]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/cxgb4/t4_hw.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / drivers / net / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/init.h>
36#include <linux/delay.h>
37#include "cxgb4.h"
38#include "t4_regs.h"
39#include "t4fw_api.h"
40
41/**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
de498c89
RD
56static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
58{
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72}
73
74static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76{
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79}
80
81/**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93{
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98}
99
100/**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
de498c89
RD
112static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
115{
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121}
122
56d36be4
DM
123/*
124 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
125 */
126static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
127 u32 mbox_addr)
128{
129 for ( ; nflit; nflit--, mbox_addr += 8)
130 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
131}
132
133/*
134 * Handle a FW assertion reported in a mailbox.
135 */
136static void fw_asrt(struct adapter *adap, u32 mbox_addr)
137{
138 struct fw_debug_cmd asrt;
139
140 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
141 dev_alert(adap->pdev_dev,
142 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
143 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
144 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
145}
146
147static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
148{
149 dev_err(adap->pdev_dev,
150 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
151 (unsigned long long)t4_read_reg64(adap, data_reg),
152 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
153 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
154 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
155 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
156 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
157 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
158 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
159}
160
161/**
162 * t4_wr_mbox_meat - send a command to FW through the given mailbox
163 * @adap: the adapter
164 * @mbox: index of the mailbox to use
165 * @cmd: the command to write
166 * @size: command length in bytes
167 * @rpl: where to optionally store the reply
168 * @sleep_ok: if true we may sleep while awaiting command completion
169 *
170 * Sends the given command to FW through the selected mailbox and waits
171 * for the FW to execute the command. If @rpl is not %NULL it is used to
172 * store the FW's reply to the command. The command and its optional
173 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
174 * to respond. @sleep_ok determines whether we may sleep while awaiting
175 * the response. If sleeping is allowed we use progressive backoff
176 * otherwise we spin.
177 *
178 * The return value is 0 on success or a negative errno on failure. A
179 * failure can happen either because we are not able to execute the
180 * command or FW executes it but signals an error. In the latter case
181 * the return value is the error code indicated by FW (negated).
182 */
183int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
184 void *rpl, bool sleep_ok)
185{
005b5717 186 static const int delay[] = {
56d36be4
DM
187 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
188 };
189
190 u32 v;
191 u64 res;
192 int i, ms, delay_idx;
193 const __be64 *p = cmd;
194 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
195 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
196
197 if ((size & 15) || size > MBOX_LEN)
198 return -EINVAL;
199
204dc3c0
DM
200 /*
201 * If the device is off-line, as in EEH, commands will time out.
202 * Fail them early so we don't waste time waiting.
203 */
204 if (adap->pdev->error_state != pci_channel_io_normal)
205 return -EIO;
206
56d36be4
DM
207 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
208 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
209 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
210
211 if (v != MBOX_OWNER_DRV)
212 return v ? -EBUSY : -ETIMEDOUT;
213
214 for (i = 0; i < size; i += 8)
215 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
216
217 t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
218 t4_read_reg(adap, ctl_reg); /* flush write */
219
220 delay_idx = 0;
221 ms = delay[0];
222
223 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
224 if (sleep_ok) {
225 ms = delay[delay_idx]; /* last element may repeat */
226 if (delay_idx < ARRAY_SIZE(delay) - 1)
227 delay_idx++;
228 msleep(ms);
229 } else
230 mdelay(ms);
231
232 v = t4_read_reg(adap, ctl_reg);
233 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
234 if (!(v & MBMSGVALID)) {
235 t4_write_reg(adap, ctl_reg, 0);
236 continue;
237 }
238
239 res = t4_read_reg64(adap, data_reg);
240 if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
241 fw_asrt(adap, data_reg);
242 res = FW_CMD_RETVAL(EIO);
243 } else if (rpl)
244 get_mbox_rpl(adap, rpl, size / 8, data_reg);
245
246 if (FW_CMD_RETVAL_GET((int)res))
247 dump_mbox(adap, mbox, data_reg);
248 t4_write_reg(adap, ctl_reg, 0);
249 return -FW_CMD_RETVAL_GET((int)res);
250 }
251 }
252
253 dump_mbox(adap, mbox, data_reg);
254 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
255 *(const u8 *)cmd, mbox);
256 return -ETIMEDOUT;
257}
258
259/**
260 * t4_mc_read - read from MC through backdoor accesses
261 * @adap: the adapter
262 * @addr: address of first byte requested
263 * @data: 64 bytes of data containing the requested address
264 * @ecc: where to store the corresponding 64-bit ECC word
265 *
266 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
267 * that covers the requested address @addr. If @parity is not %NULL it
268 * is assigned the 64-bit ECC word for the read data.
269 */
270int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
271{
272 int i;
273
274 if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
275 return -EBUSY;
276 t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
277 t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
278 t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
279 t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
280 BIST_CMD_GAP(1));
281 i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
282 if (i)
283 return i;
284
285#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
286
287 for (i = 15; i >= 0; i--)
288 *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
289 if (ecc)
290 *ecc = t4_read_reg64(adap, MC_DATA(16));
291#undef MC_DATA
292 return 0;
293}
294
295/**
296 * t4_edc_read - read from EDC through backdoor accesses
297 * @adap: the adapter
298 * @idx: which EDC to access
299 * @addr: address of first byte requested
300 * @data: 64 bytes of data containing the requested address
301 * @ecc: where to store the corresponding 64-bit ECC word
302 *
303 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
304 * that covers the requested address @addr. If @parity is not %NULL it
305 * is assigned the 64-bit ECC word for the read data.
306 */
307int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
308{
309 int i;
310
311 idx *= EDC_STRIDE;
312 if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
313 return -EBUSY;
314 t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
315 t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
316 t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
317 t4_write_reg(adap, EDC_BIST_CMD + idx,
318 BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
319 i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
320 if (i)
321 return i;
322
323#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
324
325 for (i = 15; i >= 0; i--)
326 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
327 if (ecc)
328 *ecc = t4_read_reg64(adap, EDC_DATA(16));
329#undef EDC_DATA
330 return 0;
331}
332
56d36be4
DM
333#define EEPROM_STAT_ADDR 0x7bfc
334#define VPD_BASE 0
226ec5fd 335#define VPD_LEN 512
56d36be4
DM
336
337/**
338 * t4_seeprom_wp - enable/disable EEPROM write protection
339 * @adapter: the adapter
340 * @enable: whether to enable or disable write protection
341 *
342 * Enables or disables write protection on the serial EEPROM.
343 */
344int t4_seeprom_wp(struct adapter *adapter, bool enable)
345{
346 unsigned int v = enable ? 0xc : 0;
347 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
348 return ret < 0 ? ret : 0;
349}
350
351/**
352 * get_vpd_params - read VPD parameters from VPD EEPROM
353 * @adapter: adapter to read
354 * @p: where to store the parameters
355 *
356 * Reads card parameters stored in VPD EEPROM.
357 */
358static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
359{
226ec5fd 360 int i, ret;
ec164008 361 int ec, sn;
226ec5fd 362 u8 vpd[VPD_LEN], csum;
23d88e1d 363 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 364
226ec5fd 365 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
56d36be4
DM
366 if (ret < 0)
367 return ret;
368
23d88e1d
DM
369 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
370 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
371 return -EINVAL;
372 }
373
374 id_len = pci_vpd_lrdt_size(vpd);
375 if (id_len > ID_LEN)
376 id_len = ID_LEN;
377
378 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
379 if (i < 0) {
380 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
381 return -EINVAL;
382 }
383
384 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
385 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
386 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd
DM
387 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
388 return -EINVAL;
389 }
390
391#define FIND_VPD_KW(var, name) do { \
23d88e1d 392 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
393 if (var < 0) { \
394 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
395 return -EINVAL; \
396 } \
397 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
398} while (0)
399
400 FIND_VPD_KW(i, "RV");
401 for (csum = 0; i >= 0; i--)
402 csum += vpd[i];
56d36be4
DM
403
404 if (csum) {
405 dev_err(adapter->pdev_dev,
406 "corrupted VPD EEPROM, actual csum %u\n", csum);
407 return -EINVAL;
408 }
409
226ec5fd
DM
410 FIND_VPD_KW(ec, "EC");
411 FIND_VPD_KW(sn, "SN");
226ec5fd
DM
412#undef FIND_VPD_KW
413
23d88e1d 414 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 415 strim(p->id);
226ec5fd 416 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 417 strim(p->ec);
226ec5fd
DM
418 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
419 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4
DM
420 strim(p->sn);
421 return 0;
422}
423
424/* serial flash and firmware constants */
425enum {
426 SF_ATTEMPTS = 10, /* max retries for SF operations */
427
428 /* flash command opcodes */
429 SF_PROG_PAGE = 2, /* program page */
430 SF_WR_DISABLE = 4, /* disable writes */
431 SF_RD_STATUS = 5, /* read status register */
432 SF_WR_ENABLE = 6, /* enable writes */
433 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 434 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
435 SF_ERASE_SECTOR = 0xd8, /* erase sector */
436
900a6596 437 FW_MAX_SIZE = 512 * 1024,
56d36be4
DM
438};
439
440/**
441 * sf1_read - read data from the serial flash
442 * @adapter: the adapter
443 * @byte_cnt: number of bytes to read
444 * @cont: whether another operation will be chained
445 * @lock: whether to lock SF for PL access only
446 * @valp: where to store the read data
447 *
448 * Reads up to 4 bytes of data from the serial flash. The location of
449 * the read needs to be specified prior to calling this by issuing the
450 * appropriate commands to the serial flash.
451 */
452static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
453 int lock, u32 *valp)
454{
455 int ret;
456
457 if (!byte_cnt || byte_cnt > 4)
458 return -EINVAL;
459 if (t4_read_reg(adapter, SF_OP) & BUSY)
460 return -EBUSY;
461 cont = cont ? SF_CONT : 0;
462 lock = lock ? SF_LOCK : 0;
463 t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
464 ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
465 if (!ret)
466 *valp = t4_read_reg(adapter, SF_DATA);
467 return ret;
468}
469
470/**
471 * sf1_write - write data to the serial flash
472 * @adapter: the adapter
473 * @byte_cnt: number of bytes to write
474 * @cont: whether another operation will be chained
475 * @lock: whether to lock SF for PL access only
476 * @val: value to write
477 *
478 * Writes up to 4 bytes of data to the serial flash. The location of
479 * the write needs to be specified prior to calling this by issuing the
480 * appropriate commands to the serial flash.
