if (CAS_PHY_MII(cp->phy_type)) {
3678 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3679 if (!full_duplex)
3680 val |= MAC_XIF_DISABLE_ECHO;
3681 }
6aa20a22 3682 if (full_duplex)
1f26dac3
DM
3683 val |= MAC_XIF_FDPLX_LED;
3684 if (speed == 1000)
3685 val |= MAC_XIF_GMII_MODE;
3686 writel(val, cp->regs + REG_MAC_XIF_CFG);
3687
3688 /* deal with carrier and collision detect. */
3689 val = MAC_TX_CFG_IPG_EN;
3690 if (full_duplex) {
3691 val |= MAC_TX_CFG_IGNORE_CARRIER;
3692 val |= MAC_TX_CFG_IGNORE_COLL;
3693 } else {
3694#ifndef USE_CSMA_CD_PROTO
3695 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3696 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3697#endif
3698 }
3699 /* val now set up for REG_MAC_TX_CFG */
3700
3701 /* If gigabit and half-duplex, enable carrier extension
6aa20a22 3702 * mode. increase slot time to 512 bytes as well.
1f26dac3
DM
3703 * else, disable it and make sure slot time is 64 bytes.
3704 * also activate checksum bug workaround
3705 */
3706 if ((speed == 1000) && !full_duplex) {
6aa20a22 3707 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3708 cp->regs + REG_MAC_TX_CFG);
3709
3710 val = readl(cp->regs + REG_MAC_RX_CFG);
3711 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
6aa20a22 3712 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3713 cp->regs + REG_MAC_RX_CFG);
3714
3715 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3716
3717 cp->crc_size = 4;
3718 /* minimum size gigabit frame at half duplex */
3719 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3720
3721 } else {
3722 writel(val, cp->regs + REG_MAC_TX_CFG);
3723
6aa20a22 3724 /* checksum bug workaround. don't strip FCS when in
1f26dac3
DM
3725 * half-duplex mode
3726 */
3727 val = readl(cp->regs + REG_MAC_RX_CFG);
3728 if (full_duplex) {
3729 val |= MAC_RX_CFG_STRIP_FCS;
3730 cp->crc_size = 0;
3731 cp->min_frame_size = CAS_MIN_MTU;
3732 } else {
3733 val &= ~MAC_RX_CFG_STRIP_FCS;
3734 cp->crc_size = 4;
3735 cp->min_frame_size = CAS_MIN_FRAME;
3736 }
6aa20a22 3737 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3738 cp->regs + REG_MAC_RX_CFG);
3739 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3740 }
3741
3742 if (netif_msg_link(cp)) {
3743 if (pause & 0x01) {
3744 printk(KERN_INFO "%s: Pause is enabled "
3745 "(rxfifo: %d off: %d on: %d)\n",
3746 cp->dev->name,
3747 cp->rx_fifo_size,
3748 cp->rx_pause_off,
3749 cp->rx_pause_on);
3750 } else if (pause & 0x10) {
3751 printk(KERN_INFO "%s: TX pause enabled\n",
3752 cp->dev->name);
3753 } else {
3754 printk(KERN_INFO "%s: Pause is disabled\n",
3755 cp->dev->name);
3756 }
3757 }
3758
3759 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3760 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3761 if (pause) { /* symmetric or asymmetric pause */
3762 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3763 if (pause & 0x01) { /* symmetric pause */
3764 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
6aa20a22 3765 }
1f26dac3
DM
3766 }
3767 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3768 cas_start_dma(cp);
3769}
3770
3771/* Must be invoked under cp->lock. */
3772static void cas_init_hw(struct cas *cp, int restart_link)
3773{
3774 if (restart_link)
3775 cas_phy_init(cp);
3776
3777 cas_init_pause_thresholds(cp);
3778 cas_init_mac(cp);
3779 cas_init_dma(cp);
3780
3781 if (restart_link) {
3782 /* Default aneg parameters */
3783 cp->timer_ticks = 0;
3784 cas_begin_auto_negotiation(cp, NULL);
3785 } else if (cp->lstate == link_up) {
3786 cas_set_link_modes(cp);
3787 netif_carrier_on(cp->dev);
3788 }
3789}
3790
3791/* Must be invoked under cp->lock. on earlier cassini boards,
3792 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3793 * let it settle out, and then restore pci state.
3794 */
3795static void cas_hard_reset(struct cas *cp)
3796{
6aa20a22 3797 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
1f26dac3
DM
3798 udelay(20);
3799 pci_restore_state(cp->pdev);
3800}
3801
3802
3803static void cas_global_reset(struct cas *cp, int blkflag)
3804{
3805 int limit;
3806
3807 /* issue a global reset. don't use RSTOUT. */
3808 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3809 /* For PCS, when the blkflag is set, we should set the
3810 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3811 * the last autonegotiation from being cleared. We'll
3812 * need some special handling if the chip is set into a
3813 * loopback mode.
3814 */
6aa20a22 3815 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
1f26dac3
DM
3816 cp->regs + REG_SW_RESET);
3817 } else {
3818 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3819 }
3820
3821 /* need to wait at least 3ms before polling register */
3822 mdelay(3);
3823
3824 limit = STOP_TRIES;
3825 while (limit-- > 0) {
3826 u32 val = readl(cp->regs + REG_SW_RESET);
3827 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3828 goto done;
3829 udelay(10);
3830 }
3831 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3832
3833done:
3834 /* enable various BIM interrupts */
6aa20a22 3835 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
1f26dac3
DM
3836 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3837
3838 /* clear out pci error status mask for handled errors.
3839 * we don't deal with DMA counter overflows as they happen
3840 * all the time.
