]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/cxgb3/sge.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into for-linus
[mirror_ubuntu-jammy-kernel.git] / drivers / net / cxgb3 / sge.c
CommitLineData
4d22de3e 1/*
1d68e93d 2 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
4d22de3e 3 *
1d68e93d
DLR
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
4d22de3e 9 *
1d68e93d
DLR
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
4d22de3e 31 */
4d22de3e
DLR
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include "common.h"
40#include "regs.h"
41#include "sge_defs.h"
42#include "t3_cpl.h"
43#include "firmware_exports.h"
44
45#define USE_GTS 0
46
47#define SGE_RX_SM_BUF_SIZE 1536
e0994eb1 48
4d22de3e 49#define SGE_RX_COPY_THRES 256
cf992af5 50#define SGE_RX_PULL_LEN 128
4d22de3e 51
e0994eb1 52/*
cf992af5
DLR
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
e0994eb1 56 */
cf992af5
DLR
57#define FL0_PG_CHUNK_SIZE 2048
58
e0994eb1 59#define SGE_RX_DROP_THRES 16
4d22de3e
DLR
60
61/*
62 * Period of the Tx buffer reclaim timer. This timer does not need to run
63 * frequently as Tx buffers are usually reclaimed by new Tx packets.
64 */
65#define TX_RECLAIM_PERIOD (HZ / 4)
66
67/* WR size in bytes */
68#define WR_LEN (WR_FLITS * 8)
69
70/*
71 * Types of Tx queues in each queue set. Order here matters, do not change.
72 */
73enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
74
75/* Values for sge_txq.flags */
76enum {
77 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
78 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
79};
80
81struct tx_desc {
fb8e4444 82 __be64 flit[TX_DESC_FLITS];
4d22de3e
DLR
83};
84
85struct rx_desc {
86 __be32 addr_lo;
87 __be32 len_gen;
88 __be32 gen2;
89 __be32 addr_hi;
90};
91
92struct tx_sw_desc { /* SW state per Tx descriptor */
93 struct sk_buff *skb;
23561c94
DLR
94 u8 eop; /* set if last descriptor for packet */
95 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
96 u8 fragidx; /* first page fragment associated with descriptor */
97 s8 sflit; /* start flit of first SGL entry in descriptor */
4d22de3e
DLR
98};
99
cf992af5 100struct rx_sw_desc { /* SW state per Rx descriptor */
e0994eb1
DLR
101 union {
102 struct sk_buff *skb;
cf992af5
DLR
103 struct fl_pg_chunk pg_chunk;
104 };
105 DECLARE_PCI_UNMAP_ADDR(dma_addr);
4d22de3e
DLR
106};
107
108struct rsp_desc { /* response queue descriptor */
109 struct rss_header rss_hdr;
110 __be32 flags;
111 __be32 len_cq;
112 u8 imm_data[47];
113 u8 intr_gen;
114};
115
99d7cf30
DLR
116/*
117 * Holds unmapping information for Tx packets that need deferred unmapping.
118 * This structure lives at skb->head and must be allocated by callers.
119 */
120struct deferred_unmap_info {
121 struct pci_dev *pdev;
122 dma_addr_t addr[MAX_SKB_FRAGS + 1];
123};
124
4d22de3e
DLR
125/*
126 * Maps a number of flits to the number of Tx descriptors that can hold them.
127 * The formula is
128 *
129 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
130 *
131 * HW allows up to 4 descriptors to be combined into a WR.
132 */
133static u8 flit_desc_map[] = {
134 0,
135#if SGE_NUM_GENBITS == 1
136 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
137 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
138 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
139 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
140#elif SGE_NUM_GENBITS == 2
141 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
142 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
143 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
144 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
145#else
146# error "SGE_NUM_GENBITS must be 1 or 2"
147#endif
148};
149
150static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
151{
152 return container_of(q, struct sge_qset, fl[qidx]);
153}
154
155static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
156{
157 return container_of(q, struct sge_qset, rspq);
158}
159
160static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
161{
162 return container_of(q, struct sge_qset, txq[qidx]);
163}
164
165/**
166 * refill_rspq - replenish an SGE response queue
167 * @adapter: the adapter
168 * @q: the response queue to replenish
169 * @credits: how many new responses to make available
170 *
171 * Replenishes a response queue by making the supplied number of responses
172 * available to HW.
173 */
174static inline void refill_rspq(struct adapter *adapter,
175 const struct sge_rspq *q, unsigned int credits)
176{
afefce66 177 rmb();
4d22de3e
DLR
178 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
179 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
180}
181
182/**
183 * need_skb_unmap - does the platform need unmapping of sk_buffs?
184 *
185 * Returns true if the platfrom needs sk_buff unmapping. The compiler
186 * optimizes away unecessary code if this returns true.
187 */
188static inline int need_skb_unmap(void)
189{
190 /*
191 * This structure is used to tell if the platfrom needs buffer
192 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
193 */
194 struct dummy {
195 DECLARE_PCI_UNMAP_ADDR(addr);
196 };
197
198 return sizeof(struct dummy) != 0;
199}
200
201/**
202 * unmap_skb - unmap a packet main body and its page fragments
203 * @skb: the packet
204 * @q: the Tx queue containing Tx descriptors for the packet
205 * @cidx: index of Tx descriptor
206 * @pdev: the PCI device
207 *
208 * Unmap the main body of an sk_buff and its page fragments, if any.
209 * Because of the fairly complicated structure of our SGLs and the desire
23561c94
DLR
210 * to conserve space for metadata, the information necessary to unmap an
211 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
212 * descriptors (the physical addresses of the various data buffers), and
213 * the SW descriptor state (assorted indices). The send functions
214 * initialize the indices for the first packet descriptor so we can unmap
215 * the buffers held in the first Tx descriptor here, and we have enough
216 * information at this point to set the state for the next Tx descriptor.
217 *
218 * Note that it is possible to clean up the first descriptor of a packet
219 * before the send routines have written the next descriptors, but this
220 * race does not cause any problem. We just end up writing the unmapping
221 * info for the descriptor first.
4d22de3e
DLR
222 */
223static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
224 unsigned int cidx, struct pci_dev *pdev)
225{
226 const struct sg_ent *sgp;
23561c94
DLR
227 struct tx_sw_desc *d = &q->sdesc[cidx];
228 int nfrags, frag_idx, curflit, j = d->addr_idx;
4d22de3e 229
23561c94
DLR
230 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
231 frag_idx = d->fragidx;
4d22de3e 232
23561c94
DLR
233 if (frag_idx == 0 && skb_headlen(skb)) {
234 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
235 skb_headlen(skb), PCI_DMA_TODEVICE);
4d22de3e
DLR
236 j = 1;
237 }
238
23561c94 239 curflit = d->sflit + 1 + j;
4d22de3e
DLR
240 nfrags = skb_shinfo(skb)->nr_frags;
241
242 while (frag_idx < nfrags && curflit < WR_FLITS) {
243 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
244 skb_shinfo(skb)->frags[frag_idx].size,
245 PCI_DMA_TODEVICE);
246 j ^= 1;
247 if (j == 0) {
248 sgp++;
249 curflit++;
250 }
251 curflit++;
252 frag_idx++;
253 }
254
23561c94
DLR
255 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
256 d = cidx + 1 == q->size ? q->sdesc : d + 1;
257 d->fragidx = frag_idx;
258 d->addr_idx = j;
259 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
4d22de3e
DLR
260 }
261}
262
263/**
264 * free_tx_desc - reclaims Tx descriptors and their buffers
265 * @adapter: the adapter
266 * @q: the Tx queue to reclaim descriptors from
267 * @n: the number of descriptors to reclaim
268 *
269 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
270 * Tx buffers. Called with the Tx queue lock held.
271 */
272static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
273 unsigned int n)
274{
275 struct tx_sw_desc *d;
276 struct pci_dev *pdev = adapter->pdev;
277 unsigned int cidx = q->cidx;
278
99d7cf30
DLR
279 const int need_unmap = need_skb_unmap() &&
280 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
281
4d22de3e
DLR
282 d = &q->sdesc[cidx];
283 while (n--) {
284 if (d->skb) { /* an SGL is present */
99d7cf30 285 if (need_unmap)
4d22de3e 286 unmap_skb(d->skb, q, cidx, pdev);
23561c94 287 if (d->eop)
4d22de3e
DLR
288 kfree_skb(d->skb);
289 }
290 ++d;
291 if (++cidx == q->size) {
292 cidx = 0;
293 d = q->sdesc;
294 }
295 }
296 q->cidx = cidx;
297}
298
299/**
300 * reclaim_completed_tx - reclaims completed Tx descriptors
301 * @adapter: the adapter
302 * @q: the Tx queue to reclaim completed descriptors from
303 *
304 * Reclaims Tx descriptors that the SGE has indicated it has processed,
305 * and frees the associated buffers if possible. Called with the Tx
306 * queue's lock held.
307 */
308static inline void reclaim_completed_tx(struct adapter *adapter,
309 struct sge_txq *q)
310{
311 unsigned int reclaim = q->processed - q->cleaned;
312
313 if (reclaim) {
314 free_tx_desc(adapter, q, reclaim);
315 q->cleaned += reclaim;
316 q->in_use -= reclaim;
317 }
318}
319
320/**
321 * should_restart_tx - are there enough resources to restart a Tx queue?
322 * @q: the Tx queue
323 *
324 * Checks if there are enough descriptors to restart a suspended Tx queue.
325 */
326static inline int should_restart_tx(const struct sge_txq *q)
327{
328 unsigned int r = q->processed - q->cleaned;
329
330 return q->in_use - r < (q->size >> 1);
331}
332
333/**
334 * free_rx_bufs - free the Rx buffers on an SGE free list
335 * @pdev: the PCI device associated with the adapter
336 * @rxq: the SGE free list to clean up
337 *
338 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
339 * this queue should be stopped before calling this function.
340 */
341static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
342{
343 unsigned int cidx = q->cidx;
344
345 while (q->credits--) {
346 struct rx_sw_desc *d = &q->sdesc[cidx];
347
348 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
349 q->buf_size, PCI_DMA_FROMDEVICE);
cf992af5
DLR
350 if (q->use_pages) {
351 put_page(d->pg_chunk.page);
352 d->pg_chunk.page = NULL;
e0994eb1 353 } else {
cf992af5
DLR
354 kfree_skb(d->skb);
355 d->skb = NULL;
e0994eb1 356 }
4d22de3e
DLR
357 if (++cidx == q->size)
358 cidx = 0;
359 }
e0994eb1 360
cf992af5
DLR
361 if (q->pg_chunk.page) {
362 __free_page(q->pg_chunk.page);
363 q->pg_chunk.page = NULL;
364 }
4d22de3e
DLR
365}
366
367/**
368 * add_one_rx_buf - add a packet buffer to a free-buffer list
cf992af5 369 * @va: buffer start VA
4d22de3e
DLR
370 * @len: the buffer length
371 * @d: the HW Rx descriptor to write
372 * @sd: the SW Rx descriptor to write
373 * @gen: the generation bit value
374 * @pdev: the PCI device associated with the adapter
375 *
376 * Add a buffer of the given length to the supplied HW and SW Rx
377 * descriptors.