481 */
482static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
483 int lock, u32 val)
484{
485 if (!byte_cnt || byte_cnt > 4)
486 return -EINVAL;
487 if (t4_read_reg(adapter, SF_OP) & BUSY)
488 return -EBUSY;
489 cont = cont ? SF_CONT : 0;
490 lock = lock ? SF_LOCK : 0;
491 t4_write_reg(adapter, SF_DATA, val);
492 t4_write_reg(adapter, SF_OP, lock |
493 cont | BYTECNT(byte_cnt - 1) | OP_WR);
494 return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
495}
496
497/**
498 * flash_wait_op - wait for a flash operation to complete
499 * @adapter: the adapter
500 * @attempts: max number of polls of the status register
501 * @delay: delay between polls in ms
502 *
503 * Wait for a flash operation to complete by polling the status register.
504 */
505static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
506{
507 int ret;
508 u32 status;
509
510 while (1) {
511 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
512 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
513 return ret;
514 if (!(status & 1))
515 return 0;
516 if (--attempts == 0)
517 return -EAGAIN;
518 if (delay)
519 msleep(delay);
520 }
521}
522
523/**
524 * t4_read_flash - read words from serial flash
525 * @adapter: the adapter
526 * @addr: the start address for the read
527 * @nwords: how many 32-bit words to read
528 * @data: where to store the read data
529 * @byte_oriented: whether to store data as bytes or as words
530 *
531 * Read the specified number of 32-bit words from the serial flash.
532 * If @byte_oriented is set the read data is stored as a byte array
533 * (i.e., big-endian), otherwise as 32-bit words in the platform's
534 * natural endianess.
535 */
de498c89
RD
536static int t4_read_flash(struct adapter *adapter, unsigned int addr,
537 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
538{
539 int ret;
540
900a6596 541 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
542 return -EINVAL;
543
544 addr = swab32(addr) | SF_RD_DATA_FAST;
545
546 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
547 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
548 return ret;
549
550 for ( ; nwords; nwords--, data++) {
551 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
552 if (nwords == 1)
553 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
554 if (ret)
555 return ret;
556 if (byte_oriented)
557 *data = htonl(*data);
558 }
559 return 0;
560}
561
562/**
563 * t4_write_flash - write up to a page of data to the serial flash
564 * @adapter: the adapter
565 * @addr: the start address to write
566 * @n: length of data to write in bytes
567 * @data: the data to write
568 *
569 * Writes up to a page of data (256 bytes) to the serial flash starting
570 * at the given address. All the data must be written to the same page.
571 */
572static int t4_write_flash(struct adapter *adapter, unsigned int addr,
573 unsigned int n, const u8 *data)
574{
575 int ret;
576 u32 buf[64];
577 unsigned int i, c, left, val, offset = addr & 0xff;
578
900a6596 579 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
580 return -EINVAL;
581
582 val = swab32(addr) | SF_PROG_PAGE;
583
584 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
585 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
586 goto unlock;
587
588 for (left = n; left; left -= c) {
589 c = min(left, 4U);
590 for (val = 0, i = 0; i < c; ++i)
591 val = (val << 8) + *data++;
592
593 ret = sf1_write(adapter, c, c != left, 1, val);
594 if (ret)
595 goto unlock;
596 }
900a6596 597 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
598 if (ret)
599 goto unlock;
600
601 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
602
603 /* Read the page to verify the write succeeded */
604 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
605 if (ret)
606 return ret;
607
608 if (memcmp(data - n, (u8 *)buf + offset, n)) {
609 dev_err(adapter->pdev_dev,
610 "failed to correctly write the flash page at %#x\n",
611 addr);
612 return -EIO;
613 }
614 return 0;
615
616unlock:
617 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
618 return ret;
619}
620
621/**
622 * get_fw_version - read the firmware version
623 * @adapter: the adapter
624 * @vers: where to place the version
625 *
626 * Reads the FW version from flash.
627 */
628static int get_fw_version(struct adapter *adapter, u32 *vers)
629{
900a6596
DM
630 return t4_read_flash(adapter, adapter->params.sf_fw_start +
631 offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
56d36be4
DM
632}
633
634/**
635 * get_tp_version - read the TP microcode version
636 * @adapter: the adapter
637 * @vers: where to place the version
638 *
639 * Reads the TP microcode version from flash.
640 */
641static int get_tp_version(struct adapter *adapter, u32 *vers)
642{
900a6596
DM
643 return t4_read_flash(adapter, adapter->params.sf_fw_start +
644 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
645 1, vers, 0);
646}
647
648/**
649 * t4_check_fw_version - check if the FW is compatible with this driver
650 * @adapter: the adapter
651 *
652 * Checks if an adapter's FW is compatible with the driver. Returns 0
653 * if there's exact match, a negative error if the version could not be
654 * read or there's a major version mismatch, and a positive value if the
655 * expected major version is found but there's a minor version mismatch.
656 */
657int t4_check_fw_version(struct adapter *adapter)
658{
659 u32 api_vers[2];
660 int ret, major, minor, micro;
661
662 ret = get_fw_version(adapter, &adapter->params.fw_vers);
663 if (!ret)
664 ret = get_tp_version(adapter, &adapter->params.tp_vers);
665 if (!ret)
900a6596
DM
666 ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
667 offsetof(struct fw_hdr, intfver_nic),
668 2, api_vers, 1);
56d36be4
DM
669 if (ret)
670 return ret;
671
672 major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
673 minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
674 micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
675 memcpy(adapter->params.api_vers, api_vers,
676 sizeof(adapter->params.api_vers));
677
678 if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
679 dev_err(adapter->pdev_dev,
680 "card FW has major version %u, driver wants %u\n",
681 major, FW_VERSION_MAJOR);
682 return -EINVAL;
683 }
684
685 if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
686 return 0; /* perfect match */
687
688 /* Minor/micro version mismatch. Report it but often it's OK. */
689 return 1;
690}
691
692/**
693 * t4_flash_erase_sectors - erase a range of flash sectors
694 * @adapter: the adapter
695 * @start: the first sector to erase
696 * @end: the last sector to erase
697 *
698 * Erases the sectors in the given inclusive range.
699 */
700static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
701{
702 int ret = 0;
703
704 while (start <= end) {
705 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
706 (ret = sf1_write(adapter, 4, 0, 1,
707 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 708 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
709 dev_err(adapter->pdev_dev,
710 "erase of flash sector %d failed, error %d\n",
711 start, ret);
712 break;
713 }
714 start++;
715 }
716 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
717 return ret;
718}
719
720/**
721 * t4_load_fw - download firmware
722 * @adap: the adapter
723 * @fw_data: the firmware image to write
724 * @size: image size
725 *
726 * Write the supplied firmware image to the card's serial flash.
727 */
728int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
729{
730 u32 csum;
731 int ret, addr;
732 unsigned int i;
733 u8 first_page[SF_PAGE_SIZE];
734 const u32 *p = (const u32 *)fw_data;
735 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
736 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
737 unsigned int fw_img_start = adap->params.sf_fw_start;
738 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
739
740 if (!size) {
741 dev_err(adap->pdev_dev, "FW image has no data\n");
742 return -EINVAL;
743 }
744 if (size & 511) {
745 dev_err(adap->pdev_dev,
746 "FW image size not multiple of 512 bytes\n");
747 return -EINVAL;
748 }
749 if (ntohs(hdr->len512) * 512 != size) {
750 dev_err(adap->pdev_dev,
751 "FW image size differs from size in FW header\n");
752 return -EINVAL;
753 }
754 if (size > FW_MAX_SIZE) {
755 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
756 FW_MAX_SIZE);
757 return -EFBIG;
758 }
759
760 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
761 csum += ntohl(p[i]);
762
763 if (csum != 0xffffffff) {
764 dev_err(adap->pdev_dev,
765 "corrupted firmware image, checksum %#x\n", csum);
766 return -EINVAL;
767 }
768
900a6596
DM
769 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
770 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
771 if (ret)
772 goto out;
773
774 /*
775 * We write the correct version at the end so the driver can see a bad
776 * version if the FW write fails. Start by writing a copy of the
777 * first page with a bad version.
778 */
779 memcpy(first_page, fw_data, SF_PAGE_SIZE);
780 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
900a6596 781 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
782 if (ret)
783 goto out;
784
900a6596 785 addr = fw_img_start;
56d36be4
DM
786 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
787 addr += SF_PAGE_SIZE;
788 fw_data += SF_PAGE_SIZE;
789 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
790 if (ret)
791 goto out;
792 }
793
794 ret = t4_write_flash(adap,
900a6596 795 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
796 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
797out:
798 if (ret)
799 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
800 ret);
801 return ret;
802}
803
804#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
805 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
806
807/**
808 * t4_link_start - apply link configuration to MAC/PHY
809 * @phy: the PHY to setup
810 * @mac: the MAC to setup
811 * @lc: the requested link configuration
812 *
813 * Set up a port's MAC and PHY according to a desired link configuration.
814 * - If the PHY can auto-negotiate first decide what to advertise, then
815 * enable/disable auto-negotiation as desired, and reset.
816 * - If the PHY does not auto-negotiate just reset it.
817 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
818 * otherwise do it later based on the outcome of auto-negotiation.
