]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/cxgb4vf/cxgb4vf_main.c
cxgb4: Use netif_set_real_num_{rx,tx}_queues()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
283 for (qs = 0, msi = MSIX_NIQFLINT;
284 qs < pi->nqsets;
285 qs++, msi++) {
286 snprintf(adapter->msix_info[msi].desc, namelen,
287 "%s-%d", dev->name, qs);
288 adapter->msix_info[msi].desc[namelen] = 0;
289 }
290 }
291}
292
293/*
294 * Request all of our MSI-X resources.
295 */
296static int request_msix_queue_irqs(struct adapter *adapter)
297{
298 struct sge *s = &adapter->sge;
299 int rxq, msi, err;
300
301 /*
302 * Firmware events.
303 */
304 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
305 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
306 if (err)
307 return err;
308
309 /*
310 * Ethernet queues.
311 */
312 msi = MSIX_NIQFLINT;
313 for_each_ethrxq(s, rxq) {
314 err = request_irq(adapter->msix_info[msi].vec,
315 t4vf_sge_intr_msix, 0,
316 adapter->msix_info[msi].desc,
317 &s->ethrxq[rxq].rspq);
318 if (err)
319 goto err_free_irqs;
320 msi++;
321 }
322 return 0;
323
324err_free_irqs:
325 while (--rxq >= 0)
326 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
327 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328 return err;
329}
330
331/*
332 * Free our MSI-X resources.
333 */
334static void free_msix_queue_irqs(struct adapter *adapter)
335{
336 struct sge *s = &adapter->sge;
337 int rxq, msi;
338
339 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
340 msi = MSIX_NIQFLINT;
341 for_each_ethrxq(s, rxq)
342 free_irq(adapter->msix_info[msi++].vec,
343 &s->ethrxq[rxq].rspq);
344}
345
346/*
347 * Turn on NAPI and start up interrupts on a response queue.
348 */
349static void qenable(struct sge_rspq *rspq)
350{
351 napi_enable(&rspq->napi);
352
353 /*
354 * 0-increment the Going To Sleep register to start the timer and
355 * enable interrupts.
356 */
357 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
358 CIDXINC(0) |
359 SEINTARM(rspq->intr_params) |
360 INGRESSQID(rspq->cntxt_id));
361}
362
363/*
364 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
365 */
366static void enable_rx(struct adapter *adapter)
367{
368 int rxq;
369 struct sge *s = &adapter->sge;
370
371 for_each_ethrxq(s, rxq)
372 qenable(&s->ethrxq[rxq].rspq);
373 qenable(&s->fw_evtq);
374
375 /*
376 * The interrupt queue doesn't use NAPI so we do the 0-increment of
377 * its Going To Sleep register here to get it started.
378 */
379 if (adapter->flags & USING_MSI)
380 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
381 CIDXINC(0) |
382 SEINTARM(s->intrq.intr_params) |
383 INGRESSQID(s->intrq.cntxt_id));
384
385}
386
387/*
388 * Wait until all NAPI handlers are descheduled.
389 */
390static void quiesce_rx(struct adapter *adapter)
391{
392 struct sge *s = &adapter->sge;
393 int rxq;
394
395 for_each_ethrxq(s, rxq)
396 napi_disable(&s->ethrxq[rxq].rspq.napi);
397 napi_disable(&s->fw_evtq.napi);
398}
399
400/*
401 * Response queue handler for the firmware event queue.
402 */
403static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
404 const struct pkt_gl *gl)
405{
406 /*
407 * Extract response opcode and get pointer to CPL message body.
408 */
409 struct adapter *adapter = rspq->adapter;
410 u8 opcode = ((const struct rss_header *)rsp)->opcode;
411 void *cpl = (void *)(rsp + 1);
412
413 switch (opcode) {
414 case CPL_FW6_MSG: {
415 /*
416 * We've received an asynchronous message from the firmware.
417 */
418 const struct cpl_fw6_msg *fw_msg = cpl;
419 if (fw_msg->type == FW6_TYPE_CMD_RPL)
420 t4vf_handle_fw_rpl(adapter, fw_msg->data);
421 break;
422 }
423
424 case CPL_SGE_EGR_UPDATE: {
425 /*
7f9dd2fa
CL
426 * We've received an Egress Queue Status Update message. We
427 * get these, if the SGE is configured to send these when the
428 * firmware passes certain points in processing our TX
429 * Ethernet Queue or if we make an explicit request for one.
430 * We use these updates to determine when we may need to
431 * restart a TX Ethernet Queue which was stopped for lack of
432 * free TX Queue Descriptors ...
be839e39
CL
433 */
434 const struct cpl_sge_egr_update *p = (void *)cpl;
435 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
436 struct sge *s = &adapter->sge;
437 struct sge_txq *tq;
438 struct sge_eth_txq *txq;
439 unsigned int eq_idx;
be839e39
CL
440
441 /*
442 * Perform sanity checking on the Queue ID to make sure it
443 * really refers to one of our TX Ethernet Egress Queues which
444 * is active and matches the queue's ID. None of these error
445 * conditions should ever happen so we may want to either make
446 * them fatal and/or conditionalized under DEBUG.
447 */
448 eq_idx = EQ_IDX(s, qid);
449 if (unlikely(eq_idx >= MAX_EGRQ)) {
450 dev_err(adapter->pdev_dev,
451 "Egress Update QID %d out of range\n", qid);
452 break;
453 }
454 tq = s->egr_map[eq_idx];
455 if (unlikely(tq == NULL)) {
456 dev_err(adapter->pdev_dev,
457 "Egress Update QID %d TXQ=NULL\n", qid);
458 break;
459 }
460 txq = container_of(tq, struct sge_eth_txq, q);
461 if (unlikely(tq->abs_id != qid)) {
462 dev_err(adapter->pdev_dev,
463 "Egress Update QID %d refers to TXQ %d\n",
464 qid, tq->abs_id);
465 break;
466 }
467
be839e39
CL
468 /*
469 * Restart a stopped TX Queue which has less than half of its
470 * TX ring in use ...
471 */
472 txq->q.restarts++;
473 netif_tx_wake_queue(txq->txq);
474 break;
475 }
476
477 default:
478 dev_err(adapter->pdev_dev,
479 "unexpected CPL %#x on FW event queue\n", opcode);
480 }
481
482 return 0;
483}
484
485/*
486 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
487 * to use and initializes them. We support multiple "Queue Sets" per port if
488 * we have MSI-X, otherwise just one queue set per port.
489 */
490static int setup_sge_queues(struct adapter *adapter)
491{
492 struct sge *s = &adapter->sge;
493 int err, pidx, msix;
494
495 /*
496 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
497 * state.
498 */
499 bitmap_zero(s->starving_fl, MAX_EGRQ);
500
501 /*
502 * If we're using MSI interrupt mode we need to set up a "forwarded
503 * interrupt" queue which we'll set up with our MSI vector. The rest
504 * of the ingress queues will be set up to forward their interrupts to
505 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
506 * the intrq's queue ID as the interrupt forwarding queue for the
507 * subsequent calls ...
508 */
509 if (adapter->flags & USING_MSI) {
510 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
511 adapter->port[0], 0, NULL, NULL);
512 if (err)
513 goto err_free_queues;
514 }
515
516 /*
517 * Allocate our ingress queue for asynchronous firmware messages.
518 */
519 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
520 MSIX_FW, NULL, fwevtq_handler);
521 if (err)
522 goto err_free_queues;
523
524 /*
525 * Allocate each "port"'s initial Queue Sets. These can be changed
526 * later on ... up to the point where any interface on the adapter is
527 * brought up at which point lots of things get nailed down
528 * permanently ...
529 */
530 msix = MSIX_NIQFLINT;
531 for_each_port(adapter, pidx) {
532 struct net_device *dev = adapter->port[pidx];
533 struct port_info *pi = netdev_priv(dev);
534 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
535 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
536 int qs;
537
c8639a82 538 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
539 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
540 dev, msix++,
541 &rxq->fl, t4vf_ethrx_handler);
542 if (err)
543 goto err_free_queues;
544
545 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
546 netdev_get_tx_queue(dev, qs),
547 s->fw_evtq.cntxt_id);
548 if (err)
549 goto err_free_queues;
550
551 rxq->rspq.idx = qs;
552 memset(&rxq->stats, 0, sizeof(rxq->stats));
553 }
554 }
555
556 /*
557 * Create the reverse mappings for the queues.
558 */
559 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
560 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
561 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
562 for_each_port(adapter, pidx) {
563 struct net_device *dev = adapter->port[pidx];
564 struct port_info *pi = netdev_priv(dev);
565 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
566 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
567 int qs;
568
c8639a82 569 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
570 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
571 EQ_MAP(s, txq->q.abs_id) = &txq->q;
572
573 /*
574 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
575 * for Free Lists but since all of the Egress Queues
576 * (including Free Lists) have Relative Queue IDs
577 * which are computed as Absolute - Base Queue ID, we
578 * can synthesize the Absolute Queue IDs for the Free
579 * Lists. This is useful for debugging purposes when
580 * we want to dump Queue Contexts via the PF Driver.
581 */
582 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
583 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
584 }
585 }
586 return 0;
587
588err_free_queues:
589 t4vf_free_sge_resources(adapter);
590 return err;
591}
592
593/*
594 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
595 * queues. We configure the RSS CPU lookup table to distribute to the number
596 * of HW receive queues, and the response queue lookup table to narrow that
597 * down to the response queues actually configured for each "port" (Virtual
598 * Interface). We always configure the RSS mapping for all ports since the
599 * mapping table has plenty of entries.
