]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/cxgb4vf/cxgb4vf_main.c
cxgb4vf: minor comment/symbolic name cleanup.
[mirror_ubuntu-bionic-kernel.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
caedda35 283 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
be839e39
CL
284 snprintf(adapter->msix_info[msi].desc, namelen,
285 "%s-%d", dev->name, qs);
286 adapter->msix_info[msi].desc[namelen] = 0;
287 }
288 }
289}
290
291/*
292 * Request all of our MSI-X resources.
293 */
294static int request_msix_queue_irqs(struct adapter *adapter)
295{
296 struct sge *s = &adapter->sge;
297 int rxq, msi, err;
298
299 /*
300 * Firmware events.
301 */
302 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
303 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
304 if (err)
305 return err;
306
307 /*
308 * Ethernet queues.
309 */
caedda35 310 msi = MSIX_IQFLINT;
be839e39
CL
311 for_each_ethrxq(s, rxq) {
312 err = request_irq(adapter->msix_info[msi].vec,
313 t4vf_sge_intr_msix, 0,
314 adapter->msix_info[msi].desc,
315 &s->ethrxq[rxq].rspq);
316 if (err)
317 goto err_free_irqs;
318 msi++;
319 }
320 return 0;
321
322err_free_irqs:
323 while (--rxq >= 0)
324 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
325 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
326 return err;
327}
328
329/*
330 * Free our MSI-X resources.
331 */
332static void free_msix_queue_irqs(struct adapter *adapter)
333{
334 struct sge *s = &adapter->sge;
335 int rxq, msi;
336
337 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
caedda35 338 msi = MSIX_IQFLINT;
be839e39
CL
339 for_each_ethrxq(s, rxq)
340 free_irq(adapter->msix_info[msi++].vec,
341 &s->ethrxq[rxq].rspq);
342}
343
344/*
345 * Turn on NAPI and start up interrupts on a response queue.
346 */
347static void qenable(struct sge_rspq *rspq)
348{
349 napi_enable(&rspq->napi);
350
351 /*
352 * 0-increment the Going To Sleep register to start the timer and
353 * enable interrupts.
354 */
355 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
356 CIDXINC(0) |
357 SEINTARM(rspq->intr_params) |
358 INGRESSQID(rspq->cntxt_id));
359}
360
361/*
362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
363 */
364static void enable_rx(struct adapter *adapter)
365{
366 int rxq;
367 struct sge *s = &adapter->sge;
368
369 for_each_ethrxq(s, rxq)
370 qenable(&s->ethrxq[rxq].rspq);
371 qenable(&s->fw_evtq);
372
373 /*
374 * The interrupt queue doesn't use NAPI so we do the 0-increment of
375 * its Going To Sleep register here to get it started.
376 */
377 if (adapter->flags & USING_MSI)
378 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
379 CIDXINC(0) |
380 SEINTARM(s->intrq.intr_params) |
381 INGRESSQID(s->intrq.cntxt_id));
382
383}
384
385/*
386 * Wait until all NAPI handlers are descheduled.
387 */
388static void quiesce_rx(struct adapter *adapter)
389{
390 struct sge *s = &adapter->sge;
391 int rxq;
392
393 for_each_ethrxq(s, rxq)
394 napi_disable(&s->ethrxq[rxq].rspq.napi);
395 napi_disable(&s->fw_evtq.napi);
396}
397
398/*
399 * Response queue handler for the firmware event queue.
400 */
401static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
402 const struct pkt_gl *gl)
403{
404 /*
405 * Extract response opcode and get pointer to CPL message body.
406 */
407 struct adapter *adapter = rspq->adapter;
408 u8 opcode = ((const struct rss_header *)rsp)->opcode;
409 void *cpl = (void *)(rsp + 1);
410
411 switch (opcode) {
412 case CPL_FW6_MSG: {
413 /*
414 * We've received an asynchronous message from the firmware.
415 */
416 const struct cpl_fw6_msg *fw_msg = cpl;
417 if (fw_msg->type == FW6_TYPE_CMD_RPL)
418 t4vf_handle_fw_rpl(adapter, fw_msg->data);
419 break;
420 }
421
422 case CPL_SGE_EGR_UPDATE: {
423 /*
7f9dd2fa
CL
424 * We've received an Egress Queue Status Update message. We
425 * get these, if the SGE is configured to send these when the
426 * firmware passes certain points in processing our TX
427 * Ethernet Queue or if we make an explicit request for one.
428 * We use these updates to determine when we may need to
429 * restart a TX Ethernet Queue which was stopped for lack of
430 * free TX Queue Descriptors ...
be839e39
CL
431 */
432 const struct cpl_sge_egr_update *p = (void *)cpl;
433 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
434 struct sge *s = &adapter->sge;
435 struct sge_txq *tq;
436 struct sge_eth_txq *txq;
437 unsigned int eq_idx;
be839e39
CL
438
439 /*
440 * Perform sanity checking on the Queue ID to make sure it
441 * really refers to one of our TX Ethernet Egress Queues which
442 * is active and matches the queue's ID. None of these error
443 * conditions should ever happen so we may want to either make
444 * them fatal and/or conditionalized under DEBUG.
445 */
446 eq_idx = EQ_IDX(s, qid);
447 if (unlikely(eq_idx >= MAX_EGRQ)) {
448 dev_err(adapter->pdev_dev,
449 "Egress Update QID %d out of range\n", qid);
450 break;
451 }
452 tq = s->egr_map[eq_idx];
453 if (unlikely(tq == NULL)) {
454 dev_err(adapter->pdev_dev,
455 "Egress Update QID %d TXQ=NULL\n", qid);
456 break;
457 }
458 txq = container_of(tq, struct sge_eth_txq, q);
459 if (unlikely(tq->abs_id != qid)) {
460 dev_err(adapter->pdev_dev,
461 "Egress Update QID %d refers to TXQ %d\n",
462 qid, tq->abs_id);
463 break;
464 }
465
be839e39
CL
466 /*
467 * Restart a stopped TX Queue which has less than half of its
468 * TX ring in use ...
469 */
470 txq->q.restarts++;
471 netif_tx_wake_queue(txq->txq);
472 break;
473 }
474
475 default:
476 dev_err(adapter->pdev_dev,
477 "unexpected CPL %#x on FW event queue\n", opcode);
478 }
479
480 return 0;
481}
482
483/*
484 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
485 * to use and initializes them. We support multiple "Queue Sets" per port if
486 * we have MSI-X, otherwise just one queue set per port.
487 */
488static int setup_sge_queues(struct adapter *adapter)
489{
490 struct sge *s = &adapter->sge;
491 int err, pidx, msix;
492
493 /*
494 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
495 * state.
496 */
497 bitmap_zero(s->starving_fl, MAX_EGRQ);
498
499 /*
500 * If we're using MSI interrupt mode we need to set up a "forwarded
501 * interrupt" queue which we'll set up with our MSI vector. The rest
502 * of the ingress queues will be set up to forward their interrupts to
503 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
504 * the intrq's queue ID as the interrupt forwarding queue for the
505 * subsequent calls ...
506 */
507 if (adapter->flags & USING_MSI) {
508 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
509 adapter->port[0], 0, NULL, NULL);
510 if (err)
511 goto err_free_queues;
512 }
513
514 /*
515 * Allocate our ingress queue for asynchronous firmware messages.
516 */
517 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
518 MSIX_FW, NULL, fwevtq_handler);
519 if (err)
520 goto err_free_queues;
521
522 /*
523 * Allocate each "port"'s initial Queue Sets. These can be changed
524 * later on ... up to the point where any interface on the adapter is
525 * brought up at which point lots of things get nailed down
526 * permanently ...
527 */
caedda35 528 msix = MSIX_IQFLINT;
be839e39
CL
529 for_each_port(adapter, pidx) {
530 struct net_device *dev = adapter->port[pidx];
531 struct port_info *pi = netdev_priv(dev);
532 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
533 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
534 int qs;
535
c8639a82 536 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
537 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
538 dev, msix++,
539 &rxq->fl, t4vf_ethrx_handler);
540 if (err)
541 goto err_free_queues;
542
543 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
544 netdev_get_tx_queue(dev, qs),
545 s->fw_evtq.cntxt_id);
546 if (err)
547 goto err_free_queues;
548
549 rxq->rspq.idx = qs;
550 memset(&rxq->stats, 0, sizeof(rxq->stats));
551 }
552 }
553
554 /*
555 * Create the reverse mappings for the queues.
556 */
557 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
558 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
559 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
560 for_each_port(adapter, pidx) {
561 struct net_device *dev = adapter->port[pidx];
562 struct port_info *pi = netdev_priv(dev);
563 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
564 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
565 int qs;
566
c8639a82 567 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
568 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
569 EQ_MAP(s, txq->q.abs_id) = &txq->q;
570
571 /*
572 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
573 * for Free Lists but since all of the Egress Queues
574 * (including Free Lists) have Relative Queue IDs
575 * which are computed as Absolute - Base Queue ID, we
576 * can synthesize the Absolute Queue IDs for the Free
577 * Lists. This is useful for debugging purposes when
578 * we want to dump Queue Contexts via the PF Driver.
579 */
580 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
581 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
582 }
583 }
584 return 0;
585
586err_free_queues:
587 t4vf_free_sge_resources(adapter);
588 return err;
589}
590
591/*
592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
593 * queues. We configure the RSS CPU lookup table to distribute to the number
594 * of HW receive queues, and the response queue lookup table to narrow that
595 * down to the response queues actually configured for each "port" (Virtual
596 * Interface). We always configure the RSS mapping for all ports since the
597 * mapping table has plenty of entries.