378 */
cf992af5 379static inline void add_one_rx_buf(void *va, unsigned int len,
4d22de3e
DLR
380 struct rx_desc *d, struct rx_sw_desc *sd,
381 unsigned int gen, struct pci_dev *pdev)
382{
383 dma_addr_t mapping;
384
e0994eb1 385 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
4d22de3e
DLR
386 pci_unmap_addr_set(sd, dma_addr, mapping);
387
388 d->addr_lo = cpu_to_be32(mapping);
389 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
390 wmb();
391 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
392 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
393}
394
cf992af5
DLR
395static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp)
396{
397 if (!q->pg_chunk.page) {
398 q->pg_chunk.page = alloc_page(gfp);
399 if (unlikely(!q->pg_chunk.page))
400 return -ENOMEM;
401 q->pg_chunk.va = page_address(q->pg_chunk.page);
402 q->pg_chunk.offset = 0;
403 }
404 sd->pg_chunk = q->pg_chunk;
405
406 q->pg_chunk.offset += q->buf_size;
407 if (q->pg_chunk.offset == PAGE_SIZE)
408 q->pg_chunk.page = NULL;
409 else {
410 q->pg_chunk.va += q->buf_size;
411 get_page(q->pg_chunk.page);
412 }
413 return 0;
414}
415
4d22de3e
DLR
416/**
417 * refill_fl - refill an SGE free-buffer list
418 * @adapter: the adapter
419 * @q: the free-list to refill
420 * @n: the number of new buffers to allocate
421 * @gfp: the gfp flags for allocating new buffers
422 *
423 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
424 * allocated with the supplied gfp flags. The caller must assure that
425 * @n does not exceed the queue's capacity.
426 */
427static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
428{
cf992af5 429 void *buf_start;
4d22de3e
DLR
430 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
431 struct rx_desc *d = &q->desc[q->pidx];
432
433 while (n--) {
cf992af5
DLR
434 if (q->use_pages) {
435 if (unlikely(alloc_pg_chunk(q, sd, gfp))) {
436nomem: q->alloc_failed++;
e0994eb1
DLR
437 break;
438 }
cf992af5 439 buf_start = sd->pg_chunk.va;
e0994eb1 440 } else {
cf992af5 441 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
e0994eb1 442
cf992af5
DLR
443 if (!skb)
444 goto nomem;
e0994eb1 445
cf992af5
DLR
446 sd->skb = skb;
447 buf_start = skb->data;
e0994eb1
DLR
448 }
449
cf992af5
DLR
450 add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
451 adap->pdev);
4d22de3e
DLR
452 d++;
453 sd++;
454 if (++q->pidx == q->size) {
455 q->pidx = 0;
456 q->gen ^= 1;
457 sd = q->sdesc;
458 d = q->desc;
459 }
460 q->credits++;
461 }
afefce66 462 wmb();
4d22de3e
DLR
463 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
464}
465
466static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
467{
468 refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC);
469}
470
471/**
472 * recycle_rx_buf - recycle a receive buffer
473 * @adapter: the adapter
474 * @q: the SGE free list
475 * @idx: index of buffer to recycle
476 *
477 * Recycles the specified buffer on the given free list by adding it at
478 * the next available slot on the list.
479 */
480static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
481 unsigned int idx)
482{
483 struct rx_desc *from = &q->desc[idx];
484 struct rx_desc *to = &q->desc[q->pidx];
485
cf992af5 486 q->sdesc[q->pidx] = q->sdesc[idx];
4d22de3e
DLR
487 to->addr_lo = from->addr_lo; /* already big endian */
488 to->addr_hi = from->addr_hi; /* likewise */
489 wmb();
490 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
491 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
492 q->credits++;
493
494 if (++q->pidx == q->size) {
495 q->pidx = 0;
496 q->gen ^= 1;
497 }
498 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
499}
500
501/**
502 * alloc_ring - allocate resources for an SGE descriptor ring
503 * @pdev: the PCI device
504 * @nelem: the number of descriptors
505 * @elem_size: the size of each descriptor
506 * @sw_size: the size of the SW state associated with each ring element
507 * @phys: the physical address of the allocated ring
508 * @metadata: address of the array holding the SW state for the ring
509 *
510 * Allocates resources for an SGE descriptor ring, such as Tx queues,
511 * free buffer lists, or response queues. Each SGE ring requires
512 * space for its HW descriptors plus, optionally, space for the SW state
513 * associated with each HW entry (the metadata). The function returns
514 * three values: the virtual address for the HW ring (the return value
515 * of the function), the physical address of the HW ring, and the address
516 * of the SW ring.
517 */
518static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
e0994eb1 519 size_t sw_size, dma_addr_t * phys, void *metadata)
4d22de3e
DLR
520{
521 size_t len = nelem * elem_size;
522 void *s = NULL;
523 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
524
525 if (!p)
526 return NULL;
527 if (sw_size) {
528 s = kcalloc(nelem, sw_size, GFP_KERNEL);
529
530 if (!s) {
531 dma_free_coherent(&pdev->dev, len, p, *phys);
532 return NULL;
533 }
534 }
535 if (metadata)
536 *(void **)metadata = s;
537 memset(p, 0, len);
538 return p;
539}
540
541/**
542 * free_qset - free the resources of an SGE queue set
543 * @adapter: the adapter owning the queue set
544 * @q: the queue set
545 *
546 * Release the HW and SW resources associated with an SGE queue set, such
547 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
548 * queue set must be quiesced prior to calling this.
549 */
9265fabf 550static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
4d22de3e
DLR
551{
552 int i;
553 struct pci_dev *pdev = adapter->pdev;
554
555 if (q->tx_reclaim_timer.function)
556 del_timer_sync(&q->tx_reclaim_timer);
557
558 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
559 if (q->fl[i].desc) {
560 spin_lock(&adapter->sge.reg_lock);
561 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
562 spin_unlock(&adapter->sge.reg_lock);
563 free_rx_bufs(pdev, &q->fl[i]);
564 kfree(q->fl[i].sdesc);
565 dma_free_coherent(&pdev->dev,
566 q->fl[i].size *
567 sizeof(struct rx_desc), q->fl[i].desc,
568 q->fl[i].phys_addr);
569 }
570
571 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
572 if (q->txq[i].desc) {
573 spin_lock(&adapter->sge.reg_lock);
574 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
575 spin_unlock(&adapter->sge.reg_lock);
576 if (q->txq[i].sdesc) {
577 free_tx_desc(adapter, &q->txq[i],
578 q->txq[i].in_use);
579 kfree(q->txq[i].sdesc);
580 }
581 dma_free_coherent(&pdev->dev,
582 q->txq[i].size *
583 sizeof(struct tx_desc),
584 q->txq[i].desc, q->txq[i].phys_addr);
585 __skb_queue_purge(&q->txq[i].sendq);
586 }
587
588 if (q->rspq.desc) {
589 spin_lock(&adapter->sge.reg_lock);
590 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
591 spin_unlock(&adapter->sge.reg_lock);
592 dma_free_coherent(&pdev->dev,
593 q->rspq.size * sizeof(struct rsp_desc),
594 q->rspq.desc, q->rspq.phys_addr);
595 }
596
4d22de3e
DLR
597 memset(q, 0, sizeof(*q));
598}
599
600/**
601 * init_qset_cntxt - initialize an SGE queue set context info
602 * @qs: the queue set
603 * @id: the queue set id
604 *
605 * Initializes the TIDs and context ids for the queues of a queue set.
606 */
607static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
608{
609 qs->rspq.cntxt_id = id;
610 qs->fl[0].cntxt_id = 2 * id;
611 qs->fl[1].cntxt_id = 2 * id + 1;
612 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
613 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
614 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
615 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
616 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
617}
618
619/**
620 * sgl_len - calculates the size of an SGL of the given capacity
621 * @n: the number of SGL entries
622 *
623 * Calculates the number of flits needed for a scatter/gather list that
624 * can hold the given number of entries.
625 */
626static inline unsigned int sgl_len(unsigned int n)
627{
628 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
629 return (3 * n) / 2 + (n & 1);
630}
631
632/**
633 * flits_to_desc - returns the num of Tx descriptors for the given flits
634 * @n: the number of flits
635 *
636 * Calculates the number of Tx descriptors needed for the supplied number
637 * of flits.
638 */
639static inline unsigned int flits_to_desc(unsigned int n)
640{
641 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
642 return flit_desc_map[n];
643}
644
cf992af5
DLR
645/**
646 * get_packet - return the next ingress packet buffer from a free list
647 * @adap: the adapter that received the packet
648 * @fl: the SGE free list holding the packet
649 * @len: the packet length including any SGE padding
650 * @drop_thres: # of remaining buffers before we start dropping packets
651 *
652 * Get the next packet from a free list and complete setup of the
653 * sk_buff. If the packet is small we make a copy and recycle the
654 * original buffer, otherwise we use the original buffer itself. If a
655 * positive drop threshold is supplied packets are dropped and their
656 * buffers recycled if (a) the number of remaining buffers is under the
657 * threshold and the packet is too big to copy, or (b) the packet should
658 * be copied but there is no memory for the copy.
659 */
660static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
661 unsigned int len, unsigned int drop_thres)
662{
663 struct sk_buff *skb = NULL;
664 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
665
666 prefetch(sd->skb->data);
667 fl->credits--;
668
669 if (len <= SGE_RX_COPY_THRES) {
670 skb = alloc_skb(len, GFP_ATOMIC);
671 if (likely(skb != NULL)) {
672 __skb_put(skb, len);
673 pci_dma_sync_single_for_cpu(adap->pdev,
674 pci_unmap_addr(sd, dma_addr), len,
675 PCI_DMA_FROMDEVICE);
676 memcpy(skb->data, sd->skb->data, len);
677 pci_dma_sync_single_for_device(adap->pdev,
678 pci_unmap_addr(sd, dma_addr), len,
679 PCI_DMA_FROMDEVICE);
680 } else if (!drop_thres)
681 goto use_orig_buf;
682recycle:
683 recycle_rx_buf(adap, fl, fl->cidx);
684 return skb;
685 }
686
687 if (unlikely(fl->credits < drop_thres))
688 goto recycle;
689
690use_orig_buf:
691 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
692 fl->buf_size, PCI_DMA_FROMDEVICE);
693 skb = sd->skb;
694 skb_put(skb, len);
695 __refill_fl(adap, fl);
696 return skb;
697}
698
699/**
700 * get_packet_pg - return the next ingress packet buffer from a free list
701 * @adap: the adapter that received the packet
702 * @fl: the SGE free list holding the packet
703 * @len: the packet length including any SGE padding
704 * @drop_thres: # of remaining buffers before we start dropping packets
705 *
706 * Get the next packet from a free list populated with page chunks.
707 * If the packet is small we make a copy and recycle the original buffer,
708 * otherwise we attach the original buffer as a page fragment to a fresh
709 * sk_buff. If a positive drop threshold is supplied packets are dropped
710 * and their buffers recycled if (a) the number of remaining buffers is
711 * under the threshold and the packet is too big to copy, or (b) there's
712 * no system memory.
713 *
714 * Note: this function is similar to @get_packet but deals with Rx buffers
715 * that are page chunks rather than sk_buffs.
716 */
717static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
718 unsigned int len, unsigned int drop_thres)
719{
720 struct sk_buff *skb = NULL;
721 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
722
723 if (len <= SGE_RX_COPY_THRES) {
724 skb = alloc_skb(len, GFP_ATOMIC);
725 if (likely(skb != NULL)) {
726 __skb_put(skb, len);
727 pci_dma_sync_single_for_cpu(adap->pdev,
728 pci_unmap_addr(sd, dma_addr), len,
729 PCI_DMA_FROMDEVICE);
730 memcpy(skb->data, sd->pg_chunk.va, len);
731 pci_dma_sync_single_for_device(adap->pdev,
732 pci_unmap_addr(sd, dma_addr), len,
733 PCI_DMA_FROMDEVICE);
734 } else if (!drop_thres)
735 return NULL;
736recycle:
737 fl->credits--;
738 recycle_rx_buf(adap, fl, fl->cidx);
739 return skb;
740 }
741
742 if (unlikely(fl->credits <= drop_thres))
743 goto recycle;
744
745 skb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
746 if (unlikely(!skb)) {
747 if (!drop_thres)
748 return NULL;
749 goto recycle;
750 }
751
752 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
753 fl->buf_size, PCI_DMA_FROMDEVICE);
754 __skb_put(skb, SGE_RX_PULL_LEN);
755 memcpy(skb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
756 skb_fill_page_desc(skb, 0, sd->pg_chunk.page,
757 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
758 len - SGE_RX_PULL_LEN);
759 skb->len = len;
760 skb->data_len = len - SGE_RX_PULL_LEN;
761 skb->truesize += skb->data_len;
762
763 fl->credits--;
764 /*
765 * We do not refill FLs here, we let the caller do it to overlap a
766 * prefetch.