3841 */
6aa20a22
JG
3842 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3843 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3844 PCI_ERR_BIM_DMA_READ), cp->regs +
1f26dac3
DM
3845 REG_PCI_ERR_STATUS_MASK);
3846
3847 /* set up for MII by default to address mac rx reset timeout
3848 * issue
3849 */
3850 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3851}
3852
3853static void cas_reset(struct cas *cp, int blkflag)
3854{
3855 u32 val;
3856
3857 cas_mask_intr(cp);
3858 cas_global_reset(cp, blkflag);
3859 cas_mac_reset(cp);
3860 cas_entropy_reset(cp);
3861
3862 /* disable dma engines. */
3863 val = readl(cp->regs + REG_TX_CFG);
3864 val &= ~TX_CFG_DMA_EN;
3865 writel(val, cp->regs + REG_TX_CFG);
3866
3867 val = readl(cp->regs + REG_RX_CFG);
3868 val &= ~RX_CFG_DMA_EN;
3869 writel(val, cp->regs + REG_RX_CFG);
3870
3871 /* program header parser */
3872 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3873 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3874 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3875 } else {
3876 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3877 }
3878
3879 /* clear out error registers */
3880 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3881 cas_clear_mac_err(cp);
3882 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3883}
3884
758df69e 3885/* Shut down the chip, must be called with pm_mutex held. */
1f26dac3
DM
3886static void cas_shutdown(struct cas *cp)
3887{
3888 unsigned long flags;
3889
3890 /* Make us not-running to avoid timers respawning */
3891 cp->hw_running = 0;
3892
3893 del_timer_sync(&cp->link_timer);
3894
3895 /* Stop the reset task */
3896#if 0
3897 while (atomic_read(&cp->reset_task_pending_mtu) ||
3898 atomic_read(&cp->reset_task_pending_spare) ||
3899 atomic_read(&cp->reset_task_pending_all))
3900 schedule();
3901
3902#else
3903 while (atomic_read(&cp->reset_task_pending))
3904 schedule();
6aa20a22 3905#endif
1f26dac3
DM
3906 /* Actually stop the chip */
3907 cas_lock_all_save(cp, flags);
3908 cas_reset(cp, 0);
3909 if (cp->cas_flags & CAS_FLAG_SATURN)
3910 cas_phy_powerdown(cp);
3911 cas_unlock_all_restore(cp, flags);
3912}
3913
3914static int cas_change_mtu(struct net_device *dev, int new_mtu)
3915{
3916 struct cas *cp = netdev_priv(dev);
3917
3918 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3919 return -EINVAL;
3920
3921 dev->mtu = new_mtu;
3922 if (!netif_running(dev) || !netif_device_present(dev))
3923 return 0;
3924
3925 /* let the reset task handle it */
3926#if 1
3927 atomic_inc(&cp->reset_task_pending);
3928 if ((cp->phy_type & CAS_PHY_SERDES)) {
3929 atomic_inc(&cp->reset_task_pending_all);
3930 } else {
3931 atomic_inc(&cp->reset_task_pending_mtu);
3932 }
3933 schedule_work(&cp->reset_task);
3934#else
6aa20a22 3935 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
1f26dac3
DM
3936 CAS_RESET_ALL : CAS_RESET_MTU);
3937 printk(KERN_ERR "reset called in cas_change_mtu\n");
3938 schedule_work(&cp->reset_task);
3939#endif
3940
3941 flush_scheduled_work();
3942 return 0;
3943}
3944
3945static void cas_clean_txd(struct cas *cp, int ring)
3946{
3947 struct cas_tx_desc *txd = cp->init_txds[ring];
3948 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3949 u64 daddr, dlen;
3950 int i, size;
3951
3952 size = TX_DESC_RINGN_SIZE(ring);
3953 for (i = 0; i < size; i++) {
3954 int frag;
3955
3956 if (skbs[i] == NULL)
3957 continue;
3958
3959 skb = skbs[i];
3960 skbs[i] = NULL;
3961
3962 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3963 int ent = i & (size - 1);
3964
3965 /* first buffer is never a tiny buffer and so
3966 * needs to be unmapped.
3967 */
3968 daddr = le64_to_cpu(txd[ent].buffer);
6aa20a22 3969 dlen = CAS_VAL(TX_DESC_BUFLEN,
1f26dac3
DM
3970 le64_to_cpu(txd[ent].control));
3971 pci_unmap_page(cp->pdev, daddr, dlen,
3972 PCI_DMA_TODEVICE);
3973
3974 if (frag != skb_shinfo(skb)->nr_frags) {
3975 i++;
3976
3977 /* next buffer might by a tiny buffer.
3978 * skip past it.
3979 */
3980 ent = i & (size - 1);
3981 if (cp->tx_tiny_use[ring][ent].used)
3982 i++;
3983 }
3984 }
3985 dev_kfree_skb_any(skb);
3986 }
3987
3988 /* zero out tiny buf usage */
3989 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3990}
3991
3992/* freed on close */
3993static inline void cas_free_rx_desc(struct cas *cp, int ring)
3994{
3995 cas_page_t **page = cp->rx_pages[ring];
3996 int i, size;
3997
3998 size = RX_DESC_RINGN_SIZE(ring);
3999 for (i = 0; i < size; i++) {
4000 if (page[i]) {
4001 cas_page_free(cp, page[i]);
4002 page[i] = NULL;
4003 }
4004 }
4005}
4006
4007static void cas_free_rxds(struct cas *cp)
4008{
4009 int i;
4010
4011 for (i = 0; i < N_RX_DESC_RINGS; i++)
4012 cas_free_rx_desc(cp, i);
4013}
4014
4015/* Must be invoked under cp->lock. */
4016static void cas_clean_rings(struct cas *cp)
4017{
4018 int i;
4019
4020 /* need to clean all tx rings */
4021 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4022 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4023 for (i = 0; i < N_TX_RINGS; i++)
4024 cas_clean_txd(cp, i);
4025
4026 /* zero out init block */
4027 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4028 cas_clean_rxds(cp);
4029 cas_clean_rxcs(cp);
4030}
4031
4032/* allocated on open */
4033static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4034{
4035 cas_page_t **page = cp->rx_pages[ring];
4036 int size, i = 0;
4037
4038 size = RX_DESC_RINGN_SIZE(ring);
4039 for (i = 0; i < size; i++) {
6aa20a22 4040 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
1f26dac3
DM
4041 return -1;
4042 }
4043 return 0;
4044}
4045
4046static int cas_alloc_rxds(struct cas *cp)
4047{
4048 int i;
4049
4050 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4051 if (cas_alloc_rx_desc(cp, i) < 0) {
4052 cas_free_rxds(cp);
4053 return -1;
4054 }
4055 }
4056 return 0;
4057}
4058
c4028958 4059static void cas_reset_task(struct work_struct *work)
1f26dac3 4060{
c4028958 4061 struct cas *cp = container_of(work, struct cas, reset_task);
1f26dac3
DM
4062#if 0
4063 int pending = atomic_read(&cp->reset_task_pending);
4064#else
4065 int pending_all = atomic_read(&cp->reset_task_pending_all);
4066 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4067 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4068
4069 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4070 /* We can have more tasks scheduled than actually
4071 * needed.
4072 */
4073 atomic_dec(&cp->reset_task_pending);
4074 return;
4075 }
4076#endif
4077 /* The link went down, we reset the ring, but keep
4078 * DMA stopped. Use this function for reset
4079 * on error as well.
4080 */
4081 if (cp->hw_running) {
4082 unsigned long flags;
4083
4084 /* Make sure we don't get interrupts or tx packets */
4085 netif_device_detach(cp->dev);
4086 cas_lock_all_save(cp, flags);
4087
4088 if (cp->opened) {
4089 /* We call cas_spare_recover when we call cas_open.
4090 * but we do not initialize the lists cas_spare_recover
4091 * uses until cas_open is called.
4092 */
4093 cas_spare_recover(cp, GFP_ATOMIC);
4094 }
4095#if 1
4096 /* test => only pending_spare set */
4097 if (!pending_all && !pending_mtu)
4098 goto done;
4099#else
4100 if (pending == CAS_RESET_SPARE)
4101 goto done;
4102#endif
4103 /* when pending == CAS_RESET_ALL, the following
4104 * call to cas_init_hw will restart auto negotiation.