598 */
599static int setup_rss(struct adapter *adapter)
600{
601 int pidx;
602
603 for_each_port(adapter, pidx) {
604 struct port_info *pi = adap2pinfo(adapter, pidx);
605 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
606 u16 rss[MAX_PORT_QSETS];
607 int qs, err;
608
609 for (qs = 0; qs < pi->nqsets; qs++)
610 rss[qs] = rxq[qs].rspq.abs_id;
611
612 err = t4vf_config_rss_range(adapter, pi->viid,
613 0, pi->rss_size, rss, pi->nqsets);
614 if (err)
615 return err;
616
617 /*
618 * Perform Global RSS Mode-specific initialization.
619 */
620 switch (adapter->params.rss.mode) {
621 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
622 /*
623 * If Tunnel All Lookup isn't specified in the global
624 * RSS Configuration, then we need to specify a
625 * default Ingress Queue for any ingress packets which
626 * aren't hashed. We'll use our first ingress queue
627 * ...
628 */
629 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
630 union rss_vi_config config;
631 err = t4vf_read_rss_vi_config(adapter,
632 pi->viid,
633 &config);
634 if (err)
635 return err;
636 config.basicvirtual.defaultq =
637 rxq[0].rspq.abs_id;
638 err = t4vf_write_rss_vi_config(adapter,
639 pi->viid,
640 &config);
641 if (err)
642 return err;
643 }
644 break;
645 }
646 }
647
648 return 0;
649}
650
651/*
652 * Bring the adapter up. Called whenever we go from no "ports" open to having
653 * one open. This function performs the actions necessary to make an adapter
654 * operational, such as completing the initialization of HW modules, and
655 * enabling interrupts. Must be called with the rtnl lock held. (Note that
656 * this is called "cxgb_up" in the PF Driver.)
657 */
658static int adapter_up(struct adapter *adapter)
659{
660 int err;
661
662 /*
663 * If this is the first time we've been called, perform basic
664 * adapter setup. Once we've done this, many of our adapter
665 * parameters can no longer be changed ...
666 */
667 if ((adapter->flags & FULL_INIT_DONE) == 0) {
668 err = setup_sge_queues(adapter);
669 if (err)
670 return err;
671 err = setup_rss(adapter);
672 if (err) {
673 t4vf_free_sge_resources(adapter);
674 return err;
675 }
676
677 if (adapter->flags & USING_MSIX)
678 name_msix_vecs(adapter);
679 adapter->flags |= FULL_INIT_DONE;
680 }
681
682 /*
683 * Acquire our interrupt resources. We only support MSI-X and MSI.
684 */
685 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
686 if (adapter->flags & USING_MSIX)
687 err = request_msix_queue_irqs(adapter);
688 else
689 err = request_irq(adapter->pdev->irq,
690 t4vf_intr_handler(adapter), 0,
691 adapter->name, adapter);
692 if (err) {
693 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
694 err);
695 return err;
696 }
697
698 /*
699 * Enable NAPI ingress processing and return success.
700 */
701 enable_rx(adapter);
702 t4vf_sge_start(adapter);
703 return 0;
704}
705
706/*
707 * Bring the adapter down. Called whenever the last "port" (Virtual
708 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
709 * Driver.)
710 */
711static void adapter_down(struct adapter *adapter)
712{
713 /*
714 * Free interrupt resources.
715 */
716 if (adapter->flags & USING_MSIX)
717 free_msix_queue_irqs(adapter);
718 else
719 free_irq(adapter->pdev->irq, adapter);
720
721 /*
722 * Wait for NAPI handlers to finish.
723 */
724 quiesce_rx(adapter);
725}
726
727/*
728 * Start up a net device.
729 */
730static int cxgb4vf_open(struct net_device *dev)
731{
732 int err;
733 struct port_info *pi = netdev_priv(dev);
734 struct adapter *adapter = pi->adapter;
735
736 /*
737 * If this is the first interface that we're opening on the "adapter",
738 * bring the "adapter" up now.
739 */
740 if (adapter->open_device_map == 0) {
741 err = adapter_up(adapter);
742 if (err)
743 return err;
744 }
745
746 /*
747 * Note that this interface is up and start everything up ...
748 */
003ab674
BH
749 netif_set_real_num_tx_queues(dev, pi->nqsets);
750 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
751 if (err)
752 return err;
be839e39 753 set_bit(pi->port_id, &adapter->open_device_map);
e7a3795f
CL
754 err = link_start(dev);
755 if (err)
756 return err;
be839e39
CL
757 netif_tx_start_all_queues(dev);
758 return 0;
759}
760
761/*
762 * Shut down a net device. This routine is called "cxgb_close" in the PF
763 * Driver ...
764 */
765static int cxgb4vf_stop(struct net_device *dev)
766{
767 int ret;
768 struct port_info *pi = netdev_priv(dev);
769 struct adapter *adapter = pi->adapter;
770
771 netif_tx_stop_all_queues(dev);
772 netif_carrier_off(dev);
773 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
774 pi->link_cfg.link_ok = 0;
775
776 clear_bit(pi->port_id, &adapter->open_device_map);
777 if (adapter->open_device_map == 0)
778 adapter_down(adapter);
779 return 0;
780}
781
782/*
783 * Translate our basic statistics into the standard "ifconfig" statistics.
784 */
785static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
786{
787 struct t4vf_port_stats stats;
788 struct port_info *pi = netdev2pinfo(dev);
789 struct adapter *adapter = pi->adapter;
790 struct net_device_stats *ns = &dev->stats;
791 int err;
792
793 spin_lock(&adapter->stats_lock);
794 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
795 spin_unlock(&adapter->stats_lock);
796
797 memset(ns, 0, sizeof(*ns));
798 if (err)
799 return ns;
800
801 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
802 stats.tx_ucast_bytes + stats.tx_offload_bytes);
803 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
804 stats.tx_ucast_frames + stats.tx_offload_frames);
805 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
806 stats.rx_ucast_bytes);
807 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
808 stats.rx_ucast_frames);
809 ns->multicast = stats.rx_mcast_frames;
810 ns->tx_errors = stats.tx_drop_frames;
811 ns->rx_errors = stats.rx_err_frames;
812
813 return ns;
814}
815
816/*
817 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
818 * array of addrss pointers and return the number collected.
819 */
820static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
821 const u8 **addr,
822 unsigned int maxaddrs)
823{
824 unsigned int naddr = 0;
825 const struct netdev_hw_addr *ha;
826
827 for_each_dev_addr(dev, ha) {
828 addr[naddr++] = ha->addr;
829 if (naddr >= maxaddrs)
830 break;
831 }
832 return naddr;
833}
834
835/*
836 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
837 * array of addrss pointers and return the number collected.
838 */
839static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
840 const u8 **addr,
841 unsigned int maxaddrs)
842{
843 unsigned int naddr = 0;
844 const struct netdev_hw_addr *ha;
845
846 netdev_for_each_mc_addr(ha, dev) {
847 addr[naddr++] = ha->addr;
848 if (naddr >= maxaddrs)
849 break;
850 }
851 return naddr;
852}
853
854/*
855 * Configure the exact and hash address filters to handle a port's multicast
856 * and secondary unicast MAC addresses.
857 */
858static int set_addr_filters(const struct net_device *dev, bool sleep)
859{
860 u64 mhash = 0;
861 u64 uhash = 0;
862 bool free = true;
863 u16 filt_idx[7];
864 const u8 *addr[7];
865 int ret, naddr = 0;
866 const struct port_info *pi = netdev_priv(dev);
867
868 /* first do the secondary unicast addresses */
869 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
870 if (naddr > 0) {
871 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
872 naddr, addr, filt_idx, &uhash, sleep);
873 if (ret < 0)
874 return ret;
875
876 free = false;
877 }
878
879 /* next set up the multicast addresses */
880 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
881 if (naddr > 0) {
882 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
883 naddr, addr, filt_idx, &mhash, sleep);
884 if (ret < 0)
885 return ret;
886 }
887
888 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
889 uhash | mhash, sleep);
890}
891
892/*
893 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
894 * If @mtu is -1 it is left unchanged.
895 */
896static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
897{
898 int ret;
899 struct port_info *pi = netdev_priv(dev);
900
901 ret = set_addr_filters(dev, sleep_ok);
902 if (ret == 0)
903 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
904 (dev->flags & IFF_PROMISC) != 0,
905 (dev->flags & IFF_ALLMULTI) != 0,
906 1, -1, sleep_ok);
907 return ret;
908}
909
910/*
911 * Set the current receive modes on the device.
912 */
913static void cxgb4vf_set_rxmode(struct net_device *dev)
914{
915 /* unfortunately we can't return errors to the stack */
916 set_rxmode(dev, -1, false);
917}
918
919/*
920 * Find the entry in the interrupt holdoff timer value array which comes
921 * closest to the specified interrupt holdoff value.
922 */
923static int closest_timer(const struct sge *s, int us)
924{
925 int i, timer_idx = 0, min_delta = INT_MAX;
926
927 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
928 int delta = us - s->timer_val[i];
929 if (delta < 0)
930 delta = -delta;
931 if (delta < min_delta) {
932 min_delta = delta;
933 timer_idx = i;
934 }
935 }
936 return timer_idx;
937}
938
939static int closest_thres(const struct sge *s, int thres)
940{
941 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
942
943 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
944 delta = thres - s->counter_val[i];
945 if (delta < 0)
946 delta = -delta;
947 if (delta < min_delta) {
948 min_delta = delta;
949 pktcnt_idx = i;
950 }
951 }
952 return pktcnt_idx;
953}
954
955/*
956 * Return a queue's interrupt hold-off time in us. 0 means no timer.
957 */
958static unsigned int qtimer_val(const struct adapter *adapter,
959 const struct sge_rspq *rspq)
960{
961 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
962
963 return timer_idx < SGE_NTIMERS
964 ? adapter->sge.timer_val[timer_idx]
965 : 0;
966}
967
968/**
969 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
970 * @adapter: the adapter
971 * @rspq: the RX response queue
972 * @us: the hold-off time in us, or 0 to disable timer
973 * @cnt: the hold-off packet count, or 0 to disable counter
974 *
975 * Sets an RX response queue's interrupt hold-off time and packet count.