600 */
601static int setup_rss(struct adapter *adapter)
602{
603 int pidx;
604
605 for_each_port(adapter, pidx) {
606 struct port_info *pi = adap2pinfo(adapter, pidx);
607 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
608 u16 rss[MAX_PORT_QSETS];
609 int qs, err;
610
611 for (qs = 0; qs < pi->nqsets; qs++)
612 rss[qs] = rxq[qs].rspq.abs_id;
613
614 err = t4vf_config_rss_range(adapter, pi->viid,
615 0, pi->rss_size, rss, pi->nqsets);
616 if (err)
617 return err;
618
619 /*
620 * Perform Global RSS Mode-specific initialization.
621 */
622 switch (adapter->params.rss.mode) {
623 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
624 /*
625 * If Tunnel All Lookup isn't specified in the global
626 * RSS Configuration, then we need to specify a
627 * default Ingress Queue for any ingress packets which
628 * aren't hashed. We'll use our first ingress queue
629 * ...
630 */
631 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
632 union rss_vi_config config;
633 err = t4vf_read_rss_vi_config(adapter,
634 pi->viid,
635 &config);
636 if (err)
637 return err;
638 config.basicvirtual.defaultq =
639 rxq[0].rspq.abs_id;
640 err = t4vf_write_rss_vi_config(adapter,
641 pi->viid,
642 &config);
643 if (err)
644 return err;
645 }
646 break;
647 }
648 }
649
650 return 0;
651}
652
653/*
654 * Bring the adapter up. Called whenever we go from no "ports" open to having
655 * one open. This function performs the actions necessary to make an adapter
656 * operational, such as completing the initialization of HW modules, and
657 * enabling interrupts. Must be called with the rtnl lock held. (Note that
658 * this is called "cxgb_up" in the PF Driver.)
659 */
660static int adapter_up(struct adapter *adapter)
661{
662 int err;
663
664 /*
665 * If this is the first time we've been called, perform basic
666 * adapter setup. Once we've done this, many of our adapter
667 * parameters can no longer be changed ...
668 */
669 if ((adapter->flags & FULL_INIT_DONE) == 0) {
670 err = setup_sge_queues(adapter);
671 if (err)
672 return err;
673 err = setup_rss(adapter);
674 if (err) {
675 t4vf_free_sge_resources(adapter);
676 return err;
677 }
678
679 if (adapter->flags & USING_MSIX)
680 name_msix_vecs(adapter);
681 adapter->flags |= FULL_INIT_DONE;
682 }
683
684 /*
685 * Acquire our interrupt resources. We only support MSI-X and MSI.
686 */
687 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
688 if (adapter->flags & USING_MSIX)
689 err = request_msix_queue_irqs(adapter);
690 else
691 err = request_irq(adapter->pdev->irq,
692 t4vf_intr_handler(adapter), 0,
693 adapter->name, adapter);
694 if (err) {
695 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
696 err);
697 return err;
698 }
699
700 /*
701 * Enable NAPI ingress processing and return success.
702 */
703 enable_rx(adapter);
704 t4vf_sge_start(adapter);
705 return 0;
706}
707
708/*
709 * Bring the adapter down. Called whenever the last "port" (Virtual
710 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
711 * Driver.)
712 */
713static void adapter_down(struct adapter *adapter)
714{
715 /*
716 * Free interrupt resources.
717 */
718 if (adapter->flags & USING_MSIX)
719 free_msix_queue_irqs(adapter);
720 else
721 free_irq(adapter->pdev->irq, adapter);
722
723 /*
724 * Wait for NAPI handlers to finish.
725 */
726 quiesce_rx(adapter);
727}
728
729/*
730 * Start up a net device.
731 */
732static int cxgb4vf_open(struct net_device *dev)
733{
734 int err;
735 struct port_info *pi = netdev_priv(dev);
736 struct adapter *adapter = pi->adapter;
737
738 /*
739 * If this is the first interface that we're opening on the "adapter",
740 * bring the "adapter" up now.
741 */
742 if (adapter->open_device_map == 0) {
743 err = adapter_up(adapter);
744 if (err)
745 return err;
746 }
747
748 /*
749 * Note that this interface is up and start everything up ...
750 */
751 dev->real_num_tx_queues = pi->nqsets;
752 set_bit(pi->port_id, &adapter->open_device_map);
753 link_start(dev);
754 netif_tx_start_all_queues(dev);
755 return 0;
756}
757
758/*
759 * Shut down a net device. This routine is called "cxgb_close" in the PF
760 * Driver ...
761 */
762static int cxgb4vf_stop(struct net_device *dev)
763{
764 int ret;
765 struct port_info *pi = netdev_priv(dev);
766 struct adapter *adapter = pi->adapter;
767
768 netif_tx_stop_all_queues(dev);
769 netif_carrier_off(dev);
770 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
771 pi->link_cfg.link_ok = 0;
772
773 clear_bit(pi->port_id, &adapter->open_device_map);
774 if (adapter->open_device_map == 0)
775 adapter_down(adapter);
776 return 0;
777}
778
779/*
780 * Translate our basic statistics into the standard "ifconfig" statistics.
781 */
782static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
783{
784 struct t4vf_port_stats stats;
785 struct port_info *pi = netdev2pinfo(dev);
786 struct adapter *adapter = pi->adapter;
787 struct net_device_stats *ns = &dev->stats;
788 int err;
789
790 spin_lock(&adapter->stats_lock);
791 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
792 spin_unlock(&adapter->stats_lock);
793
794 memset(ns, 0, sizeof(*ns));
795 if (err)
796 return ns;
797
798 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
799 stats.tx_ucast_bytes + stats.tx_offload_bytes);
800 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
801 stats.tx_ucast_frames + stats.tx_offload_frames);
802 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
803 stats.rx_ucast_bytes);
804 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
805 stats.rx_ucast_frames);
806 ns->multicast = stats.rx_mcast_frames;
807 ns->tx_errors = stats.tx_drop_frames;
808 ns->rx_errors = stats.rx_err_frames;
809
810 return ns;
811}
812
813/*
814 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
815 * array of addrss pointers and return the number collected.
816 */
817static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
818 const u8 **addr,
819 unsigned int maxaddrs)
820{
821 unsigned int naddr = 0;
822 const struct netdev_hw_addr *ha;
823
824 for_each_dev_addr(dev, ha) {
825 addr[naddr++] = ha->addr;
826 if (naddr >= maxaddrs)
827 break;
828 }
829 return naddr;
830}
831
832/*
833 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
834 * array of addrss pointers and return the number collected.
835 */
836static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
837 const u8 **addr,
838 unsigned int maxaddrs)
839{
840 unsigned int naddr = 0;
841 const struct netdev_hw_addr *ha;
842
843 netdev_for_each_mc_addr(ha, dev) {
844 addr[naddr++] = ha->addr;
845 if (naddr >= maxaddrs)
846 break;
847 }
848 return naddr;
849}
850
851/*
852 * Configure the exact and hash address filters to handle a port's multicast
853 * and secondary unicast MAC addresses.
854 */
855static int set_addr_filters(const struct net_device *dev, bool sleep)
856{
857 u64 mhash = 0;
858 u64 uhash = 0;
859 bool free = true;
860 u16 filt_idx[7];
861 const u8 *addr[7];
862 int ret, naddr = 0;
863 const struct port_info *pi = netdev_priv(dev);
864
865 /* first do the secondary unicast addresses */
866 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
867 if (naddr > 0) {
868 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
869 naddr, addr, filt_idx, &uhash, sleep);
870 if (ret < 0)
871 return ret;
872
873 free = false;
874 }
875
876 /* next set up the multicast addresses */
877 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
878 if (naddr > 0) {
879 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
880 naddr, addr, filt_idx, &mhash, sleep);
881 if (ret < 0)
882 return ret;
883 }
884
885 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
886 uhash | mhash, sleep);
887}
888
889/*
890 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
891 * If @mtu is -1 it is left unchanged.
892 */
893static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
894{
895 int ret;
896 struct port_info *pi = netdev_priv(dev);
897
898 ret = set_addr_filters(dev, sleep_ok);
899 if (ret == 0)
900 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
901 (dev->flags & IFF_PROMISC) != 0,
902 (dev->flags & IFF_ALLMULTI) != 0,
903 1, -1, sleep_ok);
904 return ret;
905}
906
907/*
908 * Set the current receive modes on the device.
909 */
910static void cxgb4vf_set_rxmode(struct net_device *dev)
911{
912 /* unfortunately we can't return errors to the stack */
913 set_rxmode(dev, -1, false);
914}
915
916/*
917 * Find the entry in the interrupt holdoff timer value array which comes
918 * closest to the specified interrupt holdoff value.
919 */
920static int closest_timer(const struct sge *s, int us)
921{
922 int i, timer_idx = 0, min_delta = INT_MAX;
923
924 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
925 int delta = us - s->timer_val[i];
926 if (delta < 0)
927 delta = -delta;
928 if (delta < min_delta) {
929 min_delta = delta;
930 timer_idx = i;
931 }
932 }
933 return timer_idx;
934}
935
936static int closest_thres(const struct sge *s, int thres)
937{
938 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
939
940 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
941 delta = thres - s->counter_val[i];
942 if (delta < 0)
943 delta = -delta;
944 if (delta < min_delta) {
945 min_delta = delta;
946 pktcnt_idx = i;
947 }
948 }
949 return pktcnt_idx;
950}
951
952/*
953 * Return a queue's interrupt hold-off time in us. 0 means no timer.
954 */
955static unsigned int qtimer_val(const struct adapter *adapter,
956 const struct sge_rspq *rspq)
957{
958 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
959
960 return timer_idx < SGE_NTIMERS
961 ? adapter->sge.timer_val[timer_idx]
962 : 0;
963}
964
965/**
966 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
967 * @adapter: the adapter
968 * @rspq: the RX response queue
969 * @us: the hold-off time in us, or 0 to disable timer
970 * @cnt: the hold-off packet count, or 0 to disable counter
971 *
972 * Sets an RX response queue's interrupt hold-off time and packet count.