767 */
768 return skb;
769}
770
4d22de3e
DLR
771/**
772 * get_imm_packet - return the next ingress packet buffer from a response
773 * @resp: the response descriptor containing the packet data
774 *
775 * Return a packet containing the immediate data of the given response.
776 */
777static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
778{
779 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
780
781 if (skb) {
782 __skb_put(skb, IMMED_PKT_SIZE);
27d7ff46 783 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
4d22de3e
DLR
784 }
785 return skb;
786}
787
788/**
789 * calc_tx_descs - calculate the number of Tx descriptors for a packet
790 * @skb: the packet
791 *
792 * Returns the number of Tx descriptors needed for the given Ethernet
793 * packet. Ethernet packets require addition of WR and CPL headers.
794 */
795static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
796{
797 unsigned int flits;
798
799 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
800 return 1;
801
802 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
803 if (skb_shinfo(skb)->gso_size)
804 flits++;
805 return flits_to_desc(flits);
806}
807
808/**
809 * make_sgl - populate a scatter/gather list for a packet
810 * @skb: the packet
811 * @sgp: the SGL to populate
812 * @start: start address of skb main body data to include in the SGL
813 * @len: length of skb main body data to include in the SGL
814 * @pdev: the PCI device
815 *
816 * Generates a scatter/gather list for the buffers that make up a packet
817 * and returns the SGL size in 8-byte words. The caller must size the SGL
818 * appropriately.
819 */
820static inline unsigned int make_sgl(const struct sk_buff *skb,
821 struct sg_ent *sgp, unsigned char *start,
822 unsigned int len, struct pci_dev *pdev)
823{
824 dma_addr_t mapping;
825 unsigned int i, j = 0, nfrags;
826
827 if (len) {
828 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
829 sgp->len[0] = cpu_to_be32(len);
830 sgp->addr[0] = cpu_to_be64(mapping);
831 j = 1;
832 }
833
834 nfrags = skb_shinfo(skb)->nr_frags;
835 for (i = 0; i < nfrags; i++) {
836 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
837
838 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
839 frag->size, PCI_DMA_TODEVICE);
840 sgp->len[j] = cpu_to_be32(frag->size);
841 sgp->addr[j] = cpu_to_be64(mapping);
842 j ^= 1;
843 if (j == 0)
844 ++sgp;
845 }
846 if (j)
847 sgp->len[j] = 0;
848 return ((nfrags + (len != 0)) * 3) / 2 + j;
849}
850
851/**
852 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
853 * @adap: the adapter
854 * @q: the Tx queue
855 *
856 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
857 * where the HW is going to sleep just after we checked, however,
858 * then the interrupt handler will detect the outstanding TX packet
859 * and ring the doorbell for us.
860 *
861 * When GTS is disabled we unconditionally ring the doorbell.
862 */
863static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
864{
865#if USE_GTS
866 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
867 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
868 set_bit(TXQ_LAST_PKT_DB, &q->flags);
869 t3_write_reg(adap, A_SG_KDOORBELL,
870 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
871 }
872#else
873 wmb(); /* write descriptors before telling HW */
874 t3_write_reg(adap, A_SG_KDOORBELL,
875 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
876#endif
877}
878
879static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
880{
881#if SGE_NUM_GENBITS == 2
882 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
883#endif
884}
885
886/**
887 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
888 * @ndesc: number of Tx descriptors spanned by the SGL
889 * @skb: the packet corresponding to the WR
890 * @d: first Tx descriptor to be written
891 * @pidx: index of above descriptors
892 * @q: the SGE Tx queue
893 * @sgl: the SGL
894 * @flits: number of flits to the start of the SGL in the first descriptor
895 * @sgl_flits: the SGL size in flits
896 * @gen: the Tx descriptor generation
897 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
898 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
899 *
900 * Write a work request header and an associated SGL. If the SGL is
901 * small enough to fit into one Tx descriptor it has already been written
902 * and we just need to write the WR header. Otherwise we distribute the
903 * SGL across the number of descriptors it spans.
904 */
905static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
906 struct tx_desc *d, unsigned int pidx,
907 const struct sge_txq *q,
908 const struct sg_ent *sgl,
909 unsigned int flits, unsigned int sgl_flits,
fb8e4444
AV
910 unsigned int gen, __be32 wr_hi,
911 __be32 wr_lo)
4d22de3e
DLR
912{
913 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
914 struct tx_sw_desc *sd = &q->sdesc[pidx];
915
916 sd->skb = skb;
917 if (need_skb_unmap()) {
23561c94
DLR
918 sd->fragidx = 0;
919 sd->addr_idx = 0;
920 sd->sflit = flits;
4d22de3e
DLR
921 }
922
923 if (likely(ndesc == 1)) {
23561c94 924 sd->eop = 1;
4d22de3e
DLR
925 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
926 V_WR_SGLSFLT(flits)) | wr_hi;
927 wmb();
928 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
929 V_WR_GEN(gen)) | wr_lo;
930 wr_gen2(d, gen);
931 } else {
932 unsigned int ogen = gen;
933 const u64 *fp = (const u64 *)sgl;
934 struct work_request_hdr *wp = wrp;
935
936 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
937 V_WR_SGLSFLT(flits)) | wr_hi;
938
939 while (sgl_flits) {
940 unsigned int avail = WR_FLITS - flits;
941
942 if (avail > sgl_flits)
943 avail = sgl_flits;
944 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
945 sgl_flits -= avail;
946 ndesc--;
947 if (!sgl_flits)
948 break;
949
950 fp += avail;
951 d++;
23561c94 952 sd->eop = 0;
4d22de3e
DLR
953 sd++;
954 if (++pidx == q->size) {
955 pidx = 0;
956 gen ^= 1;
957 d = q->desc;
958 sd = q->sdesc;
959 }
960
961 sd->skb = skb;
962 wrp = (struct work_request_hdr *)d;
963 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
964 V_WR_SGLSFLT(1)) | wr_hi;
965 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
966 sgl_flits + 1)) |
967 V_WR_GEN(gen)) | wr_lo;
968 wr_gen2(d, gen);
969 flits = 1;
970 }
23561c94 971 sd->eop = 1;
4d22de3e
DLR
972 wrp->wr_hi |= htonl(F_WR_EOP);
973 wmb();
974 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
975 wr_gen2((struct tx_desc *)wp, ogen);
976 WARN_ON(ndesc != 0);
977 }
978}
979
980/**
981 * write_tx_pkt_wr - write a TX_PKT work request
982 * @adap: the adapter
983 * @skb: the packet to send
984 * @pi: the egress interface
985 * @pidx: index of the first Tx descriptor to write
986 * @gen: the generation value to use
987 * @q: the Tx queue
988 * @ndesc: number of descriptors the packet will occupy
989 * @compl: the value of the COMPL bit to use
990 *
991 * Generate a TX_PKT work request to send the supplied packet.
992 */
993static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
994 const struct port_info *pi,
995 unsigned int pidx, unsigned int gen,
996 struct sge_txq *q, unsigned int ndesc,
997 unsigned int compl)
998{
999 unsigned int flits, sgl_flits, cntrl, tso_info;
1000 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1001 struct tx_desc *d = &q->desc[pidx];
1002 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1003
1004 cpl->len = htonl(skb->len | 0x80000000);
1005 cntrl = V_TXPKT_INTF(pi->port_id);
1006
1007 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1008 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1009
1010 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1011 if (tso_info) {
1012 int eth_type;
1013 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1014
1015 d->flit[2] = 0;
1016 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1017 hdr->cntrl = htonl(cntrl);
bbe735e4 1018 eth_type = skb_network_offset(skb) == ETH_HLEN ?
4d22de3e
DLR
1019 CPL_ETH_II : CPL_ETH_II_VLAN;
1020 tso_info |= V_LSO_ETH_TYPE(eth_type) |
eddc9ec5 1021 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
aa8223c7 1022 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
4d22de3e
DLR
1023 hdr->lso_info = htonl(tso_info);
1024 flits = 3;
1025 } else {
1026 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1027 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1028 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1029 cpl->cntrl = htonl(cntrl);
1030
1031 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1032 q->sdesc[pidx].skb = NULL;
1033 if (!skb->data_len)
d626f62b
ACM
1034 skb_copy_from_linear_data(skb, &d->flit[2],
1035 skb->len);
4d22de3e
DLR
1036 else
1037 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1038
1039 flits = (skb->len + 7) / 8 + 2;
1040 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1041 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1042 | F_WR_SOP | F_WR_EOP | compl);
1043 wmb();
1044 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1045 V_WR_TID(q->token));
1046 wr_gen2(d, gen);
1047 kfree_skb(skb);
1048 return;
1049 }
1050
1051 flits = 2;
1052 }
1053
1054 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1055 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
4d22de3e
DLR
1056
1057 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1058 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1059 htonl(V_WR_TID(q->token)));
1060}
1061
a8cc21f6
KK
1062static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1063 struct sge_txq *q)
1064{
1065 netif_stop_queue(dev);
1066 set_bit(TXQ_ETH, &qs->txq_stopped);
1067 q->stops++;
1068}
1069
4d22de3e
DLR
1070/**
1071 * eth_xmit - add a packet to the Ethernet Tx queue
1072 * @skb: the packet
1073 * @dev: the egress net device
1074 *
1075 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1076 */
1077int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1078{
1079 unsigned int ndesc, pidx, credits, gen, compl;
1080 const struct port_info *pi = netdev_priv(dev);
5fbf816f 1081 struct adapter *adap = pi->adapter;
bea3348e 1082 struct sge_qset *qs = pi->qs;
4d22de3e
DLR
1083 struct sge_txq *q = &qs->txq[TXQ_ETH];
1084
1085 /*
1086 * The chip min packet length is 9 octets but play safe and reject
1087 * anything shorter than an Ethernet header.
1088 */
1089 if (unlikely(skb->len < ETH_HLEN)) {
1090 dev_kfree_skb(skb);
1091 return NETDEV_TX_OK;
1092 }
1093
1094 spin_lock(&q->lock);
1095 reclaim_completed_tx(adap, q);
1096
1097 credits = q->size - q->in_use;
1098 ndesc = calc_tx_descs(skb);
1099
1100 if (unlikely(credits < ndesc)) {
a8cc21f6
KK
1101 t3_stop_queue(dev, qs, q);
1102 dev_err(&adap->pdev->dev,
1103 "%s: Tx ring %u full while queue awake!\n",
1104 dev->name, q->cntxt_id & 7);
4d22de3e
DLR
1105 spin_unlock(&q->lock);
1106 return NETDEV_TX_BUSY;
1107 }
1108
1109 q->in_use += ndesc;
a8cc21f6
KK
1110 if (unlikely(credits - ndesc < q->stop_thres))
1111 if (USE_GTS || !should_restart_tx(q))
1112 t3_stop_queue(dev, qs, q);
4d22de3e
DLR
1113
1114 gen = q->gen;
1115 q->unacked += ndesc;
1116 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1117 q->unacked &= 7;
1118 pidx = q->pidx;
1119 q->pidx += ndesc;
1120 if (q->pidx >= q->size) {
1121 q->pidx -= q->size;
1122 q->gen ^= 1;
1123 }
1124
1125 /* update port statistics */
1126 if (skb->ip_summed == CHECKSUM_COMPLETE)
1127 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1128 if (skb_shinfo(skb)->gso_size)
1129 qs->port_stats[SGE_PSTAT_TSO]++;
1130 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1131 qs->port_stats[SGE_PSTAT_VLANINS]++;
1132
1133 dev->trans_start = jiffies;
1134 spin_unlock(&q->lock);
1135
1136 /*
1137 * We do not use Tx completion interrupts to free DMAd Tx packets.
