]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/defxx.c
iwlwifi: mark more functions/variables static
[mirror_ubuntu-artful-kernel.git] / drivers / net / defxx.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
e89a2cfb
MR
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
1da177e4 15 *
e89a2cfb
MR
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
1da177e4
LT
19 *
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
32 *
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
39 *
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
44 *
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
54 *
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
66 *
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
78 *
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
84 *
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
90 *
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
94 *
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
102 *
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
107 *
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
116 *
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
133 *
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
140 *
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
150 *
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
158 *
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
169 *
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
feea1db2 196 * 14 Jun 2005 macro Use irqreturn_t.
b2e68aa3 197 * 23 Oct 2006 macro Big-endian host support.
e89a2cfb 198 * 14 Dec 2006 macro TURBOchannel support.
1da177e4
LT
199 */
200
201/* Include files */
e89a2cfb 202#include <linux/bitops.h>
fcdff139 203#include <linux/compiler.h>
1da177e4 204#include <linux/delay.h>
e89a2cfb
MR
205#include <linux/dma-mapping.h>
206#include <linux/eisa.h>
207#include <linux/errno.h>
208#include <linux/fddidevice.h>
1da177e4 209#include <linux/init.h>
e89a2cfb
MR
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
1da177e4 214#include <linux/netdevice.h>
e89a2cfb 215#include <linux/pci.h>
1da177e4 216#include <linux/skbuff.h>
e89a2cfb
MR
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
1da177e4
LT
220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release! */
227#define DRV_NAME "defxx"
e89a2cfb
MR
228#define DRV_VERSION "v1.10"
229#define DRV_RELDATE "2006/12/14"
1da177e4
LT
230
231static char version[] __devinitdata =
232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
e89a2cfb
MR
244#ifdef CONFIG_PCI
245#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
246#else
247#define DFX_BUS_PCI(dev) 0
248#endif
249
250#ifdef CONFIG_EISA
251#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
252#else
253#define DFX_BUS_EISA(dev) 0
254#endif
255
256#ifdef CONFIG_TC
257#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
258#else
259#define DFX_BUS_TC(dev) 0
260#endif
261
262#ifdef CONFIG_DEFXX_MMIO
263#define DFX_MMIO 1
264#else
265#define DFX_MMIO 0
266#endif
267
1da177e4
LT
268/* Define module-wide (static) routines */
269
270static void dfx_bus_init(struct net_device *dev);
e89a2cfb 271static void dfx_bus_uninit(struct net_device *dev);
1da177e4
LT
272static void dfx_bus_config_check(DFX_board_t *bp);
273
e89a2cfb
MR
274static int dfx_driver_init(struct net_device *dev,
275 const char *print_name,
276 resource_size_t bar_start);
1da177e4
LT
277static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
278
279static int dfx_open(struct net_device *dev);
280static int dfx_close(struct net_device *dev);
281
282static void dfx_int_pr_halt_id(DFX_board_t *bp);
283static void dfx_int_type_0_process(DFX_board_t *bp);
284static void dfx_int_common(struct net_device *dev);
7d12e780 285static irqreturn_t dfx_interrupt(int irq, void *dev_id);
1da177e4
LT
286
287static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288static void dfx_ctl_set_multicast_list(struct net_device *dev);
289static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290static int dfx_ctl_update_cam(DFX_board_t *bp);
291static int dfx_ctl_update_filters(DFX_board_t *bp);
292
293static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
294static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296static int dfx_hw_adap_state_rd(DFX_board_t *bp);
297static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
298
299static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300static void dfx_rcv_queue_process(DFX_board_t *bp);
301static void dfx_rcv_flush(DFX_board_t *bp);
302
303static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
304static int dfx_xmt_done(DFX_board_t *bp);
305static void dfx_xmt_flush(DFX_board_t *bp);
306
307/* Define module-wide (static) variables */
308
e89a2cfb
MR
309static struct pci_driver dfx_pci_driver;
310static struct eisa_driver dfx_eisa_driver;
311static struct tc_driver dfx_tc_driver;
1da177e4 312
6aa20a22 313
1da177e4
LT
314/*
315 * =======================
1da177e4
LT
316 * = dfx_port_write_long =
317 * = dfx_port_read_long =
318 * =======================
6aa20a22 319 *
1da177e4
LT
320 * Overview:
321 * Routines for reading and writing values from/to adapter
6aa20a22 322 *
1da177e4
LT
323 * Returns:
324 * None
6aa20a22 325 *
1da177e4 326 * Arguments:
e89a2cfb
MR
327 * bp - pointer to board information
328 * offset - register offset from base I/O address
329 * data - for dfx_port_write_long, this is a value to write;
330 * for dfx_port_read_long, this is a pointer to store
331 * the read value
1da177e4
LT
332 *
333 * Functional Description:
334 * These routines perform the correct operation to read or write
335 * the adapter register.
6aa20a22 336 *
1da177e4
LT
337 * EISA port block base addresses are based on the slot number in which the
338 * controller is installed. For example, if the EISA controller is installed
339 * in slot 4, the port block base address is 0x4000. If the controller is
340 * installed in slot 2, the port block base address is 0x2000, and so on.