973 * At least one of the two needs to be enabled for the queue to generate
974 * interrupts.
975 */
976static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
977 unsigned int us, unsigned int cnt)
978{
979 unsigned int timer_idx;
980
981 /*
982 * If both the interrupt holdoff timer and count are specified as
983 * zero, default to a holdoff count of 1 ...
984 */
985 if ((us | cnt) == 0)
986 cnt = 1;
987
988 /*
989 * If an interrupt holdoff count has been specified, then find the
990 * closest configured holdoff count and use that. If the response
991 * queue has already been created, then update its queue context
992 * parameters ...
993 */
994 if (cnt) {
995 int err;
996 u32 v, pktcnt_idx;
997
998 pktcnt_idx = closest_thres(&adapter->sge, cnt);
999 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1000 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1001 FW_PARAMS_PARAM_X(
1002 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1003 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1004 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1005 if (err)
1006 return err;
1007 }
1008 rspq->pktcnt_idx = pktcnt_idx;
1009 }
1010
1011 /*
1012 * Compute the closest holdoff timer index from the supplied holdoff
1013 * timer value.
1014 */
1015 timer_idx = (us == 0
1016 ? SGE_TIMER_RSTRT_CNTR
1017 : closest_timer(&adapter->sge, us));
1018
1019 /*
1020 * Update the response queue's interrupt coalescing parameters and
1021 * return success.
1022 */
1023 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1024 (cnt > 0 ? QINTR_CNT_EN : 0));
1025 return 0;
1026}
1027
1028/*
1029 * Return a version number to identify the type of adapter. The scheme is:
1030 * - bits 0..9: chip version
1031 * - bits 10..15: chip revision
1032 */
1033static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1034{
1035 /*
1036 * Chip version 4, revision 0x3f (cxgb4vf).
1037 */
1038 return 4 | (0x3f << 10);
1039}
1040
1041/*
1042 * Execute the specified ioctl command.
1043 */
1044static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1045{
1046 int ret = 0;
1047
1048 switch (cmd) {
1049 /*
1050 * The VF Driver doesn't have access to any of the other
1051 * common Ethernet device ioctl()'s (like reading/writing
1052 * PHY registers, etc.
1053 */
1054
1055 default:
1056 ret = -EOPNOTSUPP;
1057 break;
1058 }
1059 return ret;
1060}
1061
1062/*
1063 * Change the device's MTU.
1064 */
1065static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1066{
1067 int ret;
1068 struct port_info *pi = netdev_priv(dev);
1069
1070 /* accommodate SACK */
1071 if (new_mtu < 81)
1072 return -EINVAL;
1073
1074 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1075 -1, -1, -1, -1, true);
1076 if (!ret)
1077 dev->mtu = new_mtu;
1078 return ret;
1079}
1080
1081/*
1082 * Change the devices MAC address.
1083 */
1084static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1085{
1086 int ret;
1087 struct sockaddr *addr = _addr;
1088 struct port_info *pi = netdev_priv(dev);
1089
1090 if (!is_valid_ether_addr(addr->sa_data))
1091 return -EINVAL;
1092
1093 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1094 addr->sa_data, true);
1095 if (ret < 0)
1096 return ret;
1097
1098 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1099 pi->xact_addr_filt = ret;
1100 return 0;
1101}
1102
1103/*
1104 * Return a TX Queue on which to send the specified skb.
1105 */
1106static u16 cxgb4vf_select_queue(struct net_device *dev, struct sk_buff *skb)
1107{
1108 /*
1109 * XXX For now just use the default hash but we probably want to
1110 * XXX look at other possibilities ...
1111 */
1112 return skb_tx_hash(dev, skb);
1113}
1114
1115#ifdef CONFIG_NET_POLL_CONTROLLER
1116/*
1117 * Poll all of our receive queues. This is called outside of normal interrupt
1118 * context.
1119 */
1120static void cxgb4vf_poll_controller(struct net_device *dev)
1121{
1122 struct port_info *pi = netdev_priv(dev);
1123 struct adapter *adapter = pi->adapter;
1124
1125 if (adapter->flags & USING_MSIX) {
1126 struct sge_eth_rxq *rxq;
1127 int nqsets;
1128
1129 rxq = &adapter->sge.ethrxq[pi->first_qset];
1130 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1131 t4vf_sge_intr_msix(0, &rxq->rspq);
1132 rxq++;
1133 }
1134 } else
1135 t4vf_intr_handler(adapter)(0, adapter);
1136}
1137#endif
1138
1139/*
1140 * Ethtool operations.
1141 * ===================
1142 *
1143 * Note that we don't support any ethtool operations which change the physical
1144 * state of the port to which we're linked.
1145 */
1146
1147/*
1148 * Return current port link settings.
1149 */
1150static int cxgb4vf_get_settings(struct net_device *dev,
1151 struct ethtool_cmd *cmd)
1152{
1153 const struct port_info *pi = netdev_priv(dev);
1154
1155 cmd->supported = pi->link_cfg.supported;
1156 cmd->advertising = pi->link_cfg.advertising;
1157 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1158 cmd->duplex = DUPLEX_FULL;
1159
1160 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1161 cmd->phy_address = pi->port_id;
1162 cmd->transceiver = XCVR_EXTERNAL;
1163 cmd->autoneg = pi->link_cfg.autoneg;
1164 cmd->maxtxpkt = 0;
1165 cmd->maxrxpkt = 0;
1166 return 0;
1167}
1168
1169/*
1170 * Return our driver information.
1171 */
1172static void cxgb4vf_get_drvinfo(struct net_device *dev,
1173 struct ethtool_drvinfo *drvinfo)
1174{
1175 struct adapter *adapter = netdev2adap(dev);
1176
1177 strcpy(drvinfo->driver, KBUILD_MODNAME);
1178 strcpy(drvinfo->version, DRV_VERSION);
1179 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1180 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1181 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1182 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1183 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1184 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1185 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1186 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1187 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1188 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1189 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1190}
1191
1192/*
1193 * Return current adapter message level.
1194 */
1195static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1196{
1197 return netdev2adap(dev)->msg_enable;
1198}
1199
1200/*
1201 * Set current adapter message level.
1202 */
1203static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1204{
1205 netdev2adap(dev)->msg_enable = msglevel;
1206}
1207
1208/*
1209 * Return the device's current Queue Set ring size parameters along with the
1210 * allowed maximum values. Since ethtool doesn't understand the concept of
1211 * multi-queue devices, we just return the current values associated with the
1212 * first Queue Set.
1213 */
1214static void cxgb4vf_get_ringparam(struct net_device *dev,
1215 struct ethtool_ringparam *rp)
1216{
1217 const struct port_info *pi = netdev_priv(dev);
1218 const struct sge *s = &pi->adapter->sge;
1219
1220 rp->rx_max_pending = MAX_RX_BUFFERS;
1221 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1222 rp->rx_jumbo_max_pending = 0;
1223 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1224
1225 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1226 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1227 rp->rx_jumbo_pending = 0;
1228 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1229}
1230
1231/*
1232 * Set the Queue Set ring size parameters for the device. Again, since
1233 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1234 * apply these new values across all of the Queue Sets associated with the
1235 * device -- after vetting them of course!
1236 */
1237static int cxgb4vf_set_ringparam(struct net_device *dev,
1238 struct ethtool_ringparam *rp)
1239{
1240 const struct port_info *pi = netdev_priv(dev);
1241 struct adapter *adapter = pi->adapter;
1242 struct sge *s = &adapter->sge;
1243 int qs;
1244
1245 if (rp->rx_pending > MAX_RX_BUFFERS ||
1246 rp->rx_jumbo_pending ||
1247 rp->tx_pending > MAX_TXQ_ENTRIES ||
1248 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1249 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1250 rp->rx_pending < MIN_FL_ENTRIES ||
1251 rp->tx_pending < MIN_TXQ_ENTRIES)
1252 return -EINVAL;
1253
1254 if (adapter->flags & FULL_INIT_DONE)
1255 return -EBUSY;
1256
1257 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1258 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1259 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1260 s->ethtxq[qs].q.size = rp->tx_pending;
1261 }
1262 return 0;
1263}
1264
1265/*
1266 * Return the interrupt holdoff timer and count for the first Queue Set on the
1267 * device. Our extension ioctl() (the cxgbtool interface) allows the
1268 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1269 */
1270static int cxgb4vf_get_coalesce(struct net_device *dev,
1271 struct ethtool_coalesce *coalesce)
1272{
1273 const struct port_info *pi = netdev_priv(dev);
1274 const struct adapter *adapter = pi->adapter;
1275 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1276
1277 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1278 coalesce->rx_max_coalesced_frames =
1279 ((rspq->intr_params & QINTR_CNT_EN)
1280 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1281 : 0);
1282 return 0;
1283}
1284
1285/*
1286 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1287 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1288 * the interrupt holdoff timer on any of the device's Queue Sets.
1289 */
1290static int cxgb4vf_set_coalesce(struct net_device *dev,
1291 struct ethtool_coalesce *coalesce)
1292{
1293 const struct port_info *pi = netdev_priv(dev);
1294 struct adapter *adapter = pi->adapter;
1295
1296 return set_rxq_intr_params(adapter,
1297 &adapter->sge.ethrxq[pi->first_qset].rspq,
1298 coalesce->rx_coalesce_usecs,
1299 coalesce->rx_max_coalesced_frames);
1300}
1301
1302/*
1303 * Report current port link pause parameter settings.
