]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/cxgb3/sge.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / net / cxgb3 / sge.c
CommitLineData
4d22de3e 1/*
a02d44a0 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4d22de3e 3 *
1d68e93d
DLR
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
4d22de3e 9 *
1d68e93d
DLR
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
4d22de3e 31 */
4d22de3e
DLR
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
5a0e3ad6 39#include <linux/slab.h>
a109a5b9 40#include <net/arp.h>
4d22de3e
DLR
41#include "common.h"
42#include "regs.h"
43#include "sge_defs.h"
44#include "t3_cpl.h"
45#include "firmware_exports.h"
e998f245 46#include "cxgb3_offload.h"
4d22de3e
DLR
47
48#define USE_GTS 0
49
50#define SGE_RX_SM_BUF_SIZE 1536
e0994eb1 51
4d22de3e 52#define SGE_RX_COPY_THRES 256
cf992af5 53#define SGE_RX_PULL_LEN 128
4d22de3e 54
5e68b772 55#define SGE_PG_RSVD SMP_CACHE_BYTES
e0994eb1 56/*
cf992af5
DLR
57 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
58 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
59 * directly.
e0994eb1 60 */
cf992af5 61#define FL0_PG_CHUNK_SIZE 2048
7385ecf3 62#define FL0_PG_ORDER 0
5e68b772 63#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
7385ecf3
DLR
64#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
65#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
5e68b772 66#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
cf992af5 67
e0994eb1 68#define SGE_RX_DROP_THRES 16
42c8ea17 69#define RX_RECLAIM_PERIOD (HZ/4)
4d22de3e 70
26b3871d
DLR
71/*
72 * Max number of Rx buffers we replenish at a time.
73 */
74#define MAX_RX_REFILL 16U
4d22de3e
DLR
75/*
76 * Period of the Tx buffer reclaim timer. This timer does not need to run
77 * frequently as Tx buffers are usually reclaimed by new Tx packets.
78 */
79#define TX_RECLAIM_PERIOD (HZ / 4)
42c8ea17
DLR
80#define TX_RECLAIM_TIMER_CHUNK 64U
81#define TX_RECLAIM_CHUNK 16U
4d22de3e
DLR
82
83/* WR size in bytes */
84#define WR_LEN (WR_FLITS * 8)
85
86/*
87 * Types of Tx queues in each queue set. Order here matters, do not change.
88 */
89enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
90
91/* Values for sge_txq.flags */
92enum {
93 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
94 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
95};
96
97struct tx_desc {
fb8e4444 98 __be64 flit[TX_DESC_FLITS];
4d22de3e
DLR
99};
100
101struct rx_desc {
102 __be32 addr_lo;
103 __be32 len_gen;
104 __be32 gen2;
105 __be32 addr_hi;
106};
107
108struct tx_sw_desc { /* SW state per Tx descriptor */
109 struct sk_buff *skb;
23561c94
DLR
110 u8 eop; /* set if last descriptor for packet */
111 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
112 u8 fragidx; /* first page fragment associated with descriptor */
113 s8 sflit; /* start flit of first SGL entry in descriptor */
4d22de3e
DLR
114};
115
cf992af5 116struct rx_sw_desc { /* SW state per Rx descriptor */
e0994eb1
DLR
117 union {
118 struct sk_buff *skb;
cf992af5
DLR
119 struct fl_pg_chunk pg_chunk;
120 };
121 DECLARE_PCI_UNMAP_ADDR(dma_addr);
4d22de3e
DLR
122};
123
124struct rsp_desc { /* response queue descriptor */
125 struct rss_header rss_hdr;
126 __be32 flags;
127 __be32 len_cq;
128 u8 imm_data[47];
129 u8 intr_gen;
130};
131
99d7cf30
DLR
132/*
133 * Holds unmapping information for Tx packets that need deferred unmapping.
134 * This structure lives at skb->head and must be allocated by callers.
135 */
136struct deferred_unmap_info {
137 struct pci_dev *pdev;
138 dma_addr_t addr[MAX_SKB_FRAGS + 1];
139};
140
4d22de3e
DLR
141/*
142 * Maps a number of flits to the number of Tx descriptors that can hold them.
143 * The formula is
144 *
145 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
146 *
147 * HW allows up to 4 descriptors to be combined into a WR.
148 */
149static u8 flit_desc_map[] = {
150 0,
151#if SGE_NUM_GENBITS == 1
152 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
153 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
154 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
155 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
156#elif SGE_NUM_GENBITS == 2
157 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
158 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
159 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
160 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
161#else
162# error "SGE_NUM_GENBITS must be 1 or 2"
163#endif
164};
165
166static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
167{
168 return container_of(q, struct sge_qset, fl[qidx]);
169}
170
171static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
172{
173 return container_of(q, struct sge_qset, rspq);
174}
175
176static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
177{
178 return container_of(q, struct sge_qset, txq[qidx]);
179}
180
181/**
182 * refill_rspq - replenish an SGE response queue
183 * @adapter: the adapter
184 * @q: the response queue to replenish
185 * @credits: how many new responses to make available
186 *
187 * Replenishes a response queue by making the supplied number of responses
188 * available to HW.
189 */
190static inline void refill_rspq(struct adapter *adapter,
191 const struct sge_rspq *q, unsigned int credits)
192{
afefce66 193 rmb();
4d22de3e
DLR
194 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
195 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
196}
197
198/**
199 * need_skb_unmap - does the platform need unmapping of sk_buffs?
200 *
947af294 201 * Returns true if the platform needs sk_buff unmapping. The compiler
4d22de3e
DLR
202 * optimizes away unecessary code if this returns true.
203 */
204static inline int need_skb_unmap(void)
205{
206 /*
947af294 207 * This structure is used to tell if the platform needs buffer
4d22de3e
DLR
208 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
209 */
210 struct dummy {
211 DECLARE_PCI_UNMAP_ADDR(addr);
212 };
213
214 return sizeof(struct dummy) != 0;
215}
216
217/**
218 * unmap_skb - unmap a packet main body and its page fragments
219 * @skb: the packet
220 * @q: the Tx queue containing Tx descriptors for the packet
221 * @cidx: index of Tx descriptor
222 * @pdev: the PCI device
223 *
224 * Unmap the main body of an sk_buff and its page fragments, if any.
225 * Because of the fairly complicated structure of our SGLs and the desire
23561c94
DLR
226 * to conserve space for metadata, the information necessary to unmap an
227 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
228 * descriptors (the physical addresses of the various data buffers), and
229 * the SW descriptor state (assorted indices). The send functions
230 * initialize the indices for the first packet descriptor so we can unmap
231 * the buffers held in the first Tx descriptor here, and we have enough
232 * information at this point to set the state for the next Tx descriptor.
233 *
234 * Note that it is possible to clean up the first descriptor of a packet
235 * before the send routines have written the next descriptors, but this
236 * race does not cause any problem. We just end up writing the unmapping
237 * info for the descriptor first.
4d22de3e
DLR
238 */
239static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
240 unsigned int cidx, struct pci_dev *pdev)
241{
242 const struct sg_ent *sgp;
23561c94
DLR
243 struct tx_sw_desc *d = &q->sdesc[cidx];
244 int nfrags, frag_idx, curflit, j = d->addr_idx;
4d22de3e 245
23561c94
DLR
246 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
247 frag_idx = d->fragidx;
4d22de3e 248
23561c94
DLR
249 if (frag_idx == 0 && skb_headlen(skb)) {
250 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
251 skb_headlen(skb), PCI_DMA_TODEVICE);
4d22de3e
DLR
252 j = 1;
253 }
254
23561c94 255 curflit = d->sflit + 1 + j;
4d22de3e
DLR
256 nfrags = skb_shinfo(skb)->nr_frags;
257
258 while (frag_idx < nfrags && curflit < WR_FLITS) {
259 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
260 skb_shinfo(skb)->frags[frag_idx].size,
261 PCI_DMA_TODEVICE);
262 j ^= 1;
263 if (j == 0) {
264 sgp++;
265 curflit++;
266 }
267 curflit++;
268 frag_idx++;
269 }
270
23561c94
DLR
271 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
272 d = cidx + 1 == q->size ? q->sdesc : d + 1;
273 d->fragidx = frag_idx;
274 d->addr_idx = j;
275 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
4d22de3e
DLR
276 }
277}
278
279/**
280 * free_tx_desc - reclaims Tx descriptors and their buffers
281 * @adapter: the adapter
282 * @q: the Tx queue to reclaim descriptors from
283 * @n: the number of descriptors to reclaim
284 *
285 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
286 * Tx buffers. Called with the Tx queue lock held.
287 */
288static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
289 unsigned int n)
290{
291 struct tx_sw_desc *d;
292 struct pci_dev *pdev = adapter->pdev;
293 unsigned int cidx = q->cidx;
294
99d7cf30
DLR
295 const int need_unmap = need_skb_unmap() &&
296 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
297
4d22de3e
DLR
298 d = &q->sdesc[cidx];
299 while (n--) {
300 if (d->skb) { /* an SGL is present */
99d7cf30 301 if (need_unmap)
4d22de3e 302 unmap_skb(d->skb, q, cidx, pdev);
23561c94 303 if (d->eop)
4d22de3e
DLR
304 kfree_skb(d->skb);
305 }
306 ++d;
307 if (++cidx == q->size) {
308 cidx = 0;
309 d = q->sdesc;
310 }
311 }
312 q->cidx = cidx;
313}
314
315/**
316 * reclaim_completed_tx - reclaims completed Tx descriptors
317 * @adapter: the adapter
318 * @q: the Tx queue to reclaim completed descriptors from
42c8ea17 319 * @chunk: maximum number of descriptors to reclaim
4d22de3e
DLR
320 *
321 * Reclaims Tx descriptors that the SGE has indicated it has processed,
322 * and frees the associated buffers if possible. Called with the Tx
323 * queue's lock held.
324 */
42c8ea17
DLR
325static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
326 struct sge_txq *q,
327 unsigned int chunk)
4d22de3e
DLR
328{
329 unsigned int reclaim = q->processed - q->cleaned;
330
42c8ea17 331 reclaim = min(chunk, reclaim);
4d22de3e
DLR
332 if (reclaim) {
333 free_tx_desc(adapter, q, reclaim);
334 q->cleaned += reclaim;
335 q->in_use -= reclaim;
336 }
42c8ea17 337 return q->processed - q->cleaned;
4d22de3e
DLR
338}
339
340/**
341 * should_restart_tx - are there enough resources to restart a Tx queue?
342 * @q: the Tx queue
343 *
344 * Checks if there are enough descriptors to restart a suspended Tx queue.
345 */
346static inline int should_restart_tx(const struct sge_txq *q)
347{
348 unsigned int r = q->processed - q->cleaned;
349
350 return q->in_use - r < (q->size >> 1);
351}
352
5e68b772
DLR
353static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
354 struct rx_sw_desc *d)
9bb2b31e 355{
5e68b772
DLR
356 if (q->use_pages && d->pg_chunk.page) {
357 (*d->pg_chunk.p_cnt)--;
358 if (!*d->pg_chunk.p_cnt)
359 pci_unmap_page(pdev,
10b6d956 360 d->pg_chunk.mapping,
5e68b772
DLR
361 q->alloc_size, PCI_DMA_FROMDEVICE);
362
363 put_page(d->pg_chunk.page);
9bb2b31e
DLR
364 d->pg_chunk.page = NULL;
365 } else {
5e68b772
DLR
366 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
367 q->buf_size, PCI_DMA_FROMDEVICE);
9bb2b31e
DLR
368 kfree_skb(d->skb);
369 d->skb = NULL;
370 }
371}
372
4d22de3e
DLR
373/**
374 * free_rx_bufs - free the Rx buffers on an SGE free list
375 * @pdev: the PCI device associated with the adapter
376 * @rxq: the SGE free list to clean up
377 *
378 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
379 * this queue should be stopped before calling this function.
380 */
381static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
382{
383 unsigned int cidx = q->cidx;
384
385 while (q->credits--) {
386 struct rx_sw_desc *d = &q->sdesc[cidx];
387
5e68b772
DLR
388
389 clear_rx_desc(pdev, q, d);
4d22de3e
DLR
390 if (++cidx == q->size)
391 cidx = 0;
392 }
e0994eb1 393
cf992af5 394 if (q->pg_chunk.page) {
7385ecf3 395 __free_pages(q->pg_chunk.page, q->order);
cf992af5
DLR
396 q->pg_chunk.page = NULL;
397 }
4d22de3e
DLR
398}
399
400/**
401 * add_one_rx_buf - add a packet buffer to a free-buffer list
cf992af5 402 * @va: buffer start VA
4d22de3e
DLR
403 * @len: the buffer length
404 * @d: the HW Rx descriptor to write
405 * @sd: the SW Rx descriptor to write
406 * @gen: the generation bit value
407 * @pdev: the PCI device associated with the adapter
408 *
409 * Add a buffer of the given length to the supplied HW and SW Rx
410 * descriptors.