976 * At least one of the two needs to be enabled for the queue to generate
977 * interrupts.
978 */
979static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
980 unsigned int us, unsigned int cnt)
981{
982 unsigned int timer_idx;
983
984 /*
985 * If both the interrupt holdoff timer and count are specified as
986 * zero, default to a holdoff count of 1 ...
987 */
988 if ((us | cnt) == 0)
989 cnt = 1;
990
991 /*
992 * If an interrupt holdoff count has been specified, then find the
993 * closest configured holdoff count and use that. If the response
994 * queue has already been created, then update its queue context
995 * parameters ...
996 */
997 if (cnt) {
998 int err;
999 u32 v, pktcnt_idx;
1000
1001 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1002 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1003 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1004 FW_PARAMS_PARAM_X(
1005 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1006 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1007 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1008 if (err)
1009 return err;
1010 }
1011 rspq->pktcnt_idx = pktcnt_idx;
1012 }
1013
1014 /*
1015 * Compute the closest holdoff timer index from the supplied holdoff
1016 * timer value.
1017 */
1018 timer_idx = (us == 0
1019 ? SGE_TIMER_RSTRT_CNTR
1020 : closest_timer(&adapter->sge, us));
1021
1022 /*
1023 * Update the response queue's interrupt coalescing parameters and
1024 * return success.
1025 */
1026 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1027 (cnt > 0 ? QINTR_CNT_EN : 0));
1028 return 0;
1029}
1030
1031/*
1032 * Return a version number to identify the type of adapter. The scheme is:
1033 * - bits 0..9: chip version
1034 * - bits 10..15: chip revision
1035 */
1036static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1037{
1038 /*
1039 * Chip version 4, revision 0x3f (cxgb4vf).
1040 */
1041 return 4 | (0x3f << 10);
1042}
1043
1044/*
1045 * Execute the specified ioctl command.
1046 */
1047static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1048{
1049 int ret = 0;
1050
1051 switch (cmd) {
1052 /*
1053 * The VF Driver doesn't have access to any of the other
1054 * common Ethernet device ioctl()'s (like reading/writing
1055 * PHY registers, etc.
1056 */
1057
1058 default:
1059 ret = -EOPNOTSUPP;
1060 break;
1061 }
1062 return ret;
1063}
1064
1065/*
1066 * Change the device's MTU.
1067 */
1068static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1069{
1070 int ret;
1071 struct port_info *pi = netdev_priv(dev);
1072
1073 /* accommodate SACK */
1074 if (new_mtu < 81)
1075 return -EINVAL;
1076
1077 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1078 -1, -1, -1, -1, true);
1079 if (!ret)
1080 dev->mtu = new_mtu;
1081 return ret;
1082}
1083
1084/*
1085 * Change the devices MAC address.
1086 */
1087static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1088{
1089 int ret;
1090 struct sockaddr *addr = _addr;
1091 struct port_info *pi = netdev_priv(dev);
1092
1093 if (!is_valid_ether_addr(addr->sa_data))
1094 return -EINVAL;
1095
1096 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1097 addr->sa_data, true);
1098 if (ret < 0)
1099 return ret;
1100
1101 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1102 pi->xact_addr_filt = ret;
1103 return 0;
1104}
1105
be839e39
CL
1106#ifdef CONFIG_NET_POLL_CONTROLLER
1107/*
1108 * Poll all of our receive queues. This is called outside of normal interrupt
1109 * context.
1110 */
1111static void cxgb4vf_poll_controller(struct net_device *dev)
1112{
1113 struct port_info *pi = netdev_priv(dev);
1114 struct adapter *adapter = pi->adapter;
1115
1116 if (adapter->flags & USING_MSIX) {
1117 struct sge_eth_rxq *rxq;
1118 int nqsets;
1119
1120 rxq = &adapter->sge.ethrxq[pi->first_qset];
1121 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1122 t4vf_sge_intr_msix(0, &rxq->rspq);
1123 rxq++;
1124 }
1125 } else
1126 t4vf_intr_handler(adapter)(0, adapter);
1127}
1128#endif
1129
1130/*
1131 * Ethtool operations.
1132 * ===================
1133 *
1134 * Note that we don't support any ethtool operations which change the physical
1135 * state of the port to which we're linked.
1136 */
1137
1138/*
1139 * Return current port link settings.
1140 */
1141static int cxgb4vf_get_settings(struct net_device *dev,
1142 struct ethtool_cmd *cmd)
1143{
1144 const struct port_info *pi = netdev_priv(dev);
1145
1146 cmd->supported = pi->link_cfg.supported;
1147 cmd->advertising = pi->link_cfg.advertising;
1148 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1149 cmd->duplex = DUPLEX_FULL;
1150
1151 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1152 cmd->phy_address = pi->port_id;
1153 cmd->transceiver = XCVR_EXTERNAL;
1154 cmd->autoneg = pi->link_cfg.autoneg;
1155 cmd->maxtxpkt = 0;
1156 cmd->maxrxpkt = 0;
1157 return 0;
1158}
1159
1160/*
1161 * Return our driver information.
1162 */
1163static void cxgb4vf_get_drvinfo(struct net_device *dev,
1164 struct ethtool_drvinfo *drvinfo)
1165{
1166 struct adapter *adapter = netdev2adap(dev);
1167
1168 strcpy(drvinfo->driver, KBUILD_MODNAME);
1169 strcpy(drvinfo->version, DRV_VERSION);
1170 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1171 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1172 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1173 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1174 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1175 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1176 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1177 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1178 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1179 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1180 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1181}
1182
1183/*
1184 * Return current adapter message level.
1185 */
1186static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1187{
1188 return netdev2adap(dev)->msg_enable;
1189}
1190
1191/*
1192 * Set current adapter message level.
1193 */
1194static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1195{
1196 netdev2adap(dev)->msg_enable = msglevel;
1197}
1198
1199/*
1200 * Return the device's current Queue Set ring size parameters along with the
1201 * allowed maximum values. Since ethtool doesn't understand the concept of
1202 * multi-queue devices, we just return the current values associated with the
1203 * first Queue Set.
1204 */
1205static void cxgb4vf_get_ringparam(struct net_device *dev,
1206 struct ethtool_ringparam *rp)
1207{
1208 const struct port_info *pi = netdev_priv(dev);
1209 const struct sge *s = &pi->adapter->sge;
1210
1211 rp->rx_max_pending = MAX_RX_BUFFERS;
1212 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1213 rp->rx_jumbo_max_pending = 0;
1214 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1215
1216 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1217 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1218 rp->rx_jumbo_pending = 0;
1219 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1220}
1221
1222/*
1223 * Set the Queue Set ring size parameters for the device. Again, since
1224 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1225 * apply these new values across all of the Queue Sets associated with the
1226 * device -- after vetting them of course!
1227 */
1228static int cxgb4vf_set_ringparam(struct net_device *dev,
1229 struct ethtool_ringparam *rp)
1230{
1231 const struct port_info *pi = netdev_priv(dev);
1232 struct adapter *adapter = pi->adapter;
1233 struct sge *s = &adapter->sge;
1234 int qs;
1235
1236 if (rp->rx_pending > MAX_RX_BUFFERS ||
1237 rp->rx_jumbo_pending ||
1238 rp->tx_pending > MAX_TXQ_ENTRIES ||
1239 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1240 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1241 rp->rx_pending < MIN_FL_ENTRIES ||
1242 rp->tx_pending < MIN_TXQ_ENTRIES)
1243 return -EINVAL;
1244
1245 if (adapter->flags & FULL_INIT_DONE)
1246 return -EBUSY;
1247
1248 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1249 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1250 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1251 s->ethtxq[qs].q.size = rp->tx_pending;
1252 }
1253 return 0;
1254}
1255
1256/*
1257 * Return the interrupt holdoff timer and count for the first Queue Set on the
1258 * device. Our extension ioctl() (the cxgbtool interface) allows the
1259 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1260 */
1261static int cxgb4vf_get_coalesce(struct net_device *dev,
1262 struct ethtool_coalesce *coalesce)
1263{
1264 const struct port_info *pi = netdev_priv(dev);
1265 const struct adapter *adapter = pi->adapter;
1266 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1267
1268 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1269 coalesce->rx_max_coalesced_frames =
1270 ((rspq->intr_params & QINTR_CNT_EN)
1271 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1272 : 0);
1273 return 0;
1274}
1275
1276/*
1277 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1278 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1279 * the interrupt holdoff timer on any of the device's Queue Sets.
1280 */
1281static int cxgb4vf_set_coalesce(struct net_device *dev,
1282 struct ethtool_coalesce *coalesce)
1283{
1284 const struct port_info *pi = netdev_priv(dev);
1285 struct adapter *adapter = pi->adapter;
1286
1287 return set_rxq_intr_params(adapter,
1288 &adapter->sge.ethrxq[pi->first_qset].rspq,
1289 coalesce->rx_coalesce_usecs,
1290 coalesce->rx_max_coalesced_frames);
1291}
1292
1293/*
1294 * Report current port link pause parameter settings.
1295 */
1296static void cxgb4vf_get_pauseparam(struct net_device *dev,
1297 struct ethtool_pauseparam *pauseparam)
1298{
1299 struct port_info *pi = netdev_priv(dev);
1300
1301 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1302 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1303 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1304}
1305
1306/*
1307 * Return whether RX Checksum Offloading is currently enabled for the device.
1308 */
1309static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1310{
1311 struct port_info *pi = netdev_priv(dev);
1312
1313 return (pi->rx_offload & RX_CSO) != 0;
1314}
1315
1316/*
1317 * Turn RX Checksum Offloading on or off for the device.