1304 */
1305static void cxgb4vf_get_pauseparam(struct net_device *dev,
1306 struct ethtool_pauseparam *pauseparam)
1307{
1308 struct port_info *pi = netdev_priv(dev);
1309
1310 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1311 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1312 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1313}
1314
1315/*
1316 * Return whether RX Checksum Offloading is currently enabled for the device.
1317 */
1318static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1319{
1320 struct port_info *pi = netdev_priv(dev);
1321
1322 return (pi->rx_offload & RX_CSO) != 0;
1323}
1324
1325/*
1326 * Turn RX Checksum Offloading on or off for the device.
1327 */
1328static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1329{
1330 struct port_info *pi = netdev_priv(dev);
1331
1332 if (csum)
1333 pi->rx_offload |= RX_CSO;
1334 else
1335 pi->rx_offload &= ~RX_CSO;
1336 return 0;
1337}
1338
1339/*
1340 * Identify the port by blinking the port's LED.
1341 */
1342static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1343{
1344 struct port_info *pi = netdev_priv(dev);
1345
1346 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1347}
1348
1349/*
1350 * Port stats maintained per queue of the port.
1351 */
1352struct queue_port_stats {
1353 u64 tso;
1354 u64 tx_csum;
1355 u64 rx_csum;
1356 u64 vlan_ex;
1357 u64 vlan_ins;
1358};
1359
1360/*
1361 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1362 * these need to match the order of statistics returned by
1363 * t4vf_get_port_stats().
1364 */
1365static const char stats_strings[][ETH_GSTRING_LEN] = {
1366 /*
1367 * These must match the layout of the t4vf_port_stats structure.
1368 */
1369 "TxBroadcastBytes ",
1370 "TxBroadcastFrames ",
1371 "TxMulticastBytes ",
1372 "TxMulticastFrames ",
1373 "TxUnicastBytes ",
1374 "TxUnicastFrames ",
1375 "TxDroppedFrames ",
1376 "TxOffloadBytes ",
1377 "TxOffloadFrames ",
1378 "RxBroadcastBytes ",
1379 "RxBroadcastFrames ",
1380 "RxMulticastBytes ",
1381 "RxMulticastFrames ",
1382 "RxUnicastBytes ",
1383 "RxUnicastFrames ",
1384 "RxErrorFrames ",
1385
1386 /*
1387 * These are accumulated per-queue statistics and must match the
1388 * order of the fields in the queue_port_stats structure.
1389 */
1390 "TSO ",
1391 "TxCsumOffload ",
1392 "RxCsumGood ",
1393 "VLANextractions ",
1394 "VLANinsertions ",
1395};
1396
1397/*
1398 * Return the number of statistics in the specified statistics set.
1399 */
1400static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1401{
1402 switch (sset) {
1403 case ETH_SS_STATS:
1404 return ARRAY_SIZE(stats_strings);
1405 default:
1406 return -EOPNOTSUPP;
1407 }
1408 /*NOTREACHED*/
1409}
1410
1411/*
1412 * Return the strings for the specified statistics set.
1413 */
1414static void cxgb4vf_get_strings(struct net_device *dev,
1415 u32 sset,
1416 u8 *data)
1417{
1418 switch (sset) {
1419 case ETH_SS_STATS:
1420 memcpy(data, stats_strings, sizeof(stats_strings));
1421 break;
1422 }
1423}
1424
1425/*
1426 * Small utility routine to accumulate queue statistics across the queues of
1427 * a "port".
1428 */
1429static void collect_sge_port_stats(const struct adapter *adapter,
1430 const struct port_info *pi,
1431 struct queue_port_stats *stats)
1432{
1433 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1434 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1435 int qs;
1436
1437 memset(stats, 0, sizeof(*stats));
1438 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1439 stats->tso += txq->tso;
1440 stats->tx_csum += txq->tx_cso;
1441 stats->rx_csum += rxq->stats.rx_cso;
1442 stats->vlan_ex += rxq->stats.vlan_ex;
1443 stats->vlan_ins += txq->vlan_ins;
1444 }
1445}
1446
1447/*
1448 * Return the ETH_SS_STATS statistics set.
1449 */
1450static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1451 struct ethtool_stats *stats,
1452 u64 *data)
1453{
1454 struct port_info *pi = netdev2pinfo(dev);
1455 struct adapter *adapter = pi->adapter;
1456 int err = t4vf_get_port_stats(adapter, pi->pidx,
1457 (struct t4vf_port_stats *)data);
1458 if (err)
1459 memset(data, 0, sizeof(struct t4vf_port_stats));
1460
1461 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1462 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1463}
1464
1465/*
1466 * Return the size of our register map.
1467 */
1468static int cxgb4vf_get_regs_len(struct net_device *dev)
1469{
1470 return T4VF_REGMAP_SIZE;
1471}
1472
1473/*
1474 * Dump a block of registers, start to end inclusive, into a buffer.
1475 */
1476static void reg_block_dump(struct adapter *adapter, void *regbuf,
1477 unsigned int start, unsigned int end)
1478{
1479 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1480
1481 for ( ; start <= end; start += sizeof(u32)) {
1482 /*
1483 * Avoid reading the Mailbox Control register since that
1484 * can trigger a Mailbox Ownership Arbitration cycle and
1485 * interfere with communication with the firmware.
1486 */
1487 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1488 *bp++ = 0xffff;
1489 else
1490 *bp++ = t4_read_reg(adapter, start);
1491 }
1492}
1493
1494/*
1495 * Copy our entire register map into the provided buffer.
1496 */
1497static void cxgb4vf_get_regs(struct net_device *dev,
1498 struct ethtool_regs *regs,
1499 void *regbuf)
1500{
1501 struct adapter *adapter = netdev2adap(dev);
1502
1503 regs->version = mk_adap_vers(adapter);
1504
1505 /*
1506 * Fill in register buffer with our register map.
1507 */
1508 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1509
1510 reg_block_dump(adapter, regbuf,
1511 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1512 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1513 reg_block_dump(adapter, regbuf,
1514 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1515 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1516 reg_block_dump(adapter, regbuf,
1517 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1518 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1519 reg_block_dump(adapter, regbuf,
1520 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1521 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1522
1523 reg_block_dump(adapter, regbuf,
1524 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1525 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1526}
1527
1528/*
1529 * Report current Wake On LAN settings.
1530 */
1531static void cxgb4vf_get_wol(struct net_device *dev,
1532 struct ethtool_wolinfo *wol)
1533{
1534 wol->supported = 0;
1535 wol->wolopts = 0;
1536 memset(&wol->sopass, 0, sizeof(wol->sopass));
1537}
1538
1539/*
1540 * Set TCP Segmentation Offloading feature capabilities.
1541 */
1542static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1543{
1544 if (tso)
1545 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1546 else
1547 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1548 return 0;
1549}
1550
1551static struct ethtool_ops cxgb4vf_ethtool_ops = {
1552 .get_settings = cxgb4vf_get_settings,
1553 .get_drvinfo = cxgb4vf_get_drvinfo,
1554 .get_msglevel = cxgb4vf_get_msglevel,
1555 .set_msglevel = cxgb4vf_set_msglevel,
1556 .get_ringparam = cxgb4vf_get_ringparam,
1557 .set_ringparam = cxgb4vf_set_ringparam,
1558 .get_coalesce = cxgb4vf_get_coalesce,
1559 .set_coalesce = cxgb4vf_set_coalesce,
1560 .get_pauseparam = cxgb4vf_get_pauseparam,
1561 .get_rx_csum = cxgb4vf_get_rx_csum,
1562 .set_rx_csum = cxgb4vf_set_rx_csum,
1563 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1564 .set_sg = ethtool_op_set_sg,
1565 .get_link = ethtool_op_get_link,
1566 .get_strings = cxgb4vf_get_strings,
1567 .phys_id = cxgb4vf_phys_id,
1568 .get_sset_count = cxgb4vf_get_sset_count,
1569 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1570 .get_regs_len = cxgb4vf_get_regs_len,
1571 .get_regs = cxgb4vf_get_regs,
1572 .get_wol = cxgb4vf_get_wol,
1573 .set_tso = cxgb4vf_set_tso,
1574};
1575
1576/*
1577 * /sys/kernel/debug/cxgb4vf support code and data.