819 */
820int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
821 struct link_config *lc)
822{
823 struct fw_port_cmd c;
824 unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
825
826 lc->link_ok = 0;
827 if (lc->requested_fc & PAUSE_RX)
828 fc |= FW_PORT_CAP_FC_RX;
829 if (lc->requested_fc & PAUSE_TX)
830 fc |= FW_PORT_CAP_FC_TX;
831
832 memset(&c, 0, sizeof(c));
833 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
834 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
835 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
836 FW_LEN16(c));
837
838 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
839 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
840 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
841 } else if (lc->autoneg == AUTONEG_DISABLE) {
842 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
843 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
844 } else
845 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
846
847 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
848}
849
850/**
851 * t4_restart_aneg - restart autonegotiation
852 * @adap: the adapter
853 * @mbox: mbox to use for the FW command
854 * @port: the port id
855 *
856 * Restarts autonegotiation for the selected port.
857 */
858int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
859{
860 struct fw_port_cmd c;
861
862 memset(&c, 0, sizeof(c));
863 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
864 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
865 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
866 FW_LEN16(c));
867 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
868 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
869}
870
56d36be4
DM
871struct intr_info {
872 unsigned int mask; /* bits to check in interrupt status */
873 const char *msg; /* message to print or NULL */
874 short stat_idx; /* stat counter to increment or -1 */
875 unsigned short fatal; /* whether the condition reported is fatal */
876};
877
878/**
879 * t4_handle_intr_status - table driven interrupt handler
880 * @adapter: the adapter that generated the interrupt
881 * @reg: the interrupt status register to process
882 * @acts: table of interrupt actions
883 *
884 * A table driven interrupt handler that applies a set of masks to an
885 * interrupt status word and performs the corresponding actions if the
25985edc 886 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
887 * optionally emitting a warning or alert message. The table is terminated
888 * by an entry specifying mask 0. Returns the number of fatal interrupt
889 * conditions.
890 */
891static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
892 const struct intr_info *acts)
893{
894 int fatal = 0;
895 unsigned int mask = 0;
896 unsigned int status = t4_read_reg(adapter, reg);
897
898 for ( ; acts->mask; ++acts) {
899 if (!(status & acts->mask))
900 continue;
901 if (acts->fatal) {
902 fatal++;
903 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
904 status & acts->mask);
905 } else if (acts->msg && printk_ratelimit())
906 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
907 status & acts->mask);
908 mask |= acts->mask;
909 }
910 status &= mask;
911 if (status) /* clear processed interrupts */
912 t4_write_reg(adapter, reg, status);
913 return fatal;
914}
915
916/*
917 * Interrupt handler for the PCIE module.
918 */
919static void pcie_intr_handler(struct adapter *adapter)
920{
005b5717 921 static const struct intr_info sysbus_intr_info[] = {
56d36be4
DM
922 { RNPP, "RXNP array parity error", -1, 1 },
923 { RPCP, "RXPC array parity error", -1, 1 },
924 { RCIP, "RXCIF array parity error", -1, 1 },
925 { RCCP, "Rx completions control array parity error", -1, 1 },
926 { RFTP, "RXFT array parity error", -1, 1 },
927 { 0 }
928 };
005b5717 929 static const struct intr_info pcie_port_intr_info[] = {
56d36be4
DM
930 { TPCP, "TXPC array parity error", -1, 1 },
931 { TNPP, "TXNP array parity error", -1, 1 },
932 { TFTP, "TXFT array parity error", -1, 1 },
933 { TCAP, "TXCA array parity error", -1, 1 },
934 { TCIP, "TXCIF array parity error", -1, 1 },
935 { RCAP, "RXCA array parity error", -1, 1 },
936 { OTDD, "outbound request TLP discarded", -1, 1 },
937 { RDPE, "Rx data parity error", -1, 1 },
938 { TDUE, "Tx uncorrectable data error", -1, 1 },
939 { 0 }
940 };
005b5717 941 static const struct intr_info pcie_intr_info[] = {
56d36be4
DM
942 { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
943 { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
944 { MSIDATAPERR, "MSI data parity error", -1, 1 },
945 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
946 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
947 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
948 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
949 { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
950 { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
951 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
952 { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
953 { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
954 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
955 { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
956 { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
957 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
958 { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
959 { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
960 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
961 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
962 { FIDPERR, "PCI FID parity error", -1, 1 },
963 { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
964 { MATAGPERR, "PCI MA tag parity error", -1, 1 },
965 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
966 { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
967 { RXWRPERR, "PCI Rx write parity error", -1, 1 },
968 { RPLPERR, "PCI replay buffer parity error", -1, 1 },
969 { PCIESINT, "PCI core secondary fault", -1, 1 },
970 { PCIEPINT, "PCI core primary fault", -1, 1 },
971 { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
972 { 0 }
973 };
974
975 int fat;
976
977 fat = t4_handle_intr_status(adapter,
978 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
979 sysbus_intr_info) +
980 t4_handle_intr_status(adapter,
981 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
982 pcie_port_intr_info) +
983 t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
984 if (fat)
985 t4_fatal_err(adapter);
986}
987
988/*
989 * TP interrupt handler.
990 */
991static void tp_intr_handler(struct adapter *adapter)
992{
005b5717 993 static const struct intr_info tp_intr_info[] = {
56d36be4
DM
994 { 0x3fffffff, "TP parity error", -1, 1 },
995 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
996 { 0 }
997 };
998
999 if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
1000 t4_fatal_err(adapter);
1001}
1002
1003/*
1004 * SGE interrupt handler.
1005 */
1006static void sge_intr_handler(struct adapter *adapter)
1007{
1008 u64 v;
1009
005b5717 1010 static const struct intr_info sge_intr_info[] = {
56d36be4
DM
1011 { ERR_CPL_EXCEED_IQE_SIZE,
1012 "SGE received CPL exceeding IQE size", -1, 1 },
1013 { ERR_INVALID_CIDX_INC,
1014 "SGE GTS CIDX increment too large", -1, 0 },
1015 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
1016 { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
1017 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
1018 "SGE IQID > 1023 received CPL for FL", -1, 0 },
1019 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
1020 0 },
1021 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
1022 0 },
1023 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
1024 0 },
1025 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
1026 0 },
1027 { ERR_ING_CTXT_PRIO,
1028 "SGE too many priority ingress contexts", -1, 0 },
1029 { ERR_EGR_CTXT_PRIO,
1030 "SGE too many priority egress contexts", -1, 0 },
1031 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
1032 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
1033 { 0 }
1034 };
1035
1036 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
1037 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
1038 if (v) {
1039 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
1040 (unsigned long long)v);
1041 t4_write_reg(adapter, SGE_INT_CAUSE1, v);
1042 t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
1043 }
1044
1045 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
1046 v != 0)
1047 t4_fatal_err(adapter);
1048}
1049
1050/*
1051 * CIM interrupt handler.
1052 */
1053static void cim_intr_handler(struct adapter *adapter)
1054{
005b5717 1055 static const struct intr_info cim_intr_info[] = {
56d36be4
DM
1056 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
1057 { OBQPARERR, "CIM OBQ parity error", -1, 1 },
1058 { IBQPARERR, "CIM IBQ parity error", -1, 1 },
1059 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
1060 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
1061 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
1062 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
1063 { 0 }
1064 };
005b5717 1065 static const struct intr_info cim_upintr_info[] = {
56d36be4
DM
1066 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
1067 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
1068 { ILLWRINT, "CIM illegal write", -1, 1 },
1069 { ILLRDINT, "CIM illegal read", -1, 1 },
1070 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
1071 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
1072 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
1073 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
1074 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
1075 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
1076 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
1077 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
1078 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
1079 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
1080 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
1081 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
1082 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
1083 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
1084 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
1085 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
1086 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
1087 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
1088 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
1089 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
1090 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
1091 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
1092 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
1093 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
1094 { 0 }
1095 };
1096
1097 int fat;
1098
1099 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
1100 cim_intr_info) +
1101 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
1102 cim_upintr_info);
1103 if (fat)
1104 t4_fatal_err(adapter);
1105}
1106
1107/*
1108 * ULP RX interrupt handler.
1109 */
1110static void ulprx_intr_handler(struct adapter *adapter)
1111{
005b5717 1112 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 1113 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
1114 { 0x7fffff, "ULPRX parity error", -1, 1 },
1115 { 0 }
1116 };
1117
1118 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
1119 t4_fatal_err(adapter);
1120}
1121
1122/*
1123 * ULP TX interrupt handler.
1124 */
1125static void ulptx_intr_handler(struct adapter *adapter)
1126{
005b5717 1127 static const struct intr_info ulptx_intr_info[] = {
56d36be4
DM
1128 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
1129 0 },
1130 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
1131 0 },
1132 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
1133 0 },
1134 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
1135 0 },
1136 { 0xfffffff, "ULPTX parity error", -1, 1 },
1137 { 0 }
1138 };
1139
1140 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
1141 t4_fatal_err(adapter);
1142}
1143
1144/*
1145 * PM TX interrupt handler.
1146 */
1147static void pmtx_intr_handler(struct adapter *adapter)
1148{
005b5717 1149 static const struct intr_info pmtx_intr_info[] = {
56d36be4
DM
1150 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
1151 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
1152 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
1153 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
1154 { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
1155 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
1156 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
1157 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
1158 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
1159 { 0 }
1160 };
1161
1162 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
1163 t4_fatal_err(adapter);
1164}
1165
1166/*
1167 * PM RX interrupt handler.
1168 */
1169static void pmrx_intr_handler(struct adapter *adapter)
1170{
005b5717 1171 static const struct intr_info pmrx_intr_info[] = {
56d36be4
DM
1172 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
1173 { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
1174 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
1175 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
1176 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
1177 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
1178 { 0 }
1179 };
1180
1181 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
1182 t4_fatal_err(adapter);
1183}
1184
1185/*
1186 * CPL switch interrupt handler.
1187 */
1188static void cplsw_intr_handler(struct adapter *adapter)
1189{
005b5717 1190 static const struct intr_info cplsw_intr_info[] = {
56d36be4
DM
1191 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
1192 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
1193 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
1194 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
1195 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
1196 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
1197 { 0 }
1198 };
1199
1200 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
1201 t4_fatal_err(adapter);
1202}
1203
1204/*
1205 * LE interrupt handler.