341 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
342 * registers using the register offsets defined in DEFXX.H.
343 *
344 * PCI port block base addresses are assigned by the PCI BIOS or system
e89a2cfb 345 * firmware. There is one 128 byte port block which can be accessed. It
1da177e4
LT
346 * allows for I/O mapping of both PDQ and PFI registers using the register
347 * offsets defined in DEFXX.H.
348 *
349 * Return Codes:
350 * None
351 *
352 * Assumptions:
e89a2cfb 353 * bp->base is a valid base I/O address for this adapter.
1da177e4
LT
354 * offset is a valid register offset for this adapter.
355 *
356 * Side Effects:
357 * Rather than produce macros for these functions, these routines
358 * are defined using "inline" to ensure that the compiler will
359 * generate inline code and not waste a procedure call and return.
360 * This provides all the benefits of macros, but with the
361 * advantage of strict data type checking.
362 */
363
e89a2cfb
MR
364static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
365{
366 writel(data, bp->base.mem + offset);
367 mb();
368}
1da177e4 369
e89a2cfb
MR
370static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
371{
372 outl(data, bp->base.port + offset);
373}
1da177e4 374
e89a2cfb
MR
375static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
376{
fcdff139 377 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
378 int dfx_bus_tc = DFX_BUS_TC(bdev);
379 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 380
e89a2cfb
MR
381 if (dfx_use_mmio)
382 dfx_writel(bp, offset, data);
383 else
384 dfx_outl(bp, offset, data);
385}
1da177e4 386
1da177e4 387
e89a2cfb
MR
388static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
389{
390 mb();
391 *data = readl(bp->base.mem + offset);
392}
1da177e4 393
e89a2cfb
MR
394static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
395{
396 *data = inl(bp->base.port + offset);
397}
1da177e4 398
e89a2cfb
MR
399static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
400{
fcdff139 401 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb
MR
402 int dfx_bus_tc = DFX_BUS_TC(bdev);
403 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 404
e89a2cfb
MR
405 if (dfx_use_mmio)
406 dfx_readl(bp, offset, data);
407 else
408 dfx_inl(bp, offset, data);
409}
1da177e4 410
1da177e4 411
e89a2cfb
MR
412/*
413 * ================
414 * = dfx_get_bars =
415 * ================
416 *
417 * Overview:
418 * Retrieves the address range used to access control and status
419 * registers.
420 *
421 * Returns:
422 * None
423 *
424 * Arguments:
425 * bdev - pointer to device information
426 * bar_start - pointer to store the start address
427 * bar_len - pointer to store the length of the area
428 *
429 * Assumptions:
430 * I am sure there are some.
431 *
432 * Side Effects:
433 * None
434 */
435static void dfx_get_bars(struct device *bdev,
436 resource_size_t *bar_start, resource_size_t *bar_len)
437{
438 int dfx_bus_pci = DFX_BUS_PCI(bdev);
439 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
440 int dfx_bus_tc = DFX_BUS_TC(bdev);
441 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1da177e4 442
e89a2cfb
MR
443 if (dfx_bus_pci) {
444 int num = dfx_use_mmio ? 0 : 1;
1da177e4 445
e89a2cfb
MR
446 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
447 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
448 }
449 if (dfx_bus_eisa) {
450 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
451 resource_size_t bar;
452
453 if (dfx_use_mmio) {
454 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
455 bar <<= 8;
456 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
457 bar <<= 8;
458 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
459 bar <<= 16;
460 *bar_start = bar;
461 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
462 bar <<= 8;
463 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
464 bar <<= 8;
465 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
466 bar <<= 16;
467 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
468 } else {
469 *bar_start = base_addr;
470 *bar_len = PI_ESIC_K_CSR_IO_LEN;
471 }
472 }
473 if (dfx_bus_tc) {
474 *bar_start = to_tc_dev(bdev)->resource.start +
475 PI_TC_K_CSR_OFFSET;
476 *bar_len = PI_TC_K_CSR_LEN;
477 }
478}
6aa20a22 479
1da177e4 480/*
e89a2cfb
MR
481 * ================
482 * = dfx_register =
483 * ================
6aa20a22 484 *
1da177e4 485 * Overview:
e89a2cfb 486 * Initializes a supported FDDI controller
6aa20a22 487 *
1da177e4
LT
488 * Returns:
489 * Condition code
6aa20a22 490 *
1da177e4 491 * Arguments:
e89a2cfb 492 * bdev - pointer to device information
1da177e4
LT
493 *
494 * Functional Description:
495 *
496 * Return Codes:
497 * 0 - This device (fddi0, fddi1, etc) configured successfully
498 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
499 *
500 * Assumptions:
501 * It compiles so it should work :-( (PCI cards do :-)
502 *
503 * Side Effects:
504 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
505 * initialized and the board resources are read and stored in
506 * the device structure.