411 */
b1fb1f28
DLR
412static inline int add_one_rx_buf(void *va, unsigned int len,
413 struct rx_desc *d, struct rx_sw_desc *sd,
414 unsigned int gen, struct pci_dev *pdev)
4d22de3e
DLR
415{
416 dma_addr_t mapping;
417
e0994eb1 418 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
8d8bb39b 419 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
b1fb1f28
DLR
420 return -ENOMEM;
421
4d22de3e
DLR
422 pci_unmap_addr_set(sd, dma_addr, mapping);
423
424 d->addr_lo = cpu_to_be32(mapping);
425 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
426 wmb();
427 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
428 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
b1fb1f28 429 return 0;
4d22de3e
DLR
430}
431
5e68b772
DLR
432static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
433 unsigned int gen)
434{
435 d->addr_lo = cpu_to_be32(mapping);
436 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
437 wmb();
438 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
439 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
440 return 0;
441}
442
443static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
444 struct rx_sw_desc *sd, gfp_t gfp,
7385ecf3 445 unsigned int order)
cf992af5
DLR
446{
447 if (!q->pg_chunk.page) {
5e68b772
DLR
448 dma_addr_t mapping;
449
7385ecf3 450 q->pg_chunk.page = alloc_pages(gfp, order);
cf992af5
DLR
451 if (unlikely(!q->pg_chunk.page))
452 return -ENOMEM;
453 q->pg_chunk.va = page_address(q->pg_chunk.page);
5e68b772
DLR
454 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
455 SGE_PG_RSVD;
cf992af5 456 q->pg_chunk.offset = 0;
5e68b772
DLR
457 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
458 0, q->alloc_size, PCI_DMA_FROMDEVICE);
10b6d956 459 q->pg_chunk.mapping = mapping;
cf992af5
DLR
460 }
461 sd->pg_chunk = q->pg_chunk;
462
5e68b772
DLR
463 prefetch(sd->pg_chunk.p_cnt);
464
cf992af5 465 q->pg_chunk.offset += q->buf_size;
7385ecf3 466 if (q->pg_chunk.offset == (PAGE_SIZE << order))
cf992af5
DLR
467 q->pg_chunk.page = NULL;
468 else {
469 q->pg_chunk.va += q->buf_size;
470 get_page(q->pg_chunk.page);
471 }
5e68b772
DLR
472
473 if (sd->pg_chunk.offset == 0)
474 *sd->pg_chunk.p_cnt = 1;
475 else
476 *sd->pg_chunk.p_cnt += 1;
477
cf992af5
DLR
478 return 0;
479}
480
26b3871d
DLR
481static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
482{
483 if (q->pend_cred >= q->credits / 4) {
484 q->pend_cred = 0;
2e02644a 485 wmb();
26b3871d
DLR
486 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
487 }
488}
489
4d22de3e
DLR
490/**
491 * refill_fl - refill an SGE free-buffer list
492 * @adapter: the adapter
493 * @q: the free-list to refill
494 * @n: the number of new buffers to allocate
495 * @gfp: the gfp flags for allocating new buffers
496 *
497 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
498 * allocated with the supplied gfp flags. The caller must assure that
499 * @n does not exceed the queue's capacity.
500 */
b1fb1f28 501static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
4d22de3e
DLR
502{
503 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
504 struct rx_desc *d = &q->desc[q->pidx];
b1fb1f28 505 unsigned int count = 0;
4d22de3e
DLR
506
507 while (n--) {
5e68b772 508 dma_addr_t mapping;
b1fb1f28
DLR
509 int err;
510
cf992af5 511 if (q->use_pages) {
5e68b772
DLR
512 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
513 q->order))) {
cf992af5 514nomem: q->alloc_failed++;
e0994eb1
DLR
515 break;
516 }
10b6d956 517 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
5e68b772
DLR
518 pci_unmap_addr_set(sd, dma_addr, mapping);
519
520 add_one_rx_chunk(mapping, d, q->gen);
521 pci_dma_sync_single_for_device(adap->pdev, mapping,
522 q->buf_size - SGE_PG_RSVD,
523 PCI_DMA_FROMDEVICE);
e0994eb1 524 } else {
5e68b772 525 void *buf_start;
e0994eb1 526
5e68b772 527 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
cf992af5
DLR
528 if (!skb)
529 goto nomem;
e0994eb1 530
cf992af5
DLR
531 sd->skb = skb;
532 buf_start = skb->data;
5e68b772
DLR
533 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
534 q->gen, adap->pdev);
535 if (unlikely(err)) {
536 clear_rx_desc(adap->pdev, q, sd);
537 break;
538 }
b1fb1f28
DLR
539 }
540
4d22de3e
DLR
541 d++;
542 sd++;
543 if (++q->pidx == q->size) {
544 q->pidx = 0;
545 q->gen ^= 1;
546 sd = q->sdesc;
547 d = q->desc;
548 }
b1fb1f28 549 count++;
4d22de3e 550 }
26b3871d
DLR
551
552 q->credits += count;
553 q->pend_cred += count;
554 ring_fl_db(adap, q);
b1fb1f28
DLR
555
556 return count;
4d22de3e
DLR
557}
558
559static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
560{
26b3871d 561 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
7385ecf3 562 GFP_ATOMIC | __GFP_COMP);
4d22de3e
DLR
563}
564
565/**
566 * recycle_rx_buf - recycle a receive buffer
567 * @adapter: the adapter
568 * @q: the SGE free list
569 * @idx: index of buffer to recycle
570 *
571 * Recycles the specified buffer on the given free list by adding it at
572 * the next available slot on the list.
573 */
574static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
575 unsigned int idx)
576{
577 struct rx_desc *from = &q->desc[idx];
578 struct rx_desc *to = &q->desc[q->pidx];
579
cf992af5 580 q->sdesc[q->pidx] = q->sdesc[idx];
4d22de3e
DLR
581 to->addr_lo = from->addr_lo; /* already big endian */
582 to->addr_hi = from->addr_hi; /* likewise */
583 wmb();
584 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
585 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
4d22de3e
DLR
586
587 if (++q->pidx == q->size) {
588 q->pidx = 0;
589 q->gen ^= 1;
590 }
26b3871d
DLR
591
592 q->credits++;
593 q->pend_cred++;
594 ring_fl_db(adap, q);
4d22de3e
DLR
595}
596
597/**
598 * alloc_ring - allocate resources for an SGE descriptor ring
599 * @pdev: the PCI device
600 * @nelem: the number of descriptors
601 * @elem_size: the size of each descriptor
602 * @sw_size: the size of the SW state associated with each ring element
603 * @phys: the physical address of the allocated ring
604 * @metadata: address of the array holding the SW state for the ring
605 *
606 * Allocates resources for an SGE descriptor ring, such as Tx queues,
607 * free buffer lists, or response queues. Each SGE ring requires
608 * space for its HW descriptors plus, optionally, space for the SW state
609 * associated with each HW entry (the metadata). The function returns
610 * three values: the virtual address for the HW ring (the return value
611 * of the function), the physical address of the HW ring, and the address
612 * of the SW ring.
613 */
614static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
e0994eb1 615 size_t sw_size, dma_addr_t * phys, void *metadata)
4d22de3e
DLR
616{
617 size_t len = nelem * elem_size;
618 void *s = NULL;
619 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
620
621 if (!p)
622 return NULL;
52565544 623 if (sw_size && metadata) {
4d22de3e
DLR
624 s = kcalloc(nelem, sw_size, GFP_KERNEL);
625
626 if (!s) {
627 dma_free_coherent(&pdev->dev, len, p, *phys);
628 return NULL;
629 }
4d22de3e 630 *(void **)metadata = s;
52565544 631 }
4d22de3e
DLR
632 memset(p, 0, len);
633 return p;
634}
635
204e2f98
DLR
636/**
637 * t3_reset_qset - reset a sge qset
638 * @q: the queue set
639 *
640 * Reset the qset structure.
641 * the NAPI structure is preserved in the event of
642 * the qset's reincarnation, for example during EEH recovery.
643 */
644static void t3_reset_qset(struct sge_qset *q)
645{
646 if (q->adap &&
647 !(q->adap->flags & NAPI_INIT)) {
648 memset(q, 0, sizeof(*q));
649 return;
650 }
651
652 q->adap = NULL;
653 memset(&q->rspq, 0, sizeof(q->rspq));
654 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
655 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
656 q->txq_stopped = 0;
20d3fc11 657 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
42c8ea17 658 q->rx_reclaim_timer.function = NULL;
76620aaf
HX
659 q->nomem = 0;
660 napi_free_frags(&q->napi);
204e2f98
DLR
661}
662
663
4d22de3e
DLR
664/**
665 * free_qset - free the resources of an SGE queue set
666 * @adapter: the adapter owning the queue set
667 * @q: the queue set
668 *
669 * Release the HW and SW resources associated with an SGE queue set, such
670 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
671 * queue set must be quiesced prior to calling this.
672 */
9265fabf 673static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
4d22de3e
DLR
674{
675 int i;
676 struct pci_dev *pdev = adapter->pdev;
677
4d22de3e
DLR
678 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
679 if (q->fl[i].desc) {
b1186dee 680 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 681 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
b1186dee 682 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
683 free_rx_bufs(pdev, &q->fl[i]);
684 kfree(q->fl[i].sdesc);
685 dma_free_coherent(&pdev->dev,
686 q->fl[i].size *
687 sizeof(struct rx_desc), q->fl[i].desc,
688 q->fl[i].phys_addr);
689 }
690
691 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
692 if (q->txq[i].desc) {
b1186dee 693 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 694 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
b1186dee 695 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
696 if (q->txq[i].sdesc) {
697 free_tx_desc(adapter, &q->txq[i],
698 q->txq[i].in_use);
699 kfree(q->txq[i].sdesc);
700 }
701 dma_free_coherent(&pdev->dev,
702 q->txq[i].size *
703 sizeof(struct tx_desc),
704 q->txq[i].desc, q->txq[i].phys_addr);
705 __skb_queue_purge(&q->txq[i].sendq);
706 }
707
708 if (q->rspq.desc) {
b1186dee 709 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 710 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
b1186dee 711 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
712 dma_free_coherent(&pdev->dev,
713 q->rspq.size * sizeof(struct rsp_desc),
714 q->rspq.desc, q->rspq.phys_addr);
715 }
716
204e2f98 717 t3_reset_qset(q);
4d22de3e
DLR
718}
719
720/**
721 * init_qset_cntxt - initialize an SGE queue set context info
722 * @qs: the queue set
723 * @id: the queue set id
724 *
725 * Initializes the TIDs and context ids for the queues of a queue set.
726 */
727static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
728{
729 qs->rspq.cntxt_id = id;
730 qs->fl[0].cntxt_id = 2 * id;
731 qs->fl[1].cntxt_id = 2 * id + 1;
732 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
733 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
734 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
735 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
736 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
737}
738
739/**
740 * sgl_len - calculates the size of an SGL of the given capacity
741 * @n: the number of SGL entries
742 *
743 * Calculates the number of flits needed for a scatter/gather list that
744 * can hold the given number of entries.
745 */
746static inline unsigned int sgl_len(unsigned int n)
747{
748 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
749 return (3 * n) / 2 + (n & 1);
750}
751
752/**
753 * flits_to_desc - returns the num of Tx descriptors for the given flits
754 * @n: the number of flits
755 *
756 * Calculates the number of Tx descriptors needed for the supplied number
757 * of flits.
758 */
759static inline unsigned int flits_to_desc(unsigned int n)
760{
761 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
762 return flit_desc_map[n];
763}
764
cf992af5
DLR
765/**
766 * get_packet - return the next ingress packet buffer from a free list
767 * @adap: the adapter that received the packet
768 * @fl: the SGE free list holding the packet
769 * @len: the packet length including any SGE padding
770 * @drop_thres: # of remaining buffers before we start dropping packets
771 *
772 * Get the next packet from a free list and complete setup of the
773 * sk_buff. If the packet is small we make a copy and recycle the
774 * original buffer, otherwise we use the original buffer itself. If a
775 * positive drop threshold is supplied packets are dropped and their
776 * buffers recycled if (a) the number of remaining buffers is under the
777 * threshold and the packet is too big to copy, or (b) the packet should
778 * be copied but there is no memory for the copy.
779 */
780static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
781 unsigned int len, unsigned int drop_thres)
782{
783 struct sk_buff *skb = NULL;
784 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
785
786 prefetch(sd->skb->data);
787 fl->credits--;
788
789 if (len <= SGE_RX_COPY_THRES) {
790 skb = alloc_skb(len, GFP_ATOMIC);
791 if (likely(skb != NULL)) {
792 __skb_put(skb, len);
793 pci_dma_sync_single_for_cpu(adap->pdev,
794 pci_unmap_addr(sd, dma_addr), len,
795 PCI_DMA_FROMDEVICE);
796 memcpy(skb->data, sd->skb->data, len);
797 pci_dma_sync_single_for_device(adap->pdev,
798 pci_unmap_addr(sd, dma_addr), len,
799 PCI_DMA_FROMDEVICE);
800 } else if (!drop_thres)
801 goto use_orig_buf;
802recycle:
803 recycle_rx_buf(adap, fl, fl->cidx);
804 return skb;
805 }
806
26b3871d
DLR
807 if (unlikely(fl->credits < drop_thres) &&
808 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
809 GFP_ATOMIC | __GFP_COMP) == 0)
cf992af5
DLR
810 goto recycle;
811
812use_orig_buf:
813 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
814 fl->buf_size, PCI_DMA_FROMDEVICE);
815 skb = sd->skb;
816 skb_put(skb, len);
817 __refill_fl(adap, fl);
818 return skb;
819}
820
821/**
822 * get_packet_pg - return the next ingress packet buffer from a free list
823 * @adap: the adapter that received the packet
824 * @fl: the SGE free list holding the packet
825 * @len: the packet length including any SGE padding
826 * @drop_thres: # of remaining buffers before we start dropping packets
827 *
828 * Get the next packet from a free list populated with page chunks.
829 * If the packet is small we make a copy and recycle the original buffer,
830 * otherwise we attach the original buffer as a page fragment to a fresh
831 * sk_buff. If a positive drop threshold is supplied packets are dropped
832 * and their buffers recycled if (a) the number of remaining buffers is
833 * under the threshold and the packet is too big to copy, or (b) there's
834 * no system memory.
835 *
836 * Note: this function is similar to @get_packet but deals with Rx buffers
837 * that are page chunks rather than sk_buffs.