1206 */
1207static void le_intr_handler(struct adapter *adap)
1208{
005b5717 1209 static const struct intr_info le_intr_info[] = {
56d36be4
DM
1210 { LIPMISS, "LE LIP miss", -1, 0 },
1211 { LIP0, "LE 0 LIP error", -1, 0 },
1212 { PARITYERR, "LE parity error", -1, 1 },
1213 { UNKNOWNCMD, "LE unknown command", -1, 1 },
1214 { REQQPARERR, "LE request queue parity error", -1, 1 },
1215 { 0 }
1216 };
1217
1218 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
1219 t4_fatal_err(adap);
1220}
1221
1222/*
1223 * MPS interrupt handler.
1224 */
1225static void mps_intr_handler(struct adapter *adapter)
1226{
005b5717 1227 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
1228 { 0xffffff, "MPS Rx parity error", -1, 1 },
1229 { 0 }
1230 };
005b5717 1231 static const struct intr_info mps_tx_intr_info[] = {
56d36be4
DM
1232 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
1233 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
1234 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
1235 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
1236 { BUBBLE, "MPS Tx underflow", -1, 1 },
1237 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
1238 { FRMERR, "MPS Tx framing error", -1, 1 },
1239 { 0 }
1240 };
005b5717 1241 static const struct intr_info mps_trc_intr_info[] = {
56d36be4
DM
1242 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
1243 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
1244 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
1245 { 0 }
1246 };
005b5717 1247 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
1248 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
1249 { 0 }
1250 };
005b5717 1251 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
1252 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
1253 { 0 }
1254 };
005b5717 1255 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
1256 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
1257 { 0 }
1258 };
005b5717 1259 static const struct intr_info mps_cls_intr_info[] = {
56d36be4
DM
1260 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
1261 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
1262 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
1263 { 0 }
1264 };
1265
1266 int fat;
1267
1268 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
1269 mps_rx_intr_info) +
1270 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
1271 mps_tx_intr_info) +
1272 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
1273 mps_trc_intr_info) +
1274 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
1275 mps_stat_sram_intr_info) +
1276 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
1277 mps_stat_tx_intr_info) +
1278 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
1279 mps_stat_rx_intr_info) +
1280 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
1281 mps_cls_intr_info);
1282
1283 t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
1284 RXINT | TXINT | STATINT);
1285 t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
1286 if (fat)
1287 t4_fatal_err(adapter);
1288}
1289
1290#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
1291
1292/*
1293 * EDC/MC interrupt handler.
1294 */
1295static void mem_intr_handler(struct adapter *adapter, int idx)
1296{
1297 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
1298
1299 unsigned int addr, cnt_addr, v;
1300
1301 if (idx <= MEM_EDC1) {
1302 addr = EDC_REG(EDC_INT_CAUSE, idx);
1303 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
1304 } else {
1305 addr = MC_INT_CAUSE;
1306 cnt_addr = MC_ECC_STATUS;
1307 }
1308
1309 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
1310 if (v & PERR_INT_CAUSE)
1311 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
1312 name[idx]);
1313 if (v & ECC_CE_INT_CAUSE) {
1314 u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
1315
1316 t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
1317 if (printk_ratelimit())
1318 dev_warn(adapter->pdev_dev,
1319 "%u %s correctable ECC data error%s\n",
1320 cnt, name[idx], cnt > 1 ? "s" : "");
1321 }
1322 if (v & ECC_UE_INT_CAUSE)
1323 dev_alert(adapter->pdev_dev,
1324 "%s uncorrectable ECC data error\n", name[idx]);
1325
1326 t4_write_reg(adapter, addr, v);
1327 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
1328 t4_fatal_err(adapter);
1329}
1330
1331/*
1332 * MA interrupt handler.
1333 */
1334static void ma_intr_handler(struct adapter *adap)
1335{
1336 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
1337
1338 if (status & MEM_PERR_INT_CAUSE)
1339 dev_alert(adap->pdev_dev,
1340 "MA parity error, parity status %#x\n",
1341 t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
1342 if (status & MEM_WRAP_INT_CAUSE) {
1343 v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
1344 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
1345 "client %u to address %#x\n",
1346 MEM_WRAP_CLIENT_NUM_GET(v),
1347 MEM_WRAP_ADDRESS_GET(v) << 4);
1348 }
1349 t4_write_reg(adap, MA_INT_CAUSE, status);
1350 t4_fatal_err(adap);
1351}
1352
1353/*
1354 * SMB interrupt handler.
1355 */
1356static void smb_intr_handler(struct adapter *adap)
1357{
005b5717 1358 static const struct intr_info smb_intr_info[] = {
56d36be4
DM
1359 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
1360 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
1361 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
1362 { 0 }
1363 };
1364
1365 if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
1366 t4_fatal_err(adap);
1367}
1368
1369/*
1370 * NC-SI interrupt handler.
1371 */
1372static void ncsi_intr_handler(struct adapter *adap)
1373{
005b5717 1374 static const struct intr_info ncsi_intr_info[] = {
56d36be4
DM
1375 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
1376 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
1377 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
1378 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
1379 { 0 }
1380 };
1381
1382 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
1383 t4_fatal_err(adap);
1384}
1385
1386/*
1387 * XGMAC interrupt handler.
1388 */
1389static void xgmac_intr_handler(struct adapter *adap, int port)
1390{
1391 u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
1392
1393 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
1394 if (!v)
1395 return;
1396
1397 if (v & TXFIFO_PRTY_ERR)
1398 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
1399 port);
1400 if (v & RXFIFO_PRTY_ERR)
1401 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
1402 port);
1403 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
1404 t4_fatal_err(adap);
1405}
1406
1407/*
1408 * PL interrupt handler.
1409 */
1410static void pl_intr_handler(struct adapter *adap)
1411{
005b5717 1412 static const struct intr_info pl_intr_info[] = {
56d36be4
DM
1413 { FATALPERR, "T4 fatal parity error", -1, 1 },
1414 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
1415 { 0 }
1416 };
1417
1418 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
1419 t4_fatal_err(adap);
1420}
1421
63bcceec 1422#define PF_INTR_MASK (PFSW)
56d36be4
DM
1423#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
1424 EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
1425 CPL_SWITCH | SGE | ULP_TX)
1426
1427/**
1428 * t4_slow_intr_handler - control path interrupt handler
1429 * @adapter: the adapter
1430 *
1431 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
1432 * The designation 'slow' is because it involves register reads, while
1433 * data interrupts typically don't involve any MMIOs.
1434 */
1435int t4_slow_intr_handler(struct adapter *adapter)
1436{
1437 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
1438
1439 if (!(cause & GLBL_INTR_MASK))
1440 return 0;
1441 if (cause & CIM)
1442 cim_intr_handler(adapter);
1443 if (cause & MPS)
1444 mps_intr_handler(adapter);
1445 if (cause & NCSI)
1446 ncsi_intr_handler(adapter);
1447 if (cause & PL)
1448 pl_intr_handler(adapter);
1449 if (cause & SMB)
1450 smb_intr_handler(adapter);
1451 if (cause & XGMAC0)
1452 xgmac_intr_handler(adapter, 0);
1453 if (cause & XGMAC1)
1454 xgmac_intr_handler(adapter, 1);
1455 if (cause & XGMAC_KR0)
1456 xgmac_intr_handler(adapter, 2);
1457 if (cause & XGMAC_KR1)
1458 xgmac_intr_handler(adapter, 3);
1459 if (cause & PCIE)
1460 pcie_intr_handler(adapter);
1461 if (cause & MC)
1462 mem_intr_handler(adapter, MEM_MC);
1463 if (cause & EDC0)
1464 mem_intr_handler(adapter, MEM_EDC0);
1465 if (cause & EDC1)
1466 mem_intr_handler(adapter, MEM_EDC1);
1467 if (cause & LE)
1468 le_intr_handler(adapter);
1469 if (cause & TP)
1470 tp_intr_handler(adapter);
1471 if (cause & MA)
1472 ma_intr_handler(adapter);
1473 if (cause & PM_TX)
1474 pmtx_intr_handler(adapter);
1475 if (cause & PM_RX)
1476 pmrx_intr_handler(adapter);
1477 if (cause & ULP_RX)
1478 ulprx_intr_handler(adapter);
1479 if (cause & CPL_SWITCH)
1480 cplsw_intr_handler(adapter);
1481 if (cause & SGE)
1482 sge_intr_handler(adapter);
1483 if (cause & ULP_TX)
1484 ulptx_intr_handler(adapter);
1485
1486 /* Clear the interrupts just processed for which we are the master. */
1487 t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
1488 (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
1489 return 1;
1490}
1491
1492/**
1493 * t4_intr_enable - enable interrupts
1494 * @adapter: the adapter whose interrupts should be enabled
1495 *
1496 * Enable PF-specific interrupts for the calling function and the top-level
1497 * interrupt concentrator for global interrupts. Interrupts are already
1498 * enabled at each module, here we just enable the roots of the interrupt
1499 * hierarchies.
1500 *
1501 * Note: this function should be called only when the driver manages
1502 * non PF-specific interrupts from the various HW modules. Only one PCI
1503 * function at a time should be doing this.
1504 */
1505void t4_intr_enable(struct adapter *adapter)
1506{
1507 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
1508
1509 t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
1510 ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
1511 ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
1512 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
1513 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
1514 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
1515 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
1516 EGRESS_SIZE_ERR);
1517 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
1518 t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
1519}
1520
1521/**
1522 * t4_intr_disable - disable interrupts
1523 * @adapter: the adapter whose interrupts should be disabled
1524 *
1525 * Disable interrupts. We only disable the top-level interrupt
1526 * concentrators. The caller must be a PCI function managing global
1527 * interrupts.
1528 */
1529void t4_intr_disable(struct adapter *adapter)
1530{
1531 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
1532
1533 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
1534 t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
1535}
1536
56d36be4
DM
1537/**
1538 * hash_mac_addr - return the hash value of a MAC address
1539 * @addr: the 48-bit Ethernet MAC address
1540 *
1541 * Hashes a MAC address according to the hash function used by HW inexact
1542 * (hash) address matching.