1138 * This is good for performamce but means that we rely on new Tx
1139 * packets arriving to run the destructors of completed packets,
1140 * which open up space in their sockets' send queues. Sometimes
1141 * we do not get such new packets causing Tx to stall. A single
1142 * UDP transmitter is a good example of this situation. We have
1143 * a clean up timer that periodically reclaims completed packets
1144 * but it doesn't run often enough (nor do we want it to) to prevent
1145 * lengthy stalls. A solution to this problem is to run the
1146 * destructor early, after the packet is queued but before it's DMAd.
1147 * A cons is that we lie to socket memory accounting, but the amount
1148 * of extra memory is reasonable (limited by the number of Tx
1149 * descriptors), the packets do actually get freed quickly by new
1150 * packets almost always, and for protocols like TCP that wait for
1151 * acks to really free up the data the extra memory is even less.
1152 * On the positive side we run the destructors on the sending CPU
1153 * rather than on a potentially different completing CPU, usually a
1154 * good thing. We also run them without holding our Tx queue lock,
1155 * unlike what reclaim_completed_tx() would otherwise do.
1156 *
1157 * Run the destructor before telling the DMA engine about the packet
1158 * to make sure it doesn't complete and get freed prematurely.
1159 */
1160 if (likely(!skb_shared(skb)))
1161 skb_orphan(skb);
1162
1163 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1164 check_ring_tx_db(adap, q);
1165 return NETDEV_TX_OK;
1166}
1167
1168/**
1169 * write_imm - write a packet into a Tx descriptor as immediate data
1170 * @d: the Tx descriptor to write
1171 * @skb: the packet
1172 * @len: the length of packet data to write as immediate data
1173 * @gen: the generation bit value to write
1174 *
1175 * Writes a packet as immediate data into a Tx descriptor. The packet
1176 * contains a work request at its beginning. We must write the packet
27186dc3
DLR
1177 * carefully so the SGE doesn't read it accidentally before it's written
1178 * in its entirety.
4d22de3e
DLR
1179 */
1180static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1181 unsigned int len, unsigned int gen)
1182{
1183 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1184 struct work_request_hdr *to = (struct work_request_hdr *)d;
1185
27186dc3
DLR
1186 if (likely(!skb->data_len))
1187 memcpy(&to[1], &from[1], len - sizeof(*from));
1188 else
1189 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1190
4d22de3e
DLR
1191 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1192 V_WR_BCNTLFLT(len & 7));
1193 wmb();
1194 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1195 V_WR_LEN((len + 7) / 8));
1196 wr_gen2(d, gen);
1197 kfree_skb(skb);
1198}
1199
1200/**
1201 * check_desc_avail - check descriptor availability on a send queue
1202 * @adap: the adapter
1203 * @q: the send queue
1204 * @skb: the packet needing the descriptors
1205 * @ndesc: the number of Tx descriptors needed
1206 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1207 *
1208 * Checks if the requested number of Tx descriptors is available on an
1209 * SGE send queue. If the queue is already suspended or not enough
1210 * descriptors are available the packet is queued for later transmission.
1211 * Must be called with the Tx queue locked.
1212 *
1213 * Returns 0 if enough descriptors are available, 1 if there aren't
1214 * enough descriptors and the packet has been queued, and 2 if the caller
1215 * needs to retry because there weren't enough descriptors at the
1216 * beginning of the call but some freed up in the mean time.
1217 */
1218static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1219 struct sk_buff *skb, unsigned int ndesc,
1220 unsigned int qid)
1221{
1222 if (unlikely(!skb_queue_empty(&q->sendq))) {
1223 addq_exit:__skb_queue_tail(&q->sendq, skb);
1224 return 1;
1225 }
1226 if (unlikely(q->size - q->in_use < ndesc)) {
1227 struct sge_qset *qs = txq_to_qset(q, qid);
1228
1229 set_bit(qid, &qs->txq_stopped);
1230 smp_mb__after_clear_bit();
1231
1232 if (should_restart_tx(q) &&
1233 test_and_clear_bit(qid, &qs->txq_stopped))
1234 return 2;
1235
1236 q->stops++;
1237 goto addq_exit;
1238 }
1239 return 0;
1240}
1241
1242/**
1243 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1244 * @q: the SGE control Tx queue
1245 *
1246 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1247 * that send only immediate data (presently just the control queues) and
1248 * thus do not have any sk_buffs to release.
1249 */
1250static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1251{
1252 unsigned int reclaim = q->processed - q->cleaned;
1253
1254 q->in_use -= reclaim;
1255 q->cleaned += reclaim;
1256}
1257
1258static inline int immediate(const struct sk_buff *skb)
1259{
27186dc3 1260 return skb->len <= WR_LEN;
4d22de3e
DLR
1261}
1262
1263/**
1264 * ctrl_xmit - send a packet through an SGE control Tx queue
1265 * @adap: the adapter
1266 * @q: the control queue
1267 * @skb: the packet
1268 *
1269 * Send a packet through an SGE control Tx queue. Packets sent through
1270 * a control queue must fit entirely as immediate data in a single Tx
1271 * descriptor and have no page fragments.
1272 */
1273static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1274 struct sk_buff *skb)
1275{
1276 int ret;
1277 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1278
1279 if (unlikely(!immediate(skb))) {
1280 WARN_ON(1);
1281 dev_kfree_skb(skb);
1282 return NET_XMIT_SUCCESS;
1283 }
1284
1285 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1286 wrp->wr_lo = htonl(V_WR_TID(q->token));
1287
1288 spin_lock(&q->lock);
1289 again:reclaim_completed_tx_imm(q);
1290
1291 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1292 if (unlikely(ret)) {
1293 if (ret == 1) {
1294 spin_unlock(&q->lock);
1295 return NET_XMIT_CN;
1296 }
1297 goto again;
1298 }
1299
1300 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1301
1302 q->in_use++;
1303 if (++q->pidx >= q->size) {
1304 q->pidx = 0;
1305 q->gen ^= 1;
1306 }
1307 spin_unlock(&q->lock);
1308 wmb();
1309 t3_write_reg(adap, A_SG_KDOORBELL,
1310 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1311 return NET_XMIT_SUCCESS;
1312}
1313
1314/**
1315 * restart_ctrlq - restart a suspended control queue
1316 * @qs: the queue set cotaining the control queue
1317 *
1318 * Resumes transmission on a suspended Tx control queue.
1319 */
1320static void restart_ctrlq(unsigned long data)
1321{
1322 struct sk_buff *skb;
1323 struct sge_qset *qs = (struct sge_qset *)data;
1324 struct sge_txq *q = &qs->txq[TXQ_CTRL];
4d22de3e
DLR
1325
1326 spin_lock(&q->lock);
1327 again:reclaim_completed_tx_imm(q);
1328
bea3348e
SH
1329 while (q->in_use < q->size &&
1330 (skb = __skb_dequeue(&q->sendq)) != NULL) {
4d22de3e
DLR
1331
1332 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1333
1334 if (++q->pidx >= q->size) {
1335 q->pidx = 0;
1336 q->gen ^= 1;
1337 }
1338 q->in_use++;
1339 }
1340
1341 if (!skb_queue_empty(&q->sendq)) {
1342 set_bit(TXQ_CTRL, &qs->txq_stopped);
1343 smp_mb__after_clear_bit();
1344
1345 if (should_restart_tx(q) &&
1346 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1347 goto again;
1348 q->stops++;
1349 }
1350
1351 spin_unlock(&q->lock);
afefce66 1352 wmb();
bea3348e 1353 t3_write_reg(qs->adap, A_SG_KDOORBELL,
4d22de3e
DLR
1354 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1355}
1356
14ab9892
DLR
1357/*
1358 * Send a management message through control queue 0
1359 */
1360int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1361{
bc4b6b52
DLR
1362 int ret;
1363 local_bh_disable();
1364 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1365 local_bh_enable();
1366
1367 return ret;
14ab9892
DLR
1368}
1369
99d7cf30
DLR
1370/**
1371 * deferred_unmap_destructor - unmap a packet when it is freed
1372 * @skb: the packet
1373 *
1374 * This is the packet destructor used for Tx packets that need to remain
1375 * mapped until they are freed rather than until their Tx descriptors are
1376 * freed.
1377 */
1378static void deferred_unmap_destructor(struct sk_buff *skb)
1379{
1380 int i;
1381 const dma_addr_t *p;
1382 const struct skb_shared_info *si;
1383 const struct deferred_unmap_info *dui;
99d7cf30
DLR
1384
1385 dui = (struct deferred_unmap_info *)skb->head;
1386 p = dui->addr;
1387
23561c94
DLR
1388 if (skb->tail - skb->transport_header)
1389 pci_unmap_single(dui->pdev, *p++,
1390 skb->tail - skb->transport_header,
1391 PCI_DMA_TODEVICE);
99d7cf30
DLR
1392
1393 si = skb_shinfo(skb);
1394 for (i = 0; i < si->nr_frags; i++)
1395 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1396 PCI_DMA_TODEVICE);
1397}
1398
1399static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1400 const struct sg_ent *sgl, int sgl_flits)
1401{
1402 dma_addr_t *p;
1403 struct deferred_unmap_info *dui;
1404
1405 dui = (struct deferred_unmap_info *)skb->head;
1406 dui->pdev = pdev;
1407 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1408 *p++ = be64_to_cpu(sgl->addr[0]);
1409 *p++ = be64_to_cpu(sgl->addr[1]);
1410 }
1411 if (sgl_flits)
1412 *p = be64_to_cpu(sgl->addr[0]);
1413}
1414
4d22de3e
DLR
1415/**
1416 * write_ofld_wr - write an offload work request
1417 * @adap: the adapter
1418 * @skb: the packet to send
1419 * @q: the Tx queue
1420 * @pidx: index of the first Tx descriptor to write
1421 * @gen: the generation value to use
1422 * @ndesc: number of descriptors the packet will occupy
1423 *
1424 * Write an offload work request to send the supplied packet. The packet
1425 * data already carry the work request with most fields populated.
1426 */
1427static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1428 struct sge_txq *q, unsigned int pidx,
1429 unsigned int gen, unsigned int ndesc)
1430{
1431 unsigned int sgl_flits, flits;
1432 struct work_request_hdr *from;
1433 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1434 struct tx_desc *d = &q->desc[pidx];
1435
1436 if (immediate(skb)) {
1437 q->sdesc[pidx].skb = NULL;
1438 write_imm(d, skb, skb->len, gen);
1439 return;
1440 }
1441
1442 /* Only TX_DATA builds SGLs */
1443
1444 from = (struct work_request_hdr *)skb->data;
ea2ae17d
ACM
1445 memcpy(&d->flit[1], &from[1],
1446 skb_transport_offset(skb) - sizeof(*from));
4d22de3e 1447
ea2ae17d 1448 flits = skb_transport_offset(skb) / 8;
4d22de3e 1449 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
9c70220b 1450 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
27a884dc 1451 skb->tail - skb->transport_header,
4d22de3e 1452 adap->pdev);
99d7cf30
DLR
1453 if (need_skb_unmap()) {
1454 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1455 skb->destructor = deferred_unmap_destructor;
99d7cf30 1456 }
4d22de3e
DLR
1457
1458 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1459 gen, from->wr_hi, from->wr_lo);
1460}
1461
1462/**
1463 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1464 * @skb: the packet
1465 *
1466 * Returns the number of Tx descriptors needed for the given offload
1467 * packet. These packets are already fully constructed.