1578 * ================================================
1579 */
1580
1581/*
1582 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1583 */
1584#define QPL 4
1585
1586static int sge_qinfo_show(struct seq_file *seq, void *v)
1587{
1588 struct adapter *adapter = seq->private;
1589 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1590 int qs, r = (uintptr_t)v - 1;
1591
1592 if (r)
1593 seq_putc(seq, '\n');
1594
1595 #define S3(fmt_spec, s, v) \
1596 do {\
1597 seq_printf(seq, "%-12s", s); \
1598 for (qs = 0; qs < n; ++qs) \
1599 seq_printf(seq, " %16" fmt_spec, v); \
1600 seq_putc(seq, '\n'); \
1601 } while (0)
1602 #define S(s, v) S3("s", s, v)
1603 #define T(s, v) S3("u", s, txq[qs].v)
1604 #define R(s, v) S3("u", s, rxq[qs].v)
1605
1606 if (r < eth_entries) {
1607 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1608 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1609 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1610
1611 S("QType:", "Ethernet");
1612 S("Interface:",
1613 (rxq[qs].rspq.netdev
1614 ? rxq[qs].rspq.netdev->name
1615 : "N/A"));
1616 S3("d", "Port:",
1617 (rxq[qs].rspq.netdev
1618 ? ((struct port_info *)
1619 netdev_priv(rxq[qs].rspq.netdev))->port_id
1620 : -1));
1621 T("TxQ ID:", q.abs_id);
1622 T("TxQ size:", q.size);
1623 T("TxQ inuse:", q.in_use);
1624 T("TxQ PIdx:", q.pidx);
1625 T("TxQ CIdx:", q.cidx);
1626 R("RspQ ID:", rspq.abs_id);
1627 R("RspQ size:", rspq.size);
1628 R("RspQE size:", rspq.iqe_len);
1629 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1630 S3("u", "Intr pktcnt:",
1631 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1632 R("RspQ CIdx:", rspq.cidx);
1633 R("RspQ Gen:", rspq.gen);
1634 R("FL ID:", fl.abs_id);
1635 R("FL size:", fl.size - MIN_FL_RESID);
1636 R("FL avail:", fl.avail);
1637 R("FL PIdx:", fl.pidx);
1638 R("FL CIdx:", fl.cidx);
1639 return 0;
1640 }
1641
1642 r -= eth_entries;
1643 if (r == 0) {
1644 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1645
1646 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1647 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1648 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1649 qtimer_val(adapter, evtq));
1650 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1651 adapter->sge.counter_val[evtq->pktcnt_idx]);
1652 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1653 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1654 } else if (r == 1) {
1655 const struct sge_rspq *intrq = &adapter->sge.intrq;
1656
1657 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1658 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1659 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1660 qtimer_val(adapter, intrq));
1661 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1662 adapter->sge.counter_val[intrq->pktcnt_idx]);
1663 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1664 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1665 }
1666
1667 #undef R
1668 #undef T
1669 #undef S
1670 #undef S3
1671
1672 return 0;
1673}
1674
1675/*
1676 * Return the number of "entries" in our "file". We group the multi-Queue
1677 * sections with QPL Queue Sets per "entry". The sections of the output are:
1678 *
1679 * Ethernet RX/TX Queue Sets
1680 * Firmware Event Queue
1681 * Forwarded Interrupt Queue (if in MSI mode)
1682 */
1683static int sge_queue_entries(const struct adapter *adapter)
1684{
1685 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1686 ((adapter->flags & USING_MSI) != 0);
1687}
1688
1689static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1690{
1691 int entries = sge_queue_entries(seq->private);
1692
1693 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1694}
1695
1696static void sge_queue_stop(struct seq_file *seq, void *v)
1697{
1698}
1699
1700static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1701{
1702 int entries = sge_queue_entries(seq->private);
1703
1704 ++*pos;
1705 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1706}
1707
1708static const struct seq_operations sge_qinfo_seq_ops = {
1709 .start = sge_queue_start,
1710 .next = sge_queue_next,
1711 .stop = sge_queue_stop,
1712 .show = sge_qinfo_show
1713};
1714
1715static int sge_qinfo_open(struct inode *inode, struct file *file)
1716{
1717 int res = seq_open(file, &sge_qinfo_seq_ops);
1718
1719 if (!res) {
1720 struct seq_file *seq = file->private_data;
1721 seq->private = inode->i_private;
1722 }
1723 return res;
1724}
1725
1726static const struct file_operations sge_qinfo_debugfs_fops = {
1727 .owner = THIS_MODULE,
1728 .open = sge_qinfo_open,
1729 .read = seq_read,
1730 .llseek = seq_lseek,
1731 .release = seq_release,
1732};
1733
1734/*
1735 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1736 */
1737#define QPL 4
1738
1739static int sge_qstats_show(struct seq_file *seq, void *v)
1740{
1741 struct adapter *adapter = seq->private;
1742 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1743 int qs, r = (uintptr_t)v - 1;
1744
1745 if (r)
1746 seq_putc(seq, '\n');
1747
1748 #define S3(fmt, s, v) \
1749 do { \
1750 seq_printf(seq, "%-16s", s); \
1751 for (qs = 0; qs < n; ++qs) \
1752 seq_printf(seq, " %8" fmt, v); \
1753 seq_putc(seq, '\n'); \
1754 } while (0)
1755 #define S(s, v) S3("s", s, v)
1756
1757 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1758 #define T(s, v) T3("lu", s, v)
1759
1760 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1761 #define R(s, v) R3("lu", s, v)
1762
1763 if (r < eth_entries) {
1764 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1765 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1766 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1767
1768 S("QType:", "Ethernet");
1769 S("Interface:",
1770 (rxq[qs].rspq.netdev
1771 ? rxq[qs].rspq.netdev->name
1772 : "N/A"));
68dc9d36 1773 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1774 R("RxPackets:", stats.pkts);
1775 R("RxCSO:", stats.rx_cso);
1776 R("VLANxtract:", stats.vlan_ex);
1777 R("LROmerged:", stats.lro_merged);
1778 R("LROpackets:", stats.lro_pkts);
1779 R("RxDrops:", stats.rx_drops);
1780 T("TSO:", tso);
1781 T("TxCSO:", tx_cso);
1782 T("VLANins:", vlan_ins);
1783 T("TxQFull:", q.stops);
1784 T("TxQRestarts:", q.restarts);
1785 T("TxMapErr:", mapping_err);
1786 R("FLAllocErr:", fl.alloc_failed);
1787 R("FLLrgAlcErr:", fl.large_alloc_failed);
1788 R("FLStarving:", fl.starving);
1789 return 0;
1790 }
1791
1792 r -= eth_entries;
1793 if (r == 0) {
1794 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1795
1796 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1797 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1798 evtq->unhandled_irqs);
be839e39
CL
1799 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1800 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1801 } else if (r == 1) {
1802 const struct sge_rspq *intrq = &adapter->sge.intrq;
1803
1804 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1805 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1806 intrq->unhandled_irqs);
be839e39
CL
1807 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1808 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1809 }
1810
1811 #undef R
1812 #undef T
1813 #undef S
1814 #undef R3
1815 #undef T3
1816 #undef S3
1817
1818 return 0;
1819}
1820
1821/*
1822 * Return the number of "entries" in our "file". We group the multi-Queue
1823 * sections with QPL Queue Sets per "entry". The sections of the output are:
1824 *
1825 * Ethernet RX/TX Queue Sets
1826 * Firmware Event Queue
1827 * Forwarded Interrupt Queue (if in MSI mode)
1828 */
1829static int sge_qstats_entries(const struct adapter *adapter)
1830{
1831 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1832 ((adapter->flags & USING_MSI) != 0);
1833}
1834
1835static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1836{
1837 int entries = sge_qstats_entries(seq->private);
1838
1839 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1840}
1841
1842static void sge_qstats_stop(struct seq_file *seq, void *v)
1843{
1844}
1845
1846static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1847{
1848 int entries = sge_qstats_entries(seq->private);
1849
1850 (*pos)++;
1851 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1852}
1853
1854static const struct seq_operations sge_qstats_seq_ops = {
1855 .start = sge_qstats_start,
1856 .next = sge_qstats_next,
1857 .stop = sge_qstats_stop,
1858 .show = sge_qstats_show
1859};
1860
1861static int sge_qstats_open(struct inode *inode, struct file *file)
1862{
1863 int res = seq_open(file, &sge_qstats_seq_ops);
1864
1865 if (res == 0) {
1866 struct seq_file *seq = file->private_data;
1867 seq->private = inode->i_private;
1868 }
1869 return res;
1870}
1871
1872static const struct file_operations sge_qstats_proc_fops = {
1873 .owner = THIS_MODULE,
1874 .open = sge_qstats_open,
1875 .read = seq_read,
1876 .llseek = seq_lseek,
1877 .release = seq_release,
1878};
1879
1880/*
1881 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1882 */
1883static int resources_show(struct seq_file *seq, void *v)
1884{
1885 struct adapter *adapter = seq->private;
1886 struct vf_resources *vfres = &adapter->params.vfres;
1887
1888 #define S(desc, fmt, var) \
1889 seq_printf(seq, "%-60s " fmt "\n", \
1890 desc " (" #var "):", vfres->var)
1891
1892 S("Virtual Interfaces", "%d", nvi);
1893 S("Egress Queues", "%d", neq);
1894 S("Ethernet Control", "%d", nethctrl);
1895 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1896 S("Ingress Queues", "%d", niq);
1897 S("Traffic Class", "%d", tc);
1898 S("Port Access Rights Mask", "%#x", pmask);
1899 S("MAC Address Filters", "%d", nexactf);
1900 S("Firmware Command Read Capabilities", "%#x", r_caps);
1901 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1902
1903 #undef S
1904
1905 return 0;
1906}
1907
1908static int resources_open(struct inode *inode, struct file *file)
1909{
1910 return single_open(file, resources_show, inode->i_private);
1911}
1912
1913static const struct file_operations resources_proc_fops = {
1914 .owner = THIS_MODULE,
1915 .open = resources_open,
1916 .read = seq_read,
1917 .llseek = seq_lseek,
1918 .release = single_release,
1919};
1920
1921/*
1922 * Show Virtual Interfaces.
1923 */
1924static int interfaces_show(struct seq_file *seq, void *v)
1925{
1926 if (v == SEQ_START_TOKEN) {
1927 seq_puts(seq, "Interface Port VIID\n");
1928 } else {
1929 struct adapter *adapter = seq->private;
1930 int pidx = (uintptr_t)v - 2;
1931 struct net_device *dev = adapter->port[pidx];
1932 struct port_info *pi = netdev_priv(dev);
1933
1934 seq_printf(seq, "%9s %4d %#5x\n",
1935 dev->name, pi->port_id, pi->viid);
1936 }
1937 return 0;
1938}
1939
1940static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1941{
1942 return pos <= adapter->params.nports
1943 ? (void *)(uintptr_t)(pos + 1)
1944 : NULL;
1945}
1946
1947static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1948{
1949 return *pos
1950 ? interfaces_get_idx(seq->private, *pos)
1951 : SEQ_START_TOKEN;
1952}
1953
1954static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1955{
1956 (*pos)++;
1957 return interfaces_get_idx(seq->private, *pos);
1958}
1959
1960static void interfaces_stop(struct seq_file *seq, void *v)
1961{
1962}
1963
1964static const struct seq_operations interfaces_seq_ops = {
1965 .start = interfaces_start,
1966 .next = interfaces_next,
1967 .stop = interfaces_stop,
1968 .show = interfaces_show
1969};
1970
1971static int interfaces_open(struct inode *inode, struct file *file)
1972{
1973 int res = seq_open(file, &interfaces_seq_ops);
1974
1975 if (res == 0) {
1976 struct seq_file *seq = file->private_data;
1977 seq->private = inode->i_private;
1978 }
1979 return res;
1980}
1981
1982static const struct file_operations interfaces_proc_fops = {
1983 .owner = THIS_MODULE,
1984 .open = interfaces_open,
1985 .read = seq_read,
1986 .llseek = seq_lseek,
1987 .release = seq_release,
1988};
1989
1990/*
1991 * /sys/kernel/debugfs/cxgb4vf/ files list.