1543 */
1544static int hash_mac_addr(const u8 *addr)
1545{
1546 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
1547 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
1548 a ^= b;
1549 a ^= (a >> 12);
1550 a ^= (a >> 6);
1551 return a & 0x3f;
1552}
1553
1554/**
1555 * t4_config_rss_range - configure a portion of the RSS mapping table
1556 * @adapter: the adapter
1557 * @mbox: mbox to use for the FW command
1558 * @viid: virtual interface whose RSS subtable is to be written
1559 * @start: start entry in the table to write
1560 * @n: how many table entries to write
1561 * @rspq: values for the response queue lookup table
1562 * @nrspq: number of values in @rspq
1563 *
1564 * Programs the selected part of the VI's RSS mapping table with the
1565 * provided values. If @nrspq < @n the supplied values are used repeatedly
1566 * until the full table range is populated.
1567 *
1568 * The caller must ensure the values in @rspq are in the range allowed for
1569 * @viid.
1570 */
1571int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
1572 int start, int n, const u16 *rspq, unsigned int nrspq)
1573{
1574 int ret;
1575 const u16 *rsp = rspq;
1576 const u16 *rsp_end = rspq + nrspq;
1577 struct fw_rss_ind_tbl_cmd cmd;
1578
1579 memset(&cmd, 0, sizeof(cmd));
1580 cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
1581 FW_CMD_REQUEST | FW_CMD_WRITE |
1582 FW_RSS_IND_TBL_CMD_VIID(viid));
1583 cmd.retval_len16 = htonl(FW_LEN16(cmd));
1584
1585 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
1586 while (n > 0) {
1587 int nq = min(n, 32);
1588 __be32 *qp = &cmd.iq0_to_iq2;
1589
1590 cmd.niqid = htons(nq);
1591 cmd.startidx = htons(start);
1592
1593 start += nq;
1594 n -= nq;
1595
1596 while (nq > 0) {
1597 unsigned int v;
1598
1599 v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
1600 if (++rsp >= rsp_end)
1601 rsp = rspq;
1602 v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
1603 if (++rsp >= rsp_end)
1604 rsp = rspq;
1605 v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
1606 if (++rsp >= rsp_end)
1607 rsp = rspq;
1608
1609 *qp++ = htonl(v);
1610 nq -= 3;
1611 }
1612
1613 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
1614 if (ret)
1615 return ret;
1616 }
1617 return 0;
1618}
1619
1620/**
1621 * t4_config_glbl_rss - configure the global RSS mode
1622 * @adapter: the adapter
1623 * @mbox: mbox to use for the FW command
1624 * @mode: global RSS mode
1625 * @flags: mode-specific flags
1626 *
1627 * Sets the global RSS mode.
1628 */
1629int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
1630 unsigned int flags)
1631{
1632 struct fw_rss_glb_config_cmd c;
1633
1634 memset(&c, 0, sizeof(c));
1635 c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
1636 FW_CMD_REQUEST | FW_CMD_WRITE);
1637 c.retval_len16 = htonl(FW_LEN16(c));
1638 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
1639 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
1640 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
1641 c.u.basicvirtual.mode_pkd =
1642 htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
1643 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
1644 } else
1645 return -EINVAL;
1646 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
1647}
1648
56d36be4
DM
1649/**
1650 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
1651 * @adap: the adapter
1652 * @v4: holds the TCP/IP counter values
1653 * @v6: holds the TCP/IPv6 counter values
1654 *
1655 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
1656 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
1657 */
1658void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
1659 struct tp_tcp_stats *v6)
1660{
1661 u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
1662
1663#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
1664#define STAT(x) val[STAT_IDX(x)]
1665#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
1666
1667 if (v4) {
1668 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
1669 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
1670 v4->tcpOutRsts = STAT(OUT_RST);
1671 v4->tcpInSegs = STAT64(IN_SEG);
1672 v4->tcpOutSegs = STAT64(OUT_SEG);
1673 v4->tcpRetransSegs = STAT64(RXT_SEG);
1674 }
1675 if (v6) {
1676 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
1677 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
1678 v6->tcpOutRsts = STAT(OUT_RST);
1679 v6->tcpInSegs = STAT64(IN_SEG);
1680 v6->tcpOutSegs = STAT64(OUT_SEG);
1681 v6->tcpRetransSegs = STAT64(RXT_SEG);
1682 }
1683#undef STAT64
1684#undef STAT
1685#undef STAT_IDX
1686}
1687
56d36be4
DM
1688/**
1689 * t4_read_mtu_tbl - returns the values in the HW path MTU table
1690 * @adap: the adapter
1691 * @mtus: where to store the MTU values
1692 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
1693 *
1694 * Reads the HW path MTU table.
1695 */
1696void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
1697{
1698 u32 v;
1699 int i;
1700
1701 for (i = 0; i < NMTUS; ++i) {
1702 t4_write_reg(adap, TP_MTU_TABLE,
1703 MTUINDEX(0xff) | MTUVALUE(i));
1704 v = t4_read_reg(adap, TP_MTU_TABLE);
1705 mtus[i] = MTUVALUE_GET(v);
1706 if (mtu_log)
1707 mtu_log[i] = MTUWIDTH_GET(v);
1708 }
1709}
1710
1711/**
1712 * init_cong_ctrl - initialize congestion control parameters
1713 * @a: the alpha values for congestion control
1714 * @b: the beta values for congestion control
1715 *
1716 * Initialize the congestion control parameters.
1717 */
1718static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
1719{
1720 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
1721 a[9] = 2;
1722 a[10] = 3;
1723 a[11] = 4;
1724 a[12] = 5;
1725 a[13] = 6;
1726 a[14] = 7;
1727 a[15] = 8;
1728 a[16] = 9;
1729 a[17] = 10;
1730 a[18] = 14;
1731 a[19] = 17;
1732 a[20] = 21;
1733 a[21] = 25;
1734 a[22] = 30;
1735 a[23] = 35;
1736 a[24] = 45;
1737 a[25] = 60;
1738 a[26] = 80;
1739 a[27] = 100;
1740 a[28] = 200;
1741 a[29] = 300;
1742 a[30] = 400;
1743 a[31] = 500;
1744
1745 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
1746 b[9] = b[10] = 1;
1747 b[11] = b[12] = 2;
1748 b[13] = b[14] = b[15] = b[16] = 3;
1749 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
1750 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
1751 b[28] = b[29] = 6;
1752 b[30] = b[31] = 7;
1753}
1754
1755/* The minimum additive increment value for the congestion control table */
1756#define CC_MIN_INCR 2U
1757
1758/**
1759 * t4_load_mtus - write the MTU and congestion control HW tables
1760 * @adap: the adapter
1761 * @mtus: the values for the MTU table
1762 * @alpha: the values for the congestion control alpha parameter
1763 * @beta: the values for the congestion control beta parameter
1764 *
1765 * Write the HW MTU table with the supplied MTUs and the high-speed
1766 * congestion control table with the supplied alpha, beta, and MTUs.
1767 * We write the two tables together because the additive increments
1768 * depend on the MTUs.
1769 */
1770void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
1771 const unsigned short *alpha, const unsigned short *beta)
1772{
1773 static const unsigned int avg_pkts[NCCTRL_WIN] = {
1774 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
1775 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
1776 28672, 40960, 57344, 81920, 114688, 163840, 229376
1777 };
1778
1779 unsigned int i, w;
1780
1781 for (i = 0; i < NMTUS; ++i) {
1782 unsigned int mtu = mtus[i];
1783 unsigned int log2 = fls(mtu);
1784
1785 if (!(mtu & ((1 << log2) >> 2))) /* round */
1786 log2--;
1787 t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
1788 MTUWIDTH(log2) | MTUVALUE(mtu));
1789
1790 for (w = 0; w < NCCTRL_WIN; ++w) {
1791 unsigned int inc;
1792
1793 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
1794 CC_MIN_INCR);
1795
1796 t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
1797 (w << 16) | (beta[w] << 13) | inc);
1798 }
1799 }
1800}
1801
56d36be4
DM
1802/**
1803 * get_mps_bg_map - return the buffer groups associated with a port
1804 * @adap: the adapter
1805 * @idx: the port index
1806 *
1807 * Returns a bitmap indicating which MPS buffer groups are associated
1808 * with the given port. Bit i is set if buffer group i is used by the
1809 * port.
1810 */
1811static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
1812{
1813 u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
1814
1815 if (n == 0)
1816 return idx == 0 ? 0xf : 0;
1817 if (n == 1)
1818 return idx < 2 ? (3 << (2 * idx)) : 0;
1819 return 1 << idx;
1820}
1821
1822/**
1823 * t4_get_port_stats - collect port statistics
1824 * @adap: the adapter
1825 * @idx: the port index
1826 * @p: the stats structure to fill
1827 *
1828 * Collect statistics related to the given port from HW.
1829 */
1830void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
1831{
1832 u32 bgmap = get_mps_bg_map(adap, idx);
1833
1834#define GET_STAT(name) \
1835 t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
1836#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
1837
1838 p->tx_octets = GET_STAT(TX_PORT_BYTES);
1839 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
1840 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
1841 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
1842 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
1843 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
1844 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
1845 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
1846 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
1847 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
1848 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
1849 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
1850 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
1851 p->tx_drop = GET_STAT(TX_PORT_DROP);
1852 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
1853 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
1854 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
1855 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
1856 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
1857 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
1858 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
1859 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
1860 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
1861
1862 p->rx_octets = GET_STAT(RX_PORT_BYTES);
1863 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
1864 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
1865 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
1866 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
1867 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
1868 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
1869 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
1870 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
1871 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
1872 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
1873 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
1874 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
1875 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
1876 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
1877 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
1878 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
1879 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
1880 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
1881 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
1882 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
1883 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
1884 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
1885 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
1886 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
1887 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
1888 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
1889
1890 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
1891 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
1892 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
1893 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
1894 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
1895 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
1896 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
1897 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
1898
1899#undef GET_STAT
1900#undef GET_STAT_COM
1901}
1902
56d36be4
DM
1903/**
1904 * t4_wol_magic_enable - enable/disable magic packet WoL
1905 * @adap: the adapter
1906 * @port: the physical port index
1907 * @addr: MAC address expected in magic packets, %NULL to disable
1908 *
1909 * Enables/disables magic packet wake-on-LAN for the selected port.