1468 */
1469static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1470{
27186dc3 1471 unsigned int flits, cnt;
4d22de3e 1472
27186dc3 1473 if (skb->len <= WR_LEN)
4d22de3e
DLR
1474 return 1; /* packet fits as immediate data */
1475
ea2ae17d 1476 flits = skb_transport_offset(skb) / 8; /* headers */
27186dc3 1477 cnt = skb_shinfo(skb)->nr_frags;
27a884dc 1478 if (skb->tail != skb->transport_header)
4d22de3e
DLR
1479 cnt++;
1480 return flits_to_desc(flits + sgl_len(cnt));
1481}
1482
1483/**
1484 * ofld_xmit - send a packet through an offload queue
1485 * @adap: the adapter
1486 * @q: the Tx offload queue
1487 * @skb: the packet
1488 *
1489 * Send an offload packet through an SGE offload queue.
1490 */
1491static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1492 struct sk_buff *skb)
1493{
1494 int ret;
1495 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1496
1497 spin_lock(&q->lock);
1498 again:reclaim_completed_tx(adap, q);
1499
1500 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1501 if (unlikely(ret)) {
1502 if (ret == 1) {
1503 skb->priority = ndesc; /* save for restart */
1504 spin_unlock(&q->lock);
1505 return NET_XMIT_CN;
1506 }
1507 goto again;
1508 }
1509
1510 gen = q->gen;
1511 q->in_use += ndesc;
1512 pidx = q->pidx;
1513 q->pidx += ndesc;
1514 if (q->pidx >= q->size) {
1515 q->pidx -= q->size;
1516 q->gen ^= 1;
1517 }
1518 spin_unlock(&q->lock);
1519
1520 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1521 check_ring_tx_db(adap, q);
1522 return NET_XMIT_SUCCESS;
1523}
1524
1525/**
1526 * restart_offloadq - restart a suspended offload queue
1527 * @qs: the queue set cotaining the offload queue
1528 *
1529 * Resumes transmission on a suspended Tx offload queue.
1530 */
1531static void restart_offloadq(unsigned long data)
1532{
1533 struct sk_buff *skb;
1534 struct sge_qset *qs = (struct sge_qset *)data;
1535 struct sge_txq *q = &qs->txq[TXQ_OFLD];
5fbf816f
DLR
1536 const struct port_info *pi = netdev_priv(qs->netdev);
1537 struct adapter *adap = pi->adapter;
4d22de3e
DLR
1538
1539 spin_lock(&q->lock);
1540 again:reclaim_completed_tx(adap, q);
1541
1542 while ((skb = skb_peek(&q->sendq)) != NULL) {
1543 unsigned int gen, pidx;
1544 unsigned int ndesc = skb->priority;
1545
1546 if (unlikely(q->size - q->in_use < ndesc)) {
1547 set_bit(TXQ_OFLD, &qs->txq_stopped);
1548 smp_mb__after_clear_bit();
1549
1550 if (should_restart_tx(q) &&
1551 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1552 goto again;
1553 q->stops++;
1554 break;
1555 }
1556
1557 gen = q->gen;
1558 q->in_use += ndesc;
1559 pidx = q->pidx;
1560 q->pidx += ndesc;
1561 if (q->pidx >= q->size) {
1562 q->pidx -= q->size;
1563 q->gen ^= 1;
1564 }
1565 __skb_unlink(skb, &q->sendq);
1566 spin_unlock(&q->lock);
1567
1568 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1569 spin_lock(&q->lock);
1570 }
1571 spin_unlock(&q->lock);
1572
1573#if USE_GTS
1574 set_bit(TXQ_RUNNING, &q->flags);
1575 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1576#endif
afefce66 1577 wmb();
4d22de3e
DLR
1578 t3_write_reg(adap, A_SG_KDOORBELL,
1579 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1580}
1581
1582/**
1583 * queue_set - return the queue set a packet should use
1584 * @skb: the packet
1585 *
1586 * Maps a packet to the SGE queue set it should use. The desired queue
1587 * set is carried in bits 1-3 in the packet's priority.
1588 */
1589static inline int queue_set(const struct sk_buff *skb)
1590{
1591 return skb->priority >> 1;
1592}
1593
1594/**
1595 * is_ctrl_pkt - return whether an offload packet is a control packet
1596 * @skb: the packet
1597 *
1598 * Determines whether an offload packet should use an OFLD or a CTRL
1599 * Tx queue. This is indicated by bit 0 in the packet's priority.
1600 */
1601static inline int is_ctrl_pkt(const struct sk_buff *skb)
1602{
1603 return skb->priority & 1;
1604}
1605
1606/**
1607 * t3_offload_tx - send an offload packet
1608 * @tdev: the offload device to send to
1609 * @skb: the packet
1610 *
1611 * Sends an offload packet. We use the packet priority to select the
1612 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1613 * should be sent as regular or control, bits 1-3 select the queue set.
1614 */
1615int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1616{
1617 struct adapter *adap = tdev2adap(tdev);
1618 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1619
1620 if (unlikely(is_ctrl_pkt(skb)))
1621 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1622
1623 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1624}
1625
1626/**
1627 * offload_enqueue - add an offload packet to an SGE offload receive queue
1628 * @q: the SGE response queue
1629 * @skb: the packet
1630 *
1631 * Add a new offload packet to an SGE response queue's offload packet
1632 * queue. If the packet is the first on the queue it schedules the RX
1633 * softirq to process the queue.
1634 */
1635static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1636{
1637 skb->next = skb->prev = NULL;
1638 if (q->rx_tail)
1639 q->rx_tail->next = skb;
1640 else {
1641 struct sge_qset *qs = rspq_to_qset(q);
1642
bea3348e 1643 napi_schedule(&qs->napi);
4d22de3e
DLR
1644 q->rx_head = skb;
1645 }
1646 q->rx_tail = skb;
1647}
1648
1649/**
1650 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1651 * @tdev: the offload device that will be receiving the packets
1652 * @q: the SGE response queue that assembled the bundle
1653 * @skbs: the partial bundle
1654 * @n: the number of packets in the bundle
1655 *
1656 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1657 */
1658static inline void deliver_partial_bundle(struct t3cdev *tdev,
1659 struct sge_rspq *q,
1660 struct sk_buff *skbs[], int n)
1661{
1662 if (n) {
1663 q->offload_bundles++;
1664 tdev->recv(tdev, skbs, n);
1665 }
1666}
1667
1668/**
1669 * ofld_poll - NAPI handler for offload packets in interrupt mode
1670 * @dev: the network device doing the polling
1671 * @budget: polling budget
1672 *
1673 * The NAPI handler for offload packets when a response queue is serviced
1674 * by the hard interrupt handler, i.e., when it's operating in non-polling
1675 * mode. Creates small packet batches and sends them through the offload
1676 * receive handler. Batches need to be of modest size as we do prefetches
1677 * on the packets in each.
1678 */
bea3348e 1679static int ofld_poll(struct napi_struct *napi, int budget)
4d22de3e 1680{
bea3348e 1681 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
4d22de3e 1682 struct sge_rspq *q = &qs->rspq;
bea3348e
SH
1683 struct adapter *adapter = qs->adap;
1684 int work_done = 0;
4d22de3e 1685
bea3348e 1686 while (work_done < budget) {
4d22de3e
DLR
1687 struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1688 int ngathered;
1689
1690 spin_lock_irq(&q->lock);
1691 head = q->rx_head;
1692 if (!head) {
bea3348e 1693 napi_complete(napi);
4d22de3e 1694 spin_unlock_irq(&q->lock);
bea3348e 1695 return work_done;
4d22de3e
DLR
1696 }
1697
1698 tail = q->rx_tail;
1699 q->rx_head = q->rx_tail = NULL;
1700 spin_unlock_irq(&q->lock);
1701
bea3348e 1702 for (ngathered = 0; work_done < budget && head; work_done++) {
4d22de3e
DLR
1703 prefetch(head->data);
1704 skbs[ngathered] = head;
1705 head = head->next;
1706 skbs[ngathered]->next = NULL;
1707 if (++ngathered == RX_BUNDLE_SIZE) {
1708 q->offload_bundles++;
1709 adapter->tdev.recv(&adapter->tdev, skbs,
1710 ngathered);
1711 ngathered = 0;
1712 }
1713 }
1714 if (head) { /* splice remaining packets back onto Rx queue */
1715 spin_lock_irq(&q->lock);
1716 tail->next = q->rx_head;
1717 if (!q->rx_head)
1718 q->rx_tail = tail;
1719 q->rx_head = head;
1720 spin_unlock_irq(&q->lock);
1721 }
1722 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1723 }
bea3348e
SH
1724
1725 return work_done;
4d22de3e
DLR
1726}
1727
1728/**
1729 * rx_offload - process a received offload packet
1730 * @tdev: the offload device receiving the packet
1731 * @rq: the response queue that received the packet
1732 * @skb: the packet
1733 * @rx_gather: a gather list of packets if we are building a bundle
1734 * @gather_idx: index of the next available slot in the bundle
1735 *
1736 * Process an ingress offload pakcet and add it to the offload ingress
1737 * queue. Returns the index of the next available slot in the bundle.
1738 */
1739static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1740 struct sk_buff *skb, struct sk_buff *rx_gather[],
1741 unsigned int gather_idx)
1742{
459a98ed 1743 skb_reset_mac_header(skb);
c1d2bbe1 1744 skb_reset_network_header(skb);
badff6d0 1745 skb_reset_transport_header(skb);
4d22de3e
DLR
1746
1747 if (rq->polling) {
1748 rx_gather[gather_idx++] = skb;
1749 if (gather_idx == RX_BUNDLE_SIZE) {
1750 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1751 gather_idx = 0;
1752 rq->offload_bundles++;
1753 }
1754 } else
1755 offload_enqueue(rq, skb);
1756
1757 return gather_idx;
1758}
1759
4d22de3e
DLR
1760/**
1761 * restart_tx - check whether to restart suspended Tx queues
1762 * @qs: the queue set to resume
1763 *
1764 * Restarts suspended Tx queues of an SGE queue set if they have enough
1765 * free resources to resume operation.
1766 */
1767static void restart_tx(struct sge_qset *qs)
1768{
1769 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1770 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1771 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1772 qs->txq[TXQ_ETH].restarts++;
1773 if (netif_running(qs->netdev))
1774 netif_wake_queue(qs->netdev);
1775 }
1776
1777 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1778 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1779 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1780 qs->txq[TXQ_OFLD].restarts++;
1781 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1782 }
1783 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1784 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1785 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1786 qs->txq[TXQ_CTRL].restarts++;
1787 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1788 }
1789}
1790
1791/**
1792 * rx_eth - process an ingress ethernet packet
1793 * @adap: the adapter
1794 * @rq: the response queue that received the packet
1795 * @skb: the packet
1796 * @pad: amount of padding at the start of the buffer
1797 *
1798 * Process an ingress ethernet pakcet and deliver it to the stack.
1799 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1800 * if it was immediate data in a response.
1801 */
1802static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1803 struct sk_buff *skb, int pad)
1804{
1805 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1806 struct port_info *pi;
1807
4d22de3e 1808 skb_pull(skb, sizeof(*p) + pad);
4c13eb66 1809 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
e360b562 1810 skb->dev->last_rx = jiffies;
4d22de3e 1811 pi = netdev_priv(skb->dev);
05e5c116 1812 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
4d22de3e
DLR
1813 !p->fragment) {
1814 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1815 skb->ip_summed = CHECKSUM_UNNECESSARY;
1816 } else
1817 skb->ip_summed = CHECKSUM_NONE;
1818
1819 if (unlikely(p->vlan_valid)) {
1820 struct vlan_group *grp = pi->vlan_grp;
1821
1822 rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1823 if (likely(grp))
1824 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1825 rq->polling);
1826 else
1827 dev_kfree_skb_any(skb);
1828 } else if (rq->polling)
1829 netif_receive_skb(skb);
1830 else
1831 netif_rx(skb);
1832}
1833
1834/**
1835 * handle_rsp_cntrl_info - handles control information in a response
1836 * @qs: the queue set corresponding to the response
1837 * @flags: the response control flags
4d22de3e
DLR
1838 *
1839 * Handles the control information of an SGE response, such as GTS
1840 * indications and completion credits for the queue set's Tx queues.