838 */
839static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
7385ecf3
DLR
840 struct sge_rspq *q, unsigned int len,
841 unsigned int drop_thres)
cf992af5 842{
7385ecf3 843 struct sk_buff *newskb, *skb;
cf992af5
DLR
844 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
845
5e68b772 846 dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
7385ecf3 847
5e68b772 848 newskb = skb = q->pg_skb;
7385ecf3
DLR
849 if (!skb && (len <= SGE_RX_COPY_THRES)) {
850 newskb = alloc_skb(len, GFP_ATOMIC);
851 if (likely(newskb != NULL)) {
852 __skb_put(newskb, len);
5e68b772 853 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
cf992af5 854 PCI_DMA_FROMDEVICE);
7385ecf3 855 memcpy(newskb->data, sd->pg_chunk.va, len);
5e68b772
DLR
856 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
857 len,
858 PCI_DMA_FROMDEVICE);
cf992af5
DLR
859 } else if (!drop_thres)
860 return NULL;
861recycle:
862 fl->credits--;
863 recycle_rx_buf(adap, fl, fl->cidx);
7385ecf3
DLR
864 q->rx_recycle_buf++;
865 return newskb;
cf992af5
DLR
866 }
867
7385ecf3 868 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
cf992af5
DLR
869 goto recycle;
870
5e68b772
DLR
871 prefetch(sd->pg_chunk.p_cnt);
872
7385ecf3 873 if (!skb)
b47385bd 874 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
5e68b772 875
7385ecf3 876 if (unlikely(!newskb)) {
cf992af5
DLR
877 if (!drop_thres)
878 return NULL;
879 goto recycle;
880 }
881
5e68b772
DLR
882 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
883 PCI_DMA_FROMDEVICE);
884 (*sd->pg_chunk.p_cnt)--;
70e3bb50 885 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
5e68b772 886 pci_unmap_page(adap->pdev,
10b6d956 887 sd->pg_chunk.mapping,
5e68b772
DLR
888 fl->alloc_size,
889 PCI_DMA_FROMDEVICE);
7385ecf3
DLR
890 if (!skb) {
891 __skb_put(newskb, SGE_RX_PULL_LEN);
892 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
893 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
894 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
895 len - SGE_RX_PULL_LEN);
896 newskb->len = len;
897 newskb->data_len = len - SGE_RX_PULL_LEN;
8f435804 898 newskb->truesize += newskb->data_len;
7385ecf3
DLR
899 } else {
900 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
901 sd->pg_chunk.page,
902 sd->pg_chunk.offset, len);
903 newskb->len += len;
904 newskb->data_len += len;
8f435804 905 newskb->truesize += len;
7385ecf3 906 }
cf992af5
DLR
907
908 fl->credits--;
909 /*
910 * We do not refill FLs here, we let the caller do it to overlap a
911 * prefetch.
912 */
7385ecf3 913 return newskb;
cf992af5
DLR
914}
915
4d22de3e
DLR
916/**
917 * get_imm_packet - return the next ingress packet buffer from a response
918 * @resp: the response descriptor containing the packet data
919 *
920 * Return a packet containing the immediate data of the given response.
921 */
922static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
923{
924 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
925
926 if (skb) {
927 __skb_put(skb, IMMED_PKT_SIZE);
27d7ff46 928 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
4d22de3e
DLR
929 }
930 return skb;
931}
932
933/**
934 * calc_tx_descs - calculate the number of Tx descriptors for a packet
935 * @skb: the packet
936 *
937 * Returns the number of Tx descriptors needed for the given Ethernet
938 * packet. Ethernet packets require addition of WR and CPL headers.
939 */
940static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
941{
942 unsigned int flits;
943
944 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
945 return 1;
946
947 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
948 if (skb_shinfo(skb)->gso_size)
949 flits++;
950 return flits_to_desc(flits);
951}
952
953/**
954 * make_sgl - populate a scatter/gather list for a packet
955 * @skb: the packet
956 * @sgp: the SGL to populate
957 * @start: start address of skb main body data to include in the SGL
958 * @len: length of skb main body data to include in the SGL
959 * @pdev: the PCI device
960 *
961 * Generates a scatter/gather list for the buffers that make up a packet
962 * and returns the SGL size in 8-byte words. The caller must size the SGL
963 * appropriately.
964 */
965static inline unsigned int make_sgl(const struct sk_buff *skb,
966 struct sg_ent *sgp, unsigned char *start,
967 unsigned int len, struct pci_dev *pdev)
968{
969 dma_addr_t mapping;
970 unsigned int i, j = 0, nfrags;
971
972 if (len) {
973 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
974 sgp->len[0] = cpu_to_be32(len);
975 sgp->addr[0] = cpu_to_be64(mapping);
976 j = 1;
977 }
978
979 nfrags = skb_shinfo(skb)->nr_frags;
980 for (i = 0; i < nfrags; i++) {
981 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
982
983 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
984 frag->size, PCI_DMA_TODEVICE);
985 sgp->len[j] = cpu_to_be32(frag->size);
986 sgp->addr[j] = cpu_to_be64(mapping);
987 j ^= 1;
988 if (j == 0)
989 ++sgp;
990 }
991 if (j)
992 sgp->len[j] = 0;
993 return ((nfrags + (len != 0)) * 3) / 2 + j;
994}
995
996/**
997 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
998 * @adap: the adapter
999 * @q: the Tx queue
1000 *
1001 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1002 * where the HW is going to sleep just after we checked, however,
1003 * then the interrupt handler will detect the outstanding TX packet
1004 * and ring the doorbell for us.
1005 *
1006 * When GTS is disabled we unconditionally ring the doorbell.
1007 */
1008static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1009{
1010#if USE_GTS
1011 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1012 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1013 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1014 t3_write_reg(adap, A_SG_KDOORBELL,
1015 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1016 }
1017#else
1018 wmb(); /* write descriptors before telling HW */
1019 t3_write_reg(adap, A_SG_KDOORBELL,
1020 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1021#endif
1022}
1023
1024static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1025{
1026#if SGE_NUM_GENBITS == 2
1027 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1028#endif
1029}
1030
1031/**
1032 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1033 * @ndesc: number of Tx descriptors spanned by the SGL
1034 * @skb: the packet corresponding to the WR
1035 * @d: first Tx descriptor to be written
1036 * @pidx: index of above descriptors
1037 * @q: the SGE Tx queue
1038 * @sgl: the SGL
1039 * @flits: number of flits to the start of the SGL in the first descriptor
1040 * @sgl_flits: the SGL size in flits
1041 * @gen: the Tx descriptor generation
1042 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1043 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1044 *
1045 * Write a work request header and an associated SGL. If the SGL is
1046 * small enough to fit into one Tx descriptor it has already been written
1047 * and we just need to write the WR header. Otherwise we distribute the
1048 * SGL across the number of descriptors it spans.
1049 */
1050static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1051 struct tx_desc *d, unsigned int pidx,
1052 const struct sge_txq *q,
1053 const struct sg_ent *sgl,
1054 unsigned int flits, unsigned int sgl_flits,
fb8e4444
AV
1055 unsigned int gen, __be32 wr_hi,
1056 __be32 wr_lo)
4d22de3e
DLR
1057{
1058 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1059 struct tx_sw_desc *sd = &q->sdesc[pidx];
1060
1061 sd->skb = skb;
1062 if (need_skb_unmap()) {
23561c94
DLR
1063 sd->fragidx = 0;
1064 sd->addr_idx = 0;
1065 sd->sflit = flits;
4d22de3e
DLR
1066 }
1067
1068 if (likely(ndesc == 1)) {
23561c94 1069 sd->eop = 1;
4d22de3e
DLR
1070 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1071 V_WR_SGLSFLT(flits)) | wr_hi;
1072 wmb();
1073 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1074 V_WR_GEN(gen)) | wr_lo;
1075 wr_gen2(d, gen);
1076 } else {
1077 unsigned int ogen = gen;
1078 const u64 *fp = (const u64 *)sgl;
1079 struct work_request_hdr *wp = wrp;
1080
1081 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1082 V_WR_SGLSFLT(flits)) | wr_hi;
1083
1084 while (sgl_flits) {
1085 unsigned int avail = WR_FLITS - flits;
1086
1087 if (avail > sgl_flits)
1088 avail = sgl_flits;
1089 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1090 sgl_flits -= avail;
1091 ndesc--;
1092 if (!sgl_flits)
1093 break;
1094
1095 fp += avail;
1096 d++;
23561c94 1097 sd->eop = 0;
4d22de3e
DLR
1098 sd++;
1099 if (++pidx == q->size) {
1100 pidx = 0;
1101 gen ^= 1;
1102 d = q->desc;
1103 sd = q->sdesc;
1104 }
1105
1106 sd->skb = skb;
1107 wrp = (struct work_request_hdr *)d;
1108 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1109 V_WR_SGLSFLT(1)) | wr_hi;
1110 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1111 sgl_flits + 1)) |
1112 V_WR_GEN(gen)) | wr_lo;
1113 wr_gen2(d, gen);
1114 flits = 1;
1115 }
23561c94 1116 sd->eop = 1;
4d22de3e
DLR
1117 wrp->wr_hi |= htonl(F_WR_EOP);
1118 wmb();
1119 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1120 wr_gen2((struct tx_desc *)wp, ogen);
1121 WARN_ON(ndesc != 0);
1122 }
1123}
1124
1125/**
1126 * write_tx_pkt_wr - write a TX_PKT work request
1127 * @adap: the adapter
1128 * @skb: the packet to send
1129 * @pi: the egress interface
1130 * @pidx: index of the first Tx descriptor to write
1131 * @gen: the generation value to use
1132 * @q: the Tx queue
1133 * @ndesc: number of descriptors the packet will occupy
1134 * @compl: the value of the COMPL bit to use
1135 *
1136 * Generate a TX_PKT work request to send the supplied packet.
1137 */
1138static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1139 const struct port_info *pi,
1140 unsigned int pidx, unsigned int gen,
1141 struct sge_txq *q, unsigned int ndesc,
1142 unsigned int compl)
1143{
1144 unsigned int flits, sgl_flits, cntrl, tso_info;
1145 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1146 struct tx_desc *d = &q->desc[pidx];
1147 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1148
3fa58c88 1149 cpl->len = htonl(skb->len);
4d22de3e
DLR
1150 cntrl = V_TXPKT_INTF(pi->port_id);
1151
1152 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1153 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1154
1155 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1156 if (tso_info) {
1157 int eth_type;
1158 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1159
1160 d->flit[2] = 0;
1161 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1162 hdr->cntrl = htonl(cntrl);
bbe735e4 1163 eth_type = skb_network_offset(skb) == ETH_HLEN ?
4d22de3e
DLR
1164 CPL_ETH_II : CPL_ETH_II_VLAN;
1165 tso_info |= V_LSO_ETH_TYPE(eth_type) |
eddc9ec5 1166 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
aa8223c7 1167 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
4d22de3e
DLR
1168 hdr->lso_info = htonl(tso_info);
1169 flits = 3;
1170 } else {
1171 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1172 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1173 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1174 cpl->cntrl = htonl(cntrl);
1175
1176 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1177 q->sdesc[pidx].skb = NULL;
1178 if (!skb->data_len)
d626f62b
ACM
1179 skb_copy_from_linear_data(skb, &d->flit[2],
1180 skb->len);
4d22de3e
DLR
1181 else
1182 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1183
1184 flits = (skb->len + 7) / 8 + 2;
1185 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1186 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1187 | F_WR_SOP | F_WR_EOP | compl);
1188 wmb();
1189 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1190 V_WR_TID(q->token));
1191 wr_gen2(d, gen);
1192 kfree_skb(skb);
1193 return;
1194 }
1195
1196 flits = 2;
1197 }
1198
1199 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1200 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
4d22de3e
DLR
1201
1202 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1203 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1204 htonl(V_WR_TID(q->token)));
1205}
1206
82ad3329
DLR
1207static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1208 struct sge_qset *qs, struct sge_txq *q)
a8cc21f6 1209{
82ad3329 1210 netif_tx_stop_queue(txq);
a8cc21f6
KK
1211 set_bit(TXQ_ETH, &qs->txq_stopped);
1212 q->stops++;
1213}
1214
4d22de3e
DLR
1215/**
1216 * eth_xmit - add a packet to the Ethernet Tx queue
1217 * @skb: the packet
1218 * @dev: the egress net device
1219 *
1220 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1221 */
61357325 1222netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
4d22de3e 1223{
82ad3329 1224 int qidx;
4d22de3e
DLR
1225 unsigned int ndesc, pidx, credits, gen, compl;
1226 const struct port_info *pi = netdev_priv(dev);
5fbf816f 1227 struct adapter *adap = pi->adapter;
82ad3329
DLR
1228 struct netdev_queue *txq;
1229 struct sge_qset *qs;
1230 struct sge_txq *q;
4d22de3e
DLR
1231
1232 /*
1233 * The chip min packet length is 9 octets but play safe and reject
1234 * anything shorter than an Ethernet header.
1235 */
1236 if (unlikely(skb->len < ETH_HLEN)) {
1237 dev_kfree_skb(skb);
1238 return NETDEV_TX_OK;
1239 }
1240
82ad3329
DLR
1241 qidx = skb_get_queue_mapping(skb);
1242 qs = &pi->qs[qidx];
1243 q = &qs->txq[TXQ_ETH];
1244 txq = netdev_get_tx_queue(dev, qidx);
1245
42c8ea17 1246 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1247
1248 credits = q->size - q->in_use;
1249 ndesc = calc_tx_descs(skb);
1250
1251 if (unlikely(credits < ndesc)) {
82ad3329 1252 t3_stop_tx_queue(txq, qs, q);
a8cc21f6
KK
1253 dev_err(&adap->pdev->dev,
1254 "%s: Tx ring %u full while queue awake!\n",
1255 dev->name, q->cntxt_id & 7);
4d22de3e
DLR
1256 return NETDEV_TX_BUSY;
1257 }
1258
1259 q->in_use += ndesc;
cd7e9034 1260 if (unlikely(credits - ndesc < q->stop_thres)) {
82ad3329 1261 t3_stop_tx_queue(txq, qs, q);
cd7e9034
DLR
1262
1263 if (should_restart_tx(q) &&
1264 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1265 q->restarts++;
0d9a40de 1266 netif_tx_start_queue(txq);
cd7e9034
DLR
1267 }
1268 }
4d22de3e
DLR
1269
1270 gen = q->gen;
1271 q->unacked += ndesc;
1272 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1273 q->unacked &= 7;
1274 pidx = q->pidx;
1275 q->pidx += ndesc;
1276 if (q->pidx >= q->size) {
1277 q->pidx -= q->size;
1278 q->gen ^= 1;
1279 }
1280
1281 /* update port statistics */
1282 if (skb->ip_summed == CHECKSUM_COMPLETE)
1283 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1284 if (skb_shinfo(skb)->gso_size)
1285 qs->port_stats[SGE_PSTAT_TSO]++;
1286 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1287 qs->port_stats[SGE_PSTAT_VLANINS]++;
1288
4d22de3e
DLR
1289 /*
1290 * We do not use Tx completion interrupts to free DMAd Tx packets.
af901ca1 1291 * This is good for performance but means that we rely on new Tx
4d22de3e
DLR
1292 * packets arriving to run the destructors of completed packets,
1293 * which open up space in their sockets' send queues. Sometimes
1294 * we do not get such new packets causing Tx to stall. A single
1295 * UDP transmitter is a good example of this situation. We have
1296 * a clean up timer that periodically reclaims completed packets
1297 * but it doesn't run often enough (nor do we want it to) to prevent
1298 * lengthy stalls. A solution to this problem is to run the
1299 * destructor early, after the packet is queued but before it's DMAd.