507 */
e89a2cfb 508static int __devinit dfx_register(struct device *bdev)
1da177e4
LT
509{
510 static int version_disp;
e89a2cfb
MR
511 int dfx_bus_pci = DFX_BUS_PCI(bdev);
512 int dfx_bus_tc = DFX_BUS_TC(bdev);
513 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
514 char *print_name = bdev->bus_id;
1da177e4
LT
515 struct net_device *dev;
516 DFX_board_t *bp; /* board pointer */
e89a2cfb
MR
517 resource_size_t bar_start = 0; /* pointer to port */
518 resource_size_t bar_len = 0; /* resource length */
1da177e4 519 int alloc_size; /* total buffer size used */
e89a2cfb
MR
520 struct resource *region;
521 int err = 0;
1da177e4
LT
522
523 if (!version_disp) { /* display version info if adapter is found */
524 version_disp = 1; /* set display flag to TRUE so that */
525 printk(version); /* we only display this string ONCE */
526 }
527
1da177e4
LT
528 dev = alloc_fddidev(sizeof(*bp));
529 if (!dev) {
e89a2cfb 530 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
1da177e4
LT
531 print_name);
532 return -ENOMEM;
533 }
534
535 /* Enable PCI device. */
e89a2cfb
MR
536 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
537 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
538 print_name);
539 goto err_out;
1da177e4
LT
540 }
541
e89a2cfb
MR
542 SET_NETDEV_DEV(dev, bdev);
543
544 bp = netdev_priv(dev);
545 bp->bus_dev = bdev;
546 dev_set_drvdata(bdev, dev);
1da177e4 547
e89a2cfb 548 dfx_get_bars(bdev, &bar_start, &bar_len);
1da177e4 549
e89a2cfb
MR
550 if (dfx_use_mmio)
551 region = request_mem_region(bar_start, bar_len, print_name);
552 else
553 region = request_region(bar_start, bar_len, print_name);
554 if (!region) {
1da177e4 555 printk(KERN_ERR "%s: Cannot reserve I/O resource "
e89a2cfb
MR
556 "0x%lx @ 0x%lx, aborting\n",
557 print_name, (long)bar_len, (long)bar_start);
1da177e4 558 err = -EBUSY;
e89a2cfb 559 goto err_out_disable;
1da177e4
LT
560 }
561
e89a2cfb
MR
562 /* Set up I/O base address. */
563 if (dfx_use_mmio) {
564 bp->base.mem = ioremap_nocache(bar_start, bar_len);
565 if (!bp->base.mem) {
566 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
8a323526 567 err = -ENOMEM;
e89a2cfb
MR
568 goto err_out_region;
569 }
570 } else {
571 bp->base.port = bar_start;
572 dev->base_addr = bar_start;
573 }
1da177e4 574
e89a2cfb 575 /* Initialize new device structure */
1da177e4
LT
576
577 dev->get_stats = dfx_ctl_get_stats;
578 dev->open = dfx_open;
579 dev->stop = dfx_close;
580 dev->hard_start_xmit = dfx_xmt_queue_pkt;
581 dev->set_multicast_list = dfx_ctl_set_multicast_list;
582 dev->set_mac_address = dfx_ctl_set_mac_address;
583
e89a2cfb
MR
584 if (dfx_bus_pci)
585 pci_set_master(to_pci_dev(bdev));
1da177e4 586
e89a2cfb 587 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
1da177e4 588 err = -ENODEV;
e89a2cfb 589 goto err_out_unmap;
1da177e4
LT
590 }
591
592 err = register_netdev(dev);
593 if (err)
594 goto err_out_kfree;
595
596 printk("%s: registered as %s\n", print_name, dev->name);
597 return 0;
598
599err_out_kfree:
600 alloc_size = sizeof(PI_DESCR_BLOCK) +
601 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
602#ifndef DYNAMIC_BUFFERS
603 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
604#endif
605 sizeof(PI_CONSUMER_BLOCK) +
606 (PI_ALIGN_K_DESC_BLK - 1);
607 if (bp->kmalloced)
e89a2cfb
MR
608 dma_free_coherent(bdev, alloc_size,
609 bp->kmalloced, bp->kmalloced_dma);
610
611err_out_unmap:
612 if (dfx_use_mmio)
613 iounmap(bp->base.mem);
614
1da177e4 615err_out_region:
e89a2cfb
MR
616 if (dfx_use_mmio)
617 release_mem_region(bar_start, bar_len);
618 else
619 release_region(bar_start, bar_len);
620
621err_out_disable:
622 if (dfx_bus_pci)
623 pci_disable_device(to_pci_dev(bdev));
624
1da177e4
LT
625err_out:
626 free_netdev(dev);
627 return err;
628}
629
6aa20a22 630
1da177e4
LT
631/*
632 * ================
633 * = dfx_bus_init =
634 * ================
6aa20a22 635 *
1da177e4 636 * Overview:
e89a2cfb 637 * Initializes the bus-specific controller logic.
6aa20a22 638 *
1da177e4
LT
639 * Returns:
640 * None
6aa20a22 641 *
1da177e4
LT
642 * Arguments:
643 * dev - pointer to device information
644 *
645 * Functional Description:
646 * Determine and save adapter IRQ in device table,
647 * then perform bus-specific logic initialization.