4105 * Setting the second argument of cas_reset to
4106 * !(pending == CAS_RESET_ALL) will set this argument
6aa20a22 4107 * to 1 (avoiding reinitializing the PHY for the normal
1f26dac3
DM
4108 * PCS case) when auto negotiation is not restarted.
4109 */
4110#if 1
4111 cas_reset(cp, !(pending_all > 0));
4112 if (cp->opened)
4113 cas_clean_rings(cp);
4114 cas_init_hw(cp, (pending_all > 0));
4115#else
4116 cas_reset(cp, !(pending == CAS_RESET_ALL));
4117 if (cp->opened)
4118 cas_clean_rings(cp);
4119 cas_init_hw(cp, pending == CAS_RESET_ALL);
4120#endif
4121
4122done:
4123 cas_unlock_all_restore(cp, flags);
4124 netif_device_attach(cp->dev);
4125 }
4126#if 1
4127 atomic_sub(pending_all, &cp->reset_task_pending_all);
4128 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4129 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4130 atomic_dec(&cp->reset_task_pending);
4131#else
4132 atomic_set(&cp->reset_task_pending, 0);
4133#endif
4134}
4135
4136static void cas_link_timer(unsigned long data)
4137{
4138 struct cas *cp = (struct cas *) data;
4139 int mask, pending = 0, reset = 0;
4140 unsigned long flags;
4141
4142 if (link_transition_timeout != 0 &&
4143 cp->link_transition_jiffies_valid &&
6aa20a22 4144 ((jiffies - cp->link_transition_jiffies) >
1f26dac3 4145 (link_transition_timeout))) {
6aa20a22 4146 /* One-second counter so link-down workaround doesn't
1f26dac3
DM
4147 * cause resets to occur so fast as to fool the switch
4148 * into thinking the link is down.
4149 */
4150 cp->link_transition_jiffies_valid = 0;
4151 }
4152
4153 if (!cp->hw_running)
4154 return;
4155
4156 spin_lock_irqsave(&cp->lock, flags);
4157 cas_lock_tx(cp);
4158 cas_entropy_gather(cp);
4159
4160 /* If the link task is still pending, we just
4161 * reschedule the link timer
4162 */
4163#if 1
4164 if (atomic_read(&cp->reset_task_pending_all) ||
4165 atomic_read(&cp->reset_task_pending_spare) ||
6aa20a22 4166 atomic_read(&cp->reset_task_pending_mtu))
1f26dac3
DM
4167 goto done;
4168#else
6aa20a22 4169 if (atomic_read(&cp->reset_task_pending))
1f26dac3
DM
4170 goto done;
4171#endif
4172
4173 /* check for rx cleaning */
4174 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4175 int i, rmask;
4176
4177 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4178 rmask = CAS_FLAG_RXD_POST(i);
4179 if ((mask & rmask) == 0)
4180 continue;
4181
4182 /* post_rxds will do a mod_timer */
4183 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4184 pending = 1;
4185 continue;
4186 }
4187 cp->cas_flags &= ~rmask;
4188 }
4189 }
4190
4191 if (CAS_PHY_MII(cp->phy_type)) {
4192 u16 bmsr;
4193 cas_mif_poll(cp, 0);
4194 bmsr = cas_phy_read(cp, MII_BMSR);
4195 /* WTZ: Solaris driver reads this twice, but that
4196 * may be due to the PCS case and the use of a
4197 * common implementation. Read it twice here to be
4198 * safe.
4199 */
4200 bmsr = cas_phy_read(cp, MII_BMSR);
4201 cas_mif_poll(cp, 1);
4202 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4203 reset = cas_mii_link_check(cp, bmsr);
4204 } else {
4205 reset = cas_pcs_link_check(cp);
4206 }
4207
4208 if (reset)
4209 goto done;
4210
4211 /* check for tx state machine confusion */
4212 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4213 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4214 u32 wptr, rptr;
4215 int tlm = CAS_VAL(MAC_SM_TLM, val);
4216
4217 if (((tlm == 0x5) || (tlm == 0x3)) &&
4218 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4219 if (netif_msg_tx_err(cp))
4220 printk(KERN_DEBUG "%s: tx err: "
4221 "MAC_STATE[%08x]\n",
4222 cp->dev->name, val);
4223 reset = 1;
4224 goto done;
4225 }
4226
4227 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4228 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4229 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4230 if ((val == 0) && (wptr != rptr)) {
4231 if (netif_msg_tx_err(cp))
4232 printk(KERN_DEBUG "%s: tx err: "
4233 "TX_FIFO[%08x:%08x:%08x]\n",
4234 cp->dev->name, val, wptr, rptr);
4235 reset = 1;
4236 }
4237
4238 if (reset)
4239 cas_hard_reset(cp);
4240 }
4241
4242done:
4243 if (reset) {
4244#if 1
4245 atomic_inc(&cp->reset_task_pending);
4246 atomic_inc(&cp->reset_task_pending_all);
4247 schedule_work(&cp->reset_task);
4248#else
4249 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4250 printk(KERN_ERR "reset called in cas_link_timer\n");
4251 schedule_work(&cp->reset_task);
4252#endif
4253 }
4254
4255 if (!pending)
4256 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4257 cas_unlock_tx(cp);
4258 spin_unlock_irqrestore(&cp->lock, flags);
4259}
4260
6aa20a22 4261/* tiny buffers are used to avoid target abort issues with
1f26dac3
DM
4262 * older cassini's
4263 */
4264static void cas_tx_tiny_free(struct cas *cp)
4265{
4266 struct pci_dev *pdev = cp->pdev;
4267 int i;
4268
4269 for (i = 0; i < N_TX_RINGS; i++) {
4270 if (!cp->tx_tiny_bufs[i])
4271 continue;
4272
6aa20a22 4273 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
1f26dac3
DM
4274 cp->tx_tiny_bufs[i],
4275 cp->tx_tiny_dvma[i]);
4276 cp->tx_tiny_bufs[i] = NULL;
4277 }
4278}
4279
4280static int cas_tx_tiny_alloc(struct cas *cp)
4281{
4282 struct pci_dev *pdev = cp->pdev;
4283 int i;
4284
4285 for (i = 0; i < N_TX_RINGS; i++) {
6aa20a22 4286 cp->tx_tiny_bufs[i] =
1f26dac3
DM
4287 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4288 &cp->tx_tiny_dvma[i]);
4289 if (!cp->tx_tiny_bufs[i]) {
4290 cas_tx_tiny_free(cp);
4291 return -1;
4292 }
4293 }
4294 return 0;
4295}
4296
4297
4298static int cas_open(struct net_device *dev)
4299{
4300 struct cas *cp = netdev_priv(dev);
4301 int hw_was_up, err;
4302 unsigned long flags;
4303
758df69e 4304 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
4305
4306 hw_was_up = cp->hw_running;
4307
758df69e 4308 /* The power-management mutex protects the hw_running
1f26dac3
DM
4309 * etc. state so it is safe to do this bit without cp->lock
4310 */
4311 if (!cp->hw_running) {
4312 /* Reset the chip */
4313 cas_lock_all_save(cp, flags);
4314 /* We set the second arg to cas_reset to zero
6aa20a22 4315 * because cas_init_hw below will have its second
1f26dac3
DM
4316 * argument set to non-zero, which will force
4317 * autonegotiation to start.