1300 * A cons is that we lie to socket memory accounting, but the amount
1301 * of extra memory is reasonable (limited by the number of Tx
1302 * descriptors), the packets do actually get freed quickly by new
1303 * packets almost always, and for protocols like TCP that wait for
1304 * acks to really free up the data the extra memory is even less.
1305 * On the positive side we run the destructors on the sending CPU
1306 * rather than on a potentially different completing CPU, usually a
1307 * good thing. We also run them without holding our Tx queue lock,
1308 * unlike what reclaim_completed_tx() would otherwise do.
1309 *
1310 * Run the destructor before telling the DMA engine about the packet
1311 * to make sure it doesn't complete and get freed prematurely.
1312 */
1313 if (likely(!skb_shared(skb)))
1314 skb_orphan(skb);
1315
1316 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1317 check_ring_tx_db(adap, q);
1318 return NETDEV_TX_OK;
1319}
1320
1321/**
1322 * write_imm - write a packet into a Tx descriptor as immediate data
1323 * @d: the Tx descriptor to write
1324 * @skb: the packet
1325 * @len: the length of packet data to write as immediate data
1326 * @gen: the generation bit value to write
1327 *
1328 * Writes a packet as immediate data into a Tx descriptor. The packet
1329 * contains a work request at its beginning. We must write the packet
27186dc3
DLR
1330 * carefully so the SGE doesn't read it accidentally before it's written
1331 * in its entirety.
4d22de3e
DLR
1332 */
1333static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1334 unsigned int len, unsigned int gen)
1335{
1336 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1337 struct work_request_hdr *to = (struct work_request_hdr *)d;
1338
27186dc3
DLR
1339 if (likely(!skb->data_len))
1340 memcpy(&to[1], &from[1], len - sizeof(*from));
1341 else
1342 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1343
4d22de3e
DLR
1344 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1345 V_WR_BCNTLFLT(len & 7));
1346 wmb();
1347 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1348 V_WR_LEN((len + 7) / 8));
1349 wr_gen2(d, gen);
1350 kfree_skb(skb);
1351}
1352
1353/**
1354 * check_desc_avail - check descriptor availability on a send queue
1355 * @adap: the adapter
1356 * @q: the send queue
1357 * @skb: the packet needing the descriptors
1358 * @ndesc: the number of Tx descriptors needed
1359 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1360 *
1361 * Checks if the requested number of Tx descriptors is available on an
1362 * SGE send queue. If the queue is already suspended or not enough
1363 * descriptors are available the packet is queued for later transmission.
1364 * Must be called with the Tx queue locked.
1365 *
1366 * Returns 0 if enough descriptors are available, 1 if there aren't
1367 * enough descriptors and the packet has been queued, and 2 if the caller
1368 * needs to retry because there weren't enough descriptors at the
1369 * beginning of the call but some freed up in the mean time.
1370 */
1371static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1372 struct sk_buff *skb, unsigned int ndesc,
1373 unsigned int qid)
1374{
1375 if (unlikely(!skb_queue_empty(&q->sendq))) {
1376 addq_exit:__skb_queue_tail(&q->sendq, skb);
1377 return 1;
1378 }
1379 if (unlikely(q->size - q->in_use < ndesc)) {
1380 struct sge_qset *qs = txq_to_qset(q, qid);
1381
1382 set_bit(qid, &qs->txq_stopped);
1383 smp_mb__after_clear_bit();
1384
1385 if (should_restart_tx(q) &&
1386 test_and_clear_bit(qid, &qs->txq_stopped))
1387 return 2;
1388
1389 q->stops++;
1390 goto addq_exit;
1391 }
1392 return 0;
1393}
1394
1395/**
1396 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1397 * @q: the SGE control Tx queue
1398 *
1399 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1400 * that send only immediate data (presently just the control queues) and
1401 * thus do not have any sk_buffs to release.
1402 */
1403static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1404{
1405 unsigned int reclaim = q->processed - q->cleaned;
1406
1407 q->in_use -= reclaim;
1408 q->cleaned += reclaim;
1409}
1410
1411static inline int immediate(const struct sk_buff *skb)
1412{
27186dc3 1413 return skb->len <= WR_LEN;
4d22de3e
DLR
1414}
1415
1416/**
1417 * ctrl_xmit - send a packet through an SGE control Tx queue
1418 * @adap: the adapter
1419 * @q: the control queue
1420 * @skb: the packet
1421 *
1422 * Send a packet through an SGE control Tx queue. Packets sent through
1423 * a control queue must fit entirely as immediate data in a single Tx
1424 * descriptor and have no page fragments.
1425 */
1426static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1427 struct sk_buff *skb)
1428{
1429 int ret;
1430 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1431
1432 if (unlikely(!immediate(skb))) {
1433 WARN_ON(1);
1434 dev_kfree_skb(skb);
1435 return NET_XMIT_SUCCESS;
1436 }
1437
1438 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1439 wrp->wr_lo = htonl(V_WR_TID(q->token));
1440
1441 spin_lock(&q->lock);
1442 again:reclaim_completed_tx_imm(q);
1443
1444 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1445 if (unlikely(ret)) {
1446 if (ret == 1) {
1447 spin_unlock(&q->lock);
1448 return NET_XMIT_CN;
1449 }
1450 goto again;
1451 }
1452
1453 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1454
1455 q->in_use++;
1456 if (++q->pidx >= q->size) {
1457 q->pidx = 0;
1458 q->gen ^= 1;
1459 }
1460 spin_unlock(&q->lock);
1461 wmb();
1462 t3_write_reg(adap, A_SG_KDOORBELL,
1463 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1464 return NET_XMIT_SUCCESS;
1465}
1466
1467/**
1468 * restart_ctrlq - restart a suspended control queue
1469 * @qs: the queue set cotaining the control queue
1470 *
1471 * Resumes transmission on a suspended Tx control queue.
1472 */
1473static void restart_ctrlq(unsigned long data)
1474{
1475 struct sk_buff *skb;
1476 struct sge_qset *qs = (struct sge_qset *)data;
1477 struct sge_txq *q = &qs->txq[TXQ_CTRL];
4d22de3e
DLR
1478
1479 spin_lock(&q->lock);
1480 again:reclaim_completed_tx_imm(q);
1481
bea3348e
SH
1482 while (q->in_use < q->size &&
1483 (skb = __skb_dequeue(&q->sendq)) != NULL) {
4d22de3e
DLR
1484
1485 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1486
1487 if (++q->pidx >= q->size) {
1488 q->pidx = 0;
1489 q->gen ^= 1;
1490 }
1491 q->in_use++;
1492 }
1493
1494 if (!skb_queue_empty(&q->sendq)) {
1495 set_bit(TXQ_CTRL, &qs->txq_stopped);
1496 smp_mb__after_clear_bit();
1497
1498 if (should_restart_tx(q) &&
1499 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1500 goto again;
1501 q->stops++;
1502 }
1503
1504 spin_unlock(&q->lock);
afefce66 1505 wmb();
bea3348e 1506 t3_write_reg(qs->adap, A_SG_KDOORBELL,
4d22de3e
DLR
1507 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1508}
1509
14ab9892
DLR
1510/*
1511 * Send a management message through control queue 0
1512 */
1513int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1514{
204e2f98 1515 int ret;
bc4b6b52
DLR
1516 local_bh_disable();
1517 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1518 local_bh_enable();
1519
1520 return ret;
14ab9892
DLR
1521}
1522
99d7cf30
DLR
1523/**
1524 * deferred_unmap_destructor - unmap a packet when it is freed
1525 * @skb: the packet
1526 *
1527 * This is the packet destructor used for Tx packets that need to remain
1528 * mapped until they are freed rather than until their Tx descriptors are
1529 * freed.
1530 */
1531static void deferred_unmap_destructor(struct sk_buff *skb)
1532{
1533 int i;
1534 const dma_addr_t *p;
1535 const struct skb_shared_info *si;
1536 const struct deferred_unmap_info *dui;
99d7cf30
DLR
1537
1538 dui = (struct deferred_unmap_info *)skb->head;
1539 p = dui->addr;
1540
23561c94
DLR
1541 if (skb->tail - skb->transport_header)
1542 pci_unmap_single(dui->pdev, *p++,
1543 skb->tail - skb->transport_header,
1544 PCI_DMA_TODEVICE);
99d7cf30
DLR
1545
1546 si = skb_shinfo(skb);
1547 for (i = 0; i < si->nr_frags; i++)
1548 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1549 PCI_DMA_TODEVICE);
1550}
1551
1552static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1553 const struct sg_ent *sgl, int sgl_flits)
1554{
1555 dma_addr_t *p;
1556 struct deferred_unmap_info *dui;
1557
1558 dui = (struct deferred_unmap_info *)skb->head;
1559 dui->pdev = pdev;
1560 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1561 *p++ = be64_to_cpu(sgl->addr[0]);
1562 *p++ = be64_to_cpu(sgl->addr[1]);
1563 }
1564 if (sgl_flits)
1565 *p = be64_to_cpu(sgl->addr[0]);
1566}
1567
4d22de3e
DLR
1568/**
1569 * write_ofld_wr - write an offload work request
1570 * @adap: the adapter
1571 * @skb: the packet to send
1572 * @q: the Tx queue
1573 * @pidx: index of the first Tx descriptor to write
1574 * @gen: the generation value to use
1575 * @ndesc: number of descriptors the packet will occupy
1576 *
1577 * Write an offload work request to send the supplied packet. The packet
1578 * data already carry the work request with most fields populated.
1579 */
1580static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1581 struct sge_txq *q, unsigned int pidx,
1582 unsigned int gen, unsigned int ndesc)
1583{
1584 unsigned int sgl_flits, flits;
1585 struct work_request_hdr *from;
1586 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1587 struct tx_desc *d = &q->desc[pidx];
1588
1589 if (immediate(skb)) {
1590 q->sdesc[pidx].skb = NULL;
1591 write_imm(d, skb, skb->len, gen);
1592 return;
1593 }
1594
1595 /* Only TX_DATA builds SGLs */
1596
1597 from = (struct work_request_hdr *)skb->data;
ea2ae17d
ACM
1598 memcpy(&d->flit[1], &from[1],
1599 skb_transport_offset(skb) - sizeof(*from));
4d22de3e 1600
ea2ae17d 1601 flits = skb_transport_offset(skb) / 8;
4d22de3e 1602 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
9c70220b 1603 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
27a884dc 1604 skb->tail - skb->transport_header,
4d22de3e 1605 adap->pdev);
99d7cf30
DLR
1606 if (need_skb_unmap()) {
1607 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1608 skb->destructor = deferred_unmap_destructor;
99d7cf30 1609 }
4d22de3e
DLR
1610
1611 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1612 gen, from->wr_hi, from->wr_lo);
1613}
1614
1615/**
1616 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1617 * @skb: the packet
1618 *
1619 * Returns the number of Tx descriptors needed for the given offload
1620 * packet. These packets are already fully constructed.
1621 */
1622static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1623{
27186dc3 1624 unsigned int flits, cnt;
4d22de3e 1625
27186dc3 1626 if (skb->len <= WR_LEN)
4d22de3e
DLR
1627 return 1; /* packet fits as immediate data */
1628
ea2ae17d 1629 flits = skb_transport_offset(skb) / 8; /* headers */
27186dc3 1630 cnt = skb_shinfo(skb)->nr_frags;
27a884dc 1631 if (skb->tail != skb->transport_header)
4d22de3e
DLR
1632 cnt++;
1633 return flits_to_desc(flits + sgl_len(cnt));
1634}
1635
1636/**
1637 * ofld_xmit - send a packet through an offload queue
1638 * @adap: the adapter
1639 * @q: the Tx offload queue
1640 * @skb: the packet
1641 *
1642 * Send an offload packet through an SGE offload queue.
1643 */
1644static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1645 struct sk_buff *skb)
1646{
1647 int ret;
1648 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1649
1650 spin_lock(&q->lock);
42c8ea17 1651again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1652
1653 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1654 if (unlikely(ret)) {
1655 if (ret == 1) {
1656 skb->priority = ndesc; /* save for restart */
1657 spin_unlock(&q->lock);
1658 return NET_XMIT_CN;
1659 }
1660 goto again;
1661 }
1662
1663 gen = q->gen;
1664 q->in_use += ndesc;
1665 pidx = q->pidx;
1666 q->pidx += ndesc;
1667 if (q->pidx >= q->size) {
1668 q->pidx -= q->size;
1669 q->gen ^= 1;
1670 }
1671 spin_unlock(&q->lock);
1672
1673 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1674 check_ring_tx_db(adap, q);
1675 return NET_XMIT_SUCCESS;
1676}
1677
1678/**
1679 * restart_offloadq - restart a suspended offload queue
1680 * @qs: the queue set cotaining the offload queue
1681 *
1682 * Resumes transmission on a suspended Tx offload queue.