6195c71d 1841 * HW coalesces credits, we don't do any extra SW coalescing.
4d22de3e 1842 */
6195c71d 1843static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
4d22de3e
DLR
1844{
1845 unsigned int credits;
1846
1847#if USE_GTS
1848 if (flags & F_RSPD_TXQ0_GTS)
1849 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1850#endif
1851
4d22de3e
DLR
1852 credits = G_RSPD_TXQ0_CR(flags);
1853 if (credits)
1854 qs->txq[TXQ_ETH].processed += credits;
1855
6195c71d
DLR
1856 credits = G_RSPD_TXQ2_CR(flags);
1857 if (credits)
1858 qs->txq[TXQ_CTRL].processed += credits;
1859
4d22de3e
DLR
1860# if USE_GTS
1861 if (flags & F_RSPD_TXQ1_GTS)
1862 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1863# endif
6195c71d
DLR
1864 credits = G_RSPD_TXQ1_CR(flags);
1865 if (credits)
1866 qs->txq[TXQ_OFLD].processed += credits;
4d22de3e
DLR
1867}
1868
1869/**
1870 * check_ring_db - check if we need to ring any doorbells
1871 * @adapter: the adapter
1872 * @qs: the queue set whose Tx queues are to be examined
1873 * @sleeping: indicates which Tx queue sent GTS
1874 *
1875 * Checks if some of a queue set's Tx queues need to ring their doorbells
1876 * to resume transmission after idling while they still have unprocessed
1877 * descriptors.
1878 */
1879static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1880 unsigned int sleeping)
1881{
1882 if (sleeping & F_RSPD_TXQ0_GTS) {
1883 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1884
1885 if (txq->cleaned + txq->in_use != txq->processed &&
1886 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1887 set_bit(TXQ_RUNNING, &txq->flags);
1888 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1889 V_EGRCNTX(txq->cntxt_id));
1890 }
1891 }
1892
1893 if (sleeping & F_RSPD_TXQ1_GTS) {
1894 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1895
1896 if (txq->cleaned + txq->in_use != txq->processed &&
1897 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1898 set_bit(TXQ_RUNNING, &txq->flags);
1899 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1900 V_EGRCNTX(txq->cntxt_id));
1901 }
1902 }
1903}
1904
1905/**
1906 * is_new_response - check if a response is newly written
1907 * @r: the response descriptor
1908 * @q: the response queue
1909 *
1910 * Returns true if a response descriptor contains a yet unprocessed
1911 * response.
1912 */
1913static inline int is_new_response(const struct rsp_desc *r,
1914 const struct sge_rspq *q)
1915{
1916 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1917}
1918
1919#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1920#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1921 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1922 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1923 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1924
1925/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
1926#define NOMEM_INTR_DELAY 2500
1927
1928/**
1929 * process_responses - process responses from an SGE response queue
1930 * @adap: the adapter
1931 * @qs: the queue set to which the response queue belongs
1932 * @budget: how many responses can be processed in this round
1933 *
1934 * Process responses from an SGE response queue up to the supplied budget.
1935 * Responses include received packets as well as credits and other events
1936 * for the queues that belong to the response queue's queue set.
1937 * A negative budget is effectively unlimited.
1938 *
1939 * Additionally choose the interrupt holdoff time for the next interrupt
1940 * on this queue. If the system is under memory shortage use a fairly
1941 * long delay to help recovery.
1942 */
1943static int process_responses(struct adapter *adap, struct sge_qset *qs,
1944 int budget)
1945{
1946 struct sge_rspq *q = &qs->rspq;
1947 struct rsp_desc *r = &q->desc[q->cidx];
1948 int budget_left = budget;
6195c71d 1949 unsigned int sleeping = 0;
4d22de3e
DLR
1950 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
1951 int ngathered = 0;
1952
1953 q->next_holdoff = q->holdoff_tmr;
1954
1955 while (likely(budget_left && is_new_response(r, q))) {
e0994eb1 1956 int eth, ethpad = 2;
4d22de3e
DLR
1957 struct sk_buff *skb = NULL;
1958 u32 len, flags = ntohl(r->flags);
05e5c116 1959 __be32 rss_hi = *(const __be32 *)r, rss_lo = r->rss_hdr.rss_hash_val;
4d22de3e
DLR
1960
1961 eth = r->rss_hdr.opcode == CPL_RX_PKT;
1962
1963 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
1964 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
1965 if (!skb)
1966 goto no_mem;
1967
1968 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
1969 skb->data[0] = CPL_ASYNC_NOTIF;
1970 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
1971 q->async_notif++;
1972 } else if (flags & F_RSPD_IMM_DATA_VALID) {
1973 skb = get_imm_packet(r);
1974 if (unlikely(!skb)) {
cf992af5 1975no_mem:
4d22de3e
DLR
1976 q->next_holdoff = NOMEM_INTR_DELAY;
1977 q->nomem++;
1978 /* consume one credit since we tried */
1979 budget_left--;
1980 break;
1981 }
1982 q->imm_data++;
e0994eb1 1983 ethpad = 0;
4d22de3e 1984 } else if ((len = ntohl(r->len_cq)) != 0) {
cf992af5 1985 struct sge_fl *fl;
e0994eb1 1986
cf992af5
DLR
1987 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
1988 if (fl->use_pages) {
1989 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
e0994eb1 1990
cf992af5
DLR
1991 prefetch(addr);
1992#if L1_CACHE_BYTES < 128
1993 prefetch(addr + L1_CACHE_BYTES);
1994#endif
e0994eb1
DLR
1995 __refill_fl(adap, fl);
1996
cf992af5
DLR
1997 skb = get_packet_pg(adap, fl, G_RSPD_LEN(len),
1998 eth ? SGE_RX_DROP_THRES : 0);
1999 } else
e0994eb1
DLR
2000 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2001 eth ? SGE_RX_DROP_THRES : 0);
cf992af5
DLR
2002 if (unlikely(!skb)) {
2003 if (!eth)
2004 goto no_mem;
2005 q->rx_drops++;
2006 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2007 __skb_pull(skb, 2);
4d22de3e 2008
4d22de3e
DLR
2009 if (++fl->cidx == fl->size)
2010 fl->cidx = 0;
2011 } else
2012 q->pure_rsps++;
2013
2014 if (flags & RSPD_CTRL_MASK) {
2015 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2016 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2017 }
2018
2019 r++;
2020 if (unlikely(++q->cidx == q->size)) {
2021 q->cidx = 0;
2022 q->gen ^= 1;
2023 r = q->desc;
2024 }
2025 prefetch(r);
2026
2027 if (++q->credits >= (q->size / 4)) {
2028 refill_rspq(adap, q, q->credits);
2029 q->credits = 0;
2030 }
2031
cf992af5 2032 if (likely(skb != NULL)) {
4d22de3e
DLR
2033 if (eth)
2034 rx_eth(adap, q, skb, ethpad);
2035 else {
afefce66 2036 q->offload_pkts++;
cf992af5
DLR
2037 /* Preserve the RSS info in csum & priority */
2038 skb->csum = rss_hi;
2039 skb->priority = rss_lo;
2040 ngathered = rx_offload(&adap->tdev, q, skb,
2041 offload_skbs,
e0994eb1 2042 ngathered);
4d22de3e
DLR
2043 }
2044 }
4d22de3e
DLR
2045 --budget_left;
2046 }
2047
4d22de3e
DLR
2048 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2049 if (sleeping)
2050 check_ring_db(adap, qs, sleeping);
2051
2052 smp_mb(); /* commit Tx queue .processed updates */
2053 if (unlikely(qs->txq_stopped != 0))
2054 restart_tx(qs);
2055
2056 budget -= budget_left;
2057 return budget;
2058}
2059
2060static inline int is_pure_response(const struct rsp_desc *r)
2061{
2062 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2063
2064 return (n | r->len_cq) == 0;
2065}
2066
2067/**
2068 * napi_rx_handler - the NAPI handler for Rx processing
bea3348e 2069 * @napi: the napi instance
4d22de3e
DLR
2070 * @budget: how many packets we can process in this round
2071 *
2072 * Handler for new data events when using NAPI.
2073 */
bea3348e 2074static int napi_rx_handler(struct napi_struct *napi, int budget)
4d22de3e 2075{
bea3348e
SH
2076 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2077 struct adapter *adap = qs->adap;
2078 int work_done = process_responses(adap, qs, budget);
4d22de3e 2079
bea3348e
SH
2080 if (likely(work_done < budget)) {
2081 napi_complete(napi);
4d22de3e 2082
bea3348e
SH
2083 /*
2084 * Because we don't atomically flush the following
2085 * write it is possible that in very rare cases it can
2086 * reach the device in a way that races with a new
2087 * response being written plus an error interrupt
2088 * causing the NAPI interrupt handler below to return
2089 * unhandled status to the OS. To protect against
2090 * this would require flushing the write and doing
2091 * both the write and the flush with interrupts off.
2092 * Way too expensive and unjustifiable given the
2093 * rarity of the race.
2094 *
2095 * The race cannot happen at all with MSI-X.
2096 */
2097 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2098 V_NEWTIMER(qs->rspq.next_holdoff) |
2099 V_NEWINDEX(qs->rspq.cidx));
2100 }
2101 return work_done;
4d22de3e
DLR
2102}
2103
2104/*
2105 * Returns true if the device is already scheduled for polling.
2106 */
bea3348e 2107static inline int napi_is_scheduled(struct napi_struct *napi)
4d22de3e 2108{
bea3348e 2109 return test_bit(NAPI_STATE_SCHED, &napi->state);
4d22de3e
DLR
2110}
2111
2112/**
2113 * process_pure_responses - process pure responses from a response queue
2114 * @adap: the adapter
2115 * @qs: the queue set owning the response queue
2116 * @r: the first pure response to process
2117 *
2118 * A simpler version of process_responses() that handles only pure (i.e.,
2119 * non data-carrying) responses. Such respones are too light-weight to
2120 * justify calling a softirq under NAPI, so we handle them specially in
2121 * the interrupt handler. The function is called with a pointer to a
2122 * response, which the caller must ensure is a valid pure response.
2123 *
2124 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2125 */
2126static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2127 struct rsp_desc *r)
2128{
2129 struct sge_rspq *q = &qs->rspq;
6195c71d 2130 unsigned int sleeping = 0;
4d22de3e
DLR
2131
2132 do {
2133 u32 flags = ntohl(r->flags);
2134
2135 r++;
2136 if (unlikely(++q->cidx == q->size)) {
2137 q->cidx = 0;
2138 q->gen ^= 1;
2139 r = q->desc;
2140 }
2141 prefetch(r);
2142
2143 if (flags & RSPD_CTRL_MASK) {
2144 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2145 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2146 }
2147
2148 q->pure_rsps++;
2149 if (++q->credits >= (q->size / 4)) {
2150 refill_rspq(adap, q, q->credits);
2151 q->credits = 0;
2152 }
2153 } while (is_new_response(r, q) && is_pure_response(r));
2154
4d22de3e
DLR
2155 if (sleeping)
2156 check_ring_db(adap, qs, sleeping);
2157
2158 smp_mb(); /* commit Tx queue .processed updates */
2159 if (unlikely(qs->txq_stopped != 0))
2160 restart_tx(qs);
2161
2162 return is_new_response(r, q);
2163}
2164
2165/**
2166 * handle_responses - decide what to do with new responses in NAPI mode
2167 * @adap: the adapter
2168 * @q: the response queue
2169 *
2170 * This is used by the NAPI interrupt handlers to decide what to do with
2171 * new SGE responses. If there are no new responses it returns -1. If
2172 * there are new responses and they are pure (i.e., non-data carrying)
2173 * it handles them straight in hard interrupt context as they are very
2174 * cheap and don't deliver any packets. Finally, if there are any data
2175 * signaling responses it schedules the NAPI handler. Returns 1 if it
2176 * schedules NAPI, 0 if all new responses were pure.