4318 */
4319 cas_reset(cp, 0);
4320 cp->hw_running = 1;
4321 cas_unlock_all_restore(cp, flags);
4322 }
4323
4324 if (cas_tx_tiny_alloc(cp) < 0)
4325 return -ENOMEM;
4326
4327 /* alloc rx descriptors */
4328 err = -ENOMEM;
4329 if (cas_alloc_rxds(cp) < 0)
4330 goto err_tx_tiny;
6aa20a22 4331
1f26dac3
DM
4332 /* allocate spares */
4333 cas_spare_init(cp);
4334 cas_spare_recover(cp, GFP_KERNEL);
4335
4336 /* We can now request the interrupt as we know it's masked
4337 * on the controller. cassini+ has up to 4 interrupts
6aa20a22 4338 * that can be used, but you need to do explicit pci interrupt
1f26dac3
DM
4339 * mapping to expose them
4340 */
4341 if (request_irq(cp->pdev->irq, cas_interrupt,
1fb9df5d 4342 IRQF_SHARED, dev->name, (void *) dev)) {
6aa20a22 4343 printk(KERN_ERR "%s: failed to request irq !\n",
1f26dac3
DM
4344 cp->dev->name);
4345 err = -EAGAIN;
4346 goto err_spare;
4347 }
4348
bea3348e
SH
4349#ifdef USE_NAPI
4350 napi_enable(&cp->napi);
4351#endif
1f26dac3
DM
4352 /* init hw */
4353 cas_lock_all_save(cp, flags);
4354 cas_clean_rings(cp);
4355 cas_init_hw(cp, !hw_was_up);
4356 cp->opened = 1;
4357 cas_unlock_all_restore(cp, flags);
4358
4359 netif_start_queue(dev);
758df69e 4360 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4361 return 0;
4362
4363err_spare:
4364 cas_spare_free(cp);
4365 cas_free_rxds(cp);
4366err_tx_tiny:
4367 cas_tx_tiny_free(cp);
758df69e 4368 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4369 return err;
4370}
4371
4372static int cas_close(struct net_device *dev)
4373{
4374 unsigned long flags;
4375 struct cas *cp = netdev_priv(dev);
4376
bea3348e
SH
4377#ifdef USE_NAPI
4378 napi_enable(&cp->napi);
4379#endif
1f26dac3 4380 /* Make sure we don't get distracted by suspend/resume */
758df69e 4381 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
4382
4383 netif_stop_queue(dev);
4384
4385 /* Stop traffic, mark us closed */
4386 cas_lock_all_save(cp, flags);
6aa20a22 4387 cp->opened = 0;
1f26dac3 4388 cas_reset(cp, 0);
6aa20a22 4389 cas_phy_init(cp);
1f26dac3
DM
4390 cas_begin_auto_negotiation(cp, NULL);
4391 cas_clean_rings(cp);
4392 cas_unlock_all_restore(cp, flags);
4393
4394 free_irq(cp->pdev->irq, (void *) dev);
4395 cas_spare_free(cp);
4396 cas_free_rxds(cp);
4397 cas_tx_tiny_free(cp);
758df69e 4398 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4399 return 0;
4400}
4401
4402static struct {
4403 const char name[ETH_GSTRING_LEN];
4404} ethtool_cassini_statnames[] = {
4405 {"collisions"},
4406 {"rx_bytes"},
4407 {"rx_crc_errors"},
4408 {"rx_dropped"},
4409 {"rx_errors"},
4410 {"rx_fifo_errors"},
4411 {"rx_frame_errors"},
4412 {"rx_length_errors"},
4413 {"rx_over_errors"},
4414 {"rx_packets"},
4415 {"tx_aborted_errors"},
4416 {"tx_bytes"},
4417 {"tx_dropped"},
4418 {"tx_errors"},
4419 {"tx_fifo_errors"},
4420 {"tx_packets"}
4421};
4422#define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4423
4424static struct {
4425 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4426} ethtool_register_table[] = {
4427 {-MII_BMSR},
4428 {-MII_BMCR},
4429 {REG_CAWR},
4430 {REG_INF_BURST},
4431 {REG_BIM_CFG},
4432 {REG_RX_CFG},
4433 {REG_HP_CFG},
4434 {REG_MAC_TX_CFG},
4435 {REG_MAC_RX_CFG},
4436 {REG_MAC_CTRL_CFG},
4437 {REG_MAC_XIF_CFG},
4438 {REG_MIF_CFG},
4439 {REG_PCS_CFG},
4440 {REG_SATURN_PCFG},
4441 {REG_PCS_MII_STATUS},
4442 {REG_PCS_STATE_MACHINE},
4443 {REG_MAC_COLL_EXCESS},
4444 {REG_MAC_COLL_LATE}
4445};
4446#define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4447#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4448
a232f767 4449static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
1f26dac3 4450{
1f26dac3
DM
4451 u8 *p;
4452 int i;
4453 unsigned long flags;
4454
1f26dac3 4455 spin_lock_irqsave(&cp->lock, flags);
a232f767 4456 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
1f26dac3
DM
4457 u16 hval;
4458 u32 val;
4459 if (ethtool_register_table[i].offsets < 0) {
4460 hval = cas_phy_read(cp,
4461 -ethtool_register_table[i].offsets);
4462 val = hval;
4463 } else {
4464 val= readl(cp->regs+ethtool_register_table[i].offsets);
4465 }
4466 memcpy(p, (u8 *)&val, sizeof(u32));
4467 }
4468 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3
DM
4469}
4470
4471static struct net_device_stats *cas_get_stats(struct net_device *dev)
4472{
4473 struct cas *cp = netdev_priv(dev);
4474 struct net_device_stats *stats = cp->net_stats;
4475 unsigned long flags;
4476 int i;
4477 unsigned long tmp;
4478
4479 /* we collate all of the stats into net_stats[N_TX_RING] */
4480 if (!cp->hw_running)
4481 return stats + N_TX_RINGS;
6aa20a22 4482
1f26dac3
DM
4483 /* collect outstanding stats */
4484 /* WTZ: the Cassini spec gives these as 16 bit counters but
4485 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4486 * in case the chip somehow puts any garbage in the other bits.
4487 * Also, counter usage didn't seem to mach what Adrian did
4488 * in the parts of the code that set these quantities. Made
4489 * that consistent.