1683 */
1684static void restart_offloadq(unsigned long data)
1685{
1686 struct sk_buff *skb;
1687 struct sge_qset *qs = (struct sge_qset *)data;
1688 struct sge_txq *q = &qs->txq[TXQ_OFLD];
5fbf816f
DLR
1689 const struct port_info *pi = netdev_priv(qs->netdev);
1690 struct adapter *adap = pi->adapter;
4d22de3e
DLR
1691
1692 spin_lock(&q->lock);
42c8ea17 1693again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1694
1695 while ((skb = skb_peek(&q->sendq)) != NULL) {
1696 unsigned int gen, pidx;
1697 unsigned int ndesc = skb->priority;
1698
1699 if (unlikely(q->size - q->in_use < ndesc)) {
1700 set_bit(TXQ_OFLD, &qs->txq_stopped);
1701 smp_mb__after_clear_bit();
1702
1703 if (should_restart_tx(q) &&
1704 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1705 goto again;
1706 q->stops++;
1707 break;
1708 }
1709
1710 gen = q->gen;
1711 q->in_use += ndesc;
1712 pidx = q->pidx;
1713 q->pidx += ndesc;
1714 if (q->pidx >= q->size) {
1715 q->pidx -= q->size;
1716 q->gen ^= 1;
1717 }
1718 __skb_unlink(skb, &q->sendq);
1719 spin_unlock(&q->lock);
1720
1721 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1722 spin_lock(&q->lock);
1723 }
1724 spin_unlock(&q->lock);
1725
1726#if USE_GTS
1727 set_bit(TXQ_RUNNING, &q->flags);
1728 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1729#endif
afefce66 1730 wmb();
4d22de3e
DLR
1731 t3_write_reg(adap, A_SG_KDOORBELL,
1732 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1733}
1734
1735/**
1736 * queue_set - return the queue set a packet should use
1737 * @skb: the packet
1738 *
1739 * Maps a packet to the SGE queue set it should use. The desired queue
1740 * set is carried in bits 1-3 in the packet's priority.
1741 */
1742static inline int queue_set(const struct sk_buff *skb)
1743{
1744 return skb->priority >> 1;
1745}
1746
1747/**
1748 * is_ctrl_pkt - return whether an offload packet is a control packet
1749 * @skb: the packet
1750 *
1751 * Determines whether an offload packet should use an OFLD or a CTRL
1752 * Tx queue. This is indicated by bit 0 in the packet's priority.
1753 */
1754static inline int is_ctrl_pkt(const struct sk_buff *skb)
1755{
1756 return skb->priority & 1;
1757}
1758
1759/**
1760 * t3_offload_tx - send an offload packet
1761 * @tdev: the offload device to send to
1762 * @skb: the packet
1763 *
1764 * Sends an offload packet. We use the packet priority to select the
1765 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1766 * should be sent as regular or control, bits 1-3 select the queue set.
1767 */
1768int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1769{
1770 struct adapter *adap = tdev2adap(tdev);
1771 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1772
1773 if (unlikely(is_ctrl_pkt(skb)))
1774 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1775
1776 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1777}
1778
1779/**
1780 * offload_enqueue - add an offload packet to an SGE offload receive queue
1781 * @q: the SGE response queue
1782 * @skb: the packet
1783 *
1784 * Add a new offload packet to an SGE response queue's offload packet
1785 * queue. If the packet is the first on the queue it schedules the RX
1786 * softirq to process the queue.
1787 */
1788static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1789{
147e70e6
DM
1790 int was_empty = skb_queue_empty(&q->rx_queue);
1791
1792 __skb_queue_tail(&q->rx_queue, skb);
1793
1794 if (was_empty) {
4d22de3e
DLR
1795 struct sge_qset *qs = rspq_to_qset(q);
1796
bea3348e 1797 napi_schedule(&qs->napi);
4d22de3e 1798 }
4d22de3e
DLR
1799}
1800
1801/**
1802 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1803 * @tdev: the offload device that will be receiving the packets
1804 * @q: the SGE response queue that assembled the bundle
1805 * @skbs: the partial bundle
1806 * @n: the number of packets in the bundle
1807 *
1808 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1809 */
1810static inline void deliver_partial_bundle(struct t3cdev *tdev,
1811 struct sge_rspq *q,
1812 struct sk_buff *skbs[], int n)
1813{
1814 if (n) {
1815 q->offload_bundles++;
1816 tdev->recv(tdev, skbs, n);
1817 }
1818}
1819
1820/**
1821 * ofld_poll - NAPI handler for offload packets in interrupt mode
1822 * @dev: the network device doing the polling
1823 * @budget: polling budget
1824 *
1825 * The NAPI handler for offload packets when a response queue is serviced
1826 * by the hard interrupt handler, i.e., when it's operating in non-polling
1827 * mode. Creates small packet batches and sends them through the offload
1828 * receive handler. Batches need to be of modest size as we do prefetches
1829 * on the packets in each.
1830 */
bea3348e 1831static int ofld_poll(struct napi_struct *napi, int budget)
4d22de3e 1832{
bea3348e 1833 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
4d22de3e 1834 struct sge_rspq *q = &qs->rspq;
bea3348e
SH
1835 struct adapter *adapter = qs->adap;
1836 int work_done = 0;
4d22de3e 1837
bea3348e 1838 while (work_done < budget) {
147e70e6
DM
1839 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1840 struct sk_buff_head queue;
4d22de3e
DLR
1841 int ngathered;
1842
1843 spin_lock_irq(&q->lock);
147e70e6
DM
1844 __skb_queue_head_init(&queue);
1845 skb_queue_splice_init(&q->rx_queue, &queue);
1846 if (skb_queue_empty(&queue)) {
bea3348e 1847 napi_complete(napi);
4d22de3e 1848 spin_unlock_irq(&q->lock);
bea3348e 1849 return work_done;
4d22de3e 1850 }
4d22de3e
DLR
1851 spin_unlock_irq(&q->lock);
1852
147e70e6
DM
1853 ngathered = 0;
1854 skb_queue_walk_safe(&queue, skb, tmp) {
1855 if (work_done >= budget)
1856 break;
1857 work_done++;
1858
1859 __skb_unlink(skb, &queue);
1860 prefetch(skb->data);
1861 skbs[ngathered] = skb;
4d22de3e
DLR
1862 if (++ngathered == RX_BUNDLE_SIZE) {
1863 q->offload_bundles++;
1864 adapter->tdev.recv(&adapter->tdev, skbs,
1865 ngathered);
1866 ngathered = 0;
1867 }
1868 }
147e70e6
DM
1869 if (!skb_queue_empty(&queue)) {
1870 /* splice remaining packets back onto Rx queue */
4d22de3e 1871 spin_lock_irq(&q->lock);
147e70e6 1872 skb_queue_splice(&queue, &q->rx_queue);
4d22de3e
DLR
1873 spin_unlock_irq(&q->lock);
1874 }
1875 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1876 }
bea3348e
SH
1877
1878 return work_done;
4d22de3e
DLR
1879}
1880
1881/**
1882 * rx_offload - process a received offload packet
1883 * @tdev: the offload device receiving the packet
1884 * @rq: the response queue that received the packet
1885 * @skb: the packet
1886 * @rx_gather: a gather list of packets if we are building a bundle
1887 * @gather_idx: index of the next available slot in the bundle
1888 *
1889 * Process an ingress offload pakcet and add it to the offload ingress
1890 * queue. Returns the index of the next available slot in the bundle.
1891 */
1892static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1893 struct sk_buff *skb, struct sk_buff *rx_gather[],
1894 unsigned int gather_idx)
1895{
459a98ed 1896 skb_reset_mac_header(skb);
c1d2bbe1 1897 skb_reset_network_header(skb);
badff6d0 1898 skb_reset_transport_header(skb);
4d22de3e
DLR
1899
1900 if (rq->polling) {
1901 rx_gather[gather_idx++] = skb;
1902 if (gather_idx == RX_BUNDLE_SIZE) {
1903 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1904 gather_idx = 0;
1905 rq->offload_bundles++;
1906 }
1907 } else
1908 offload_enqueue(rq, skb);
1909
1910 return gather_idx;
1911}
1912
4d22de3e
DLR
1913/**
1914 * restart_tx - check whether to restart suspended Tx queues
1915 * @qs: the queue set to resume
1916 *
1917 * Restarts suspended Tx queues of an SGE queue set if they have enough
1918 * free resources to resume operation.
1919 */
1920static void restart_tx(struct sge_qset *qs)
1921{
1922 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1923 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1924 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1925 qs->txq[TXQ_ETH].restarts++;
1926 if (netif_running(qs->netdev))
82ad3329 1927 netif_tx_wake_queue(qs->tx_q);
4d22de3e
DLR
1928 }
1929
1930 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1931 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1932 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1933 qs->txq[TXQ_OFLD].restarts++;
1934 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1935 }
1936 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1937 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1938 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1939 qs->txq[TXQ_CTRL].restarts++;
1940 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1941 }
1942}
1943
a109a5b9
KX
1944/**
1945 * cxgb3_arp_process - process an ARP request probing a private IP address
1946 * @adapter: the adapter
1947 * @skb: the skbuff containing the ARP request
1948 *
1949 * Check if the ARP request is probing the private IP address
1950 * dedicated to iSCSI, generate an ARP reply if so.
1951 */
f14d42f3 1952static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
a109a5b9
KX
1953{
1954 struct net_device *dev = skb->dev;
a109a5b9
KX
1955 struct arphdr *arp;
1956 unsigned char *arp_ptr;
1957 unsigned char *sha;
1958 __be32 sip, tip;
1959
1960 if (!dev)
1961 return;
1962
1963 skb_reset_network_header(skb);
1964 arp = arp_hdr(skb);
1965
1966 if (arp->ar_op != htons(ARPOP_REQUEST))
1967 return;
1968
1969 arp_ptr = (unsigned char *)(arp + 1);
1970 sha = arp_ptr;
1971 arp_ptr += dev->addr_len;
1972 memcpy(&sip, arp_ptr, sizeof(sip));
1973 arp_ptr += sizeof(sip);
1974 arp_ptr += dev->addr_len;
1975 memcpy(&tip, arp_ptr, sizeof(tip));
1976
a109a5b9
KX
1977 if (tip != pi->iscsi_ipv4addr)
1978 return;
1979
1980 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
f14d42f3 1981 pi->iscsic.mac_addr, sha);
a109a5b9
KX
1982
1983}
1984
1985static inline int is_arp(struct sk_buff *skb)
1986{
1987 return skb->protocol == htons(ETH_P_ARP);
1988}
1989
f14d42f3
KX
1990static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1991 struct sk_buff *skb)
1992{
1993 if (is_arp(skb)) {
1994 cxgb3_arp_process(pi, skb);
1995 return;
1996 }
1997
1998 if (pi->iscsic.recv)
1999 pi->iscsic.recv(pi, skb);
2000
2001}
2002
4d22de3e
DLR
2003/**
2004 * rx_eth - process an ingress ethernet packet
2005 * @adap: the adapter
2006 * @rq: the response queue that received the packet
2007 * @skb: the packet
2008 * @pad: amount of padding at the start of the buffer
2009 *
2010 * Process an ingress ethernet pakcet and deliver it to the stack.
2011 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2012 * if it was immediate data in a response.
2013 */
2014static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
b47385bd 2015 struct sk_buff *skb, int pad, int lro)
4d22de3e
DLR
2016{
2017 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
b47385bd 2018 struct sge_qset *qs = rspq_to_qset(rq);
4d22de3e
DLR
2019 struct port_info *pi;
2020
4d22de3e 2021 skb_pull(skb, sizeof(*p) + pad);
4c13eb66 2022 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
4d22de3e 2023 pi = netdev_priv(skb->dev);
5e68b772
DLR
2024 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2025 p->csum == htons(0xffff) && !p->fragment) {
a109a5b9 2026 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
4d22de3e
DLR
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 } else
2029 skb->ip_summed = CHECKSUM_NONE;
0c8dfc83 2030 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
4d22de3e
DLR
2031
2032 if (unlikely(p->vlan_valid)) {
2033 struct vlan_group *grp = pi->vlan_grp;
2034
b47385bd 2035 qs->port_stats[SGE_PSTAT_VLANEX]++;
4d22de3e 2036 if (likely(grp))
b47385bd 2037 if (lro)
7be2df45
HX
2038 vlan_gro_receive(&qs->napi, grp,
2039 ntohs(p->vlan), skb);
a109a5b9 2040 else {
f14d42f3 2041 if (unlikely(pi->iscsic.flags)) {
a109a5b9
KX
2042 unsigned short vtag = ntohs(p->vlan) &
2043 VLAN_VID_MASK;
2044 skb->dev = vlan_group_get_device(grp,
2045 vtag);
f14d42f3 2046 cxgb3_process_iscsi_prov_pack(pi, skb);
a109a5b9 2047 }
b47385bd
DLR
2048 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2049 rq->polling);
a109a5b9 2050 }
4d22de3e
DLR
2051 else
2052 dev_kfree_skb_any(skb);
b47385bd
DLR
2053 } else if (rq->polling) {
2054 if (lro)
7be2df45 2055 napi_gro_receive(&qs->napi, skb);
a109a5b9 2056 else {
f14d42f3
KX
2057 if (unlikely(pi->iscsic.flags))
2058 cxgb3_process_iscsi_prov_pack(pi, skb);
b47385bd 2059 netif_receive_skb(skb);
a109a5b9 2060 }
b47385bd 2061 } else
4d22de3e
DLR
2062 netif_rx(skb);
2063}
2064
b47385bd
DLR
2065static inline int is_eth_tcp(u32 rss)
2066{
2067 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2068}
2069
b47385bd
DLR
2070/**
2071 * lro_add_page - add a page chunk to an LRO session
2072 * @adap: the adapter
2073 * @qs: the associated queue set
2074 * @fl: the free list containing the page chunk to add
2075 * @len: packet length
2076 * @complete: Indicates the last fragment of a frame
2077 *
2078 * Add a received packet contained in a page chunk to an existing LRO
2079 * session.