648 *
649 * Return Codes:
650 * None
651 *
652 * Assumptions:
e89a2cfb 653 * bp->base has already been set with the proper
1da177e4
LT
654 * base I/O address for this device.
655 *
656 * Side Effects:
657 * Interrupts are enabled at the adapter bus-specific logic.
658 * Note: Interrupts at the DMA engine (PDQ chip) are not
659 * enabled yet.
660 */
661
662static void __devinit dfx_bus_init(struct net_device *dev)
663{
e89a2cfb
MR
664 DFX_board_t *bp = netdev_priv(dev);
665 struct device *bdev = bp->bus_dev;
666 int dfx_bus_pci = DFX_BUS_PCI(bdev);
667 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
668 int dfx_bus_tc = DFX_BUS_TC(bdev);
669 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
670 u8 val;
1da177e4
LT
671
672 DBG_printk("In dfx_bus_init...\n");
673
e89a2cfb 674 /* Initialize a pointer back to the net_device struct */
1da177e4
LT
675 bp->dev = dev;
676
677 /* Initialize adapter based on bus type */
678
e89a2cfb
MR
679 if (dfx_bus_tc)
680 dev->irq = to_tc_dev(bdev)->interrupt;
681 if (dfx_bus_eisa) {
682 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1da177e4 683
e89a2cfb
MR
684 /* Get the interrupt level from the ESIC chip. */
685 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
686 val &= PI_CONFIG_STAT_0_M_IRQ;
687 val >>= PI_CONFIG_STAT_0_V_IRQ;
1da177e4 688
e89a2cfb
MR
689 switch (val) {
690 case PI_CONFIG_STAT_0_IRQ_K_9:
691 dev->irq = 9;
692 break;
1da177e4 693
e89a2cfb
MR
694 case PI_CONFIG_STAT_0_IRQ_K_10:
695 dev->irq = 10;
696 break;
1da177e4 697
e89a2cfb
MR
698 case PI_CONFIG_STAT_0_IRQ_K_11:
699 dev->irq = 11;
700 break;
1da177e4 701
e89a2cfb
MR
702 case PI_CONFIG_STAT_0_IRQ_K_15:
703 dev->irq = 15;
704 break;
705 }
1da177e4 706
e89a2cfb
MR
707 /*
708 * Enable memory decoding (MEMCS0) and/or port decoding
709 * (IOCS1/IOCS0) as appropriate in Function Control
710 * Register. One of the port chip selects seems to be
711 * used for the Burst Holdoff register, but this bit of
712 * documentation is missing and as yet it has not been
713 * determined which of the two. This is also the reason
714 * the size of the decoded port range is twice as large
715 * as one required by the PDQ.
716 */
1da177e4 717
e89a2cfb
MR
718 /* Set the decode range of the board. */
719 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
720 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
721 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
722 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
723 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
724 val = PI_ESIC_K_CSR_IO_LEN - 1;
725 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
726 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
727 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
728 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
729
730 /* Enable the decoders. */
731 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
732 if (dfx_use_mmio)
733 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
734 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
1da177e4
LT
735
736 /*
e89a2cfb
MR
737 * Enable access to the rest of the module
738 * (including PDQ and packet memory).
1da177e4 739 */
e89a2cfb
MR
740 val = PI_SLOT_CNTRL_M_ENB;
741 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
1da177e4 742
e89a2cfb
MR
743 /*
744 * Map PDQ registers into memory or port space. This is
745 * done with a bit in the Burst Holdoff register.
746 */
747 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
748 if (dfx_use_mmio)
749 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
750 else
751 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
752 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
1da177e4
LT
753
754 /* Enable interrupts at EISA bus interface chip (ESIC) */
e89a2cfb
MR
755 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
756 val |= PI_CONFIG_STAT_0_M_INT_ENB;
757 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
758 }
759 if (dfx_bus_pci) {
760 struct pci_dev *pdev = to_pci_dev(bdev);
1da177e4
LT
761
762 /* Get the interrupt level from the PCI Configuration Table */
763
764 dev->irq = pdev->irq;
765
766 /* Check Latency Timer and set if less than minimal */
767
768 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
e89a2cfb 769 if (val < PFI_K_LAT_TIMER_MIN) {
1da177e4
LT
770 val = PFI_K_LAT_TIMER_DEF;
771 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
e89a2cfb 772 }
1da177e4
LT
773
774 /* Enable interrupts at PCI bus interface chip (PFI) */
e89a2cfb
MR
775 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
776 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
777 }
778}
1da177e4 779
e89a2cfb
MR
780/*
781 * ==================
782 * = dfx_bus_uninit =
783 * ==================
784 *
785 * Overview:
786 * Uninitializes the bus-specific controller logic.
787 *
788 * Returns:
789 * None
790 *
791 * Arguments:
792 * dev - pointer to device information
793 *
794 * Functional Description:
795 * Perform bus-specific logic uninitialization.