1992 */
1993struct cxgb4vf_debugfs_entry {
1994 const char *name; /* name of debugfs node */
1995 mode_t mode; /* file system mode */
1996 const struct file_operations *fops;
1997};
1998
1999static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2000 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2001 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2002 { "resources", S_IRUGO, &resources_proc_fops },
2003 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2004};
2005
2006/*
2007 * Module and device initialization and cleanup code.
2008 * ==================================================
2009 */
2010
2011/*
2012 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2013 * directory (debugfs_root) has already been set up.
2014 */
2015static int __devinit setup_debugfs(struct adapter *adapter)
2016{
2017 int i;
2018
2019 BUG_ON(adapter->debugfs_root == NULL);
2020
2021 /*
2022 * Debugfs support is best effort.
2023 */
2024 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2025 (void)debugfs_create_file(debugfs_files[i].name,
2026 debugfs_files[i].mode,
2027 adapter->debugfs_root,
2028 (void *)adapter,
2029 debugfs_files[i].fops);
2030
2031 return 0;
2032}
2033
2034/*
2035 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2036 * it to our caller to tear down the directory (debugfs_root).
2037 */
2038static void __devexit cleanup_debugfs(struct adapter *adapter)
2039{
2040 BUG_ON(adapter->debugfs_root == NULL);
2041
2042 /*
2043 * Unlike our sister routine cleanup_proc(), we don't need to remove
2044 * individual entries because a call will be made to
2045 * debugfs_remove_recursive(). We just need to clean up any ancillary
2046 * persistent state.
2047 */
2048 /* nothing to do */
2049}
2050
2051/*
2052 * Perform early "adapter" initialization. This is where we discover what
2053 * adapter parameters we're going to be using and initialize basic adapter
2054 * hardware support.
2055 */
2056static int adap_init0(struct adapter *adapter)
2057{
2058 struct vf_resources *vfres = &adapter->params.vfres;
2059 struct sge_params *sge_params = &adapter->params.sge;
2060 struct sge *s = &adapter->sge;
2061 unsigned int ethqsets;
2062 int err;
2063
2064 /*
2065 * Wait for the device to become ready before proceeding ...
2066 */
2067 err = t4vf_wait_dev_ready(adapter);
2068 if (err) {
2069 dev_err(adapter->pdev_dev, "device didn't become ready:"
2070 " err=%d\n", err);
2071 return err;
2072 }
2073
2074 /*
2075 * Grab basic operational parameters. These will predominantly have
2076 * been set up by the Physical Function Driver or will be hard coded
2077 * into the adapter. We just have to live with them ... Note that
2078 * we _must_ get our VPD parameters before our SGE parameters because
2079 * we need to know the adapter's core clock from the VPD in order to
2080 * properly decode the SGE Timer Values.
2081 */
2082 err = t4vf_get_dev_params(adapter);
2083 if (err) {
2084 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2085 " device parameters: err=%d\n", err);
2086 return err;
2087 }
2088 err = t4vf_get_vpd_params(adapter);
2089 if (err) {
2090 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2091 " VPD parameters: err=%d\n", err);
2092 return err;
2093 }
2094 err = t4vf_get_sge_params(adapter);
2095 if (err) {
2096 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2097 " SGE parameters: err=%d\n", err);
2098 return err;
2099 }
2100 err = t4vf_get_rss_glb_config(adapter);
2101 if (err) {
2102 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2103 " RSS parameters: err=%d\n", err);
2104 return err;
2105 }
2106 if (adapter->params.rss.mode !=
2107 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2108 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2109 " mode %d\n", adapter->params.rss.mode);
2110 return -EINVAL;
2111 }
2112 err = t4vf_sge_init(adapter);
2113 if (err) {
2114 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2115 " err=%d\n", err);
2116 return err;
2117 }
2118
2119 /*
2120 * Retrieve our RX interrupt holdoff timer values and counter
2121 * threshold values from the SGE parameters.
2122 */
2123 s->timer_val[0] = core_ticks_to_us(adapter,
2124 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2125 s->timer_val[1] = core_ticks_to_us(adapter,
2126 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2127 s->timer_val[2] = core_ticks_to_us(adapter,
2128 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2129 s->timer_val[3] = core_ticks_to_us(adapter,
2130 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2131 s->timer_val[4] = core_ticks_to_us(adapter,
2132 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2133 s->timer_val[5] = core_ticks_to_us(adapter,
2134 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2135
2136 s->counter_val[0] =
2137 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2138 s->counter_val[1] =
2139 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2140 s->counter_val[2] =
2141 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2142 s->counter_val[3] =
2143 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2144
2145 /*
2146 * Grab our Virtual Interface resource allocation, extract the
2147 * features that we're interested in and do a bit of sanity testing on
2148 * what we discover.
2149 */
2150 err = t4vf_get_vfres(adapter);
2151 if (err) {
2152 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2153 " resources: err=%d\n", err);
2154 return err;
2155 }
2156
2157 /*
2158 * The number of "ports" which we support is equal to the number of
2159 * Virtual Interfaces with which we've been provisioned.
2160 */
2161 adapter->params.nports = vfres->nvi;
2162 if (adapter->params.nports > MAX_NPORTS) {
2163 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2164 " virtual interfaces\n", MAX_NPORTS,
2165 adapter->params.nports);
2166 adapter->params.nports = MAX_NPORTS;
2167 }
2168
2169 /*
2170 * We need to reserve a number of the ingress queues with Free List
2171 * and Interrupt capabilities for special interrupt purposes (like
2172 * asynchronous firmware messages, or forwarded interrupts if we're
2173 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2174 * matched up one-for-one with Ethernet/Control egress queues in order
2175 * to form "Queue Sets" which will be aportioned between the "ports".
2176 * For each Queue Set, we'll need the ability to allocate two Egress
2177 * Contexts -- one for the Ingress Queue Free List and one for the TX
2178 * Ethernet Queue.
2179 */
2180 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2181 if (vfres->nethctrl != ethqsets) {
2182 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2183 " ingress/egress queues (%d/%d); using minimum for"
2184 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2185 ethqsets = min(vfres->nethctrl, ethqsets);
2186 }
2187 if (vfres->neq < ethqsets*2) {
2188 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2189 " to support Queue Sets (%d); reducing allowed Queue"
2190 " Sets\n", vfres->neq, ethqsets);
2191 ethqsets = vfres->neq/2;
2192 }
2193 if (ethqsets > MAX_ETH_QSETS) {
2194 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2195 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2196 ethqsets = MAX_ETH_QSETS;
2197 }
2198 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2199 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2200 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2201 }
2202 adapter->sge.max_ethqsets = ethqsets;
2203
2204 /*
2205 * Check for various parameter sanity issues. Most checks simply
2206 * result in us using fewer resources than our provissioning but we
2207 * do need at least one "port" with which to work ...
2208 */
2209 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2210 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2211 " virtual interfaces (too few Queue Sets)\n",
2212 adapter->sge.max_ethqsets, adapter->params.nports);
2213 adapter->params.nports = adapter->sge.max_ethqsets;
2214 }
2215 if (adapter->params.nports == 0) {
2216 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2217 "usable!\n");
2218 return -EINVAL;
2219 }
2220 return 0;
2221}
2222
2223static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2224 u8 pkt_cnt_idx, unsigned int size,
2225 unsigned int iqe_size)
2226{
2227 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2228 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2229 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2230 ? pkt_cnt_idx
2231 : 0);
2232 rspq->iqe_len = iqe_size;
2233 rspq->size = size;
2234}
2235
2236/*
2237 * Perform default configuration of DMA queues depending on the number and
2238 * type of ports we found and the number of available CPUs. Most settings can
2239 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2240 * being brought up for the first time.
2241 */
2242static void __devinit cfg_queues(struct adapter *adapter)
2243{
2244 struct sge *s = &adapter->sge;
2245 int q10g, n10g, qidx, pidx, qs;
2246
2247 /*
2248 * We should not be called till we know how many Queue Sets we can
2249 * support. In particular, this means that we need to know what kind
2250 * of interrupts we'll be using ...
2251 */
2252 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2253
2254 /*
2255 * Count the number of 10GbE Virtual Interfaces that we have.
2256 */
2257 n10g = 0;
2258 for_each_port(adapter, pidx)
2259 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2260
2261 /*
2262 * We default to 1 queue per non-10G port and up to # of cores queues
2263 * per 10G port.
2264 */
2265 if (n10g == 0)
2266 q10g = 0;
2267 else {
2268 int n1g = (adapter->params.nports - n10g);
2269 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2270 if (q10g > num_online_cpus())
2271 q10g = num_online_cpus();
2272 }
2273
2274 /*
2275 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2276 * The layout will be established in setup_sge_queues() when the
2277 * adapter is brough up for the first time.