2080 */
2081static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2082 struct sge_fl *fl, int len, int complete)
2083{
2084 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2d171886 2085 struct port_info *pi = netdev_priv(qs->netdev);
76620aaf 2086 struct sk_buff *skb = NULL;
b47385bd 2087 struct cpl_rx_pkt *cpl;
76620aaf
HX
2088 struct skb_frag_struct *rx_frag;
2089 int nr_frags;
b47385bd
DLR
2090 int offset = 0;
2091
76620aaf
HX
2092 if (!qs->nomem) {
2093 skb = napi_get_frags(&qs->napi);
2094 qs->nomem = !skb;
b47385bd
DLR
2095 }
2096
2097 fl->credits--;
2098
5e68b772
DLR
2099 pci_dma_sync_single_for_cpu(adap->pdev,
2100 pci_unmap_addr(sd, dma_addr),
2101 fl->buf_size - SGE_PG_RSVD,
2102 PCI_DMA_FROMDEVICE);
2103
2104 (*sd->pg_chunk.p_cnt)--;
70e3bb50 2105 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
5e68b772 2106 pci_unmap_page(adap->pdev,
10b6d956 2107 sd->pg_chunk.mapping,
5e68b772
DLR
2108 fl->alloc_size,
2109 PCI_DMA_FROMDEVICE);
b47385bd 2110
76620aaf
HX
2111 if (!skb) {
2112 put_page(sd->pg_chunk.page);
2113 if (complete)
2114 qs->nomem = 0;
2115 return;
2116 }
2117
2118 rx_frag = skb_shinfo(skb)->frags;
2119 nr_frags = skb_shinfo(skb)->nr_frags;
2120
2121 if (!nr_frags) {
2122 offset = 2 + sizeof(struct cpl_rx_pkt);
2d171886
DLR
2123 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2124
2125 if ((pi->rx_offload & T3_RX_CSUM) &&
2126 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2127 skb->ip_summed = CHECKSUM_UNNECESSARY;
2128 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2129 } else
2130 skb->ip_summed = CHECKSUM_NONE;
2131 } else
2132 cpl = qs->lro_va;
76620aaf 2133
2d171886 2134 len -= offset;
b2b964f0 2135
b47385bd
DLR
2136 rx_frag += nr_frags;
2137 rx_frag->page = sd->pg_chunk.page;
2138 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2139 rx_frag->size = len;
b47385bd 2140
76620aaf
HX
2141 skb->len += len;
2142 skb->data_len += len;
2143 skb->truesize += len;
2144 skb_shinfo(skb)->nr_frags++;
5e68b772 2145
b47385bd
DLR
2146 if (!complete)
2147 return;
2148
10e85f7f 2149 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
b47385bd
DLR
2150
2151 if (unlikely(cpl->vlan_valid)) {
b47385bd
DLR
2152 struct vlan_group *grp = pi->vlan_grp;
2153
2154 if (likely(grp != NULL)) {
76620aaf
HX
2155 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan));
2156 return;
b47385bd
DLR
2157 }
2158 }
76620aaf 2159 napi_gro_frags(&qs->napi);
b47385bd
DLR
2160}
2161
4d22de3e
DLR
2162/**
2163 * handle_rsp_cntrl_info - handles control information in a response
2164 * @qs: the queue set corresponding to the response
2165 * @flags: the response control flags
4d22de3e
DLR
2166 *
2167 * Handles the control information of an SGE response, such as GTS
2168 * indications and completion credits for the queue set's Tx queues.
6195c71d 2169 * HW coalesces credits, we don't do any extra SW coalescing.
4d22de3e 2170 */
6195c71d 2171static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
4d22de3e
DLR
2172{
2173 unsigned int credits;
2174
2175#if USE_GTS
2176 if (flags & F_RSPD_TXQ0_GTS)
2177 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2178#endif
2179
4d22de3e
DLR
2180 credits = G_RSPD_TXQ0_CR(flags);
2181 if (credits)
2182 qs->txq[TXQ_ETH].processed += credits;
2183
6195c71d
DLR
2184 credits = G_RSPD_TXQ2_CR(flags);
2185 if (credits)
2186 qs->txq[TXQ_CTRL].processed += credits;
2187
4d22de3e
DLR
2188# if USE_GTS
2189 if (flags & F_RSPD_TXQ1_GTS)
2190 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2191# endif
6195c71d
DLR
2192 credits = G_RSPD_TXQ1_CR(flags);
2193 if (credits)
2194 qs->txq[TXQ_OFLD].processed += credits;
4d22de3e
DLR
2195}
2196
2197/**
2198 * check_ring_db - check if we need to ring any doorbells
2199 * @adapter: the adapter
2200 * @qs: the queue set whose Tx queues are to be examined
2201 * @sleeping: indicates which Tx queue sent GTS
2202 *
2203 * Checks if some of a queue set's Tx queues need to ring their doorbells
2204 * to resume transmission after idling while they still have unprocessed
2205 * descriptors.
2206 */
2207static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2208 unsigned int sleeping)
2209{
2210 if (sleeping & F_RSPD_TXQ0_GTS) {
2211 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2212
2213 if (txq->cleaned + txq->in_use != txq->processed &&
2214 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2215 set_bit(TXQ_RUNNING, &txq->flags);
2216 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2217 V_EGRCNTX(txq->cntxt_id));
2218 }
2219 }
2220
2221 if (sleeping & F_RSPD_TXQ1_GTS) {
2222 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2223
2224 if (txq->cleaned + txq->in_use != txq->processed &&
2225 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2226 set_bit(TXQ_RUNNING, &txq->flags);
2227 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2228 V_EGRCNTX(txq->cntxt_id));
2229 }
2230 }
2231}
2232
2233/**
2234 * is_new_response - check if a response is newly written
2235 * @r: the response descriptor
2236 * @q: the response queue
2237 *
2238 * Returns true if a response descriptor contains a yet unprocessed
2239 * response.
2240 */
2241static inline int is_new_response(const struct rsp_desc *r,
2242 const struct sge_rspq *q)
2243{
2244 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2245}
2246
7385ecf3
DLR
2247static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2248{
2249 q->pg_skb = NULL;
2250 q->rx_recycle_buf = 0;
2251}
2252
4d22de3e
DLR
2253#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2254#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2255 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2256 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2257 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2258
2259/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2260#define NOMEM_INTR_DELAY 2500
2261
2262/**
2263 * process_responses - process responses from an SGE response queue
2264 * @adap: the adapter
2265 * @qs: the queue set to which the response queue belongs
2266 * @budget: how many responses can be processed in this round
2267 *
2268 * Process responses from an SGE response queue up to the supplied budget.
2269 * Responses include received packets as well as credits and other events
2270 * for the queues that belong to the response queue's queue set.
2271 * A negative budget is effectively unlimited.
2272 *
2273 * Additionally choose the interrupt holdoff time for the next interrupt
2274 * on this queue. If the system is under memory shortage use a fairly
2275 * long delay to help recovery.
2276 */
2277static int process_responses(struct adapter *adap, struct sge_qset *qs,
2278 int budget)
2279{
2280 struct sge_rspq *q = &qs->rspq;
2281 struct rsp_desc *r = &q->desc[q->cidx];
2282 int budget_left = budget;
6195c71d 2283 unsigned int sleeping = 0;
4d22de3e
DLR
2284 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2285 int ngathered = 0;
2286
2287 q->next_holdoff = q->holdoff_tmr;
2288
2289 while (likely(budget_left && is_new_response(r, q))) {
b47385bd 2290 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
4d22de3e 2291 struct sk_buff *skb = NULL;
2e02644a
DLR
2292 u32 len, flags;
2293 __be32 rss_hi, rss_lo;
4d22de3e 2294
2e02644a 2295 rmb();
4d22de3e 2296 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2e02644a
DLR
2297 rss_hi = *(const __be32 *)r;
2298 rss_lo = r->rss_hdr.rss_hash_val;
2299 flags = ntohl(r->flags);
4d22de3e
DLR
2300
2301 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2302 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2303 if (!skb)
2304 goto no_mem;
2305
2306 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2307 skb->data[0] = CPL_ASYNC_NOTIF;
2308 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2309 q->async_notif++;
2310 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2311 skb = get_imm_packet(r);
2312 if (unlikely(!skb)) {
cf992af5 2313no_mem:
4d22de3e
DLR
2314 q->next_holdoff = NOMEM_INTR_DELAY;
2315 q->nomem++;
2316 /* consume one credit since we tried */
2317 budget_left--;
2318 break;
2319 }
2320 q->imm_data++;
e0994eb1 2321 ethpad = 0;
4d22de3e 2322 } else if ((len = ntohl(r->len_cq)) != 0) {
cf992af5 2323 struct sge_fl *fl;
e0994eb1 2324
65ab8385 2325 lro &= eth && is_eth_tcp(rss_hi);
b47385bd 2326
cf992af5
DLR
2327 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2328 if (fl->use_pages) {
2329 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
e0994eb1 2330
cf992af5
DLR
2331 prefetch(addr);
2332#if L1_CACHE_BYTES < 128
2333 prefetch(addr + L1_CACHE_BYTES);
2334#endif
e0994eb1 2335 __refill_fl(adap, fl);
b47385bd
DLR
2336 if (lro > 0) {
2337 lro_add_page(adap, qs, fl,
2338 G_RSPD_LEN(len),
2339 flags & F_RSPD_EOP);
2340 goto next_fl;
2341 }
e0994eb1 2342
7385ecf3
DLR
2343 skb = get_packet_pg(adap, fl, q,
2344 G_RSPD_LEN(len),
2345 eth ?
2346 SGE_RX_DROP_THRES : 0);
2347 q->pg_skb = skb;
cf992af5 2348 } else
e0994eb1
DLR
2349 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2350 eth ? SGE_RX_DROP_THRES : 0);
cf992af5
DLR
2351 if (unlikely(!skb)) {
2352 if (!eth)
2353 goto no_mem;
2354 q->rx_drops++;
2355 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2356 __skb_pull(skb, 2);
b47385bd 2357next_fl:
4d22de3e
DLR
2358 if (++fl->cidx == fl->size)
2359 fl->cidx = 0;
2360 } else
2361 q->pure_rsps++;
2362
2363 if (flags & RSPD_CTRL_MASK) {
2364 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2365 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2366 }
2367
2368 r++;
2369 if (unlikely(++q->cidx == q->size)) {
2370 q->cidx = 0;
2371 q->gen ^= 1;
2372 r = q->desc;
2373 }
2374 prefetch(r);
2375
2376 if (++q->credits >= (q->size / 4)) {
2377 refill_rspq(adap, q, q->credits);
2378 q->credits = 0;
2379 }
2380
7385ecf3
DLR
2381 packet_complete = flags &
2382 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2383 F_RSPD_ASYNC_NOTIF);
2384
2385 if (skb != NULL && packet_complete) {
4d22de3e 2386 if (eth)
b47385bd 2387 rx_eth(adap, q, skb, ethpad, lro);
4d22de3e 2388 else {
afefce66 2389 q->offload_pkts++;
cf992af5
DLR
2390 /* Preserve the RSS info in csum & priority */
2391 skb->csum = rss_hi;
2392 skb->priority = rss_lo;
2393 ngathered = rx_offload(&adap->tdev, q, skb,
2394 offload_skbs,
e0994eb1 2395 ngathered);
4d22de3e 2396 }
7385ecf3
DLR
2397
2398 if (flags & F_RSPD_EOP)
b47385bd 2399 clear_rspq_bufstate(q);
4d22de3e 2400 }
4d22de3e
DLR
2401 --budget_left;
2402 }
2403
4d22de3e 2404 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
b47385bd 2405
4d22de3e
DLR
2406 if (sleeping)
2407 check_ring_db(adap, qs, sleeping);
2408
2409 smp_mb(); /* commit Tx queue .processed updates */
2410 if (unlikely(qs->txq_stopped != 0))
2411 restart_tx(qs);
2412
2413 budget -= budget_left;
2414 return budget;
2415}
2416
2417static inline int is_pure_response(const struct rsp_desc *r)
2418{
c5419e6f 2419 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
4d22de3e
DLR
2420
2421 return (n | r->len_cq) == 0;
2422}
2423
2424/**
2425 * napi_rx_handler - the NAPI handler for Rx processing
bea3348e 2426 * @napi: the napi instance
4d22de3e
DLR
2427 * @budget: how many packets we can process in this round
2428 *
2429 * Handler for new data events when using NAPI.
2430 */
bea3348e 2431static int napi_rx_handler(struct napi_struct *napi, int budget)
4d22de3e 2432{
bea3348e
SH
2433 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2434 struct adapter *adap = qs->adap;
2435 int work_done = process_responses(adap, qs, budget);
4d22de3e 2436
bea3348e
SH
2437 if (likely(work_done < budget)) {
2438 napi_complete(napi);
4d22de3e 2439
bea3348e
SH
2440 /*
2441 * Because we don't atomically flush the following
2442 * write it is possible that in very rare cases it can
2443 * reach the device in a way that races with a new
2444 * response being written plus an error interrupt
2445 * causing the NAPI interrupt handler below to return
2446 * unhandled status to the OS. To protect against
2447 * this would require flushing the write and doing
2448 * both the write and the flush with interrupts off.
2449 * Way too expensive and unjustifiable given the
2450 * rarity of the race.
2451 *
2452 * The race cannot happen at all with MSI-X.
2453 */
2454 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2455 V_NEWTIMER(qs->rspq.next_holdoff) |
2456 V_NEWINDEX(qs->rspq.cidx));
2457 }
2458 return work_done;
4d22de3e
DLR
2459}
2460
2461/*
2462 * Returns true if the device is already scheduled for polling.
2463 */
bea3348e 2464static inline int napi_is_scheduled(struct napi_struct *napi)
4d22de3e 2465{
bea3348e 2466 return test_bit(NAPI_STATE_SCHED, &napi->state);
4d22de3e
DLR
2467}
2468
2469/**
2470 * process_pure_responses - process pure responses from a response queue
2471 * @adap: the adapter
2472 * @qs: the queue set owning the response queue
2473 * @r: the first pure response to process
2474 *
2475 * A simpler version of process_responses() that handles only pure (i.e.,
2476 * non data-carrying) responses. Such respones are too light-weight to
2477 * justify calling a softirq under NAPI, so we handle them specially in
2478 * the interrupt handler. The function is called with a pointer to a
2479 * response, which the caller must ensure is a valid pure response.