4490 */
4491 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
6aa20a22 4492 stats[N_TX_RINGS].rx_crc_errors +=
1f26dac3 4493 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
6aa20a22 4494 stats[N_TX_RINGS].rx_frame_errors +=
1f26dac3 4495 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
6aa20a22 4496 stats[N_TX_RINGS].rx_length_errors +=
1f26dac3
DM
4497 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4498#if 1
4499 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4500 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4501 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4502 stats[N_TX_RINGS].collisions +=
4503 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4504#else
6aa20a22 4505 stats[N_TX_RINGS].tx_aborted_errors +=
1f26dac3
DM
4506 readl(cp->regs + REG_MAC_COLL_EXCESS);
4507 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4508 readl(cp->regs + REG_MAC_COLL_LATE);
4509#endif
4510 cas_clear_mac_err(cp);
4511
4512 /* saved bits that are unique to ring 0 */
4513 spin_lock(&cp->stat_lock[0]);
4514 stats[N_TX_RINGS].collisions += stats[0].collisions;
4515 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4516 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4517 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4518 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4519 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4520 spin_unlock(&cp->stat_lock[0]);
4521
4522 for (i = 0; i < N_TX_RINGS; i++) {
4523 spin_lock(&cp->stat_lock[i]);
6aa20a22 4524 stats[N_TX_RINGS].rx_length_errors +=
1f26dac3
DM
4525 stats[i].rx_length_errors;
4526 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4527 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4528 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4529 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4530 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4531 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4532 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4533 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4534 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4535 memset(stats + i, 0, sizeof(struct net_device_stats));
4536 spin_unlock(&cp->stat_lock[i]);
4537 }
4538 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4539 return stats + N_TX_RINGS;
4540}
4541
4542
4543static void cas_set_multicast(struct net_device *dev)
4544{
4545 struct cas *cp = netdev_priv(dev);
4546 u32 rxcfg, rxcfg_new;
4547 unsigned long flags;
4548 int limit = STOP_TRIES;
6aa20a22 4549
1f26dac3
DM
4550 if (!cp->hw_running)
4551 return;
6aa20a22 4552
1f26dac3
DM
4553 spin_lock_irqsave(&cp->lock, flags);
4554 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4555
4556 /* disable RX MAC and wait for completion */
4557 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4558 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4559 if (!limit--)
4560 break;
4561 udelay(10);
4562 }
4563
4564 /* disable hash filter and wait for completion */
4565 limit = STOP_TRIES;
4566 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4567 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4568 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4569 if (!limit--)
4570 break;
4571 udelay(10);
4572 }
4573
4574 /* program hash filters */
4575 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4576 rxcfg |= rxcfg_new;
4577 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4578 spin_unlock_irqrestore(&cp->lock, flags);
4579}
4580
a232f767
AV
4581static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4582{
4583 struct cas *cp = netdev_priv(dev);
4584 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4585 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4586 info->fw_version[0] = '\0';
4587 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4588 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4589 cp->casreg_len : CAS_MAX_REGS;
4590 info->n_stats = CAS_NUM_STAT_KEYS;
4591}
4592
4593static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1f26dac3
DM
4594{
4595 struct cas *cp = netdev_priv(dev);
4596 u16 bmcr;
4597 int full_duplex, speed, pause;
1f26dac3
DM
4598 unsigned long flags;
4599 enum link_state linkstate = link_up;
4600
a232f767
AV
4601 cmd->advertising = 0;
4602 cmd->supported = SUPPORTED_Autoneg;
4603 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4604 cmd->supported |= SUPPORTED_1000baseT_Full;
4605 cmd->advertising |= ADVERTISED_1000baseT_Full;
1f26dac3
DM
4606 }
4607
a232f767
AV
4608 /* Record PHY settings if HW is on. */
4609 spin_lock_irqsave(&cp->lock, flags);
4610 bmcr = 0;
4611 linkstate = cp->lstate;
4612 if (CAS_PHY_MII(cp->phy_type)) {
4613 cmd->port = PORT_MII;
4614 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4615 XCVR_INTERNAL : XCVR_EXTERNAL;
4616 cmd->phy_address = cp->phy_addr;
4617 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
6aa20a22
JG
4618 ADVERTISED_10baseT_Half |
4619 ADVERTISED_10baseT_Full |
4620 ADVERTISED_100baseT_Half |
a232f767
AV
4621 ADVERTISED_100baseT_Full;
4622
4623 cmd->supported |=
6aa20a22 4624 (SUPPORTED_10baseT_Half |
a232f767 4625 SUPPORTED_10baseT_Full |
6aa20a22 4626 SUPPORTED_100baseT_Half |
a232f767
AV
4627 SUPPORTED_100baseT_Full |
4628 SUPPORTED_TP | SUPPORTED_MII);
4629
4630 if (cp->hw_running) {
4631 cas_mif_poll(cp, 0);
4632 bmcr = cas_phy_read(cp, MII_BMCR);
6aa20a22 4633 cas_read_mii_link_mode(cp, &full_duplex,
a232f767
AV
4634 &speed, &pause);
4635 cas_mif_poll(cp, 1);
1f26dac3
DM
4636 }
4637
a232f767
AV
4638 } else {
4639 cmd->port = PORT_FIBRE;
4640 cmd->transceiver = XCVR_INTERNAL;
4641 cmd->phy_address = 0;
4642 cmd->supported |= SUPPORTED_FIBRE;
4643 cmd->advertising |= ADVERTISED_FIBRE;
4644
4645 if (cp->hw_running) {
6aa20a22 4646 /* pcs uses the same bits as mii */
a232f767 4647 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
6aa20a22 4648 cas_read_pcs_link_mode(cp, &full_duplex,
a232f767 4649 &speed, &pause);
1f26dac3 4650 }
a232f767
AV
4651 }
4652 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3 4653
a232f767
AV
4654 if (bmcr & BMCR_ANENABLE) {
4655 cmd->advertising |= ADVERTISED_Autoneg;
4656 cmd->autoneg = AUTONEG_ENABLE;
4657 cmd->speed = ((speed == 10) ?
4658 SPEED_10 :
4659 ((speed == 1000) ?
4660 SPEED_1000 : SPEED_100));
4661 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4662 } else {
4663 cmd->autoneg = AUTONEG_DISABLE;
4664 cmd->speed =
4665 (bmcr & CAS_BMCR_SPEED1000) ?
6aa20a22
JG
4666 SPEED_1000 :
4667 ((bmcr & BMCR_SPEED100) ? SPEED_100:
a232f767
AV
4668 SPEED_10);
4669 cmd->duplex =
4670 (bmcr & BMCR_FULLDPLX) ?
4671 DUPLEX_FULL : DUPLEX_HALF;
4672 }
4673 if (linkstate != link_up) {
4674 /* Force these to "unknown" if the link is not up and
6aa20a22 4675 * autonogotiation in enabled. We can set the link
a232f767
AV
4676 * speed to 0, but not cmd->duplex,
4677 * because its legal values are 0 and 1. Ethtool will
4678 * print the value reported in parentheses after the
4679 * word "Unknown" for unrecognized values.
4680 *
4681 * If in forced mode, we report the speed and duplex
4682 * settings that we configured.