796 *
797 * Return Codes:
798 * None
799 *
800 * Assumptions:
801 * bp->base has already been set with the proper
802 * base I/O address for this device.
803 *
804 * Side Effects:
805 * Interrupts are disabled at the adapter bus-specific logic.
806 */
807
79d10508 808static void __devexit dfx_bus_uninit(struct net_device *dev)
e89a2cfb
MR
809{
810 DFX_board_t *bp = netdev_priv(dev);
811 struct device *bdev = bp->bus_dev;
812 int dfx_bus_pci = DFX_BUS_PCI(bdev);
813 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
814 u8 val;
815
816 DBG_printk("In dfx_bus_uninit...\n");
817
818 /* Uninitialize adapter based on bus type */
819
820 if (dfx_bus_eisa) {
821 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
822
823 /* Disable interrupts at EISA bus interface chip (ESIC) */
824 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
825 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
826 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
827 }
828 if (dfx_bus_pci) {
829 /* Disable interrupts at PCI bus interface chip (PFI) */
830 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
1da177e4 831 }
e89a2cfb 832}
1da177e4 833
6aa20a22 834
1da177e4
LT
835/*
836 * ========================
837 * = dfx_bus_config_check =
838 * ========================
6aa20a22 839 *
1da177e4
LT
840 * Overview:
841 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
842 * are illegal, then this routine will set new defaults.
6aa20a22 843 *
1da177e4
LT
844 * Returns:
845 * None
6aa20a22 846 *
1da177e4
LT
847 * Arguments:
848 * bp - pointer to board information
849 *
850 * Functional Description:
851 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
852 * PDQ, and all FDDI PCI controllers, all values are legal.
853 *
854 * Return Codes:
855 * None
856 *
857 * Assumptions:
858 * dfx_adap_init has NOT been called yet so burst size and other items have
859 * not been set.
860 *
861 * Side Effects:
862 * None
863 */
864
865static void __devinit dfx_bus_config_check(DFX_board_t *bp)
866{
fcdff139 867 struct device __maybe_unused *bdev = bp->bus_dev;
e89a2cfb 868 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1da177e4 869 int status; /* return code from adapter port control call */
1da177e4
LT
870 u32 host_data; /* LW data returned from port control call */
871
872 DBG_printk("In dfx_bus_config_check...\n");
873
874 /* Configuration check only valid for EISA adapter */
875
e89a2cfb 876 if (dfx_bus_eisa) {
1da177e4
LT
877 /*
878 * First check if revision 2 EISA controller. Rev. 1 cards used
879 * PDQ revision B, so no workaround needed in this case. Rev. 3
880 * cards used PDQ revision E, so no workaround needed in this
881 * case, either. Only Rev. 2 cards used either Rev. D or E
882 * chips, so we must verify the chip revision on Rev. 2 cards.
883 */
e89a2cfb 884 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
1da177e4 885 /*
e89a2cfb
MR
886 * Revision 2 FDDI EISA controller found,
887 * so let's check PDQ revision of adapter.
1da177e4 888 */
1da177e4
LT
889 status = dfx_hw_port_ctrl_req(bp,
890 PI_PCTRL_M_SUB_CMD,
891 PI_SUB_CMD_K_PDQ_REV_GET,
892 0,
893 &host_data);
894 if ((status != DFX_K_SUCCESS) || (host_data == 2))
895 {
896 /*
897 * Either we couldn't determine the PDQ revision, or
898 * we determined that it is at revision D. In either case,
899 * we need to implement the workaround.
900 */
901
902 /* Ensure that the burst size is set to 8 longwords or less */
903
904 switch (bp->burst_size)
905 {
906 case PI_PDATA_B_DMA_BURST_SIZE_32:
907 case PI_PDATA_B_DMA_BURST_SIZE_16:
908 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
909 break;
910
911 default:
912 break;
913 }
914
915 /* Ensure that full-duplex mode is not enabled */
916
917 bp->full_duplex_enb = PI_SNMP_K_FALSE;
918 }
919 }
920 }
921 }
922
6aa20a22 923
1da177e4
LT
924/*
925 * ===================
926 * = dfx_driver_init =
927 * ===================
6aa20a22 928 *
1da177e4
LT
929 * Overview:
930 * Initializes remaining adapter board structure information
931 * and makes sure adapter is in a safe state prior to dfx_open().
6aa20a22 932 *
1da177e4
LT
933 * Returns:
934 * Condition code
6aa20a22 935 *
1da177e4
LT
936 * Arguments:
937 * dev - pointer to device information
938 * print_name - printable device name
939 *
940 * Functional Description:
941 * This function allocates additional resources such as the host memory
942 * blocks needed by the adapter (eg. descriptor and consumer blocks).
943 * Remaining bus initialization steps are also completed. The adapter
944 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
945 * must call dfx_open() to open the adapter and bring it on-line.
946 *
947 * Return Codes:
948 * DFX_K_SUCCESS - initialization succeeded
949 * DFX_K_FAILURE - initialization failed - could not allocate memory
950 * or read adapter MAC address
951 *
952 * Assumptions:
953 * Memory allocated from pci_alloc_consistent() call is physically
954 * contiguous, locked memory.