2480 *
2481 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2482 */
2483static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2484 struct rsp_desc *r)
2485{
2486 struct sge_rspq *q = &qs->rspq;
6195c71d 2487 unsigned int sleeping = 0;
4d22de3e
DLR
2488
2489 do {
2490 u32 flags = ntohl(r->flags);
2491
2492 r++;
2493 if (unlikely(++q->cidx == q->size)) {
2494 q->cidx = 0;
2495 q->gen ^= 1;
2496 r = q->desc;
2497 }
2498 prefetch(r);
2499
2500 if (flags & RSPD_CTRL_MASK) {
2501 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2502 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2503 }
2504
2505 q->pure_rsps++;
2506 if (++q->credits >= (q->size / 4)) {
2507 refill_rspq(adap, q, q->credits);
2508 q->credits = 0;
2509 }
2e02644a
DLR
2510 if (!is_new_response(r, q))
2511 break;
2512 rmb();
2513 } while (is_pure_response(r));
4d22de3e 2514
4d22de3e
DLR
2515 if (sleeping)
2516 check_ring_db(adap, qs, sleeping);
2517
2518 smp_mb(); /* commit Tx queue .processed updates */
2519 if (unlikely(qs->txq_stopped != 0))
2520 restart_tx(qs);
2521
2522 return is_new_response(r, q);
2523}
2524
2525/**
2526 * handle_responses - decide what to do with new responses in NAPI mode
2527 * @adap: the adapter
2528 * @q: the response queue
2529 *
2530 * This is used by the NAPI interrupt handlers to decide what to do with
2531 * new SGE responses. If there are no new responses it returns -1. If
2532 * there are new responses and they are pure (i.e., non-data carrying)
2533 * it handles them straight in hard interrupt context as they are very
2534 * cheap and don't deliver any packets. Finally, if there are any data
2535 * signaling responses it schedules the NAPI handler. Returns 1 if it
2536 * schedules NAPI, 0 if all new responses were pure.
2537 *
2538 * The caller must ascertain NAPI is not already running.
2539 */
2540static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2541{
2542 struct sge_qset *qs = rspq_to_qset(q);
2543 struct rsp_desc *r = &q->desc[q->cidx];
2544
2545 if (!is_new_response(r, q))
2546 return -1;
2e02644a 2547 rmb();
4d22de3e
DLR
2548 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2549 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2550 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2551 return 0;
2552 }
bea3348e 2553 napi_schedule(&qs->napi);
4d22de3e
DLR
2554 return 1;
2555}
2556
2557/*
2558 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2559 * (i.e., response queue serviced in hard interrupt).
2560 */
2561irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2562{
2563 struct sge_qset *qs = cookie;
bea3348e 2564 struct adapter *adap = qs->adap;
4d22de3e
DLR
2565 struct sge_rspq *q = &qs->rspq;
2566
2567 spin_lock(&q->lock);
2568 if (process_responses(adap, qs, -1) == 0)
2569 q->unhandled_irqs++;
2570 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2571 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2572 spin_unlock(&q->lock);
2573 return IRQ_HANDLED;
2574}
2575
2576/*
2577 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2578 * (i.e., response queue serviced by NAPI polling).
2579 */
9265fabf 2580static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
4d22de3e
DLR
2581{
2582 struct sge_qset *qs = cookie;
4d22de3e
DLR
2583 struct sge_rspq *q = &qs->rspq;
2584
2585 spin_lock(&q->lock);
4d22de3e 2586
bea3348e 2587 if (handle_responses(qs->adap, q) < 0)
4d22de3e
DLR
2588 q->unhandled_irqs++;
2589 spin_unlock(&q->lock);
2590 return IRQ_HANDLED;
2591}
2592
2593/*
2594 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2595 * SGE response queues as well as error and other async events as they all use
2596 * the same MSI vector. We use one SGE response queue per port in this mode
2597 * and protect all response queues with queue 0's lock.
2598 */
2599static irqreturn_t t3_intr_msi(int irq, void *cookie)
2600{
2601 int new_packets = 0;
2602 struct adapter *adap = cookie;
2603 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2604
2605 spin_lock(&q->lock);
2606
2607 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2608 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2609 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2610 new_packets = 1;
2611 }
2612
2613 if (adap->params.nports == 2 &&
2614 process_responses(adap, &adap->sge.qs[1], -1)) {
2615 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2616
2617 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2618 V_NEWTIMER(q1->next_holdoff) |
2619 V_NEWINDEX(q1->cidx));
2620 new_packets = 1;
2621 }
2622
2623 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2624 q->unhandled_irqs++;
2625
2626 spin_unlock(&q->lock);
2627 return IRQ_HANDLED;
2628}
2629
bea3348e 2630static int rspq_check_napi(struct sge_qset *qs)
4d22de3e 2631{
bea3348e
SH
2632 struct sge_rspq *q = &qs->rspq;
2633
2634 if (!napi_is_scheduled(&qs->napi) &&
2635 is_new_response(&q->desc[q->cidx], q)) {
2636 napi_schedule(&qs->napi);
4d22de3e
DLR
2637 return 1;
2638 }
2639 return 0;
2640}
2641
2642/*
2643 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2644 * by NAPI polling). Handles data events from SGE response queues as well as
2645 * error and other async events as they all use the same MSI vector. We use
2646 * one SGE response queue per port in this mode and protect all response
2647 * queues with queue 0's lock.
2648 */
9265fabf 2649static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
4d22de3e
DLR
2650{
2651 int new_packets;
2652 struct adapter *adap = cookie;
2653 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2654
2655 spin_lock(&q->lock);
2656
bea3348e 2657 new_packets = rspq_check_napi(&adap->sge.qs[0]);
4d22de3e 2658 if (adap->params.nports == 2)
bea3348e 2659 new_packets += rspq_check_napi(&adap->sge.qs[1]);
4d22de3e
DLR
2660 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2661 q->unhandled_irqs++;
2662
2663 spin_unlock(&q->lock);
2664 return IRQ_HANDLED;
2665}
2666
2667/*
2668 * A helper function that processes responses and issues GTS.
2669 */
2670static inline int process_responses_gts(struct adapter *adap,
2671 struct sge_rspq *rq)
2672{
2673 int work;
2674
2675 work = process_responses(adap, rspq_to_qset(rq), -1);
2676 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2677 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2678 return work;
2679}
2680
2681/*
2682 * The legacy INTx interrupt handler. This needs to handle data events from
2683 * SGE response queues as well as error and other async events as they all use
2684 * the same interrupt pin. We use one SGE response queue per port in this mode
2685 * and protect all response queues with queue 0's lock.
2686 */
2687static irqreturn_t t3_intr(int irq, void *cookie)
2688{
2689 int work_done, w0, w1;
2690 struct adapter *adap = cookie;
2691 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2692 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2693
2694 spin_lock(&q0->lock);
2695
2696 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2697 w1 = adap->params.nports == 2 &&
2698 is_new_response(&q1->desc[q1->cidx], q1);
2699
2700 if (likely(w0 | w1)) {
2701 t3_write_reg(adap, A_PL_CLI, 0);
2702 t3_read_reg(adap, A_PL_CLI); /* flush */
2703
2704 if (likely(w0))
2705 process_responses_gts(adap, q0);
2706
2707 if (w1)
2708 process_responses_gts(adap, q1);
2709
2710 work_done = w0 | w1;
2711 } else
2712 work_done = t3_slow_intr_handler(adap);
2713
2714 spin_unlock(&q0->lock);
2715 return IRQ_RETVAL(work_done != 0);
2716}
2717
2718/*
2719 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2720 * Handles data events from SGE response queues as well as error and other
2721 * async events as they all use the same interrupt pin. We use one SGE
2722 * response queue per port in this mode and protect all response queues with
2723 * queue 0's lock.
2724 */
2725static irqreturn_t t3b_intr(int irq, void *cookie)
2726{
2727 u32 map;
2728 struct adapter *adap = cookie;
2729 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2730
2731 t3_write_reg(adap, A_PL_CLI, 0);
2732 map = t3_read_reg(adap, A_SG_DATA_INTR);
2733
2734 if (unlikely(!map)) /* shared interrupt, most likely */
2735 return IRQ_NONE;
2736
2737 spin_lock(&q0->lock);
2738
2739 if (unlikely(map & F_ERRINTR))
2740 t3_slow_intr_handler(adap);
2741
2742 if (likely(map & 1))
2743 process_responses_gts(adap, q0);
2744
2745 if (map & 2)
2746 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2747
2748 spin_unlock(&q0->lock);
2749 return IRQ_HANDLED;
2750}
2751
2752/*
2753 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2754 * Handles data events from SGE response queues as well as error and other
2755 * async events as they all use the same interrupt pin. We use one SGE
2756 * response queue per port in this mode and protect all response queues with
2757 * queue 0's lock.
2758 */
2759static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2760{
2761 u32 map;
4d22de3e 2762 struct adapter *adap = cookie;
bea3348e
SH
2763 struct sge_qset *qs0 = &adap->sge.qs[0];
2764 struct sge_rspq *q0 = &qs0->rspq;
4d22de3e
DLR
2765
2766 t3_write_reg(adap, A_PL_CLI, 0);
2767 map = t3_read_reg(adap, A_SG_DATA_INTR);
2768
2769 if (unlikely(!map)) /* shared interrupt, most likely */
2770 return IRQ_NONE;
2771
2772 spin_lock(&q0->lock);
2773
2774 if (unlikely(map & F_ERRINTR))
2775 t3_slow_intr_handler(adap);
2776
bea3348e
SH
2777 if (likely(map & 1))
2778 napi_schedule(&qs0->napi);
4d22de3e 2779
bea3348e
SH
2780 if (map & 2)
2781 napi_schedule(&adap->sge.qs[1].napi);
4d22de3e
DLR
2782
2783 spin_unlock(&q0->lock);
2784 return IRQ_HANDLED;
2785}
2786
2787/**
2788 * t3_intr_handler - select the top-level interrupt handler
2789 * @adap: the adapter
2790 * @polling: whether using NAPI to service response queues
2791 *
2792 * Selects the top-level interrupt handler based on the type of interrupts
2793 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2794 * response queues.
2795 */
7c239975 2796irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
4d22de3e
DLR
2797{
2798 if (adap->flags & USING_MSIX)
2799 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2800 if (adap->flags & USING_MSI)
2801 return polling ? t3_intr_msi_napi : t3_intr_msi;
2802 if (adap->params.rev > 0)
2803 return polling ? t3b_intr_napi : t3b_intr;
2804 return t3_intr;
2805}
2806
b881955b
DLR
2807#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2808 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2809 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2810 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2811 F_HIRCQPARITYERROR)
2812#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2813#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2814 F_RSPQDISABLED)
2815
4d22de3e
DLR
2816/**
2817 * t3_sge_err_intr_handler - SGE async event interrupt handler
2818 * @adapter: the adapter
2819 *
2820 * Interrupt handler for SGE asynchronous (non-data) events.
2821 */
2822void t3_sge_err_intr_handler(struct adapter *adapter)
2823{
fc882196
DLR
2824 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2825 ~F_FLEMPTY;
4d22de3e 2826
b881955b
DLR
2827 if (status & SGE_PARERR)
2828 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2829 status & SGE_PARERR);
2830 if (status & SGE_FRAMINGERR)
2831 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2832 status & SGE_FRAMINGERR);
2833
4d22de3e
DLR
2834 if (status & F_RSPQCREDITOVERFOW)
2835 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2836
2837 if (status & F_RSPQDISABLED) {
2838 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2839
2840 CH_ALERT(adapter,
2841 "packet delivered to disabled response queue "
2842 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2843 }
2844
6e3f03b7 2845 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
e998f245
SW
2846 queue_work(cxgb3_wq, &adapter->db_drop_task);
2847
2848 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2849 queue_work(cxgb3_wq, &adapter->db_full_task);
2850
2851 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2852 queue_work(cxgb3_wq, &adapter->db_empty_task);
6e3f03b7 2853
4d22de3e 2854 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
b881955b 2855 if (status & SGE_FATALERR)
4d22de3e
DLR
2856 t3_fatal_err(adapter);
2857}
2858
2859/**
42c8ea17 2860 * sge_timer_tx - perform periodic maintenance of an SGE qset
4d22de3e
DLR
2861 * @data: the SGE queue set to maintain
2862 *
2863 * Runs periodically from a timer to perform maintenance of an SGE queue
2864 * set. It performs two tasks:
2865 *
42c8ea17 2866 * Cleans up any completed Tx descriptors that may still be pending.
4d22de3e
DLR
2867 * Normal descriptor cleanup happens when new packets are added to a Tx
2868 * queue so this timer is relatively infrequent and does any cleanup only
2869 * if the Tx queue has not seen any new packets in a while. We make a
2870 * best effort attempt to reclaim descriptors, in that we don't wait
2871 * around if we cannot get a queue's lock (which most likely is because
2872 * someone else is queueing new packets and so will also handle the clean
2873 * up). Since control queues use immediate data exclusively we don't
2874 * bother cleaning them up here.
2875 *
4d22de3e 2876 */
42c8ea17 2877static void sge_timer_tx(unsigned long data)
4d22de3e 2878{
4d22de3e 2879 struct sge_qset *qs = (struct sge_qset *)data;
42c8ea17
DLR
2880 struct port_info *pi = netdev_priv(qs->netdev);
2881 struct adapter *adap = pi->adapter;
2882 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2883 unsigned long next_period;
4d22de3e 2884
c3a8c5b6
DLR
2885 if (__netif_tx_trylock(qs->tx_q)) {
2886 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2887 TX_RECLAIM_TIMER_CHUNK);
2888 __netif_tx_unlock(qs->tx_q);
4d22de3e 2889 }
c3a8c5b6 2890
4d22de3e 2891 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
42c8ea17
DLR
2892 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2893 TX_RECLAIM_TIMER_CHUNK);
4d22de3e
DLR
2894 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2895 }
42c8ea17
DLR
2896
2897 next_period = TX_RECLAIM_PERIOD >>
c3a8c5b6
DLR
2898 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2899 TX_RECLAIM_TIMER_CHUNK);
42c8ea17
DLR
2900 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2901}
2902
2903/*
2904 * sge_timer_rx - perform periodic maintenance of an SGE qset
2905 * @data: the SGE queue set to maintain
2906 *
2907 * a) Replenishes Rx queues that have run out due to memory shortage.
2908 * Normally new Rx buffers are added when existing ones are consumed but
2909 * when out of memory a queue can become empty. We try to add only a few
2910 * buffers here, the queue will be replenished fully as these new buffers
2911 * are used up if memory shortage has subsided.
2912 *
2913 * b) Return coalesced response queue credits in case a response queue is
2914 * starved.