1910 */
1911void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
1912 const u8 *addr)
1913{
1914 if (addr) {
1915 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
1916 (addr[2] << 24) | (addr[3] << 16) |
1917 (addr[4] << 8) | addr[5]);
1918 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
1919 (addr[0] << 8) | addr[1]);
1920 }
1921 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
1922 addr ? MAGICEN : 0);
1923}
1924
1925/**
1926 * t4_wol_pat_enable - enable/disable pattern-based WoL
1927 * @adap: the adapter
1928 * @port: the physical port index
1929 * @map: bitmap of which HW pattern filters to set
1930 * @mask0: byte mask for bytes 0-63 of a packet
1931 * @mask1: byte mask for bytes 64-127 of a packet
1932 * @crc: Ethernet CRC for selected bytes
1933 * @enable: enable/disable switch
1934 *
1935 * Sets the pattern filters indicated in @map to mask out the bytes
1936 * specified in @mask0/@mask1 in received packets and compare the CRC of
1937 * the resulting packet against @crc. If @enable is %true pattern-based
1938 * WoL is enabled, otherwise disabled.
1939 */
1940int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
1941 u64 mask0, u64 mask1, unsigned int crc, bool enable)
1942{
1943 int i;
1944
1945 if (!enable) {
1946 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
1947 PATEN, 0);
1948 return 0;
1949 }
1950 if (map > 0xff)
1951 return -EINVAL;
1952
1953#define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
1954
1955 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
1956 t4_write_reg(adap, EPIO_REG(DATA2), mask1);
1957 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
1958
1959 for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
1960 if (!(map & 1))
1961 continue;
1962
1963 /* write byte masks */
1964 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
1965 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
1966 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
1967 if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
1968 return -ETIMEDOUT;
1969
1970 /* write CRC */
1971 t4_write_reg(adap, EPIO_REG(DATA0), crc);
1972 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
1973 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
1974 if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
1975 return -ETIMEDOUT;
1976 }
1977#undef EPIO_REG
1978
1979 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
1980 return 0;
1981}
1982
1983#define INIT_CMD(var, cmd, rd_wr) do { \
1984 (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
1985 FW_CMD_REQUEST | FW_CMD_##rd_wr); \
1986 (var).retval_len16 = htonl(FW_LEN16(var)); \
1987} while (0)
1988
1989/**
1990 * t4_mdio_rd - read a PHY register through MDIO
1991 * @adap: the adapter
1992 * @mbox: mailbox to use for the FW command
1993 * @phy_addr: the PHY address
1994 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
1995 * @reg: the register to read
1996 * @valp: where to store the value
1997 *
1998 * Issues a FW command through the given mailbox to read a PHY register.
1999 */
2000int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2001 unsigned int mmd, unsigned int reg, u16 *valp)
2002{
2003 int ret;
2004 struct fw_ldst_cmd c;
2005
2006 memset(&c, 0, sizeof(c));
2007 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2008 FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
2009 c.cycles_to_len16 = htonl(FW_LEN16(c));
2010 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
2011 FW_LDST_CMD_MMD(mmd));
2012 c.u.mdio.raddr = htons(reg);
2013
2014 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2015 if (ret == 0)
2016 *valp = ntohs(c.u.mdio.rval);
2017 return ret;
2018}
2019
2020/**
2021 * t4_mdio_wr - write a PHY register through MDIO
2022 * @adap: the adapter
2023 * @mbox: mailbox to use for the FW command
2024 * @phy_addr: the PHY address
2025 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2026 * @reg: the register to write
2027 * @valp: value to write
2028 *
2029 * Issues a FW command through the given mailbox to write a PHY register.
2030 */
2031int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2032 unsigned int mmd, unsigned int reg, u16 val)
2033{
2034 struct fw_ldst_cmd c;
2035
2036 memset(&c, 0, sizeof(c));
2037 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2038 FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
2039 c.cycles_to_len16 = htonl(FW_LEN16(c));
2040 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
2041 FW_LDST_CMD_MMD(mmd));
2042 c.u.mdio.raddr = htons(reg);
2043 c.u.mdio.rval = htons(val);
2044
2045 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2046}
2047
2048/**
2049 * t4_fw_hello - establish communication with FW
2050 * @adap: the adapter
2051 * @mbox: mailbox to use for the FW command
2052 * @evt_mbox: mailbox to receive async FW events
2053 * @master: specifies the caller's willingness to be the device master
2054 * @state: returns the current device state
2055 *
2056 * Issues a command to establish communication with FW.
2057 */
2058int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
2059 enum dev_master master, enum dev_state *state)
2060{
2061 int ret;
2062 struct fw_hello_cmd c;
2063
2064 INIT_CMD(c, HELLO, WRITE);
2065 c.err_to_mbasyncnot = htonl(
2066 FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
2067 FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
2068 FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
2069 FW_HELLO_CMD_MBASYNCNOT(evt_mbox));
2070
2071 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2072 if (ret == 0 && state) {
2073 u32 v = ntohl(c.err_to_mbasyncnot);
2074 if (v & FW_HELLO_CMD_INIT)
2075 *state = DEV_STATE_INIT;
2076 else if (v & FW_HELLO_CMD_ERR)
2077 *state = DEV_STATE_ERR;
2078 else
2079 *state = DEV_STATE_UNINIT;
2080 }
2081 return ret;
2082}
2083
2084/**
2085 * t4_fw_bye - end communication with FW
2086 * @adap: the adapter
2087 * @mbox: mailbox to use for the FW command
2088 *
2089 * Issues a command to terminate communication with FW.
2090 */
2091int t4_fw_bye(struct adapter *adap, unsigned int mbox)
2092{
2093 struct fw_bye_cmd c;
2094
2095 INIT_CMD(c, BYE, WRITE);
2096 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2097}
2098
2099/**
2100 * t4_init_cmd - ask FW to initialize the device
2101 * @adap: the adapter
2102 * @mbox: mailbox to use for the FW command
2103 *
2104 * Issues a command to FW to partially initialize the device. This
2105 * performs initialization that generally doesn't depend on user input.
2106 */
2107int t4_early_init(struct adapter *adap, unsigned int mbox)
2108{
2109 struct fw_initialize_cmd c;
2110
2111 INIT_CMD(c, INITIALIZE, WRITE);
2112 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2113}
2114
2115/**
2116 * t4_fw_reset - issue a reset to FW
2117 * @adap: the adapter
2118 * @mbox: mailbox to use for the FW command
2119 * @reset: specifies the type of reset to perform
2120 *
2121 * Issues a reset command of the specified type to FW.
2122 */
2123int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
2124{
2125 struct fw_reset_cmd c;
2126
2127 INIT_CMD(c, RESET, WRITE);
2128 c.val = htonl(reset);
2129 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2130}
2131
2132/**
2133 * t4_query_params - query FW or device parameters
2134 * @adap: the adapter
2135 * @mbox: mailbox to use for the FW command
2136 * @pf: the PF
2137 * @vf: the VF
2138 * @nparams: the number of parameters
2139 * @params: the parameter names
2140 * @val: the parameter values
2141 *
2142 * Reads the value of FW or device parameters. Up to 7 parameters can be
2143 * queried at once.
2144 */
2145int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2146 unsigned int vf, unsigned int nparams, const u32 *params,
2147 u32 *val)
2148{
2149 int i, ret;
2150 struct fw_params_cmd c;
2151 __be32 *p = &c.param[0].mnem;
2152
2153 if (nparams > 7)
2154 return -EINVAL;
2155
2156 memset(&c, 0, sizeof(c));
2157 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
2158 FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
2159 FW_PARAMS_CMD_VFN(vf));
2160 c.retval_len16 = htonl(FW_LEN16(c));
2161 for (i = 0; i < nparams; i++, p += 2)
2162 *p = htonl(*params++);
2163
2164 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2165 if (ret == 0)
2166 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
2167 *val++ = ntohl(*p);
2168 return ret;
2169}
2170
2171/**
2172 * t4_set_params - sets FW or device parameters
2173 * @adap: the adapter
2174 * @mbox: mailbox to use for the FW command
2175 * @pf: the PF
2176 * @vf: the VF
2177 * @nparams: the number of parameters
2178 * @params: the parameter names
2179 * @val: the parameter values
2180 *
2181 * Sets the value of FW or device parameters. Up to 7 parameters can be
2182 * specified at once.
2183 */
2184int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2185 unsigned int vf, unsigned int nparams, const u32 *params,
2186 const u32 *val)
2187{
2188 struct fw_params_cmd c;
2189 __be32 *p = &c.param[0].mnem;
2190
2191 if (nparams > 7)
2192 return -EINVAL;
2193
2194 memset(&c, 0, sizeof(c));
2195 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
2196 FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
2197 FW_PARAMS_CMD_VFN(vf));
2198 c.retval_len16 = htonl(FW_LEN16(c));
2199 while (nparams--) {
2200 *p++ = htonl(*params++);
2201 *p++ = htonl(*val++);
2202 }
2203
2204 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2205}
2206
2207/**
2208 * t4_cfg_pfvf - configure PF/VF resource limits
2209 * @adap: the adapter
2210 * @mbox: mailbox to use for the FW command
2211 * @pf: the PF being configured
2212 * @vf: the VF being configured
2213 * @txq: the max number of egress queues
2214 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
2215 * @rxqi: the max number of interrupt-capable ingress queues
2216 * @rxq: the max number of interruptless ingress queues
2217 * @tc: the PCI traffic class
2218 * @vi: the max number of virtual interfaces
2219 * @cmask: the channel access rights mask for the PF/VF
2220 * @pmask: the port access rights mask for the PF/VF
2221 * @nexact: the maximum number of exact MPS filters
2222 * @rcaps: read capabilities
2223 * @wxcaps: write/execute capabilities
2224 *
2225 * Configures resource limits and capabilities for a physical or virtual
2226 * function.