955 *
956 * Side Effects:
957 * Adapter is reset and should be in DMA_UNAVAILABLE state before
958 * returning from this routine.
959 */
960
961static int __devinit dfx_driver_init(struct net_device *dev,
e89a2cfb
MR
962 const char *print_name,
963 resource_size_t bar_start)
1da177e4 964{
e89a2cfb
MR
965 DFX_board_t *bp = netdev_priv(dev);
966 struct device *bdev = bp->bus_dev;
967 int dfx_bus_pci = DFX_BUS_PCI(bdev);
968 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
969 int dfx_bus_tc = DFX_BUS_TC(bdev);
970 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
971 int alloc_size; /* total buffer size needed */
972 char *top_v, *curr_v; /* virtual addrs into memory block */
973 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
974 u32 data, le32; /* host data register value */
975 char *board_name = NULL;
1da177e4
LT
976
977 DBG_printk("In dfx_driver_init...\n");
978
979 /* Initialize bus-specific hardware registers */
980
981 dfx_bus_init(dev);
982
983 /*
984 * Initialize default values for configurable parameters
985 *
986 * Note: All of these parameters are ones that a user may
987 * want to customize. It'd be nice to break these
988 * out into Space.c or someplace else that's more
989 * accessible/understandable than this file.
990 */
991
992 bp->full_duplex_enb = PI_SNMP_K_FALSE;
993 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
994 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
995 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
996
997 /*
998 * Ensure that HW configuration is OK
999 *
1000 * Note: Depending on the hardware revision, we may need to modify
1001 * some of the configurable parameters to workaround hardware
1002 * limitations. We'll perform this configuration check AFTER
1003 * setting the parameters to their default values.
1004 */
1005
1006 dfx_bus_config_check(bp);
1007
1008 /* Disable PDQ interrupts first */
1009
1010 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1011
1012 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1013
1014 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1015
1016 /* Read the factory MAC address from the adapter then save it */
1017
1018 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1019 &data) != DFX_K_SUCCESS) {
1020 printk("%s: Could not read adapter factory MAC address!\n",
1021 print_name);
1022 return(DFX_K_FAILURE);
1023 }
e89a2cfb
MR
1024 le32 = cpu_to_le32(data);
1025 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1da177e4
LT
1026
1027 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1028 &data) != DFX_K_SUCCESS) {
1029 printk("%s: Could not read adapter factory MAC address!\n",
1030 print_name);
1031 return(DFX_K_FAILURE);
1032 }
e89a2cfb
MR
1033 le32 = cpu_to_le32(data);
1034 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1da177e4
LT
1035
1036 /*
1037 * Set current address to factory address
1038 *
1039 * Note: Node address override support is handled through
1040 * dfx_ctl_set_mac_address.
1041 */
1042
1043 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
e89a2cfb
MR
1044 if (dfx_bus_tc)
1045 board_name = "DEFTA";
1046 if (dfx_bus_eisa)
1047 board_name = "DEFEA";
1048 if (dfx_bus_pci)
1049 board_name = "DEFPA";
1050 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, "
1051 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
1052 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1053 (long long)bar_start, dev->irq,
1054 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1055 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1da177e4
LT
1056
1057 /*
1058 * Get memory for descriptor block, consumer block, and other buffers
1059 * that need to be DMA read or written to by the adapter.
1060 */
1061
1062 alloc_size = sizeof(PI_DESCR_BLOCK) +
1063 PI_CMD_REQ_K_SIZE_MAX +
1064 PI_CMD_RSP_K_SIZE_MAX +
1065#ifndef DYNAMIC_BUFFERS
1066 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1067#endif
1068 sizeof(PI_CONSUMER_BLOCK) +
1069 (PI_ALIGN_K_DESC_BLK - 1);
e89a2cfb
MR
1070 bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1071 &bp->kmalloced_dma,
1072 GFP_ATOMIC);
1da177e4
LT
1073 if (top_v == NULL) {
1074 printk("%s: Could not allocate memory for host buffers "
1075 "and structures!\n", print_name);
1076 return(DFX_K_FAILURE);
1077 }
1078 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
1079 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1080
1081 /*
1082 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1083 * plus the amount of memory needed was allocated. The physical address
1084 * is now 8K aligned. By carving up the memory in a specific order,
1085 * we'll guarantee the alignment requirements for all other structures.
1086 *
1087 * Note: If the assumptions change regarding the non-paged, non-cached,
1088 * physically contiguous nature of the memory block or the address
1089 * alignments, then we'll need to implement a different algorithm
1090 * for allocating the needed memory.