1318 */
1319static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1320{
1321 struct port_info *pi = netdev_priv(dev);
1322
1323 if (csum)
1324 pi->rx_offload |= RX_CSO;
1325 else
1326 pi->rx_offload &= ~RX_CSO;
1327 return 0;
1328}
1329
1330/*
1331 * Identify the port by blinking the port's LED.
1332 */
1333static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1334{
1335 struct port_info *pi = netdev_priv(dev);
1336
1337 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1338}
1339
1340/*
1341 * Port stats maintained per queue of the port.
1342 */
1343struct queue_port_stats {
1344 u64 tso;
1345 u64 tx_csum;
1346 u64 rx_csum;
1347 u64 vlan_ex;
1348 u64 vlan_ins;
1349};
1350
1351/*
1352 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1353 * these need to match the order of statistics returned by
1354 * t4vf_get_port_stats().
1355 */
1356static const char stats_strings[][ETH_GSTRING_LEN] = {
1357 /*
1358 * These must match the layout of the t4vf_port_stats structure.
1359 */
1360 "TxBroadcastBytes ",
1361 "TxBroadcastFrames ",
1362 "TxMulticastBytes ",
1363 "TxMulticastFrames ",
1364 "TxUnicastBytes ",
1365 "TxUnicastFrames ",
1366 "TxDroppedFrames ",
1367 "TxOffloadBytes ",
1368 "TxOffloadFrames ",
1369 "RxBroadcastBytes ",
1370 "RxBroadcastFrames ",
1371 "RxMulticastBytes ",
1372 "RxMulticastFrames ",
1373 "RxUnicastBytes ",
1374 "RxUnicastFrames ",
1375 "RxErrorFrames ",
1376
1377 /*
1378 * These are accumulated per-queue statistics and must match the
1379 * order of the fields in the queue_port_stats structure.
1380 */
1381 "TSO ",
1382 "TxCsumOffload ",
1383 "RxCsumGood ",
1384 "VLANextractions ",
1385 "VLANinsertions ",
1386};
1387
1388/*
1389 * Return the number of statistics in the specified statistics set.
1390 */
1391static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1392{
1393 switch (sset) {
1394 case ETH_SS_STATS:
1395 return ARRAY_SIZE(stats_strings);
1396 default:
1397 return -EOPNOTSUPP;
1398 }
1399 /*NOTREACHED*/
1400}
1401
1402/*
1403 * Return the strings for the specified statistics set.
1404 */
1405static void cxgb4vf_get_strings(struct net_device *dev,
1406 u32 sset,
1407 u8 *data)
1408{
1409 switch (sset) {
1410 case ETH_SS_STATS:
1411 memcpy(data, stats_strings, sizeof(stats_strings));
1412 break;
1413 }
1414}
1415
1416/*
1417 * Small utility routine to accumulate queue statistics across the queues of
1418 * a "port".
1419 */
1420static void collect_sge_port_stats(const struct adapter *adapter,
1421 const struct port_info *pi,
1422 struct queue_port_stats *stats)
1423{
1424 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1425 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1426 int qs;
1427
1428 memset(stats, 0, sizeof(*stats));
1429 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1430 stats->tso += txq->tso;
1431 stats->tx_csum += txq->tx_cso;
1432 stats->rx_csum += rxq->stats.rx_cso;
1433 stats->vlan_ex += rxq->stats.vlan_ex;
1434 stats->vlan_ins += txq->vlan_ins;
1435 }
1436}
1437
1438/*
1439 * Return the ETH_SS_STATS statistics set.
1440 */
1441static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1442 struct ethtool_stats *stats,
1443 u64 *data)
1444{
1445 struct port_info *pi = netdev2pinfo(dev);
1446 struct adapter *adapter = pi->adapter;
1447 int err = t4vf_get_port_stats(adapter, pi->pidx,
1448 (struct t4vf_port_stats *)data);
1449 if (err)
1450 memset(data, 0, sizeof(struct t4vf_port_stats));
1451
1452 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1453 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1454}
1455
1456/*
1457 * Return the size of our register map.
1458 */
1459static int cxgb4vf_get_regs_len(struct net_device *dev)
1460{
1461 return T4VF_REGMAP_SIZE;
1462}
1463
1464/*
1465 * Dump a block of registers, start to end inclusive, into a buffer.
1466 */
1467static void reg_block_dump(struct adapter *adapter, void *regbuf,
1468 unsigned int start, unsigned int end)
1469{
1470 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1471
1472 for ( ; start <= end; start += sizeof(u32)) {
1473 /*
1474 * Avoid reading the Mailbox Control register since that
1475 * can trigger a Mailbox Ownership Arbitration cycle and
1476 * interfere with communication with the firmware.
1477 */
1478 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1479 *bp++ = 0xffff;
1480 else
1481 *bp++ = t4_read_reg(adapter, start);
1482 }
1483}
1484
1485/*
1486 * Copy our entire register map into the provided buffer.
1487 */
1488static void cxgb4vf_get_regs(struct net_device *dev,
1489 struct ethtool_regs *regs,
1490 void *regbuf)
1491{
1492 struct adapter *adapter = netdev2adap(dev);
1493
1494 regs->version = mk_adap_vers(adapter);
1495
1496 /*
1497 * Fill in register buffer with our register map.
1498 */
1499 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1500
1501 reg_block_dump(adapter, regbuf,
1502 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1503 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1504 reg_block_dump(adapter, regbuf,
1505 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1506 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1507 reg_block_dump(adapter, regbuf,
1508 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1509 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1510 reg_block_dump(adapter, regbuf,
1511 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1512 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1513
1514 reg_block_dump(adapter, regbuf,
1515 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1516 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1517}
1518
1519/*
1520 * Report current Wake On LAN settings.
1521 */
1522static void cxgb4vf_get_wol(struct net_device *dev,
1523 struct ethtool_wolinfo *wol)
1524{
1525 wol->supported = 0;
1526 wol->wolopts = 0;
1527 memset(&wol->sopass, 0, sizeof(wol->sopass));
1528}
1529
1530/*
1531 * Set TCP Segmentation Offloading feature capabilities.
1532 */
1533static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1534{
1535 if (tso)
1536 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1537 else
1538 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1539 return 0;
1540}
1541
1542static struct ethtool_ops cxgb4vf_ethtool_ops = {
1543 .get_settings = cxgb4vf_get_settings,
1544 .get_drvinfo = cxgb4vf_get_drvinfo,
1545 .get_msglevel = cxgb4vf_get_msglevel,
1546 .set_msglevel = cxgb4vf_set_msglevel,
1547 .get_ringparam = cxgb4vf_get_ringparam,
1548 .set_ringparam = cxgb4vf_set_ringparam,
1549 .get_coalesce = cxgb4vf_get_coalesce,
1550 .set_coalesce = cxgb4vf_set_coalesce,
1551 .get_pauseparam = cxgb4vf_get_pauseparam,
1552 .get_rx_csum = cxgb4vf_get_rx_csum,
1553 .set_rx_csum = cxgb4vf_set_rx_csum,
1554 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1555 .set_sg = ethtool_op_set_sg,
1556 .get_link = ethtool_op_get_link,
1557 .get_strings = cxgb4vf_get_strings,
1558 .phys_id = cxgb4vf_phys_id,
1559 .get_sset_count = cxgb4vf_get_sset_count,
1560 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1561 .get_regs_len = cxgb4vf_get_regs_len,
1562 .get_regs = cxgb4vf_get_regs,
1563 .get_wol = cxgb4vf_get_wol,
1564 .set_tso = cxgb4vf_set_tso,
1565};
1566
1567/*
1568 * /sys/kernel/debug/cxgb4vf support code and data.