2227 */
2228int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
2229 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
2230 unsigned int rxqi, unsigned int rxq, unsigned int tc,
2231 unsigned int vi, unsigned int cmask, unsigned int pmask,
2232 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
2233{
2234 struct fw_pfvf_cmd c;
2235
2236 memset(&c, 0, sizeof(c));
2237 c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
2238 FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
2239 FW_PFVF_CMD_VFN(vf));
2240 c.retval_len16 = htonl(FW_LEN16(c));
2241 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
2242 FW_PFVF_CMD_NIQ(rxq));
81323b74 2243 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
56d36be4
DM
2244 FW_PFVF_CMD_PMASK(pmask) |
2245 FW_PFVF_CMD_NEQ(txq));
2246 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
2247 FW_PFVF_CMD_NEXACTF(nexact));
2248 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
2249 FW_PFVF_CMD_WX_CAPS(wxcaps) |
2250 FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
2251 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2252}
2253
2254/**
2255 * t4_alloc_vi - allocate a virtual interface
2256 * @adap: the adapter
2257 * @mbox: mailbox to use for the FW command
2258 * @port: physical port associated with the VI
2259 * @pf: the PF owning the VI
2260 * @vf: the VF owning the VI
2261 * @nmac: number of MAC addresses needed (1 to 5)
2262 * @mac: the MAC addresses of the VI
2263 * @rss_size: size of RSS table slice associated with this VI
2264 *
2265 * Allocates a virtual interface for the given physical port. If @mac is
2266 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
2267 * @mac should be large enough to hold @nmac Ethernet addresses, they are
2268 * stored consecutively so the space needed is @nmac * 6 bytes.
2269 * Returns a negative error number or the non-negative VI id.
2270 */
2271int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
2272 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
2273 unsigned int *rss_size)
2274{
2275 int ret;
2276 struct fw_vi_cmd c;
2277
2278 memset(&c, 0, sizeof(c));
2279 c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
2280 FW_CMD_WRITE | FW_CMD_EXEC |
2281 FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
2282 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
2283 c.portid_pkd = FW_VI_CMD_PORTID(port);
2284 c.nmac = nmac - 1;
2285
2286 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2287 if (ret)
2288 return ret;
2289
2290 if (mac) {
2291 memcpy(mac, c.mac, sizeof(c.mac));
2292 switch (nmac) {
2293 case 5:
2294 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
2295 case 4:
2296 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
2297 case 3:
2298 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
2299 case 2:
2300 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
2301 }
2302 }
2303 if (rss_size)
2304 *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
a0881cab 2305 return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
56d36be4
DM
2306}
2307
56d36be4
DM
2308/**
2309 * t4_set_rxmode - set Rx properties of a virtual interface
2310 * @adap: the adapter
2311 * @mbox: mailbox to use for the FW command
2312 * @viid: the VI id
2313 * @mtu: the new MTU or -1
2314 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
2315 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
2316 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 2317 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
2318 * @sleep_ok: if true we may sleep while awaiting command completion
2319 *
2320 * Sets Rx properties of a virtual interface.
2321 */
2322int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
2323 int mtu, int promisc, int all_multi, int bcast, int vlanex,
2324 bool sleep_ok)
56d36be4
DM
2325{
2326 struct fw_vi_rxmode_cmd c;
2327
2328 /* convert to FW values */
2329 if (mtu < 0)
2330 mtu = FW_RXMODE_MTU_NO_CHG;
2331 if (promisc < 0)
2332 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
2333 if (all_multi < 0)
2334 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
2335 if (bcast < 0)
2336 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
f8f5aafa
DM
2337 if (vlanex < 0)
2338 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
56d36be4
DM
2339
2340 memset(&c, 0, sizeof(c));
2341 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
2342 FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
2343 c.retval_len16 = htonl(FW_LEN16(c));
f8f5aafa
DM
2344 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
2345 FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
2346 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
2347 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
2348 FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
56d36be4
DM
2349 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
2350}
2351
2352/**
2353 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
2354 * @adap: the adapter
2355 * @mbox: mailbox to use for the FW command
2356 * @viid: the VI id
2357 * @free: if true any existing filters for this VI id are first removed
2358 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
2359 * @addr: the MAC address(es)
2360 * @idx: where to store the index of each allocated filter
2361 * @hash: pointer to hash address filter bitmap
2362 * @sleep_ok: call is allowed to sleep
2363 *
2364 * Allocates an exact-match filter for each of the supplied addresses and
2365 * sets it to the corresponding address. If @idx is not %NULL it should
2366 * have at least @naddr entries, each of which will be set to the index of
2367 * the filter allocated for the corresponding MAC address. If a filter
2368 * could not be allocated for an address its index is set to 0xffff.
2369 * If @hash is not %NULL addresses that fail to allocate an exact filter
2370 * are hashed and update the hash filter bitmap pointed at by @hash.
2371 *
2372 * Returns a negative error number or the number of filters allocated.
2373 */
2374int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
2375 unsigned int viid, bool free, unsigned int naddr,
2376 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
2377{
2378 int i, ret;
2379 struct fw_vi_mac_cmd c;
2380 struct fw_vi_mac_exact *p;
2381
2382 if (naddr > 7)
2383 return -EINVAL;
2384
2385 memset(&c, 0, sizeof(c));
2386 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
2387 FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
2388 FW_VI_MAC_CMD_VIID(viid));
2389 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
2390 FW_CMD_LEN16((naddr + 2) / 2));
2391
2392 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
2393 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
2394 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
2395 memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
2396 }
2397
2398 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
2399 if (ret)
2400 return ret;
2401
2402 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
2403 u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
2404
2405 if (idx)
2406 idx[i] = index >= NEXACT_MAC ? 0xffff : index;
2407 if (index < NEXACT_MAC)
2408 ret++;
2409 else if (hash)
ce9aeb58 2410 *hash |= (1ULL << hash_mac_addr(addr[i]));
56d36be4
DM
2411 }
2412 return ret;
2413}
2414
2415/**
2416 * t4_change_mac - modifies the exact-match filter for a MAC address
2417 * @adap: the adapter
2418 * @mbox: mailbox to use for the FW command
2419 * @viid: the VI id
2420 * @idx: index of existing filter for old value of MAC address, or -1
2421 * @addr: the new MAC address value
2422 * @persist: whether a new MAC allocation should be persistent
2423 * @add_smt: if true also add the address to the HW SMT
2424 *
2425 * Modifies an exact-match filter and sets it to the new MAC address.
2426 * Note that in general it is not possible to modify the value of a given
2427 * filter so the generic way to modify an address filter is to free the one
2428 * being used by the old address value and allocate a new filter for the
2429 * new address value. @idx can be -1 if the address is a new addition.
2430 *
2431 * Returns a negative error number or the index of the filter with the new
2432 * MAC value.
2433 */
2434int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
2435 int idx, const u8 *addr, bool persist, bool add_smt)
2436{
2437 int ret, mode;
2438 struct fw_vi_mac_cmd c;
2439 struct fw_vi_mac_exact *p = c.u.exact;
2440
2441 if (idx < 0) /* new allocation */
2442 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
2443 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
2444
2445 memset(&c, 0, sizeof(c));
2446 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
2447 FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
2448 c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
2449 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
2450 FW_VI_MAC_CMD_SMAC_RESULT(mode) |
2451 FW_VI_MAC_CMD_IDX(idx));
2452 memcpy(p->macaddr, addr, sizeof(p->macaddr));
2453
2454 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2455 if (ret == 0) {
2456 ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
2457 if (ret >= NEXACT_MAC)
2458 ret = -ENOMEM;
2459 }
2460 return ret;
2461}
2462
2463/**
2464 * t4_set_addr_hash - program the MAC inexact-match hash filter
2465 * @adap: the adapter
2466 * @mbox: mailbox to use for the FW command
2467 * @viid: the VI id
2468 * @ucast: whether the hash filter should also match unicast addresses
2469 * @vec: the value to be written to the hash filter
2470 * @sleep_ok: call is allowed to sleep
2471 *
2472 * Sets the 64-bit inexact-match hash filter for a virtual interface.
2473 */
2474int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
2475 bool ucast, u64 vec, bool sleep_ok)
2476{
2477 struct fw_vi_mac_cmd c;
2478
2479 memset(&c, 0, sizeof(c));
2480 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
2481 FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
2482 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
2483 FW_VI_MAC_CMD_HASHUNIEN(ucast) |
2484 FW_CMD_LEN16(1));
2485 c.u.hash.hashvec = cpu_to_be64(vec);
2486 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
2487}
2488
2489/**
2490 * t4_enable_vi - enable/disable a virtual interface
2491 * @adap: the adapter
2492 * @mbox: mailbox to use for the FW command
2493 * @viid: the VI id
2494 * @rx_en: 1=enable Rx, 0=disable Rx
2495 * @tx_en: 1=enable Tx, 0=disable Tx
2496 *
2497 * Enables/disables a virtual interface.
2498 */
2499int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
2500 bool rx_en, bool tx_en)
2501{
2502 struct fw_vi_enable_cmd c;
2503
2504 memset(&c, 0, sizeof(c));
2505 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
2506 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
2507 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
2508 FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
2509 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2510}
2511
2512/**
2513 * t4_identify_port - identify a VI's port by blinking its LED
2514 * @adap: the adapter
2515 * @mbox: mailbox to use for the FW command
2516 * @viid: the VI id
2517 * @nblinks: how many times to blink LED at 2.5 Hz
2518 *
2519 * Identifies a VI's port by blinking its LED.
2520 */
2521int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
2522 unsigned int nblinks)
2523{
2524 struct fw_vi_enable_cmd c;
2525
2526 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
2527 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
2528 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
2529 c.blinkdur = htons(nblinks);
2530 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
2531}
2532
2533/**
2534 * t4_iq_free - free an ingress queue and its FLs
2535 * @adap: the adapter
2536 * @mbox: mailbox to use for the FW command
2537 * @pf: the PF owning the queues
2538 * @vf: the VF owning the queues
2539 * @iqtype: the ingress queue type
2540 * @iqid: ingress queue id
2541 * @fl0id: FL0 queue id or 0xffff if no attached FL0
2542 * @fl1id: FL1 queue id or 0xffff if no attached FL1
2543 *
2544 * Frees an ingress queue and its associated FLs, if any.