4683 */
4684 if (cp->link_cntl & BMCR_ANENABLE) {
4685 cmd->speed = 0;
4686 cmd->duplex = 0xff;
1f26dac3 4687 } else {
a232f767
AV
4688 cmd->speed = SPEED_10;
4689 if (cp->link_cntl & BMCR_SPEED100) {
4690 cmd->speed = SPEED_100;
4691 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4692 cmd->speed = SPEED_1000;
1f26dac3 4693 }
a232f767
AV
4694 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4695 DUPLEX_FULL : DUPLEX_HALF;
1f26dac3 4696 }
a232f767
AV
4697 }
4698 return 0;
4699}
1f26dac3 4700
a232f767
AV
4701static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4702{
4703 struct cas *cp = netdev_priv(dev);
4704 unsigned long flags;
1f26dac3 4705
a232f767
AV
4706 /* Verify the settings we care about. */
4707 if (cmd->autoneg != AUTONEG_ENABLE &&
4708 cmd->autoneg != AUTONEG_DISABLE)
4709 return -EINVAL;
1f26dac3 4710
a232f767
AV
4711 if (cmd->autoneg == AUTONEG_DISABLE &&
4712 ((cmd->speed != SPEED_1000 &&
4713 cmd->speed != SPEED_100 &&
4714 cmd->speed != SPEED_10) ||
4715 (cmd->duplex != DUPLEX_HALF &&
4716 cmd->duplex != DUPLEX_FULL)))
4717 return -EINVAL;
1f26dac3 4718
a232f767
AV
4719 /* Apply settings and restart link process. */
4720 spin_lock_irqsave(&cp->lock, flags);
4721 cas_begin_auto_negotiation(cp, cmd);
4722 spin_unlock_irqrestore(&cp->lock, flags);
4723 return 0;
4724}
1f26dac3 4725
a232f767
AV
4726static int cas_nway_reset(struct net_device *dev)
4727{
4728 struct cas *cp = netdev_priv(dev);
4729 unsigned long flags;
1f26dac3 4730
a232f767
AV
4731 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4732 return -EINVAL;
1f26dac3 4733
a232f767
AV
4734 /* Restart link process. */
4735 spin_lock_irqsave(&cp->lock, flags);
4736 cas_begin_auto_negotiation(cp, NULL);
4737 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3 4738
a232f767
AV
4739 return 0;
4740}
1f26dac3 4741
a232f767
AV
4742static u32 cas_get_link(struct net_device *dev)
4743{
4744 struct cas *cp = netdev_priv(dev);
4745 return cp->lstate == link_up;
4746}
1f26dac3 4747
a232f767
AV
4748static u32 cas_get_msglevel(struct net_device *dev)
4749{
4750 struct cas *cp = netdev_priv(dev);
4751 return cp->msg_enable;
4752}
1f26dac3 4753
a232f767
AV
4754static void cas_set_msglevel(struct net_device *dev, u32 value)
4755{
4756 struct cas *cp = netdev_priv(dev);
4757 cp->msg_enable = value;
4758}
1f26dac3 4759
a232f767
AV
4760static int cas_get_regs_len(struct net_device *dev)
4761{
4762 struct cas *cp = netdev_priv(dev);
4763 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4764}
1f26dac3 4765
a232f767
AV
4766static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4767 void *p)
4768{
4769 struct cas *cp = netdev_priv(dev);
4770 regs->version = 0;
4771 /* cas_read_regs handles locks (cp->lock). */
4772 cas_read_regs(cp, p, regs->len / sizeof(u32));
4773}
1f26dac3 4774
a232f767
AV
4775static int cas_get_stats_count(struct net_device *dev)
4776{
4777 return CAS_NUM_STAT_KEYS;
4778}
1f26dac3 4779
a232f767
AV
4780static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4781{
6aa20a22 4782 memcpy(data, &ethtool_cassini_statnames,
a232f767
AV
4783 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4784}
1f26dac3 4785
a232f767
AV
4786static void cas_get_ethtool_stats(struct net_device *dev,
4787 struct ethtool_stats *estats, u64 *data)
4788{
4789 struct cas *cp = netdev_priv(dev);
4790 struct net_device_stats *stats = cas_get_stats(cp->dev);
4791 int i = 0;
4792 data[i++] = stats->collisions;
4793 data[i++] = stats->rx_bytes;
4794 data[i++] = stats->rx_crc_errors;
4795 data[i++] = stats->rx_dropped;
4796 data[i++] = stats->rx_errors;
4797 data[i++] = stats->rx_fifo_errors;
4798 data[i++] = stats->rx_frame_errors;
4799 data[i++] = stats->rx_length_errors;
4800 data[i++] = stats->rx_over_errors;
4801 data[i++] = stats->rx_packets;
4802 data[i++] = stats->tx_aborted_errors;
4803 data[i++] = stats->tx_bytes;
4804 data[i++] = stats->tx_dropped;
4805 data[i++] = stats->tx_errors;
4806 data[i++] = stats->tx_fifo_errors;
4807 data[i++] = stats->tx_packets;
4808 BUG_ON(i != CAS_NUM_STAT_KEYS);
1f26dac3
DM
4809}
4810
7282d491 4811static const struct ethtool_ops cas_ethtool_ops = {
a232f767
AV
4812 .get_drvinfo = cas_get_drvinfo,
4813 .get_settings = cas_get_settings,
4814 .set_settings = cas_set_settings,
4815 .nway_reset = cas_nway_reset,
4816 .get_link = cas_get_link,
4817 .get_msglevel = cas_get_msglevel,
4818 .set_msglevel = cas_set_msglevel,
4819 .get_regs_len = cas_get_regs_len,
4820 .get_regs = cas_get_regs,
4821 .get_stats_count = cas_get_stats_count,
4822 .get_strings = cas_get_strings,
4823 .get_ethtool_stats = cas_get_ethtool_stats,
4824};
4825
1f26dac3
DM
4826static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4827{
4828 struct cas *cp = netdev_priv(dev);
46d7031e 4829 struct mii_ioctl_data *data = if_mii(ifr);
1f26dac3
DM
4830 unsigned long flags;
4831 int rc = -EOPNOTSUPP;
6aa20a22 4832
758df69e 4833 /* Hold the PM mutex while doing ioctl's or we may collide
1f26dac3
DM
4834 * with open/close and power management and oops.