1569 * ================================================
1570 */
1571
1572/*
1573 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1574 */
1575#define QPL 4
1576
1577static int sge_qinfo_show(struct seq_file *seq, void *v)
1578{
1579 struct adapter *adapter = seq->private;
1580 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1581 int qs, r = (uintptr_t)v - 1;
1582
1583 if (r)
1584 seq_putc(seq, '\n');
1585
1586 #define S3(fmt_spec, s, v) \
1587 do {\
1588 seq_printf(seq, "%-12s", s); \
1589 for (qs = 0; qs < n; ++qs) \
1590 seq_printf(seq, " %16" fmt_spec, v); \
1591 seq_putc(seq, '\n'); \
1592 } while (0)
1593 #define S(s, v) S3("s", s, v)
1594 #define T(s, v) S3("u", s, txq[qs].v)
1595 #define R(s, v) S3("u", s, rxq[qs].v)
1596
1597 if (r < eth_entries) {
1598 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1599 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1600 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1601
1602 S("QType:", "Ethernet");
1603 S("Interface:",
1604 (rxq[qs].rspq.netdev
1605 ? rxq[qs].rspq.netdev->name
1606 : "N/A"));
1607 S3("d", "Port:",
1608 (rxq[qs].rspq.netdev
1609 ? ((struct port_info *)
1610 netdev_priv(rxq[qs].rspq.netdev))->port_id
1611 : -1));
1612 T("TxQ ID:", q.abs_id);
1613 T("TxQ size:", q.size);
1614 T("TxQ inuse:", q.in_use);
1615 T("TxQ PIdx:", q.pidx);
1616 T("TxQ CIdx:", q.cidx);
1617 R("RspQ ID:", rspq.abs_id);
1618 R("RspQ size:", rspq.size);
1619 R("RspQE size:", rspq.iqe_len);
1620 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1621 S3("u", "Intr pktcnt:",
1622 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1623 R("RspQ CIdx:", rspq.cidx);
1624 R("RspQ Gen:", rspq.gen);
1625 R("FL ID:", fl.abs_id);
1626 R("FL size:", fl.size - MIN_FL_RESID);
1627 R("FL avail:", fl.avail);
1628 R("FL PIdx:", fl.pidx);
1629 R("FL CIdx:", fl.cidx);
1630 return 0;
1631 }
1632
1633 r -= eth_entries;
1634 if (r == 0) {
1635 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1636
1637 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1638 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1639 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1640 qtimer_val(adapter, evtq));
1641 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1642 adapter->sge.counter_val[evtq->pktcnt_idx]);
1643 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1644 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1645 } else if (r == 1) {
1646 const struct sge_rspq *intrq = &adapter->sge.intrq;
1647
1648 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1649 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1650 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1651 qtimer_val(adapter, intrq));
1652 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1653 adapter->sge.counter_val[intrq->pktcnt_idx]);
1654 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1655 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1656 }
1657
1658 #undef R
1659 #undef T
1660 #undef S
1661 #undef S3
1662
1663 return 0;
1664}
1665
1666/*
1667 * Return the number of "entries" in our "file". We group the multi-Queue
1668 * sections with QPL Queue Sets per "entry". The sections of the output are:
1669 *
1670 * Ethernet RX/TX Queue Sets
1671 * Firmware Event Queue
1672 * Forwarded Interrupt Queue (if in MSI mode)
1673 */
1674static int sge_queue_entries(const struct adapter *adapter)
1675{
1676 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1677 ((adapter->flags & USING_MSI) != 0);
1678}
1679
1680static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1681{
1682 int entries = sge_queue_entries(seq->private);
1683
1684 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1685}
1686
1687static void sge_queue_stop(struct seq_file *seq, void *v)
1688{
1689}
1690
1691static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1692{
1693 int entries = sge_queue_entries(seq->private);
1694
1695 ++*pos;
1696 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1697}
1698
1699static const struct seq_operations sge_qinfo_seq_ops = {
1700 .start = sge_queue_start,
1701 .next = sge_queue_next,
1702 .stop = sge_queue_stop,
1703 .show = sge_qinfo_show
1704};
1705
1706static int sge_qinfo_open(struct inode *inode, struct file *file)
1707{
1708 int res = seq_open(file, &sge_qinfo_seq_ops);
1709
1710 if (!res) {
1711 struct seq_file *seq = file->private_data;
1712 seq->private = inode->i_private;
1713 }
1714 return res;
1715}
1716
1717static const struct file_operations sge_qinfo_debugfs_fops = {
1718 .owner = THIS_MODULE,
1719 .open = sge_qinfo_open,
1720 .read = seq_read,
1721 .llseek = seq_lseek,
1722 .release = seq_release,
1723};
1724
1725/*
1726 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1727 */
1728#define QPL 4
1729
1730static int sge_qstats_show(struct seq_file *seq, void *v)
1731{
1732 struct adapter *adapter = seq->private;
1733 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1734 int qs, r = (uintptr_t)v - 1;
1735
1736 if (r)
1737 seq_putc(seq, '\n');
1738
1739 #define S3(fmt, s, v) \
1740 do { \
1741 seq_printf(seq, "%-16s", s); \
1742 for (qs = 0; qs < n; ++qs) \
1743 seq_printf(seq, " %8" fmt, v); \
1744 seq_putc(seq, '\n'); \
1745 } while (0)
1746 #define S(s, v) S3("s", s, v)
1747
1748 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1749 #define T(s, v) T3("lu", s, v)
1750
1751 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1752 #define R(s, v) R3("lu", s, v)
1753
1754 if (r < eth_entries) {
1755 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1756 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1757 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1758
1759 S("QType:", "Ethernet");
1760 S("Interface:",
1761 (rxq[qs].rspq.netdev
1762 ? rxq[qs].rspq.netdev->name
1763 : "N/A"));
68dc9d36 1764 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1765 R("RxPackets:", stats.pkts);
1766 R("RxCSO:", stats.rx_cso);
1767 R("VLANxtract:", stats.vlan_ex);
1768 R("LROmerged:", stats.lro_merged);
1769 R("LROpackets:", stats.lro_pkts);
1770 R("RxDrops:", stats.rx_drops);
1771 T("TSO:", tso);
1772 T("TxCSO:", tx_cso);
1773 T("VLANins:", vlan_ins);
1774 T("TxQFull:", q.stops);
1775 T("TxQRestarts:", q.restarts);
1776 T("TxMapErr:", mapping_err);
1777 R("FLAllocErr:", fl.alloc_failed);
1778 R("FLLrgAlcErr:", fl.large_alloc_failed);
1779 R("FLStarving:", fl.starving);
1780 return 0;
1781 }
1782
1783 r -= eth_entries;
1784 if (r == 0) {
1785 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1786
1787 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1788 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1789 evtq->unhandled_irqs);
be839e39
CL
1790 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1791 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1792 } else if (r == 1) {
1793 const struct sge_rspq *intrq = &adapter->sge.intrq;
1794
1795 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1796 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1797 intrq->unhandled_irqs);
be839e39
CL
1798 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1799 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1800 }
1801
1802 #undef R
1803 #undef T
1804 #undef S
1805 #undef R3
1806 #undef T3
1807 #undef S3
1808
1809 return 0;
1810}
1811
1812/*
1813 * Return the number of "entries" in our "file". We group the multi-Queue
1814 * sections with QPL Queue Sets per "entry". The sections of the output are:
1815 *
1816 * Ethernet RX/TX Queue Sets
1817 * Firmware Event Queue
1818 * Forwarded Interrupt Queue (if in MSI mode)
1819 */
1820static int sge_qstats_entries(const struct adapter *adapter)
1821{
1822 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1823 ((adapter->flags & USING_MSI) != 0);
1824}
1825
1826static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1827{
1828 int entries = sge_qstats_entries(seq->private);
1829
1830 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1831}
1832
1833static void sge_qstats_stop(struct seq_file *seq, void *v)
1834{
1835}
1836
1837static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1838{
1839 int entries = sge_qstats_entries(seq->private);
1840
1841 (*pos)++;
1842 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1843}
1844
1845static const struct seq_operations sge_qstats_seq_ops = {
1846 .start = sge_qstats_start,
1847 .next = sge_qstats_next,
1848 .stop = sge_qstats_stop,
1849 .show = sge_qstats_show
1850};
1851
1852static int sge_qstats_open(struct inode *inode, struct file *file)
1853{
1854 int res = seq_open(file, &sge_qstats_seq_ops);
1855
1856 if (res == 0) {
1857 struct seq_file *seq = file->private_data;
1858 seq->private = inode->i_private;
1859 }
1860 return res;
1861}
1862
1863static const struct file_operations sge_qstats_proc_fops = {
1864 .owner = THIS_MODULE,
1865 .open = sge_qstats_open,
1866 .read = seq_read,
1867 .llseek = seq_lseek,
1868 .release = seq_release,
1869};
1870
1871/*
1872 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1873 */
1874static int resources_show(struct seq_file *seq, void *v)
1875{
1876 struct adapter *adapter = seq->private;
1877 struct vf_resources *vfres = &adapter->params.vfres;
1878
1879 #define S(desc, fmt, var) \
1880 seq_printf(seq, "%-60s " fmt "\n", \
1881 desc " (" #var "):", vfres->var)
1882
1883 S("Virtual Interfaces", "%d", nvi);
1884 S("Egress Queues", "%d", neq);
1885 S("Ethernet Control", "%d", nethctrl);
1886 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1887 S("Ingress Queues", "%d", niq);
1888 S("Traffic Class", "%d", tc);
1889 S("Port Access Rights Mask", "%#x", pmask);
1890 S("MAC Address Filters", "%d", nexactf);
1891 S("Firmware Command Read Capabilities", "%#x", r_caps);
1892 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1893
1894 #undef S
1895
1896 return 0;
1897}
1898
1899static int resources_open(struct inode *inode, struct file *file)
1900{
1901 return single_open(file, resources_show, inode->i_private);
1902}
1903
1904static const struct file_operations resources_proc_fops = {
1905 .owner = THIS_MODULE,
1906 .open = resources_open,
1907 .read = seq_read,
1908 .llseek = seq_lseek,
1909 .release = single_release,
1910};
1911
1912/*
1913 * Show Virtual Interfaces.
1914 */
1915static int interfaces_show(struct seq_file *seq, void *v)
1916{
1917 if (v == SEQ_START_TOKEN) {
1918 seq_puts(seq, "Interface Port VIID\n");
1919 } else {
1920 struct adapter *adapter = seq->private;
1921 int pidx = (uintptr_t)v - 2;
1922 struct net_device *dev = adapter->port[pidx];
1923 struct port_info *pi = netdev_priv(dev);
1924
1925 seq_printf(seq, "%9s %4d %#5x\n",
1926 dev->name, pi->port_id, pi->viid);
1927 }
1928 return 0;
1929}
1930
1931static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1932{
1933 return pos <= adapter->params.nports
1934 ? (void *)(uintptr_t)(pos + 1)
1935 : NULL;
1936}
1937
1938static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1939{
1940 return *pos
1941 ? interfaces_get_idx(seq->private, *pos)
1942 : SEQ_START_TOKEN;
1943}
1944
1945static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1946{
1947 (*pos)++;
1948 return interfaces_get_idx(seq->private, *pos);
1949}
1950
1951static void interfaces_stop(struct seq_file *seq, void *v)
1952{
1953}
1954
1955static const struct seq_operations interfaces_seq_ops = {
1956 .start = interfaces_start,
1957 .next = interfaces_next,
1958 .stop = interfaces_stop,
1959 .show = interfaces_show
1960};
1961
1962static int interfaces_open(struct inode *inode, struct file *file)
1963{
1964 int res = seq_open(file, &interfaces_seq_ops);
1965
1966 if (res == 0) {
1967 struct seq_file *seq = file->private_data;
1968 seq->private = inode->i_private;
1969 }
1970 return res;
1971}
1972
1973static const struct file_operations interfaces_proc_fops = {
1974 .owner = THIS_MODULE,
1975 .open = interfaces_open,
1976 .read = seq_read,
1977 .llseek = seq_lseek,
1978 .release = seq_release,
1979};
1980
1981/*
1982 * /sys/kernel/debugfs/cxgb4vf/ files list.