2545 */
2546int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
2547 unsigned int vf, unsigned int iqtype, unsigned int iqid,
2548 unsigned int fl0id, unsigned int fl1id)
2549{
2550 struct fw_iq_cmd c;
2551
2552 memset(&c, 0, sizeof(c));
2553 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2554 FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
2555 FW_IQ_CMD_VFN(vf));
2556 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
2557 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
2558 c.iqid = htons(iqid);
2559 c.fl0id = htons(fl0id);
2560 c.fl1id = htons(fl1id);
2561 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2562}
2563
2564/**
2565 * t4_eth_eq_free - free an Ethernet egress queue
2566 * @adap: the adapter
2567 * @mbox: mailbox to use for the FW command
2568 * @pf: the PF owning the queue
2569 * @vf: the VF owning the queue
2570 * @eqid: egress queue id
2571 *
2572 * Frees an Ethernet egress queue.
2573 */
2574int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
2575 unsigned int vf, unsigned int eqid)
2576{
2577 struct fw_eq_eth_cmd c;
2578
2579 memset(&c, 0, sizeof(c));
2580 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2581 FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
2582 FW_EQ_ETH_CMD_VFN(vf));
2583 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
2584 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
2585 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2586}
2587
2588/**
2589 * t4_ctrl_eq_free - free a control egress queue
2590 * @adap: the adapter
2591 * @mbox: mailbox to use for the FW command
2592 * @pf: the PF owning the queue
2593 * @vf: the VF owning the queue
2594 * @eqid: egress queue id
2595 *
2596 * Frees a control egress queue.
2597 */
2598int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
2599 unsigned int vf, unsigned int eqid)
2600{
2601 struct fw_eq_ctrl_cmd c;
2602
2603 memset(&c, 0, sizeof(c));
2604 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2605 FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
2606 FW_EQ_CTRL_CMD_VFN(vf));
2607 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
2608 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
2609 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2610}
2611
2612/**
2613 * t4_ofld_eq_free - free an offload egress queue
2614 * @adap: the adapter
2615 * @mbox: mailbox to use for the FW command
2616 * @pf: the PF owning the queue
2617 * @vf: the VF owning the queue
2618 * @eqid: egress queue id
2619 *
2620 * Frees a control egress queue.
2621 */
2622int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
2623 unsigned int vf, unsigned int eqid)
2624{
2625 struct fw_eq_ofld_cmd c;
2626
2627 memset(&c, 0, sizeof(c));
2628 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2629 FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
2630 FW_EQ_OFLD_CMD_VFN(vf));
2631 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
2632 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
2633 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2634}
2635
2636/**
2637 * t4_handle_fw_rpl - process a FW reply message
2638 * @adap: the adapter
2639 * @rpl: start of the FW message
2640 *
2641 * Processes a FW message, such as link state change messages.
2642 */
2643int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
2644{
2645 u8 opcode = *(const u8 *)rpl;
2646
2647 if (opcode == FW_PORT_CMD) { /* link/module state change message */
2648 int speed = 0, fc = 0;
2649 const struct fw_port_cmd *p = (void *)rpl;
2650 int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
2651 int port = adap->chan_map[chan];
2652 struct port_info *pi = adap2pinfo(adap, port);
2653 struct link_config *lc = &pi->link_cfg;
2654 u32 stat = ntohl(p->u.info.lstatus_to_modtype);
2655 int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
2656 u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
2657
2658 if (stat & FW_PORT_CMD_RXPAUSE)
2659 fc |= PAUSE_RX;
2660 if (stat & FW_PORT_CMD_TXPAUSE)
2661 fc |= PAUSE_TX;
2662 if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
2663 speed = SPEED_100;
2664 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
2665 speed = SPEED_1000;
2666 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
2667 speed = SPEED_10000;
2668
2669 if (link_ok != lc->link_ok || speed != lc->speed ||
2670 fc != lc->fc) { /* something changed */
2671 lc->link_ok = link_ok;
2672 lc->speed = speed;
2673 lc->fc = fc;
2674 t4_os_link_changed(adap, port, link_ok);
2675 }
2676 if (mod != pi->mod_type) {
2677 pi->mod_type = mod;
2678 t4_os_portmod_changed(adap, port);
2679 }
2680 }
2681 return 0;
2682}
2683
2684static void __devinit get_pci_mode(struct adapter *adapter,
2685 struct pci_params *p)
2686{
2687 u16 val;
2688 u32 pcie_cap = pci_pcie_cap(adapter->pdev);
2689
2690 if (pcie_cap) {
2691 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
2692 &val);
2693 p->speed = val & PCI_EXP_LNKSTA_CLS;
2694 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
2695 }
2696}
2697
2698/**
2699 * init_link_config - initialize a link's SW state
2700 * @lc: structure holding the link state
2701 * @caps: link capabilities
2702 *
2703 * Initializes the SW state maintained for each link, including the link's
2704 * capabilities and default speed/flow-control/autonegotiation settings.
2705 */
2706static void __devinit init_link_config(struct link_config *lc,
2707 unsigned int caps)
2708{
2709 lc->supported = caps;
2710 lc->requested_speed = 0;
2711 lc->speed = 0;
2712 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
2713 if (lc->supported & FW_PORT_CAP_ANEG) {
2714 lc->advertising = lc->supported & ADVERT_MASK;
2715 lc->autoneg = AUTONEG_ENABLE;
2716 lc->requested_fc |= PAUSE_AUTONEG;
2717 } else {
2718 lc->advertising = 0;
2719 lc->autoneg = AUTONEG_DISABLE;
2720 }
2721}
2722
204dc3c0 2723int t4_wait_dev_ready(struct adapter *adap)
56d36be4
DM
2724{
2725 if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
2726 return 0;
2727 msleep(500);
2728 return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
2729}
2730
900a6596
DM
2731static int __devinit get_flash_params(struct adapter *adap)
2732{
2733 int ret;
2734 u32 info;
2735
2736 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
2737 if (!ret)
2738 ret = sf1_read(adap, 3, 0, 1, &info);
2739 t4_write_reg(adap, SF_OP, 0); /* unlock SF */
2740 if (ret)
2741 return ret;
2742
2743 if ((info & 0xff) != 0x20) /* not a Numonix flash */
2744 return -EINVAL;
2745 info >>= 16; /* log2 of size */
2746 if (info >= 0x14 && info < 0x18)
2747 adap->params.sf_nsec = 1 << (info - 16);
2748 else if (info == 0x18)
2749 adap->params.sf_nsec = 64;
2750 else
2751 return -EINVAL;
2752 adap->params.sf_size = 1 << info;
2753 adap->params.sf_fw_start =
2754 t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
2755 return 0;
2756}
2757
56d36be4
DM
2758/**
2759 * t4_prep_adapter - prepare SW and HW for operation
2760 * @adapter: the adapter
2761 * @reset: if true perform a HW reset
2762 *
2763 * Initialize adapter SW state for the various HW modules, set initial
2764 * values for some adapter tunables, take PHYs out of reset, and
2765 * initialize the MDIO interface.
2766 */
2767int __devinit t4_prep_adapter(struct adapter *adapter)
2768{
2769 int ret;
2770
204dc3c0 2771 ret = t4_wait_dev_ready(adapter);
56d36be4
DM
2772 if (ret < 0)
2773 return ret;
2774
2775 get_pci_mode(adapter, &adapter->params.pci);
2776 adapter->params.rev = t4_read_reg(adapter, PL_REV);
2777
900a6596
DM
2778 ret = get_flash_params(adapter);
2779 if (ret < 0) {
2780 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
2781 return ret;
2782 }
2783
56d36be4
DM
2784 ret = get_vpd_params(adapter, &adapter->params.vpd);
2785 if (ret < 0)
2786 return ret;
2787
2788 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
2789
2790 /*
2791 * Default port for debugging in case we can't reach FW.
2792 */
2793 adapter->params.nports = 1;
2794 adapter->params.portvec = 1;
2795 return 0;
2796}
2797
2798int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
2799{
2800 u8 addr[6];
2801 int ret, i, j = 0;
2802 struct fw_port_cmd c;
f796564a 2803 struct fw_rss_vi_config_cmd rvc;
56d36be4
DM
2804
2805 memset(&c, 0, sizeof(c));
f796564a 2806 memset(&rvc, 0, sizeof(rvc));
56d36be4
DM
2807
2808 for_each_port(adap, i) {
2809 unsigned int rss_size;
2810 struct port_info *p = adap2pinfo(adap, i);
2811
2812 while ((adap->params.portvec & (1 << j)) == 0)
2813 j++;
2814
2815 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
2816 FW_CMD_REQUEST | FW_CMD_READ |
2817 FW_PORT_CMD_PORTID(j));
2818 c.action_to_len16 = htonl(
2819 FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
2820 FW_LEN16(c));
2821 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2822 if (ret)
2823 return ret;
2824
2825 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
2826 if (ret < 0)
2827 return ret;
2828
2829 p->viid = ret;
2830 p->tx_chan = j;
2831 p->lport = j;
2832 p->rss_size = rss_size;
2833 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
2834 memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
f21ce1c3 2835 adap->port[i]->dev_id = j;
56d36be4
DM
2836
2837 ret = ntohl(c.u.info.lstatus_to_modtype);
2838 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
2839 FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
2840 p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
a0881cab 2841 p->mod_type = FW_PORT_MOD_TYPE_NA;
56d36be4 2842
f796564a
DM
2843 rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2844 FW_CMD_REQUEST | FW_CMD_READ |
2845 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
2846 rvc.retval_len16 = htonl(FW_LEN16(rvc));
2847 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
2848 if (ret)
2849 return ret;
2850 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
2851
56d36be4
DM
2852 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
2853 j++;
2854 }
2855 return 0;
2856}