2278 */
2279 qidx = 0;
2280 for_each_port(adapter, pidx) {
2281 struct port_info *pi = adap2pinfo(adapter, pidx);
2282
2283 pi->first_qset = qidx;
2284 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2285 qidx += pi->nqsets;
2286 }
2287 s->ethqsets = qidx;
2288
2289 /*
2290 * Set up default Queue Set parameters ... Start off with the
2291 * shortest interrupt holdoff timer.
2292 */
2293 for (qs = 0; qs < s->max_ethqsets; qs++) {
2294 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2295 struct sge_eth_txq *txq = &s->ethtxq[qs];
2296
2297 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2298 rxq->fl.size = 72;
2299 txq->q.size = 1024;
2300 }
2301
2302 /*
2303 * The firmware event queue is used for link state changes and
2304 * notifications of TX DMA completions.
2305 */
2306 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2307 L1_CACHE_BYTES);
2308
2309 /*
2310 * The forwarded interrupt queue is used when we're in MSI interrupt
2311 * mode. In this mode all interrupts associated with RX queues will
2312 * be forwarded to a single queue which we'll associate with our MSI
2313 * interrupt vector. The messages dropped in the forwarded interrupt
2314 * queue will indicate which ingress queue needs servicing ... This
2315 * queue needs to be large enough to accommodate all of the ingress
2316 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2317 * from equalling the CIDX if every ingress queue has an outstanding
2318 * interrupt). The queue doesn't need to be any larger because no
2319 * ingress queue will ever have more than one outstanding interrupt at
2320 * any time ...
2321 */
2322 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2323 L1_CACHE_BYTES);
2324}
2325
2326/*
2327 * Reduce the number of Ethernet queues across all ports to at most n.
2328 * n provides at least one queue per port.
2329 */
2330static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2331{
2332 int i;
2333 struct port_info *pi;
2334
2335 /*
2336 * While we have too many active Ether Queue Sets, interate across the
2337 * "ports" and reduce their individual Queue Set allocations.
2338 */
2339 BUG_ON(n < adapter->params.nports);
2340 while (n < adapter->sge.ethqsets)
2341 for_each_port(adapter, i) {
2342 pi = adap2pinfo(adapter, i);
2343 if (pi->nqsets > 1) {
2344 pi->nqsets--;
2345 adapter->sge.ethqsets--;
2346 if (adapter->sge.ethqsets <= n)
2347 break;
2348 }
2349 }
2350
2351 /*
2352 * Reassign the starting Queue Sets for each of the "ports" ...
2353 */
2354 n = 0;
2355 for_each_port(adapter, i) {
2356 pi = adap2pinfo(adapter, i);
2357 pi->first_qset = n;
2358 n += pi->nqsets;
2359 }
2360}
2361
2362/*
2363 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2364 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2365 * need. Minimally we need one for every Virtual Interface plus those needed
2366 * for our "extras". Note that this process may lower the maximum number of
2367 * allowed Queue Sets ...
2368 */
2369static int __devinit enable_msix(struct adapter *adapter)
2370{
2371 int i, err, want, need;
2372 struct msix_entry entries[MSIX_ENTRIES];
2373 struct sge *s = &adapter->sge;
2374
2375 for (i = 0; i < MSIX_ENTRIES; ++i)
2376 entries[i].entry = i;
2377
2378 /*
2379 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2380 * plus those needed for our "extras" (for example, the firmware
2381 * message queue). We _need_ at least one "Queue Set" per Virtual
2382 * Interface plus those needed for our "extras". So now we get to see
2383 * if the song is right ...
2384 */
2385 want = s->max_ethqsets + MSIX_EXTRAS;
2386 need = adapter->params.nports + MSIX_EXTRAS;
2387 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2388 want = err;
2389
2390 if (err == 0) {
2391 int nqsets = want - MSIX_EXTRAS;
2392 if (nqsets < s->max_ethqsets) {
2393 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2394 " for %d Queue Sets\n", nqsets);
2395 s->max_ethqsets = nqsets;
2396 if (nqsets < s->ethqsets)
2397 reduce_ethqs(adapter, nqsets);
2398 }
2399 for (i = 0; i < want; ++i)
2400 adapter->msix_info[i].vec = entries[i].vector;
2401 } else if (err > 0) {
2402 pci_disable_msix(adapter->pdev);
2403 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2404 " not using MSI-X\n", err);
2405 }
2406 return err;
2407}
2408
2409#ifdef HAVE_NET_DEVICE_OPS
2410static const struct net_device_ops cxgb4vf_netdev_ops = {
2411 .ndo_open = cxgb4vf_open,
2412 .ndo_stop = cxgb4vf_stop,
2413 .ndo_start_xmit = t4vf_eth_xmit,
2414 .ndo_get_stats = cxgb4vf_get_stats,
2415 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2416 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2417 .ndo_select_queue = cxgb4vf_select_queue,
2418 .ndo_validate_addr = eth_validate_addr,
2419 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2420 .ndo_change_mtu = cxgb4vf_change_mtu,
2421 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2422#ifdef CONFIG_NET_POLL_CONTROLLER
2423 .ndo_poll_controller = cxgb4vf_poll_controller,
2424#endif
2425};
2426#endif
2427
2428/*
2429 * "Probe" a device: initialize a device and construct all kernel and driver
2430 * state needed to manage the device. This routine is called "init_one" in
2431 * the PF Driver ...
2432 */
2433static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2434 const struct pci_device_id *ent)
2435{
2436 static int version_printed;
2437
2438 int pci_using_dac;
2439 int err, pidx;
2440 unsigned int pmask;
2441 struct adapter *adapter;
2442 struct port_info *pi;
2443 struct net_device *netdev;
2444
2445 /*
2446 * Vet our module parameters.
2447 */
2448 if (msi != MSI_MSIX && msi != MSI_MSI) {
2449 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2450 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2451 MSI_MSI);
2452 err = -EINVAL;
2453 goto err_out;
2454 }
2455
2456 /*
2457 * Print our driver banner the first time we're called to initialize a
2458 * device.
2459 */
2460 if (version_printed == 0) {
2461 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2462 version_printed = 1;
2463 }
2464
7a0c2029 2465
be839e39 2466 /*
7a0c2029 2467 * Initialize generic PCI device state.
be839e39 2468 */
7a0c2029 2469 err = pci_enable_device(pdev);
be839e39 2470 if (err) {
7a0c2029 2471 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2472 return err;
2473 }
2474
2475 /*
7a0c2029
KV
2476 * Reserve PCI resources for the device. If we can't get them some
2477 * other driver may have already claimed the device ...
be839e39 2478 */
7a0c2029 2479 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2480 if (err) {
7a0c2029
KV
2481 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2482 goto err_disable_device;
be839e39
CL
2483 }
2484
2485 /*
2486 * Set up our DMA mask: try for 64-bit address masking first and
2487 * fall back to 32-bit if we can't get 64 bits ...
2488 */
2489 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2490 if (err == 0) {
2491 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2492 if (err) {
2493 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2494 " coherent allocations\n");
7a0c2029 2495 goto err_release_regions;
be839e39
CL
2496 }
2497 pci_using_dac = 1;
2498 } else {
2499 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2500 if (err != 0) {
2501 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2502 goto err_release_regions;
be839e39
CL
2503 }
2504 pci_using_dac = 0;
2505 }
2506
2507 /*
2508 * Enable bus mastering for the device ...
2509 */
2510 pci_set_master(pdev);
2511
2512 /*
2513 * Allocate our adapter data structure and attach it to the device.
2514 */
2515 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2516 if (!adapter) {
2517 err = -ENOMEM;
7a0c2029 2518 goto err_release_regions;
be839e39
CL
2519 }
2520 pci_set_drvdata(pdev, adapter);
2521 adapter->pdev = pdev;
2522 adapter->pdev_dev = &pdev->dev;
2523
2524 /*
2525 * Initialize SMP data synchronization resources.
2526 */
2527 spin_lock_init(&adapter->stats_lock);
2528
2529 /*
2530 * Map our I/O registers in BAR0.
2531 */
2532 adapter->regs = pci_ioremap_bar(pdev, 0);
2533 if (!adapter->regs) {
2534 dev_err(&pdev->dev, "cannot map device registers\n");
2535 err = -ENOMEM;
2536 goto err_free_adapter;
2537 }
2538
2539 /*
2540 * Initialize adapter level features.
2541 */
2542 adapter->name = pci_name(pdev);
2543 adapter->msg_enable = dflt_msg_enable;
2544 err = adap_init0(adapter);
2545 if (err)
2546 goto err_unmap_bar;
2547
2548 /*
2549 * Allocate our "adapter ports" and stitch everything together.
2550 */
2551 pmask = adapter->params.vfres.pmask;
2552 for_each_port(adapter, pidx) {
2553 int port_id, viid;
2554
2555 /*
2556 * We simplistically allocate our virtual interfaces
2557 * sequentially across the port numbers to which we have
2558 * access rights. This should be configurable in some manner
2559 * ...
2560 */
2561 if (pmask == 0)
2562 break;
2563 port_id = ffs(pmask) - 1;
2564 pmask &= ~(1 << port_id);
2565 viid = t4vf_alloc_vi(adapter, port_id);
2566 if (viid < 0) {
2567 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2568 " err=%d\n", port_id, viid);
2569 err = viid;
2570 goto err_free_dev;
2571 }
2572
2573 /*
2574 * Allocate our network device and stitch things together.
2575 */
2576 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2577 MAX_PORT_QSETS);
2578 if (netdev == NULL) {
2579 dev_err(&pdev->dev, "cannot allocate netdev for"
2580 " port %d\n", port_id);
2581 t4vf_free_vi(adapter, viid);
2582 err = -ENOMEM;
2583 goto err_free_dev;
2584 }
2585 adapter->port[pidx] = netdev;
2586 SET_NETDEV_DEV(netdev, &pdev->dev);
2587 pi = netdev_priv(netdev);
2588 pi->adapter = adapter;
2589 pi->pidx = pidx;
2590 pi->port_id = port_id;
2591 pi->viid = viid;
2592
2593 /*
2594 * Initialize the starting state of our "port" and register
2595 * it.