1983 */
1984struct cxgb4vf_debugfs_entry {
1985 const char *name; /* name of debugfs node */
1986 mode_t mode; /* file system mode */
1987 const struct file_operations *fops;
1988};
1989
1990static struct cxgb4vf_debugfs_entry debugfs_files[] = {
1991 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
1992 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
1993 { "resources", S_IRUGO, &resources_proc_fops },
1994 { "interfaces", S_IRUGO, &interfaces_proc_fops },
1995};
1996
1997/*
1998 * Module and device initialization and cleanup code.
1999 * ==================================================
2000 */
2001
2002/*
2003 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2004 * directory (debugfs_root) has already been set up.
2005 */
2006static int __devinit setup_debugfs(struct adapter *adapter)
2007{
2008 int i;
2009
2010 BUG_ON(adapter->debugfs_root == NULL);
2011
2012 /*
2013 * Debugfs support is best effort.
2014 */
2015 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2016 (void)debugfs_create_file(debugfs_files[i].name,
2017 debugfs_files[i].mode,
2018 adapter->debugfs_root,
2019 (void *)adapter,
2020 debugfs_files[i].fops);
2021
2022 return 0;
2023}
2024
2025/*
2026 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2027 * it to our caller to tear down the directory (debugfs_root).
2028 */
2029static void __devexit cleanup_debugfs(struct adapter *adapter)
2030{
2031 BUG_ON(adapter->debugfs_root == NULL);
2032
2033 /*
2034 * Unlike our sister routine cleanup_proc(), we don't need to remove
2035 * individual entries because a call will be made to
2036 * debugfs_remove_recursive(). We just need to clean up any ancillary
2037 * persistent state.
2038 */
2039 /* nothing to do */
2040}
2041
2042/*
2043 * Perform early "adapter" initialization. This is where we discover what
2044 * adapter parameters we're going to be using and initialize basic adapter
2045 * hardware support.
2046 */
2047static int adap_init0(struct adapter *adapter)
2048{
2049 struct vf_resources *vfres = &adapter->params.vfres;
2050 struct sge_params *sge_params = &adapter->params.sge;
2051 struct sge *s = &adapter->sge;
2052 unsigned int ethqsets;
2053 int err;
2054
2055 /*
2056 * Wait for the device to become ready before proceeding ...
2057 */
2058 err = t4vf_wait_dev_ready(adapter);
2059 if (err) {
2060 dev_err(adapter->pdev_dev, "device didn't become ready:"
2061 " err=%d\n", err);
2062 return err;
2063 }
2064
e68e6133
CL
2065 /*
2066 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2067 * 2.6.31 and later we can't call pci_reset_function() in order to
2068 * issue an FLR because of a self- deadlock on the device semaphore.
2069 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2070 * cases where they're needed -- for instance, some versions of KVM
2071 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2072 * use the firmware based reset in order to reset any per function
2073 * state.
2074 */
2075 err = t4vf_fw_reset(adapter);
2076 if (err < 0) {
2077 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2078 return err;
2079 }
2080
be839e39
CL
2081 /*
2082 * Grab basic operational parameters. These will predominantly have
2083 * been set up by the Physical Function Driver or will be hard coded
2084 * into the adapter. We just have to live with them ... Note that
2085 * we _must_ get our VPD parameters before our SGE parameters because
2086 * we need to know the adapter's core clock from the VPD in order to
2087 * properly decode the SGE Timer Values.
2088 */
2089 err = t4vf_get_dev_params(adapter);
2090 if (err) {
2091 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2092 " device parameters: err=%d\n", err);
2093 return err;
2094 }
2095 err = t4vf_get_vpd_params(adapter);
2096 if (err) {
2097 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2098 " VPD parameters: err=%d\n", err);
2099 return err;
2100 }
2101 err = t4vf_get_sge_params(adapter);
2102 if (err) {
2103 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2104 " SGE parameters: err=%d\n", err);
2105 return err;
2106 }
2107 err = t4vf_get_rss_glb_config(adapter);
2108 if (err) {
2109 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2110 " RSS parameters: err=%d\n", err);
2111 return err;
2112 }
2113 if (adapter->params.rss.mode !=
2114 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2115 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2116 " mode %d\n", adapter->params.rss.mode);
2117 return -EINVAL;
2118 }
2119 err = t4vf_sge_init(adapter);
2120 if (err) {
2121 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2122 " err=%d\n", err);
2123 return err;
2124 }
2125
2126 /*
2127 * Retrieve our RX interrupt holdoff timer values and counter
2128 * threshold values from the SGE parameters.
2129 */
2130 s->timer_val[0] = core_ticks_to_us(adapter,
2131 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2132 s->timer_val[1] = core_ticks_to_us(adapter,
2133 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2134 s->timer_val[2] = core_ticks_to_us(adapter,
2135 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2136 s->timer_val[3] = core_ticks_to_us(adapter,
2137 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2138 s->timer_val[4] = core_ticks_to_us(adapter,
2139 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2140 s->timer_val[5] = core_ticks_to_us(adapter,
2141 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2142
2143 s->counter_val[0] =
2144 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2145 s->counter_val[1] =
2146 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2147 s->counter_val[2] =
2148 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2149 s->counter_val[3] =
2150 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2151
2152 /*
2153 * Grab our Virtual Interface resource allocation, extract the
2154 * features that we're interested in and do a bit of sanity testing on
2155 * what we discover.
2156 */
2157 err = t4vf_get_vfres(adapter);
2158 if (err) {
2159 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2160 " resources: err=%d\n", err);
2161 return err;
2162 }
2163
2164 /*
2165 * The number of "ports" which we support is equal to the number of
2166 * Virtual Interfaces with which we've been provisioned.
2167 */
2168 adapter->params.nports = vfres->nvi;
2169 if (adapter->params.nports > MAX_NPORTS) {
2170 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2171 " virtual interfaces\n", MAX_NPORTS,
2172 adapter->params.nports);
2173 adapter->params.nports = MAX_NPORTS;
2174 }
2175
2176 /*
2177 * We need to reserve a number of the ingress queues with Free List
2178 * and Interrupt capabilities for special interrupt purposes (like
2179 * asynchronous firmware messages, or forwarded interrupts if we're
2180 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2181 * matched up one-for-one with Ethernet/Control egress queues in order
2182 * to form "Queue Sets" which will be aportioned between the "ports".
2183 * For each Queue Set, we'll need the ability to allocate two Egress
2184 * Contexts -- one for the Ingress Queue Free List and one for the TX
2185 * Ethernet Queue.
2186 */
2187 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2188 if (vfres->nethctrl != ethqsets) {
2189 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2190 " ingress/egress queues (%d/%d); using minimum for"
2191 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2192 ethqsets = min(vfres->nethctrl, ethqsets);
2193 }
2194 if (vfres->neq < ethqsets*2) {
2195 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2196 " to support Queue Sets (%d); reducing allowed Queue"
2197 " Sets\n", vfres->neq, ethqsets);
2198 ethqsets = vfres->neq/2;
2199 }
2200 if (ethqsets > MAX_ETH_QSETS) {
2201 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2202 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2203 ethqsets = MAX_ETH_QSETS;
2204 }
2205 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2206 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2207 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2208 }
2209 adapter->sge.max_ethqsets = ethqsets;
2210
2211 /*
2212 * Check for various parameter sanity issues. Most checks simply
2213 * result in us using fewer resources than our provissioning but we
2214 * do need at least one "port" with which to work ...
2215 */
2216 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2217 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2218 " virtual interfaces (too few Queue Sets)\n",
2219 adapter->sge.max_ethqsets, adapter->params.nports);
2220 adapter->params.nports = adapter->sge.max_ethqsets;
2221 }
2222 if (adapter->params.nports == 0) {
2223 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2224 "usable!\n");
2225 return -EINVAL;
2226 }
2227 return 0;
2228}
2229
2230static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2231 u8 pkt_cnt_idx, unsigned int size,
2232 unsigned int iqe_size)
2233{
2234 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2235 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2236 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2237 ? pkt_cnt_idx
2238 : 0);
2239 rspq->iqe_len = iqe_size;
2240 rspq->size = size;
2241}
2242
2243/*
2244 * Perform default configuration of DMA queues depending on the number and
2245 * type of ports we found and the number of available CPUs. Most settings can
2246 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2247 * being brought up for the first time.
2248 */
2249static void __devinit cfg_queues(struct adapter *adapter)
2250{
2251 struct sge *s = &adapter->sge;
2252 int q10g, n10g, qidx, pidx, qs;
2253
2254 /*
2255 * We should not be called till we know how many Queue Sets we can
2256 * support. In particular, this means that we need to know what kind
2257 * of interrupts we'll be using ...
2258 */
2259 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2260
2261 /*
2262 * Count the number of 10GbE Virtual Interfaces that we have.
2263 */
2264 n10g = 0;
2265 for_each_port(adapter, pidx)
2266 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2267
2268 /*
2269 * We default to 1 queue per non-10G port and up to # of cores queues
2270 * per 10G port.
2271 */
2272 if (n10g == 0)
2273 q10g = 0;
2274 else {
2275 int n1g = (adapter->params.nports - n10g);
2276 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2277 if (q10g > num_online_cpus())
2278 q10g = num_online_cpus();
2279 }
2280
2281 /*
2282 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2283 * The layout will be established in setup_sge_queues() when the
2284 * adapter is brough up for the first time.
2285 */
2286 qidx = 0;
2287 for_each_port(adapter, pidx) {
2288 struct port_info *pi = adap2pinfo(adapter, pidx);
2289
2290 pi->first_qset = qidx;
2291 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2292 qidx += pi->nqsets;
2293 }
2294 s->ethqsets = qidx;
2295
2296 /*
2297 * Set up default Queue Set parameters ... Start off with the
2298 * shortest interrupt holdoff timer.