2915 *
2916 */
2917static void sge_timer_rx(unsigned long data)
2918{
2919 spinlock_t *lock;
2920 struct sge_qset *qs = (struct sge_qset *)data;
2921 struct port_info *pi = netdev_priv(qs->netdev);
2922 struct adapter *adap = pi->adapter;
2923 u32 status;
2924
2925 lock = adap->params.rev > 0 ?
2926 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2927
2928 if (!spin_trylock_irq(lock))
2929 goto out;
2930
2931 if (napi_is_scheduled(&qs->napi))
2932 goto unlock;
2933
2934 if (adap->params.rev < 4) {
2935 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2936
2937 if (status & (1 << qs->rspq.cntxt_id)) {
2938 qs->rspq.starved++;
2939 if (qs->rspq.credits) {
2940 qs->rspq.credits--;
2941 refill_rspq(adap, &qs->rspq, 1);
2942 qs->rspq.restarted++;
2943 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2944 1 << qs->rspq.cntxt_id);
bae73f44 2945 }
4d22de3e 2946 }
4d22de3e 2947 }
42c8ea17
DLR
2948
2949 if (qs->fl[0].credits < qs->fl[0].size)
2950 __refill_fl(adap, &qs->fl[0]);
2951 if (qs->fl[1].credits < qs->fl[1].size)
2952 __refill_fl(adap, &qs->fl[1]);
2953
2954unlock:
2955 spin_unlock_irq(lock);
2956out:
2957 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
4d22de3e
DLR
2958}
2959
2960/**
2961 * t3_update_qset_coalesce - update coalescing settings for a queue set
2962 * @qs: the SGE queue set
2963 * @p: new queue set parameters
2964 *
2965 * Update the coalescing settings for an SGE queue set. Nothing is done
2966 * if the queue set is not initialized yet.
2967 */
2968void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2969{
4d22de3e
DLR
2970 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2971 qs->rspq.polling = p->polling;
bea3348e 2972 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
4d22de3e
DLR
2973}
2974
2975/**
2976 * t3_sge_alloc_qset - initialize an SGE queue set
2977 * @adapter: the adapter
2978 * @id: the queue set id
2979 * @nports: how many Ethernet ports will be using this queue set
2980 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2981 * @p: configuration parameters for this queue set
2982 * @ntxq: number of Tx queues for the queue set
2983 * @netdev: net device associated with this queue set
82ad3329 2984 * @netdevq: net device TX queue associated with this queue set
4d22de3e
DLR
2985 *
2986 * Allocate resources and initialize an SGE queue set. A queue set
2987 * comprises a response queue, two Rx free-buffer queues, and up to 3
2988 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2989 * queue, offload queue, and control queue.
2990 */
2991int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2992 int irq_vec_idx, const struct qset_params *p,
82ad3329
DLR
2993 int ntxq, struct net_device *dev,
2994 struct netdev_queue *netdevq)
4d22de3e 2995{
b1fb1f28 2996 int i, avail, ret = -ENOMEM;
4d22de3e
DLR
2997 struct sge_qset *q = &adapter->sge.qs[id];
2998
2999 init_qset_cntxt(q, id);
42c8ea17
DLR
3000 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
3001 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
4d22de3e
DLR
3002
3003 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3004 sizeof(struct rx_desc),
3005 sizeof(struct rx_sw_desc),
3006 &q->fl[0].phys_addr, &q->fl[0].sdesc);
3007 if (!q->fl[0].desc)
3008 goto err;
3009
3010 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3011 sizeof(struct rx_desc),
3012 sizeof(struct rx_sw_desc),
3013 &q->fl[1].phys_addr, &q->fl[1].sdesc);
3014 if (!q->fl[1].desc)
3015 goto err;
3016
3017 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3018 sizeof(struct rsp_desc), 0,
3019 &q->rspq.phys_addr, NULL);
3020 if (!q->rspq.desc)
3021 goto err;
3022
3023 for (i = 0; i < ntxq; ++i) {
3024 /*
3025 * The control queue always uses immediate data so does not
3026 * need to keep track of any sk_buffs.
3027 */
3028 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3029
3030 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3031 sizeof(struct tx_desc), sz,
3032 &q->txq[i].phys_addr,
3033 &q->txq[i].sdesc);
3034 if (!q->txq[i].desc)
3035 goto err;
3036
3037 q->txq[i].gen = 1;
3038 q->txq[i].size = p->txq_size[i];
3039 spin_lock_init(&q->txq[i].lock);
3040 skb_queue_head_init(&q->txq[i].sendq);
3041 }
3042
3043 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3044 (unsigned long)q);
3045 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3046 (unsigned long)q);
3047
3048 q->fl[0].gen = q->fl[1].gen = 1;
3049 q->fl[0].size = p->fl_size;
3050 q->fl[1].size = p->jumbo_size;
3051
3052 q->rspq.gen = 1;
3053 q->rspq.size = p->rspq_size;
3054 spin_lock_init(&q->rspq.lock);
147e70e6 3055 skb_queue_head_init(&q->rspq.rx_queue);
4d22de3e
DLR
3056
3057 q->txq[TXQ_ETH].stop_thres = nports *
3058 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3059
cf992af5
DLR
3060#if FL0_PG_CHUNK_SIZE > 0
3061 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
e0994eb1 3062#else
cf992af5 3063 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
e0994eb1 3064#endif
7385ecf3
DLR
3065#if FL1_PG_CHUNK_SIZE > 0
3066 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3067#else
cf992af5
DLR
3068 q->fl[1].buf_size = is_offload(adapter) ?
3069 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3070 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
7385ecf3
DLR
3071#endif
3072
3073 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3074 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3075 q->fl[0].order = FL0_PG_ORDER;
3076 q->fl[1].order = FL1_PG_ORDER;
5e68b772
DLR
3077 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3078 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
4d22de3e 3079
b1186dee 3080 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
3081
3082 /* FL threshold comparison uses < */
3083 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3084 q->rspq.phys_addr, q->rspq.size,
5e68b772 3085 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
4d22de3e
DLR
3086 if (ret)
3087 goto err_unlock;
3088
3089 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3090 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3091 q->fl[i].phys_addr, q->fl[i].size,
5e68b772
DLR
3092 q->fl[i].buf_size - SGE_PG_RSVD,
3093 p->cong_thres, 1, 0);
4d22de3e
DLR
3094 if (ret)
3095 goto err_unlock;
3096 }
3097
3098 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3099 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3100 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3101 1, 0);
3102 if (ret)
3103 goto err_unlock;
3104
3105 if (ntxq > 1) {
3106 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3107 USE_GTS, SGE_CNTXT_OFLD, id,
3108 q->txq[TXQ_OFLD].phys_addr,
3109 q->txq[TXQ_OFLD].size, 0, 1, 0);
3110 if (ret)
3111 goto err_unlock;
3112 }
3113
3114 if (ntxq > 2) {
3115 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3116 SGE_CNTXT_CTRL, id,
3117 q->txq[TXQ_CTRL].phys_addr,
3118 q->txq[TXQ_CTRL].size,
3119 q->txq[TXQ_CTRL].token, 1, 0);
3120 if (ret)
3121 goto err_unlock;
3122 }
3123
b1186dee 3124 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e 3125
bea3348e
SH
3126 q->adap = adapter;
3127 q->netdev = dev;
82ad3329 3128 q->tx_q = netdevq;
bea3348e 3129 t3_update_qset_coalesce(q, p);
b47385bd 3130
7385ecf3
DLR
3131 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3132 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
3133 if (!avail) {
3134 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3135 goto err;
3136 }
3137 if (avail < q->fl[0].size)
3138 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3139 avail);
3140
7385ecf3
DLR
3141 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3142 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
3143 if (avail < q->fl[1].size)
3144 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3145 avail);
4d22de3e
DLR
3146 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3147
3148 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3149 V_NEWTIMER(q->rspq.holdoff_tmr));
3150
4d22de3e
DLR
3151 return 0;
3152
b1fb1f28 3153err_unlock:
b1186dee 3154 spin_unlock_irq(&adapter->sge.reg_lock);
b1fb1f28 3155err:
4d22de3e
DLR
3156 t3_free_qset(adapter, q);
3157 return ret;
3158}
3159
31563789
DLR
3160/**
3161 * t3_start_sge_timers - start SGE timer call backs
3162 * @adap: the adapter
3163 *
3164 * Starts each SGE queue set's timer call back
3165 */
3166void t3_start_sge_timers(struct adapter *adap)
3167{
3168 int i;
3169
3170 for (i = 0; i < SGE_QSETS; ++i) {
3171 struct sge_qset *q = &adap->sge.qs[i];
3172
3173 if (q->tx_reclaim_timer.function)
3174 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3175
3176 if (q->rx_reclaim_timer.function)
3177 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3178 }
3179}
3180
0ca41c04
DLR
3181/**
3182 * t3_stop_sge_timers - stop SGE timer call backs
3183 * @adap: the adapter
3184 *
3185 * Stops each SGE queue set's timer call back
3186 */
3187void t3_stop_sge_timers(struct adapter *adap)
3188{
3189 int i;
3190
3191 for (i = 0; i < SGE_QSETS; ++i) {
3192 struct sge_qset *q = &adap->sge.qs[i];
3193
3194 if (q->tx_reclaim_timer.function)
3195 del_timer_sync(&q->tx_reclaim_timer);
42c8ea17
DLR
3196 if (q->rx_reclaim_timer.function)
3197 del_timer_sync(&q->rx_reclaim_timer);
0ca41c04
DLR
3198 }
3199}
3200
4d22de3e
DLR
3201/**
3202 * t3_free_sge_resources - free SGE resources
3203 * @adap: the adapter
3204 *
3205 * Frees resources used by the SGE queue sets.
3206 */
3207void t3_free_sge_resources(struct adapter *adap)
3208{
3209 int i;
3210
3211 for (i = 0; i < SGE_QSETS; ++i)
3212 t3_free_qset(adap, &adap->sge.qs[i]);
3213}
3214
3215/**
3216 * t3_sge_start - enable SGE
3217 * @adap: the adapter
3218 *
3219 * Enables the SGE for DMAs. This is the last step in starting packet
3220 * transfers.
3221 */
3222void t3_sge_start(struct adapter *adap)
3223{
3224 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3225}
3226
3227/**
3228 * t3_sge_stop - disable SGE operation
3229 * @adap: the adapter
3230 *
3231 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3232 * from error interrupts) or from normal process context. In the latter
3233 * case it also disables any pending queue restart tasklets. Note that
3234 * if it is called in interrupt context it cannot disable the restart
3235 * tasklets as it cannot wait, however the tasklets will have no effect
3236 * since the doorbells are disabled and the driver will call this again
3237 * later from process context, at which time the tasklets will be stopped
3238 * if they are still running.
3239 */
3240void t3_sge_stop(struct adapter *adap)
3241{
3242 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3243 if (!in_interrupt()) {
3244 int i;
3245
3246 for (i = 0; i < SGE_QSETS; ++i) {
3247 struct sge_qset *qs = &adap->sge.qs[i];
3248
3249 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3250 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3251 }
3252 }
3253}
3254
3255/**
3256 * t3_sge_init - initialize SGE
3257 * @adap: the adapter
3258 * @p: the SGE parameters
3259 *
3260 * Performs SGE initialization needed every time after a chip reset.
3261 * We do not initialize any of the queue sets here, instead the driver
3262 * top-level must request those individually. We also do not enable DMA
3263 * here, that should be done after the queues have been set up.
3264 */
3265void t3_sge_init(struct adapter *adap, struct sge_params *p)
3266{
3267 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3268
3269 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
b881955b 3270 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
4d22de3e
DLR
3271 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3272 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3273#if SGE_NUM_GENBITS == 1
3274 ctrl |= F_EGRGENCTRL;
3275#endif
3276 if (adap->params.rev > 0) {
3277 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3278 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
4d22de3e
DLR
3279 }
3280 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3281 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3282 V_LORCQDRBTHRSH(512));
3283 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3284 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
6195c71d 3285 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
b881955b
DLR
3286 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3287 adap->params.rev < T3_REV_C ? 1000 : 500);
4d22de3e
DLR
3288 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3289 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3290 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3291 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3292 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3293}
3294
3295/**
3296 * t3_sge_prep - one-time SGE initialization
3297 * @adap: the associated adapter
3298 * @p: SGE parameters
3299 *
3300 * Performs one-time initialization of SGE SW state. Includes determining
3301 * defaults for the assorted SGE parameters, which admins can change until
3302 * they are used to initialize the SGE.
3303 */
7b9b0943 3304void t3_sge_prep(struct adapter *adap, struct sge_params *p)
4d22de3e
DLR
3305{
3306 int i;
3307
3308 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3309 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3310
3311 for (i = 0; i < SGE_QSETS; ++i) {
3312 struct qset_params *q = p->qset + i;
3313
3314 q->polling = adap->params.rev > 0;
3315 q->coalesce_usecs = 5;
3316 q->rspq_size = 1024;
e0994eb1 3317 q->fl_size = 1024;
7385ecf3 3318 q->jumbo_size = 512;
4d22de3e
DLR
3319 q->txq_size[TXQ_ETH] = 1024;
3320 q->txq_size[TXQ_OFLD] = 1024;
3321 q->txq_size[TXQ_CTRL] = 256;
3322 q->cong_thres = 0;
3323 }
3324
3325 spin_lock_init(&adap->sge.reg_lock);
3326}
3327
3328/**
3329 * t3_get_desc - dump an SGE descriptor for debugging purposes
3330 * @qs: the queue set
3331 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3332 * @idx: the descriptor index in the queue
3333 * @data: where to dump the descriptor contents
3334 *
3335 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3336 * size of the descriptor.
3337 */
3338int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3339 unsigned char *data)
3340{
3341 if (qnum >= 6)
3342 return -EINVAL;
3343
3344 if (qnum < 3) {
3345 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3346 return -EINVAL;
3347 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3348 return sizeof(struct tx_desc);
3349 }
3350
3351 if (qnum == 3) {
3352 if (!qs->rspq.desc || idx >= qs->rspq.size)
3353 return -EINVAL;
3354 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3355 return sizeof(struct rsp_desc);
3356 }
3357
3358 qnum -= 4;
3359 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3360 return -EINVAL;
3361 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3362 return sizeof(struct rx_desc);
3363}