4835 */
758df69e 4836 mutex_lock(&cp->pm_mutex);
1f26dac3 4837 switch (cmd) {
1f26dac3
DM
4838 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4839 data->phy_id = cp->phy_addr;
4840 /* Fallthrough... */
4841
4842 case SIOCGMIIREG: /* Read MII PHY register. */
4843 spin_lock_irqsave(&cp->lock, flags);
4844 cas_mif_poll(cp, 0);
4845 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4846 cas_mif_poll(cp, 1);
4847 spin_unlock_irqrestore(&cp->lock, flags);
4848 rc = 0;
4849 break;
4850
4851 case SIOCSMIIREG: /* Write MII PHY register. */
4852 if (!capable(CAP_NET_ADMIN)) {
4853 rc = -EPERM;
4854 break;
4855 }
4856 spin_lock_irqsave(&cp->lock, flags);
4857 cas_mif_poll(cp, 0);
4858 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4859 cas_mif_poll(cp, 1);
4860 spin_unlock_irqrestore(&cp->lock, flags);
4861 break;
4862 default:
4863 break;
4864 };
4865
758df69e 4866 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4867 return rc;
4868}
4869
4870static int __devinit cas_init_one(struct pci_dev *pdev,
4871 const struct pci_device_id *ent)
4872{
4873 static int cas_version_printed = 0;
18e37f2a 4874 unsigned long casreg_len;
1f26dac3
DM
4875 struct net_device *dev;
4876 struct cas *cp;
4877 int i, err, pci_using_dac;
4878 u16 pci_cmd;
4879 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
0795af57 4880 DECLARE_MAC_BUF(mac);
1f26dac3
DM
4881
4882 if (cas_version_printed++ == 0)
4883 printk(KERN_INFO "%s", version);
4884
4885 err = pci_enable_device(pdev);
4886 if (err) {
9b91cf9d 4887 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
1f26dac3
DM
4888 return err;
4889 }
4890
4891 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9b91cf9d 4892 dev_err(&pdev->dev, "Cannot find proper PCI device "
1f26dac3
DM
4893 "base address, aborting.\n");
4894 err = -ENODEV;
4895 goto err_out_disable_pdev;
4896 }
4897
4898 dev = alloc_etherdev(sizeof(*cp));
4899 if (!dev) {
9b91cf9d 4900 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
1f26dac3
DM
4901 err = -ENOMEM;
4902 goto err_out_disable_pdev;
4903 }
1f26dac3
DM
4904 SET_NETDEV_DEV(dev, &pdev->dev);
4905
4906 err = pci_request_regions(pdev, dev->name);
4907 if (err) {
9b91cf9d 4908 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
1f26dac3
DM
4909 goto err_out_free_netdev;
4910 }
4911 pci_set_master(pdev);
4912
4913 /* we must always turn on parity response or else parity
4914 * doesn't get generated properly. disable SERR/PERR as well.
4915 * in addition, we want to turn MWI on.
4916 */
4917 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4918 pci_cmd &= ~PCI_COMMAND_SERR;
4919 pci_cmd |= PCI_COMMAND_PARITY;
4920 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
694625c0 4921 if (pci_try_set_mwi(pdev))
4738d2fa 4922 printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
04efb878
DM
4923 pci_name(pdev));
4924
1f26dac3
DM
4925 /*
4926 * On some architectures, the default cache line size set
694625c0 4927 * by pci_try_set_mwi reduces perforamnce. We have to increase
1f26dac3
DM
4928 * it for this case. To start, we'll print some configuration
4929 * data.
4930 */
4931#if 1
4932 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4933 &orig_cacheline_size);
4934 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
6aa20a22
JG
4935 cas_cacheline_size =
4936 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
1f26dac3 4937 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
6aa20a22
JG
4938 if (pci_write_config_byte(pdev,
4939 PCI_CACHE_LINE_SIZE,
1f26dac3 4940 cas_cacheline_size)) {
9b91cf9d 4941 dev_err(&pdev->dev, "Could not set PCI cache "
1f26dac3
DM
4942 "line size\n");
4943 goto err_write_cacheline;
4944 }
4945 }
4946#endif
4947
4948
4949 /* Configure DMA attributes. */
4950 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4951 pci_using_dac = 1;
4952 err = pci_set_consistent_dma_mask(pdev,
4953 DMA_64BIT_MASK);
4954 if (err < 0) {
9b91cf9d 4955 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
1f26dac3
DM
4956 "for consistent allocations\n");
4957 goto err_out_free_res;
4958 }
4959
4960 } else {
4961 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4962 if (err) {
9b91cf9d 4963 dev_err(&pdev->dev, "No usable DMA configuration, "
1f26dac3
DM
4964 "aborting.\n");
4965 goto err_out_free_res;
4966 }
4967 pci_using_dac = 0;
4968 }
4969
1f26dac3
DM
4970 casreg_len = pci_resource_len(pdev, 0);
4971
4972 cp = netdev_priv(dev);
4973 cp->pdev = pdev;
4974#if 1
4975 /* A value of 0 indicates we never explicitly set it */
4976 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4977#endif
4978 cp->dev = dev;
6aa20a22 4979 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
1f26dac3
DM
4980 cassini_debug;
4981
4982 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4983 cp->link_transition_jiffies_valid = 0;
4984
4985 spin_lock_init(&cp->lock);
4986 spin_lock_init(&cp->rx_inuse_lock);
4987 spin_lock_init(&cp->rx_spare_lock);
4988 for (i = 0; i < N_TX_RINGS; i++) {
4989 spin_lock_init(&cp->stat_lock[i]);
4990 spin_lock_init(&cp->tx_lock[i]);
4991 }
4992 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
758df69e 4993 mutex_init(&cp->pm_mutex);
1f26dac3
DM
4994
4995 init_timer(&cp->link_timer);
4996 cp->link_timer.function = cas_link_timer;
4997 cp->link_timer.data = (unsigned long) cp;
4998
4999#if 1
5000 /* Just in case the implementation of atomic operations
5001 * change so that an explicit initialization is necessary.