2299 */
2300 for (qs = 0; qs < s->max_ethqsets; qs++) {
2301 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2302 struct sge_eth_txq *txq = &s->ethtxq[qs];
2303
2304 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2305 rxq->fl.size = 72;
2306 txq->q.size = 1024;
2307 }
2308
2309 /*
2310 * The firmware event queue is used for link state changes and
2311 * notifications of TX DMA completions.
2312 */
2313 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2314 L1_CACHE_BYTES);
2315
2316 /*
2317 * The forwarded interrupt queue is used when we're in MSI interrupt
2318 * mode. In this mode all interrupts associated with RX queues will
2319 * be forwarded to a single queue which we'll associate with our MSI
2320 * interrupt vector. The messages dropped in the forwarded interrupt
2321 * queue will indicate which ingress queue needs servicing ... This
2322 * queue needs to be large enough to accommodate all of the ingress
2323 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2324 * from equalling the CIDX if every ingress queue has an outstanding
2325 * interrupt). The queue doesn't need to be any larger because no
2326 * ingress queue will ever have more than one outstanding interrupt at
2327 * any time ...
2328 */
2329 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2330 L1_CACHE_BYTES);
2331}
2332
2333/*
2334 * Reduce the number of Ethernet queues across all ports to at most n.
2335 * n provides at least one queue per port.
2336 */
2337static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2338{
2339 int i;
2340 struct port_info *pi;
2341
2342 /*
2343 * While we have too many active Ether Queue Sets, interate across the
2344 * "ports" and reduce their individual Queue Set allocations.
2345 */
2346 BUG_ON(n < adapter->params.nports);
2347 while (n < adapter->sge.ethqsets)
2348 for_each_port(adapter, i) {
2349 pi = adap2pinfo(adapter, i);
2350 if (pi->nqsets > 1) {
2351 pi->nqsets--;
2352 adapter->sge.ethqsets--;
2353 if (adapter->sge.ethqsets <= n)
2354 break;
2355 }
2356 }
2357
2358 /*
2359 * Reassign the starting Queue Sets for each of the "ports" ...
2360 */
2361 n = 0;
2362 for_each_port(adapter, i) {
2363 pi = adap2pinfo(adapter, i);
2364 pi->first_qset = n;
2365 n += pi->nqsets;
2366 }
2367}
2368
2369/*
2370 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2371 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2372 * need. Minimally we need one for every Virtual Interface plus those needed
2373 * for our "extras". Note that this process may lower the maximum number of
2374 * allowed Queue Sets ...
2375 */
2376static int __devinit enable_msix(struct adapter *adapter)
2377{
2378 int i, err, want, need;
2379 struct msix_entry entries[MSIX_ENTRIES];
2380 struct sge *s = &adapter->sge;
2381
2382 for (i = 0; i < MSIX_ENTRIES; ++i)
2383 entries[i].entry = i;
2384
2385 /*
2386 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2387 * plus those needed for our "extras" (for example, the firmware
2388 * message queue). We _need_ at least one "Queue Set" per Virtual
2389 * Interface plus those needed for our "extras". So now we get to see
2390 * if the song is right ...
2391 */
2392 want = s->max_ethqsets + MSIX_EXTRAS;
2393 need = adapter->params.nports + MSIX_EXTRAS;
2394 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2395 want = err;
2396
2397 if (err == 0) {
2398 int nqsets = want - MSIX_EXTRAS;
2399 if (nqsets < s->max_ethqsets) {
2400 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2401 " for %d Queue Sets\n", nqsets);
2402 s->max_ethqsets = nqsets;
2403 if (nqsets < s->ethqsets)
2404 reduce_ethqs(adapter, nqsets);
2405 }
2406 for (i = 0; i < want; ++i)
2407 adapter->msix_info[i].vec = entries[i].vector;
2408 } else if (err > 0) {
2409 pci_disable_msix(adapter->pdev);
2410 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2411 " not using MSI-X\n", err);
2412 }
2413 return err;
2414}
2415
2416#ifdef HAVE_NET_DEVICE_OPS
2417static const struct net_device_ops cxgb4vf_netdev_ops = {
2418 .ndo_open = cxgb4vf_open,
2419 .ndo_stop = cxgb4vf_stop,
2420 .ndo_start_xmit = t4vf_eth_xmit,
2421 .ndo_get_stats = cxgb4vf_get_stats,
2422 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2423 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2424 .ndo_validate_addr = eth_validate_addr,
2425 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2426 .ndo_change_mtu = cxgb4vf_change_mtu,
2427 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2428#ifdef CONFIG_NET_POLL_CONTROLLER
2429 .ndo_poll_controller = cxgb4vf_poll_controller,
2430#endif
2431};
2432#endif
2433
2434/*
2435 * "Probe" a device: initialize a device and construct all kernel and driver
2436 * state needed to manage the device. This routine is called "init_one" in
2437 * the PF Driver ...
2438 */
2439static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2440 const struct pci_device_id *ent)
2441{
2442 static int version_printed;
2443
2444 int pci_using_dac;
2445 int err, pidx;
2446 unsigned int pmask;
2447 struct adapter *adapter;
2448 struct port_info *pi;
2449 struct net_device *netdev;
2450
2451 /*
2452 * Vet our module parameters.
2453 */
2454 if (msi != MSI_MSIX && msi != MSI_MSI) {
2455 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2456 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2457 MSI_MSI);
2458 err = -EINVAL;
2459 goto err_out;
2460 }
2461
2462 /*
2463 * Print our driver banner the first time we're called to initialize a
2464 * device.
2465 */
2466 if (version_printed == 0) {
2467 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2468 version_printed = 1;
2469 }
2470
2471 /*
7a0c2029 2472 * Initialize generic PCI device state.
be839e39 2473 */
7a0c2029 2474 err = pci_enable_device(pdev);
be839e39 2475 if (err) {
7a0c2029 2476 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2477 return err;
2478 }
2479
2480 /*
7a0c2029
KV
2481 * Reserve PCI resources for the device. If we can't get them some
2482 * other driver may have already claimed the device ...
be839e39 2483 */
7a0c2029 2484 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2485 if (err) {
7a0c2029
KV
2486 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2487 goto err_disable_device;
be839e39
CL
2488 }
2489
2490 /*
2491 * Set up our DMA mask: try for 64-bit address masking first and
2492 * fall back to 32-bit if we can't get 64 bits ...
2493 */
2494 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2495 if (err == 0) {
2496 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2497 if (err) {
2498 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2499 " coherent allocations\n");
7a0c2029 2500 goto err_release_regions;
be839e39
CL
2501 }
2502 pci_using_dac = 1;
2503 } else {
2504 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2505 if (err != 0) {
2506 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2507 goto err_release_regions;
be839e39
CL
2508 }
2509 pci_using_dac = 0;
2510 }
2511
2512 /*
2513 * Enable bus mastering for the device ...
2514 */
2515 pci_set_master(pdev);
2516
2517 /*
2518 * Allocate our adapter data structure and attach it to the device.
2519 */
2520 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2521 if (!adapter) {
2522 err = -ENOMEM;
7a0c2029 2523 goto err_release_regions;
be839e39
CL
2524 }
2525 pci_set_drvdata(pdev, adapter);
2526 adapter->pdev = pdev;
2527 adapter->pdev_dev = &pdev->dev;
2528
2529 /*
2530 * Initialize SMP data synchronization resources.
2531 */
2532 spin_lock_init(&adapter->stats_lock);
2533
2534 /*
2535 * Map our I/O registers in BAR0.
2536 */
2537 adapter->regs = pci_ioremap_bar(pdev, 0);
2538 if (!adapter->regs) {
2539 dev_err(&pdev->dev, "cannot map device registers\n");
2540 err = -ENOMEM;
2541 goto err_free_adapter;
2542 }
2543
2544 /*
2545 * Initialize adapter level features.
2546 */
2547 adapter->name = pci_name(pdev);
2548 adapter->msg_enable = dflt_msg_enable;
2549 err = adap_init0(adapter);
2550 if (err)
2551 goto err_unmap_bar;
2552
2553 /*
2554 * Allocate our "adapter ports" and stitch everything together.
2555 */
2556 pmask = adapter->params.vfres.pmask;
2557 for_each_port(adapter, pidx) {
2558 int port_id, viid;
2559
2560 /*
2561 * We simplistically allocate our virtual interfaces
2562 * sequentially across the port numbers to which we have
2563 * access rights. This should be configurable in some manner
2564 * ...
2565 */
2566 if (pmask == 0)
2567 break;
2568 port_id = ffs(pmask) - 1;
2569 pmask &= ~(1 << port_id);
2570 viid = t4vf_alloc_vi(adapter, port_id);
2571 if (viid < 0) {
2572 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2573 " err=%d\n", port_id, viid);
2574 err = viid;
2575 goto err_free_dev;
2576 }
2577
2578 /*
2579 * Allocate our network device and stitch things together.
2580 */
2581 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2582 MAX_PORT_QSETS);
2583 if (netdev == NULL) {
2584 dev_err(&pdev->dev, "cannot allocate netdev for"
2585 " port %d\n", port_id);
2586 t4vf_free_vi(adapter, viid);
2587 err = -ENOMEM;
2588 goto err_free_dev;
2589 }
2590 adapter->port[pidx] = netdev;
2591 SET_NETDEV_DEV(netdev, &pdev->dev);
2592 pi = netdev_priv(netdev);
2593 pi->adapter = adapter;
2594 pi->pidx = pidx;
2595 pi->port_id = port_id;
2596 pi->viid = viid;
2597
2598 /*
2599 * Initialize the starting state of our "port" and register
2600 * it.