2177 *
2178 * The caller must ascertain NAPI is not already running.
2179 */
2180static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2181{
2182 struct sge_qset *qs = rspq_to_qset(q);
2183 struct rsp_desc *r = &q->desc[q->cidx];
2184
2185 if (!is_new_response(r, q))
2186 return -1;
2187 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2188 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2189 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2190 return 0;
2191 }
bea3348e 2192 napi_schedule(&qs->napi);
4d22de3e
DLR
2193 return 1;
2194}
2195
2196/*
2197 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2198 * (i.e., response queue serviced in hard interrupt).
2199 */
2200irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2201{
2202 struct sge_qset *qs = cookie;
bea3348e 2203 struct adapter *adap = qs->adap;
4d22de3e
DLR
2204 struct sge_rspq *q = &qs->rspq;
2205
2206 spin_lock(&q->lock);
2207 if (process_responses(adap, qs, -1) == 0)
2208 q->unhandled_irqs++;
2209 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2210 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2211 spin_unlock(&q->lock);
2212 return IRQ_HANDLED;
2213}
2214
2215/*
2216 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2217 * (i.e., response queue serviced by NAPI polling).
2218 */
9265fabf 2219static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
4d22de3e
DLR
2220{
2221 struct sge_qset *qs = cookie;
4d22de3e
DLR
2222 struct sge_rspq *q = &qs->rspq;
2223
2224 spin_lock(&q->lock);
4d22de3e 2225
bea3348e 2226 if (handle_responses(qs->adap, q) < 0)
4d22de3e
DLR
2227 q->unhandled_irqs++;
2228 spin_unlock(&q->lock);
2229 return IRQ_HANDLED;
2230}
2231
2232/*
2233 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2234 * SGE response queues as well as error and other async events as they all use
2235 * the same MSI vector. We use one SGE response queue per port in this mode
2236 * and protect all response queues with queue 0's lock.
2237 */
2238static irqreturn_t t3_intr_msi(int irq, void *cookie)
2239{
2240 int new_packets = 0;
2241 struct adapter *adap = cookie;
2242 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2243
2244 spin_lock(&q->lock);
2245
2246 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2247 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2248 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2249 new_packets = 1;
2250 }
2251
2252 if (adap->params.nports == 2 &&
2253 process_responses(adap, &adap->sge.qs[1], -1)) {
2254 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2255
2256 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2257 V_NEWTIMER(q1->next_holdoff) |
2258 V_NEWINDEX(q1->cidx));
2259 new_packets = 1;
2260 }
2261
2262 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2263 q->unhandled_irqs++;
2264
2265 spin_unlock(&q->lock);
2266 return IRQ_HANDLED;
2267}
2268
bea3348e 2269static int rspq_check_napi(struct sge_qset *qs)
4d22de3e 2270{
bea3348e
SH
2271 struct sge_rspq *q = &qs->rspq;
2272
2273 if (!napi_is_scheduled(&qs->napi) &&
2274 is_new_response(&q->desc[q->cidx], q)) {
2275 napi_schedule(&qs->napi);
4d22de3e
DLR
2276 return 1;
2277 }
2278 return 0;
2279}
2280
2281/*
2282 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2283 * by NAPI polling). Handles data events from SGE response queues as well as
2284 * error and other async events as they all use the same MSI vector. We use
2285 * one SGE response queue per port in this mode and protect all response
2286 * queues with queue 0's lock.
2287 */
9265fabf 2288static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
4d22de3e
DLR
2289{
2290 int new_packets;
2291 struct adapter *adap = cookie;
2292 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2293
2294 spin_lock(&q->lock);
2295
bea3348e 2296 new_packets = rspq_check_napi(&adap->sge.qs[0]);
4d22de3e 2297 if (adap->params.nports == 2)
bea3348e 2298 new_packets += rspq_check_napi(&adap->sge.qs[1]);
4d22de3e
DLR
2299 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2300 q->unhandled_irqs++;
2301
2302 spin_unlock(&q->lock);
2303 return IRQ_HANDLED;
2304}
2305
2306/*
2307 * A helper function that processes responses and issues GTS.
2308 */
2309static inline int process_responses_gts(struct adapter *adap,
2310 struct sge_rspq *rq)
2311{
2312 int work;
2313
2314 work = process_responses(adap, rspq_to_qset(rq), -1);
2315 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2316 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2317 return work;
2318}
2319
2320/*
2321 * The legacy INTx interrupt handler. This needs to handle data events from
2322 * SGE response queues as well as error and other async events as they all use
2323 * the same interrupt pin. We use one SGE response queue per port in this mode
2324 * and protect all response queues with queue 0's lock.
2325 */
2326static irqreturn_t t3_intr(int irq, void *cookie)
2327{
2328 int work_done, w0, w1;
2329 struct adapter *adap = cookie;
2330 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2331 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2332
2333 spin_lock(&q0->lock);
2334
2335 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2336 w1 = adap->params.nports == 2 &&
2337 is_new_response(&q1->desc[q1->cidx], q1);
2338
2339 if (likely(w0 | w1)) {
2340 t3_write_reg(adap, A_PL_CLI, 0);
2341 t3_read_reg(adap, A_PL_CLI); /* flush */
2342
2343 if (likely(w0))
2344 process_responses_gts(adap, q0);
2345
2346 if (w1)
2347 process_responses_gts(adap, q1);
2348
2349 work_done = w0 | w1;
2350 } else
2351 work_done = t3_slow_intr_handler(adap);
2352
2353 spin_unlock(&q0->lock);
2354 return IRQ_RETVAL(work_done != 0);
2355}
2356
2357/*
2358 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2359 * Handles data events from SGE response queues as well as error and other
2360 * async events as they all use the same interrupt pin. We use one SGE
2361 * response queue per port in this mode and protect all response queues with
2362 * queue 0's lock.
2363 */
2364static irqreturn_t t3b_intr(int irq, void *cookie)
2365{
2366 u32 map;
2367 struct adapter *adap = cookie;
2368 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2369
2370 t3_write_reg(adap, A_PL_CLI, 0);
2371 map = t3_read_reg(adap, A_SG_DATA_INTR);
2372
2373 if (unlikely(!map)) /* shared interrupt, most likely */
2374 return IRQ_NONE;
2375
2376 spin_lock(&q0->lock);
2377
2378 if (unlikely(map & F_ERRINTR))
2379 t3_slow_intr_handler(adap);
2380
2381 if (likely(map & 1))
2382 process_responses_gts(adap, q0);
2383
2384 if (map & 2)
2385 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2386
2387 spin_unlock(&q0->lock);
2388 return IRQ_HANDLED;
2389}
2390
2391/*
2392 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2393 * Handles data events from SGE response queues as well as error and other
2394 * async events as they all use the same interrupt pin. We use one SGE
2395 * response queue per port in this mode and protect all response queues with
2396 * queue 0's lock.
2397 */
2398static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2399{
2400 u32 map;
4d22de3e 2401 struct adapter *adap = cookie;
bea3348e
SH
2402 struct sge_qset *qs0 = &adap->sge.qs[0];
2403 struct sge_rspq *q0 = &qs0->rspq;
4d22de3e
DLR
2404
2405 t3_write_reg(adap, A_PL_CLI, 0);
2406 map = t3_read_reg(adap, A_SG_DATA_INTR);
2407
2408 if (unlikely(!map)) /* shared interrupt, most likely */
2409 return IRQ_NONE;
2410
2411 spin_lock(&q0->lock);
2412
2413 if (unlikely(map & F_ERRINTR))
2414 t3_slow_intr_handler(adap);
2415
bea3348e
SH
2416 if (likely(map & 1))
2417 napi_schedule(&qs0->napi);
4d22de3e 2418
bea3348e
SH
2419 if (map & 2)
2420 napi_schedule(&adap->sge.qs[1].napi);
4d22de3e
DLR
2421
2422 spin_unlock(&q0->lock);
2423 return IRQ_HANDLED;
2424}
2425
2426/**
2427 * t3_intr_handler - select the top-level interrupt handler
2428 * @adap: the adapter
2429 * @polling: whether using NAPI to service response queues
2430 *
2431 * Selects the top-level interrupt handler based on the type of interrupts
2432 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2433 * response queues.
2434 */
7c239975 2435irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
4d22de3e
DLR
2436{
2437 if (adap->flags & USING_MSIX)
2438 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2439 if (adap->flags & USING_MSI)
2440 return polling ? t3_intr_msi_napi : t3_intr_msi;
2441 if (adap->params.rev > 0)
2442 return polling ? t3b_intr_napi : t3b_intr;
2443 return t3_intr;
2444}
2445
b881955b
DLR
2446#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2447 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2448 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2449 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2450 F_HIRCQPARITYERROR)
2451#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2452#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2453 F_RSPQDISABLED)
2454
4d22de3e
DLR
2455/**
2456 * t3_sge_err_intr_handler - SGE async event interrupt handler
2457 * @adapter: the adapter
2458 *
2459 * Interrupt handler for SGE asynchronous (non-data) events.
2460 */
2461void t3_sge_err_intr_handler(struct adapter *adapter)
2462{
2463 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2464
b881955b
DLR
2465 if (status & SGE_PARERR)
2466 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2467 status & SGE_PARERR);
2468 if (status & SGE_FRAMINGERR)
2469 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2470 status & SGE_FRAMINGERR);
2471
4d22de3e
DLR
2472 if (status & F_RSPQCREDITOVERFOW)
2473 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2474
2475 if (status & F_RSPQDISABLED) {
2476 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2477
2478 CH_ALERT(adapter,
2479 "packet delivered to disabled response queue "
2480 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2481 }
2482
6e3f03b7
DLR
2483 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2484 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2485 status & F_HIPIODRBDROPERR ? "high" : "lo");
2486
4d22de3e 2487 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
b881955b 2488 if (status & SGE_FATALERR)
4d22de3e
DLR
2489 t3_fatal_err(adapter);
2490}
2491
2492/**
2493 * sge_timer_cb - perform periodic maintenance of an SGE qset
2494 * @data: the SGE queue set to maintain
2495 *
2496 * Runs periodically from a timer to perform maintenance of an SGE queue
2497 * set. It performs two tasks:
2498 *
2499 * a) Cleans up any completed Tx descriptors that may still be pending.
2500 * Normal descriptor cleanup happens when new packets are added to a Tx
2501 * queue so this timer is relatively infrequent and does any cleanup only
2502 * if the Tx queue has not seen any new packets in a while. We make a
2503 * best effort attempt to reclaim descriptors, in that we don't wait
2504 * around if we cannot get a queue's lock (which most likely is because
2505 * someone else is queueing new packets and so will also handle the clean
2506 * up). Since control queues use immediate data exclusively we don't
2507 * bother cleaning them up here.
2508 *
2509 * b) Replenishes Rx queues that have run out due to memory shortage.
2510 * Normally new Rx buffers are added when existing ones are consumed but
2511 * when out of memory a queue can become empty. We try to add only a few
2512 * buffers here, the queue will be replenished fully as these new buffers
2513 * are used up if memory shortage has subsided.