5002 */
5003 atomic_set(&cp->reset_task_pending, 0);
5004 atomic_set(&cp->reset_task_pending_all, 0);
5005 atomic_set(&cp->reset_task_pending_spare, 0);
5006 atomic_set(&cp->reset_task_pending_mtu, 0);
5007#endif
c4028958 5008 INIT_WORK(&cp->reset_task, cas_reset_task);
1f26dac3
DM
5009
5010 /* Default link parameters */
5011 if (link_mode >= 0 && link_mode <= 6)
5012 cp->link_cntl = link_modes[link_mode];
5013 else
5014 cp->link_cntl = BMCR_ANENABLE;
5015 cp->lstate = link_down;
5016 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5017 netif_carrier_off(cp->dev);
5018 cp->timer_ticks = 0;
5019
5020 /* give us access to cassini registers */
18e37f2a 5021 cp->regs = pci_iomap(pdev, 0, casreg_len);
1f26dac3 5022 if (cp->regs == 0UL) {
9b91cf9d 5023 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
1f26dac3
DM
5024 goto err_out_free_res;
5025 }
5026 cp->casreg_len = casreg_len;
5027
5028 pci_save_state(pdev);
5029 cas_check_pci_invariants(cp);
5030 cas_hard_reset(cp);
5031 cas_reset(cp, 0);
5032 if (cas_check_invariants(cp))
5033 goto err_out_iounmap;
5034
5035 cp->init_block = (struct cas_init_block *)
5036 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5037 &cp->block_dvma);
5038 if (!cp->init_block) {
9b91cf9d 5039 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
1f26dac3
DM
5040 goto err_out_iounmap;
5041 }
5042
6aa20a22 5043 for (i = 0; i < N_TX_RINGS; i++)
1f26dac3
DM
5044 cp->init_txds[i] = cp->init_block->txds[i];
5045
6aa20a22 5046 for (i = 0; i < N_RX_DESC_RINGS; i++)
1f26dac3
DM
5047 cp->init_rxds[i] = cp->init_block->rxds[i];
5048
6aa20a22 5049 for (i = 0; i < N_RX_COMP_RINGS; i++)
1f26dac3
DM
5050 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5051
5052 for (i = 0; i < N_RX_FLOWS; i++)
5053 skb_queue_head_init(&cp->rx_flows[i]);
5054
5055 dev->open = cas_open;
5056 dev->stop = cas_close;
5057 dev->hard_start_xmit = cas_start_xmit;
5058 dev->get_stats = cas_get_stats;
5059 dev->set_multicast_list = cas_set_multicast;
5060 dev->do_ioctl = cas_ioctl;
a232f767 5061 dev->ethtool_ops = &cas_ethtool_ops;
1f26dac3
DM
5062 dev->tx_timeout = cas_tx_timeout;
5063 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5064 dev->change_mtu = cas_change_mtu;
5065#ifdef USE_NAPI
bea3348e 5066 netif_napi_add(dev, &cp->napi, cas_poll, 64);
1f26dac3
DM
5067#endif
5068#ifdef CONFIG_NET_POLL_CONTROLLER
5069 dev->poll_controller = cas_netpoll;
5070#endif
5071 dev->irq = pdev->irq;
5072 dev->dma = 0;
5073
5074 /* Cassini features. */
5075 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5076 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5077
5078 if (pci_using_dac)
5079 dev->features |= NETIF_F_HIGHDMA;
5080
5081 if (register_netdev(dev)) {
9b91cf9d 5082 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
1f26dac3
DM
5083 goto err_out_free_consistent;
5084 }
5085
5086 i = readl(cp->regs + REG_BIM_CFG);
5087 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
0795af57 5088 "Ethernet[%d] %s\n", dev->name,
6aa20a22 5089 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
1f26dac3
DM
5090 (i & BIM_CFG_32BIT) ? "32" : "64",
5091 (i & BIM_CFG_66MHZ) ? "66" : "33",
0795af57
JP
5092 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5093 print_mac(mac, dev->dev_addr));
1f26dac3
DM
5094
5095 pci_set_drvdata(pdev, dev);
5096 cp->hw_running = 1;
5097 cas_entropy_reset(cp);
5098 cas_phy_init(cp);
5099 cas_begin_auto_negotiation(cp, NULL);
5100 return 0;
5101
5102err_out_free_consistent:
5103 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5104 cp->init_block, cp->block_dvma);
5105
5106err_out_iounmap:
758df69e 5107 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5108 if (cp->hw_running)
5109 cas_shutdown(cp);
758df69e 5110 mutex_unlock(&cp->pm_mutex);
1f26dac3 5111
18e37f2a 5112 pci_iounmap(pdev, cp->regs);
1f26dac3
DM
5113
5114
5115err_out_free_res:
5116 pci_release_regions(pdev);
5117
5118err_write_cacheline:
5119 /* Try to restore it in case the error occured after we
6aa20a22 5120 * set it.
1f26dac3
DM
5121 */
5122 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5123
5124err_out_free_netdev:
5125 free_netdev(dev);
5126
5127err_out_disable_pdev:
5128 pci_disable_device(pdev);
5129 pci_set_drvdata(pdev, NULL);
5130 return -ENODEV;
5131}
5132
5133static void __devexit cas_remove_one(struct pci_dev *pdev)
5134{
5135 struct net_device *dev = pci_get_drvdata(pdev);
5136 struct cas *cp;
5137 if (!dev)
5138 return;
5139
5140 cp = netdev_priv(dev);
5141 unregister_netdev(dev);
5142
758df69e 5143 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5144 flush_scheduled_work();
5145 if (cp->hw_running)
5146 cas_shutdown(cp);
758df69e 5147 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5148
5149#if 1
5150 if (cp->orig_cacheline_size) {
5151 /* Restore the cache line size if we had modified
5152 * it.
5153 */
6aa20a22 5154 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1f26dac3
DM
5155 cp->orig_cacheline_size);
5156 }
5157#endif
5158 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5159 cp->init_block, cp->block_dvma);
18e37f2a 5160 pci_iounmap(pdev, cp->regs);
1f26dac3
DM
5161 free_netdev(dev);
5162 pci_release_regions(pdev);
5163 pci_disable_device(pdev);
5164 pci_set_drvdata(pdev, NULL);
5165}
5166
5167#ifdef CONFIG_PM
46d7031e 5168static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
1f26dac3
DM
5169{
5170 struct net_device *dev = pci_get_drvdata(pdev);
5171 struct cas *cp = netdev_priv(dev);
5172 unsigned long flags;
5173
758df69e 5174 mutex_lock(&cp->pm_mutex);
6aa20a22 5175
1f26dac3
DM
5176 /* If the driver is opened, we stop the DMA */
5177 if (cp->opened) {
5178 netif_device_detach(dev);
5179
5180 cas_lock_all_save(cp, flags);
5181
5182 /* We can set the second arg of cas_reset to 0
5183 * because on resume, we'll call cas_init_hw with
5184 * its second arg set so that autonegotiation is
5185 * restarted.
5186 */
5187 cas_reset(cp, 0);
5188 cas_clean_rings(cp);
5189 cas_unlock_all_restore(cp, flags);
5190 }
5191
5192 if (cp->hw_running)
5193 cas_shutdown(cp);
758df69e 5194 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5195
5196 return 0;
5197}
5198
5199static int cas_resume(struct pci_dev *pdev)
5200{
5201 struct net_device *dev = pci_get_drvdata(pdev);
5202 struct cas *cp = netdev_priv(dev);
5203
5204 printk(KERN_INFO "%s: resuming\n", dev->name);
5205
758df69e 5206 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5207 cas_hard_reset(cp);
5208 if (cp->opened) {
5209 unsigned long flags;
5210 cas_lock_all_save(cp, flags);
5211 cas_reset(cp, 0);
5212 cp->hw_running = 1;
5213 cas_clean_rings(cp);
5214 cas_init_hw(cp, 1);
5215 cas_unlock_all_restore(cp, flags);
5216
5217 netif_device_attach(dev);
5218 }
758df69e 5219 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5220 return 0;
5221}
5222#endif /* CONFIG_PM */
5223
5224static struct pci_driver cas_driver = {
5225 .name = DRV_MODULE_NAME,
5226 .id_table = cas_pci_tbl,
5227 .probe = cas_init_one,
5228 .remove = __devexit_p(cas_remove_one),
5229#ifdef CONFIG_PM
5230 .suspend = cas_suspend,
5231 .resume = cas_resume
5232#endif
5233};
5234
5235static int __init cas_init(void)
5236{
5237 if (linkdown_timeout > 0)
5238 link_transition_timeout = linkdown_timeout * HZ;
5239 else
5240 link_transition_timeout = 0;
5241
29917620 5242 return pci_register_driver(&cas_driver);
1f26dac3
DM
5243}
5244
5245static void __exit cas_cleanup(void)
5246{
5247 pci_unregister_driver(&cas_driver);
5248}
5249
5250module_init(cas_init);
5251module_exit(cas_cleanup);