1091 */
1092
1093 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1094 curr_v = top_v + (curr_p - top_p);
1095
1096 /* Reserve space for descriptor block */
1097
1098 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1099 bp->descr_block_phys = curr_p;
1100 curr_v += sizeof(PI_DESCR_BLOCK);
1101 curr_p += sizeof(PI_DESCR_BLOCK);
1102
1103 /* Reserve space for command request buffer */
1104
1105 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1106 bp->cmd_req_phys = curr_p;
1107 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1108 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1109
1110 /* Reserve space for command response buffer */
1111
1112 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1113 bp->cmd_rsp_phys = curr_p;
1114 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1115 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1116
1117 /* Reserve space for the LLC host receive queue buffers */
1118
1119 bp->rcv_block_virt = curr_v;
1120 bp->rcv_block_phys = curr_p;
1121
1122#ifndef DYNAMIC_BUFFERS
1123 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1124 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1125#endif
1126
1127 /* Reserve space for the consumer block */
1128
1129 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1130 bp->cons_block_phys = curr_p;
1131
1132 /* Display virtual and physical addresses if debug driver */
1133
1134 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1135 print_name,
1136 (long)bp->descr_block_virt, bp->descr_block_phys);
1137 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1138 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1139 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1140 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1141 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1142 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1143 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1144 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1145
1146 return(DFX_K_SUCCESS);
1147}
1148
6aa20a22 1149
1da177e4
LT
1150/*
1151 * =================
1152 * = dfx_adap_init =
1153 * =================
6aa20a22 1154 *
1da177e4
LT
1155 * Overview:
1156 * Brings the adapter to the link avail/link unavailable state.
6aa20a22 1157 *
1da177e4
LT
1158 * Returns:
1159 * Condition code
6aa20a22 1160 *
1da177e4
LT
1161 * Arguments:
1162 * bp - pointer to board information
1163 * get_buffers - non-zero if buffers to be allocated
1164 *
1165 * Functional Description:
1166 * Issues the low-level firmware/hardware calls necessary to bring
1167 * the adapter up, or to properly reset and restore adapter during
1168 * run-time.
1169 *
1170 * Return Codes:
1171 * DFX_K_SUCCESS - Adapter brought up successfully
1172 * DFX_K_FAILURE - Adapter initialization failed
1173 *
1174 * Assumptions:
1175 * bp->reset_type should be set to a valid reset type value before
1176 * calling this routine.
1177 *
1178 * Side Effects:
1179 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1180 * upon a successful return of this routine.
1181 */
1182
1183static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1184 {
1185 DBG_printk("In dfx_adap_init...\n");
1186
1187 /* Disable PDQ interrupts first */
1188
1189 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1190
1191 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1192
1193 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1194 {
1195 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1196 return(DFX_K_FAILURE);
1197 }
1198
1199 /*
1200 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1201 * so we'll acknowledge all Type 0 interrupts now before continuing.
1202 */
1203
1204 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1205
1206 /*
1207 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1208 *
1209 * Note: We only need to clear host copies of these registers. The PDQ reset
1210 * takes care of the on-board register values.
1211 */
1212
1213 bp->cmd_req_reg.lword = 0;
1214 bp->cmd_rsp_reg.lword = 0;
1215 bp->rcv_xmt_reg.lword = 0;
1216
1217 /* Clear consumer block before going to DMA_AVAILABLE state */
1218
1219 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1220
1221 /* Initialize the DMA Burst Size */
1222
1223 if (dfx_hw_port_ctrl_req(bp,
1224 PI_PCTRL_M_SUB_CMD,
1225 PI_SUB_CMD_K_BURST_SIZE_SET,
1226 bp->burst_size,
1227 NULL) != DFX_K_SUCCESS)
1228 {
1229 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1230 return(DFX_K_FAILURE);
1231 }
1232
1233 /*
1234 * Set base address of Consumer Block
1235 *
1236 * Assumption: 32-bit physical address of consumer block is 64 byte
1237 * aligned. That is, bits 0-5 of the address must be zero.
1238 */
1239
1240 if (dfx_hw_port_ctrl_req(bp,
1241 PI_PCTRL_M_CONS_BLOCK,
1242 bp->cons_block_phys,
1243 0,
1244 NULL) != DFX_K_SUCCESS)
1245 {
1246 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1247 return(DFX_K_FAILURE);
1248 }
1249
1250 /*
b2e68aa3
MR
1251 * Set the base address of Descriptor Block and bring adapter
1252 * to DMA_AVAILABLE state.
1da177e4 1253 *
b2e68aa3
MR
1254 * Note: We also set the literal and data swapping requirements
1255 * in this command.
1da177e4 1256 *
b2e68aa3
MR
1257 * Assumption: 32-bit physical address of descriptor block
1258 * is 8Kbyte aligned.