2596 */
2597 pi->xact_addr_filt = -1;
2598 pi->rx_offload = RX_CSO;
2599 netif_carrier_off(netdev);
2600 netif_tx_stop_all_queues(netdev);
2601 netdev->irq = pdev->irq;
2602
2603 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2604 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2605 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2606 NETIF_F_GRO);
2607 if (pci_using_dac)
2608 netdev->features |= NETIF_F_HIGHDMA;
2609 netdev->vlan_features =
2610 (netdev->features &
2611 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2612
2613#ifdef HAVE_NET_DEVICE_OPS
2614 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2615#else
2616 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2617 netdev->open = cxgb4vf_open;
2618 netdev->stop = cxgb4vf_stop;
2619 netdev->hard_start_xmit = t4vf_eth_xmit;
2620 netdev->get_stats = cxgb4vf_get_stats;
2621 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2622 netdev->do_ioctl = cxgb4vf_do_ioctl;
2623 netdev->change_mtu = cxgb4vf_change_mtu;
2624 netdev->set_mac_address = cxgb4vf_set_mac_addr;
2625 netdev->select_queue = cxgb4vf_select_queue;
2626#ifdef CONFIG_NET_POLL_CONTROLLER
2627 netdev->poll_controller = cxgb4vf_poll_controller;
2628#endif
2629#endif
2630 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2631
2632 /*
2633 * Initialize the hardware/software state for the port.
2634 */
2635 err = t4vf_port_init(adapter, pidx);
2636 if (err) {
2637 dev_err(&pdev->dev, "cannot initialize port %d\n",
2638 pidx);
2639 goto err_free_dev;
2640 }
2641 }
2642
2643 /*
2644 * The "card" is now ready to go. If any errors occur during device
2645 * registration we do not fail the whole "card" but rather proceed
2646 * only with the ports we manage to register successfully. However we
2647 * must register at least one net device.
2648 */
2649 for_each_port(adapter, pidx) {
2650 netdev = adapter->port[pidx];
2651 if (netdev == NULL)
2652 continue;
2653
2654 err = register_netdev(netdev);
2655 if (err) {
2656 dev_warn(&pdev->dev, "cannot register net device %s,"
2657 " skipping\n", netdev->name);
2658 continue;
2659 }
2660
2661 set_bit(pidx, &adapter->registered_device_map);
2662 }
2663 if (adapter->registered_device_map == 0) {
2664 dev_err(&pdev->dev, "could not register any net devices\n");
2665 goto err_free_dev;
2666 }
2667
2668 /*
2669 * Set up our debugfs entries.
2670 */
2671 if (cxgb4vf_debugfs_root) {
2672 adapter->debugfs_root =
2673 debugfs_create_dir(pci_name(pdev),
2674 cxgb4vf_debugfs_root);
2675 if (adapter->debugfs_root == NULL)
2676 dev_warn(&pdev->dev, "could not create debugfs"
2677 " directory");
2678 else
2679 setup_debugfs(adapter);
2680 }
2681
2682 /*
2683 * See what interrupts we'll be using. If we've been configured to
2684 * use MSI-X interrupts, try to enable them but fall back to using
2685 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2686 * get MSI interrupts we bail with the error.
2687 */
2688 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2689 adapter->flags |= USING_MSIX;
2690 else {
2691 err = pci_enable_msi(pdev);
2692 if (err) {
2693 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2694 " err=%d\n",
2695 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2696 goto err_free_debugfs;
2697 }
2698 adapter->flags |= USING_MSI;
2699 }
2700
2701 /*
2702 * Now that we know how many "ports" we have and what their types are,
2703 * and how many Queue Sets we can support, we can configure our queue
2704 * resources.
2705 */
2706 cfg_queues(adapter);
2707
2708 /*
2709 * Print a short notice on the existance and configuration of the new
2710 * VF network device ...
2711 */
2712 for_each_port(adapter, pidx) {
2713 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2714 adapter->port[pidx]->name,
2715 (adapter->flags & USING_MSIX) ? "MSI-X" :
2716 (adapter->flags & USING_MSI) ? "MSI" : "");
2717 }
2718
2719 /*
2720 * Return success!
2721 */
2722 return 0;
2723
2724 /*
2725 * Error recovery and exit code. Unwind state that's been created
2726 * so far and return the error.
2727 */
2728
2729err_free_debugfs:
2730 if (adapter->debugfs_root) {
2731 cleanup_debugfs(adapter);
2732 debugfs_remove_recursive(adapter->debugfs_root);
2733 }
2734
2735err_free_dev:
2736 for_each_port(adapter, pidx) {
2737 netdev = adapter->port[pidx];
2738 if (netdev == NULL)
2739 continue;
2740 pi = netdev_priv(netdev);
2741 t4vf_free_vi(adapter, pi->viid);
2742 if (test_bit(pidx, &adapter->registered_device_map))
2743 unregister_netdev(netdev);
2744 free_netdev(netdev);
2745 }
2746
2747err_unmap_bar:
2748 iounmap(adapter->regs);
2749
2750err_free_adapter:
2751 kfree(adapter);
2752 pci_set_drvdata(pdev, NULL);
2753
be839e39
CL
2754err_release_regions:
2755 pci_release_regions(pdev);
2756 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2757 pci_clear_master(pdev);
2758
2759err_disable_device:
2760 pci_disable_device(pdev);
be839e39
CL
2761
2762err_out:
2763 return err;
2764}
2765
2766/*
2767 * "Remove" a device: tear down all kernel and driver state created in the
2768 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2769 * that this is called "remove_one" in the PF Driver.)
2770 */
2771static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2772{
2773 struct adapter *adapter = pci_get_drvdata(pdev);
2774
2775 /*
2776 * Tear down driver state associated with device.
2777 */
2778 if (adapter) {
2779 int pidx;
2780
2781 /*
2782 * Stop all of our activity. Unregister network port,
2783 * disable interrupts, etc.
2784 */
2785 for_each_port(adapter, pidx)
2786 if (test_bit(pidx, &adapter->registered_device_map))
2787 unregister_netdev(adapter->port[pidx]);
2788 t4vf_sge_stop(adapter);
2789 if (adapter->flags & USING_MSIX) {
2790 pci_disable_msix(adapter->pdev);
2791 adapter->flags &= ~USING_MSIX;
2792 } else if (adapter->flags & USING_MSI) {
2793 pci_disable_msi(adapter->pdev);
2794 adapter->flags &= ~USING_MSI;
2795 }
2796
2797 /*
2798 * Tear down our debugfs entries.
2799 */
2800 if (adapter->debugfs_root) {
2801 cleanup_debugfs(adapter);
2802 debugfs_remove_recursive(adapter->debugfs_root);
2803 }
2804
2805 /*
2806 * Free all of the various resources which we've acquired ...
2807 */
2808 t4vf_free_sge_resources(adapter);
2809 for_each_port(adapter, pidx) {
2810 struct net_device *netdev = adapter->port[pidx];
2811 struct port_info *pi;
2812
2813 if (netdev == NULL)
2814 continue;
2815
2816 pi = netdev_priv(netdev);
2817 t4vf_free_vi(adapter, pi->viid);
2818 free_netdev(netdev);
2819 }
2820 iounmap(adapter->regs);
2821 kfree(adapter);
2822 pci_set_drvdata(pdev, NULL);
2823 }
2824
2825 /*
2826 * Disable the device and release its PCI resources.
2827 */
2828 pci_disable_device(pdev);
2829 pci_clear_master(pdev);
2830 pci_release_regions(pdev);
2831}
2832
2833/*
2834 * PCI Device registration data structures.
2835 */
2836#define CH_DEVICE(devid, idx) \
2837 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2838
2839static struct pci_device_id cxgb4vf_pci_tbl[] = {
2840 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2841 CH_DEVICE(0x4800, 0), /* T440-dbg */
2842 CH_DEVICE(0x4801, 0), /* T420-cr */
2843 CH_DEVICE(0x4802, 0), /* T422-cr */
2844 { 0, }
2845};
2846
2847MODULE_DESCRIPTION(DRV_DESC);
2848MODULE_AUTHOR("Chelsio Communications");
2849MODULE_LICENSE("Dual BSD/GPL");
2850MODULE_VERSION(DRV_VERSION);
2851MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2852
2853static struct pci_driver cxgb4vf_driver = {
2854 .name = KBUILD_MODNAME,
2855 .id_table = cxgb4vf_pci_tbl,
2856 .probe = cxgb4vf_pci_probe,
2857 .remove = __devexit_p(cxgb4vf_pci_remove),
2858};
2859
2860/*
2861 * Initialize global driver state.
2862 */
2863static int __init cxgb4vf_module_init(void)
2864{
2865 int ret;
2866
2867 /* Debugfs support is optional, just warn if this fails */
2868 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2869 if (!cxgb4vf_debugfs_root)
2870 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2871 " debugfs entry, continuing\n");
2872
2873 ret = pci_register_driver(&cxgb4vf_driver);
2874 if (ret < 0)
2875 debugfs_remove(cxgb4vf_debugfs_root);
2876 return ret;
2877}
2878
2879/*
2880 * Tear down global driver state.
2881 */
2882static void __exit cxgb4vf_module_exit(void)
2883{
2884 pci_unregister_driver(&cxgb4vf_driver);
2885 debugfs_remove(cxgb4vf_debugfs_root);
2886}
2887
2888module_init(cxgb4vf_module_init);
2889module_exit(cxgb4vf_module_exit);