2601 */
2602 pi->xact_addr_filt = -1;
2603 pi->rx_offload = RX_CSO;
2604 netif_carrier_off(netdev);
be839e39
CL
2605 netdev->irq = pdev->irq;
2606
2607 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2608 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2609 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2610 NETIF_F_GRO);
2611 if (pci_using_dac)
2612 netdev->features |= NETIF_F_HIGHDMA;
2613 netdev->vlan_features =
2614 (netdev->features &
2615 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2616
2617#ifdef HAVE_NET_DEVICE_OPS
2618 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2619#else
2620 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2621 netdev->open = cxgb4vf_open;
2622 netdev->stop = cxgb4vf_stop;
2623 netdev->hard_start_xmit = t4vf_eth_xmit;
2624 netdev->get_stats = cxgb4vf_get_stats;
2625 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2626 netdev->do_ioctl = cxgb4vf_do_ioctl;
2627 netdev->change_mtu = cxgb4vf_change_mtu;
2628 netdev->set_mac_address = cxgb4vf_set_mac_addr;
be839e39
CL
2629#ifdef CONFIG_NET_POLL_CONTROLLER
2630 netdev->poll_controller = cxgb4vf_poll_controller;
2631#endif
2632#endif
2633 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2634
2635 /*
2636 * Initialize the hardware/software state for the port.
2637 */
2638 err = t4vf_port_init(adapter, pidx);
2639 if (err) {
2640 dev_err(&pdev->dev, "cannot initialize port %d\n",
2641 pidx);
2642 goto err_free_dev;
2643 }
2644 }
2645
2646 /*
2647 * The "card" is now ready to go. If any errors occur during device
2648 * registration we do not fail the whole "card" but rather proceed
2649 * only with the ports we manage to register successfully. However we
2650 * must register at least one net device.
2651 */
2652 for_each_port(adapter, pidx) {
2653 netdev = adapter->port[pidx];
2654 if (netdev == NULL)
2655 continue;
2656
2657 err = register_netdev(netdev);
2658 if (err) {
2659 dev_warn(&pdev->dev, "cannot register net device %s,"
2660 " skipping\n", netdev->name);
2661 continue;
2662 }
2663
2664 set_bit(pidx, &adapter->registered_device_map);
2665 }
2666 if (adapter->registered_device_map == 0) {
2667 dev_err(&pdev->dev, "could not register any net devices\n");
2668 goto err_free_dev;
2669 }
2670
2671 /*
2672 * Set up our debugfs entries.
2673 */
2674 if (cxgb4vf_debugfs_root) {
2675 adapter->debugfs_root =
2676 debugfs_create_dir(pci_name(pdev),
2677 cxgb4vf_debugfs_root);
2678 if (adapter->debugfs_root == NULL)
2679 dev_warn(&pdev->dev, "could not create debugfs"
2680 " directory");
2681 else
2682 setup_debugfs(adapter);
2683 }
2684
2685 /*
2686 * See what interrupts we'll be using. If we've been configured to
2687 * use MSI-X interrupts, try to enable them but fall back to using
2688 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2689 * get MSI interrupts we bail with the error.
2690 */
2691 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2692 adapter->flags |= USING_MSIX;
2693 else {
2694 err = pci_enable_msi(pdev);
2695 if (err) {
2696 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2697 " err=%d\n",
2698 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2699 goto err_free_debugfs;
2700 }
2701 adapter->flags |= USING_MSI;
2702 }
2703
2704 /*
2705 * Now that we know how many "ports" we have and what their types are,
2706 * and how many Queue Sets we can support, we can configure our queue
2707 * resources.
2708 */
2709 cfg_queues(adapter);
2710
2711 /*
2712 * Print a short notice on the existance and configuration of the new
2713 * VF network device ...
2714 */
2715 for_each_port(adapter, pidx) {
2716 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2717 adapter->port[pidx]->name,
2718 (adapter->flags & USING_MSIX) ? "MSI-X" :
2719 (adapter->flags & USING_MSI) ? "MSI" : "");
2720 }
2721
2722 /*
2723 * Return success!
2724 */
2725 return 0;
2726
2727 /*
2728 * Error recovery and exit code. Unwind state that's been created
2729 * so far and return the error.
2730 */
2731
2732err_free_debugfs:
2733 if (adapter->debugfs_root) {
2734 cleanup_debugfs(adapter);
2735 debugfs_remove_recursive(adapter->debugfs_root);
2736 }
2737
2738err_free_dev:
2739 for_each_port(adapter, pidx) {
2740 netdev = adapter->port[pidx];
2741 if (netdev == NULL)
2742 continue;
2743 pi = netdev_priv(netdev);
2744 t4vf_free_vi(adapter, pi->viid);
2745 if (test_bit(pidx, &adapter->registered_device_map))
2746 unregister_netdev(netdev);
2747 free_netdev(netdev);
2748 }
2749
2750err_unmap_bar:
2751 iounmap(adapter->regs);
2752
2753err_free_adapter:
2754 kfree(adapter);
2755 pci_set_drvdata(pdev, NULL);
2756
be839e39
CL
2757err_release_regions:
2758 pci_release_regions(pdev);
2759 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2760 pci_clear_master(pdev);
2761
2762err_disable_device:
2763 pci_disable_device(pdev);
be839e39
CL
2764
2765err_out:
2766 return err;
2767}
2768
2769/*
2770 * "Remove" a device: tear down all kernel and driver state created in the
2771 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2772 * that this is called "remove_one" in the PF Driver.)
2773 */
2774static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2775{
2776 struct adapter *adapter = pci_get_drvdata(pdev);
2777
2778 /*
2779 * Tear down driver state associated with device.
2780 */
2781 if (adapter) {
2782 int pidx;
2783
2784 /*
2785 * Stop all of our activity. Unregister network port,
2786 * disable interrupts, etc.
2787 */
2788 for_each_port(adapter, pidx)
2789 if (test_bit(pidx, &adapter->registered_device_map))
2790 unregister_netdev(adapter->port[pidx]);
2791 t4vf_sge_stop(adapter);
2792 if (adapter->flags & USING_MSIX) {
2793 pci_disable_msix(adapter->pdev);
2794 adapter->flags &= ~USING_MSIX;
2795 } else if (adapter->flags & USING_MSI) {
2796 pci_disable_msi(adapter->pdev);
2797 adapter->flags &= ~USING_MSI;
2798 }
2799
2800 /*
2801 * Tear down our debugfs entries.
2802 */
2803 if (adapter->debugfs_root) {
2804 cleanup_debugfs(adapter);
2805 debugfs_remove_recursive(adapter->debugfs_root);
2806 }
2807
2808 /*
2809 * Free all of the various resources which we've acquired ...
2810 */
2811 t4vf_free_sge_resources(adapter);
2812 for_each_port(adapter, pidx) {
2813 struct net_device *netdev = adapter->port[pidx];
2814 struct port_info *pi;
2815
2816 if (netdev == NULL)
2817 continue;
2818
2819 pi = netdev_priv(netdev);
2820 t4vf_free_vi(adapter, pi->viid);
2821 free_netdev(netdev);
2822 }
2823 iounmap(adapter->regs);
2824 kfree(adapter);
2825 pci_set_drvdata(pdev, NULL);
2826 }
2827
2828 /*
2829 * Disable the device and release its PCI resources.
2830 */
2831 pci_disable_device(pdev);
2832 pci_clear_master(pdev);
2833 pci_release_regions(pdev);
2834}
2835
2836/*
2837 * PCI Device registration data structures.
2838 */
2839#define CH_DEVICE(devid, idx) \
2840 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2841
2842static struct pci_device_id cxgb4vf_pci_tbl[] = {
2843 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2844 CH_DEVICE(0x4800, 0), /* T440-dbg */
2845 CH_DEVICE(0x4801, 0), /* T420-cr */
2846 CH_DEVICE(0x4802, 0), /* T422-cr */
8b6edf87
CL
2847 CH_DEVICE(0x4803, 0), /* T440-cr */
2848 CH_DEVICE(0x4804, 0), /* T420-bch */
2849 CH_DEVICE(0x4805, 0), /* T440-bch */
2850 CH_DEVICE(0x4806, 0), /* T460-ch */
2851 CH_DEVICE(0x4807, 0), /* T420-so */
2852 CH_DEVICE(0x4808, 0), /* T420-cx */
2853 CH_DEVICE(0x4809, 0), /* T420-bt */
2854 CH_DEVICE(0x480a, 0), /* T404-bt */
be839e39
CL
2855 { 0, }
2856};
2857
2858MODULE_DESCRIPTION(DRV_DESC);
2859MODULE_AUTHOR("Chelsio Communications");
2860MODULE_LICENSE("Dual BSD/GPL");
2861MODULE_VERSION(DRV_VERSION);
2862MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2863
2864static struct pci_driver cxgb4vf_driver = {
2865 .name = KBUILD_MODNAME,
2866 .id_table = cxgb4vf_pci_tbl,
2867 .probe = cxgb4vf_pci_probe,
2868 .remove = __devexit_p(cxgb4vf_pci_remove),
2869};
2870
2871/*
2872 * Initialize global driver state.
2873 */
2874static int __init cxgb4vf_module_init(void)
2875{
2876 int ret;
2877
2878 /* Debugfs support is optional, just warn if this fails */
2879 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2880 if (!cxgb4vf_debugfs_root)
2881 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2882 " debugfs entry, continuing\n");
2883
2884 ret = pci_register_driver(&cxgb4vf_driver);
2885 if (ret < 0)
2886 debugfs_remove(cxgb4vf_debugfs_root);
2887 return ret;
2888}
2889
2890/*
2891 * Tear down global driver state.
2892 */
2893static void __exit cxgb4vf_module_exit(void)
2894{
2895 pci_unregister_driver(&cxgb4vf_driver);
2896 debugfs_remove(cxgb4vf_debugfs_root);
2897}
2898
2899module_init(cxgb4vf_module_init);
2900module_exit(cxgb4vf_module_exit);