2514 */
2515static void sge_timer_cb(unsigned long data)
2516{
2517 spinlock_t *lock;
2518 struct sge_qset *qs = (struct sge_qset *)data;
bea3348e 2519 struct adapter *adap = qs->adap;
4d22de3e
DLR
2520
2521 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2522 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2523 spin_unlock(&qs->txq[TXQ_ETH].lock);
2524 }
2525 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2526 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2527 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2528 }
2529 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
bea3348e 2530 &adap->sge.qs[0].rspq.lock;
4d22de3e 2531 if (spin_trylock_irq(lock)) {
bea3348e 2532 if (!napi_is_scheduled(&qs->napi)) {
bae73f44
DLR
2533 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2534
4d22de3e
DLR
2535 if (qs->fl[0].credits < qs->fl[0].size)
2536 __refill_fl(adap, &qs->fl[0]);
2537 if (qs->fl[1].credits < qs->fl[1].size)
2538 __refill_fl(adap, &qs->fl[1]);
bae73f44
DLR
2539
2540 if (status & (1 << qs->rspq.cntxt_id)) {
2541 qs->rspq.starved++;
2542 if (qs->rspq.credits) {
2543 refill_rspq(adap, &qs->rspq, 1);
2544 qs->rspq.credits--;
2545 qs->rspq.restarted++;
e0994eb1 2546 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
bae73f44
DLR
2547 1 << qs->rspq.cntxt_id);
2548 }
2549 }
4d22de3e
DLR
2550 }
2551 spin_unlock_irq(lock);
2552 }
2553 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2554}
2555
2556/**
2557 * t3_update_qset_coalesce - update coalescing settings for a queue set
2558 * @qs: the SGE queue set
2559 * @p: new queue set parameters
2560 *
2561 * Update the coalescing settings for an SGE queue set. Nothing is done
2562 * if the queue set is not initialized yet.
2563 */
2564void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2565{
4d22de3e
DLR
2566 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2567 qs->rspq.polling = p->polling;
bea3348e 2568 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
4d22de3e
DLR
2569}
2570
2571/**
2572 * t3_sge_alloc_qset - initialize an SGE queue set
2573 * @adapter: the adapter
2574 * @id: the queue set id
2575 * @nports: how many Ethernet ports will be using this queue set
2576 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2577 * @p: configuration parameters for this queue set
2578 * @ntxq: number of Tx queues for the queue set
2579 * @netdev: net device associated with this queue set
2580 *
2581 * Allocate resources and initialize an SGE queue set. A queue set
2582 * comprises a response queue, two Rx free-buffer queues, and up to 3
2583 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2584 * queue, offload queue, and control queue.
2585 */
2586int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2587 int irq_vec_idx, const struct qset_params *p,
bea3348e 2588 int ntxq, struct net_device *dev)
4d22de3e
DLR
2589{
2590 int i, ret = -ENOMEM;
2591 struct sge_qset *q = &adapter->sge.qs[id];
2592
2593 init_qset_cntxt(q, id);
2594 init_timer(&q->tx_reclaim_timer);
2595 q->tx_reclaim_timer.data = (unsigned long)q;
2596 q->tx_reclaim_timer.function = sge_timer_cb;
2597
2598 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2599 sizeof(struct rx_desc),
2600 sizeof(struct rx_sw_desc),
2601 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2602 if (!q->fl[0].desc)
2603 goto err;
2604
2605 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2606 sizeof(struct rx_desc),
2607 sizeof(struct rx_sw_desc),
2608 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2609 if (!q->fl[1].desc)
2610 goto err;
2611
2612 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2613 sizeof(struct rsp_desc), 0,
2614 &q->rspq.phys_addr, NULL);
2615 if (!q->rspq.desc)
2616 goto err;
2617
2618 for (i = 0; i < ntxq; ++i) {
2619 /*
2620 * The control queue always uses immediate data so does not
2621 * need to keep track of any sk_buffs.
2622 */
2623 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2624
2625 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2626 sizeof(struct tx_desc), sz,
2627 &q->txq[i].phys_addr,
2628 &q->txq[i].sdesc);
2629 if (!q->txq[i].desc)
2630 goto err;
2631
2632 q->txq[i].gen = 1;
2633 q->txq[i].size = p->txq_size[i];
2634 spin_lock_init(&q->txq[i].lock);
2635 skb_queue_head_init(&q->txq[i].sendq);
2636 }
2637
2638 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2639 (unsigned long)q);
2640 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2641 (unsigned long)q);
2642
2643 q->fl[0].gen = q->fl[1].gen = 1;
2644 q->fl[0].size = p->fl_size;
2645 q->fl[1].size = p->jumbo_size;
2646
2647 q->rspq.gen = 1;
2648 q->rspq.size = p->rspq_size;
2649 spin_lock_init(&q->rspq.lock);
2650
2651 q->txq[TXQ_ETH].stop_thres = nports *
2652 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2653
cf992af5
DLR
2654#if FL0_PG_CHUNK_SIZE > 0
2655 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
e0994eb1 2656#else
cf992af5 2657 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
e0994eb1 2658#endif
cf992af5
DLR
2659 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2660 q->fl[1].buf_size = is_offload(adapter) ?
2661 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2662 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
4d22de3e
DLR
2663
2664 spin_lock(&adapter->sge.reg_lock);
2665
2666 /* FL threshold comparison uses < */
2667 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2668 q->rspq.phys_addr, q->rspq.size,
2669 q->fl[0].buf_size, 1, 0);
2670 if (ret)
2671 goto err_unlock;
2672
2673 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2674 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2675 q->fl[i].phys_addr, q->fl[i].size,
2676 q->fl[i].buf_size, p->cong_thres, 1,
2677 0);
2678 if (ret)
2679 goto err_unlock;
2680 }
2681
2682 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2683 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2684 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2685 1, 0);
2686 if (ret)
2687 goto err_unlock;
2688
2689 if (ntxq > 1) {
2690 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2691 USE_GTS, SGE_CNTXT_OFLD, id,
2692 q->txq[TXQ_OFLD].phys_addr,
2693 q->txq[TXQ_OFLD].size, 0, 1, 0);
2694 if (ret)
2695 goto err_unlock;
2696 }
2697
2698 if (ntxq > 2) {
2699 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2700 SGE_CNTXT_CTRL, id,
2701 q->txq[TXQ_CTRL].phys_addr,
2702 q->txq[TXQ_CTRL].size,
2703 q->txq[TXQ_CTRL].token, 1, 0);
2704 if (ret)
2705 goto err_unlock;
2706 }
2707
2708 spin_unlock(&adapter->sge.reg_lock);
4d22de3e 2709
bea3348e
SH
2710 q->adap = adapter;
2711 q->netdev = dev;
2712 t3_update_qset_coalesce(q, p);
4d22de3e
DLR
2713
2714 refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL);
2715 refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL);
2716 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2717
2718 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2719 V_NEWTIMER(q->rspq.holdoff_tmr));
2720
2721 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2722 return 0;
2723
2724 err_unlock:
2725 spin_unlock(&adapter->sge.reg_lock);
2726 err:
2727 t3_free_qset(adapter, q);
2728 return ret;
2729}
2730
2731/**
2732 * t3_free_sge_resources - free SGE resources
2733 * @adap: the adapter
2734 *
2735 * Frees resources used by the SGE queue sets.
2736 */
2737void t3_free_sge_resources(struct adapter *adap)
2738{
2739 int i;
2740
2741 for (i = 0; i < SGE_QSETS; ++i)
2742 t3_free_qset(adap, &adap->sge.qs[i]);
2743}
2744
2745/**
2746 * t3_sge_start - enable SGE
2747 * @adap: the adapter
2748 *
2749 * Enables the SGE for DMAs. This is the last step in starting packet
2750 * transfers.
2751 */
2752void t3_sge_start(struct adapter *adap)
2753{
2754 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2755}
2756
2757/**
2758 * t3_sge_stop - disable SGE operation
2759 * @adap: the adapter
2760 *
2761 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2762 * from error interrupts) or from normal process context. In the latter
2763 * case it also disables any pending queue restart tasklets. Note that
2764 * if it is called in interrupt context it cannot disable the restart
2765 * tasklets as it cannot wait, however the tasklets will have no effect
2766 * since the doorbells are disabled and the driver will call this again
2767 * later from process context, at which time the tasklets will be stopped
2768 * if they are still running.
2769 */
2770void t3_sge_stop(struct adapter *adap)
2771{
2772 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2773 if (!in_interrupt()) {
2774 int i;
2775
2776 for (i = 0; i < SGE_QSETS; ++i) {
2777 struct sge_qset *qs = &adap->sge.qs[i];
2778
2779 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2780 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2781 }
2782 }
2783}
2784
2785/**
2786 * t3_sge_init - initialize SGE
2787 * @adap: the adapter
2788 * @p: the SGE parameters
2789 *
2790 * Performs SGE initialization needed every time after a chip reset.
2791 * We do not initialize any of the queue sets here, instead the driver
2792 * top-level must request those individually. We also do not enable DMA
2793 * here, that should be done after the queues have been set up.
2794 */
2795void t3_sge_init(struct adapter *adap, struct sge_params *p)
2796{
2797 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2798
2799 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
b881955b 2800 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
4d22de3e
DLR
2801 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2802 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2803#if SGE_NUM_GENBITS == 1
2804 ctrl |= F_EGRGENCTRL;
2805#endif
2806 if (adap->params.rev > 0) {
2807 if (!(adap->flags & (USING_MSIX | USING_MSI)))
2808 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
4d22de3e
DLR
2809 }
2810 t3_write_reg(adap, A_SG_CONTROL, ctrl);
2811 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2812 V_LORCQDRBTHRSH(512));
2813 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2814 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
6195c71d 2815 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
b881955b
DLR
2816 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
2817 adap->params.rev < T3_REV_C ? 1000 : 500);
4d22de3e
DLR
2818 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2819 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2820 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2821 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2822 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2823}
2824
2825/**
2826 * t3_sge_prep - one-time SGE initialization
2827 * @adap: the associated adapter
2828 * @p: SGE parameters
2829 *
2830 * Performs one-time initialization of SGE SW state. Includes determining
2831 * defaults for the assorted SGE parameters, which admins can change until
2832 * they are used to initialize the SGE.
2833 */
7b9b0943 2834void t3_sge_prep(struct adapter *adap, struct sge_params *p)
4d22de3e
DLR
2835{
2836 int i;
2837
2838 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2839 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2840
2841 for (i = 0; i < SGE_QSETS; ++i) {
2842 struct qset_params *q = p->qset + i;
2843
2844 q->polling = adap->params.rev > 0;
2845 q->coalesce_usecs = 5;
2846 q->rspq_size = 1024;
e0994eb1 2847 q->fl_size = 1024;
4d22de3e
DLR
2848 q->jumbo_size = 512;
2849 q->txq_size[TXQ_ETH] = 1024;
2850 q->txq_size[TXQ_OFLD] = 1024;
2851 q->txq_size[TXQ_CTRL] = 256;
2852 q->cong_thres = 0;
2853 }
2854
2855 spin_lock_init(&adap->sge.reg_lock);
2856}
2857
2858/**
2859 * t3_get_desc - dump an SGE descriptor for debugging purposes
2860 * @qs: the queue set
2861 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2862 * @idx: the descriptor index in the queue
2863 * @data: where to dump the descriptor contents
2864 *
2865 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
2866 * size of the descriptor.
2867 */
2868int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2869 unsigned char *data)
2870{
2871 if (qnum >= 6)
2872 return -EINVAL;
2873
2874 if (qnum < 3) {
2875 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2876 return -EINVAL;
2877 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2878 return sizeof(struct tx_desc);
2879 }
2880
2881 if (qnum == 3) {
2882 if (!qs->rspq.desc || idx >= qs->rspq.size)
2883 return -EINVAL;
2884 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2885 return sizeof(struct rsp_desc);
2886 }
2887
2888 qnum -= 4;
2889 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2890 return -EINVAL;
2891 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2892 return sizeof(struct rx_desc);
2893}