1da177e4 1259 */
b2e68aa3
MR
1260 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1261 (u32)(bp->descr_block_phys |
1262 PI_PDATA_A_INIT_M_BSWAP_INIT),
1263 0, NULL) != DFX_K_SUCCESS) {
1264 printk("%s: Could not set descriptor block address!\n",
1265 bp->dev->name);
1266 return DFX_K_FAILURE;
1267 }
1da177e4
LT
1268
1269 /* Set transmit flush timeout value */
1270
1271 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1272 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1273 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1274 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1275 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1276 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1277 {
1278 printk("%s: DMA command request failed!\n", bp->dev->name);
1279 return(DFX_K_FAILURE);
1280 }
1281
1282 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1283
1284 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1285 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1286 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1287 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1288 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1289 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1290 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1291 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1292 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1293 {
1294 printk("%s: DMA command request failed!\n", bp->dev->name);
1295 return(DFX_K_FAILURE);
1296 }
1297
1298 /* Initialize adapter CAM */
1299
1300 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1301 {
1302 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1303 return(DFX_K_FAILURE);
1304 }
1305
1306 /* Initialize adapter filters */
1307
1308 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1309 {
1310 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1311 return(DFX_K_FAILURE);
1312 }
1313
1314 /*
1315 * Remove any existing dynamic buffers (i.e. if the adapter is being
1316 * reinitialized)
1317 */
1318
1319 if (get_buffers)
1320 dfx_rcv_flush(bp);
1321
1322 /* Initialize receive descriptor block and produce buffers */
1323
1324 if (dfx_rcv_init(bp, get_buffers))
1325 {
1326 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1327 if (get_buffers)
1328 dfx_rcv_flush(bp);
1329 return(DFX_K_FAILURE);
1330 }
1331
1332 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1333
1334 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1335 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1336 {
1337 printk("%s: Start command failed\n", bp->dev->name);
1338 if (get_buffers)
1339 dfx_rcv_flush(bp);
1340 return(DFX_K_FAILURE);
1341 }
1342
1343 /* Initialization succeeded, reenable PDQ interrupts */
1344
1345 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1346 return(DFX_K_SUCCESS);
1347 }
1348
6aa20a22 1349
1da177e4
LT
1350/*
1351 * ============
1352 * = dfx_open =
1353 * ============
6aa20a22 1354 *
1da177e4
LT
1355 * Overview:
1356 * Opens the adapter
6aa20a22 1357 *
1da177e4
LT
1358 * Returns:
1359 * Condition code
6aa20a22 1360 *
1da177e4
LT
1361 * Arguments:
1362 * dev - pointer to device information
1363 *
1364 * Functional Description:
1365 * This function brings the adapter to an operational state.
1366 *
1367 * Return Codes:
1368 * 0 - Adapter was successfully opened
1369 * -EAGAIN - Could not register IRQ or adapter initialization failed
1370 *
1371 * Assumptions:
1372 * This routine should only be called for a device that was
1373 * initialized successfully.
1374 *
1375 * Side Effects:
1376 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1377 * if the open is successful.
1378 */
1379
1380static int dfx_open(struct net_device *dev)
1381{
e89a2cfb 1382 DFX_board_t *bp = netdev_priv(dev);
1da177e4 1383 int ret;
1da177e4
LT
1384
1385 DBG_printk("In dfx_open...\n");
6aa20a22 1386
1da177e4
LT
1387 /* Register IRQ - support shared interrupts by passing device ptr */
1388
e89a2cfb
MR
1389 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1390 dev);
1da177e4
LT
1391 if (ret) {
1392 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1393 return ret;
1394 }
1395
1396 /*
1397 * Set current address to factory MAC address
1398 *
1399 * Note: We've already done this step in dfx_driver_init.
1400 * However, it's possible that a user has set a node
1401 * address override, then closed and reopened the
1402 * adapter. Unless we reset the device address field
1403 * now, we'll continue to use the existing modified
1404 * address.
1405 */
1406
1407 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1408
1409 /* Clear local unicast/multicast address tables and counts */
1410
1411 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1412 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1413 bp->uc_count = 0;
1414 bp->mc_count = 0;
1415
1416 /* Disable promiscuous filter settings */
1417
1418 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1419 bp->group_prom = PI_FSTATE_K_BLOCK;
1420
1421 spin_lock_init(&bp->lock);
1422
1423 /* Reset and initialize adapter */
1424
1425 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1426 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1427 {
1428 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1429 free_irq(dev->irq, dev);
1430 return -EAGAIN;
1431 }
1432
1433 /* Set device structure info */
1434 netif_start_queue(dev);
1435 return(0);
1436}
1437
6aa20a22 1438
1da177e4
LT
1439/*
1440 * =============
1441 * = dfx_close =
1442 * =============
6aa20a22 1443 *
1da177e4
LT
1444 * Overview:
1445 * Closes the device/module.
6aa20a22 1446 *
1da177e4
LT
1447 * Returns:
1448 * Condition code
6aa20a22 1449 *
1da177e4
LT
1450 * Arguments:
1451 * dev - pointer to device information
1452 *
1453 * Functional Description:
1454 * This routine closes the adapter and brings it to a safe state.
1455 * The interrupt service routine is deregistered with the OS.
1456 * The adapter can be opened again with another call to dfx_open().
1457 *
1458 * Return Codes:
1459 * Always return 0.
1460 *
1461 * Assumptions:
1462 * No further requests for this adapter are made after this routine is
1463 * called. dfx_open() can be called to reset and reinitialize the
1464 * adapter.
1465 *
1466 * Side Effects:
1467 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1468 * routine.
1469 */
1470
1471static int dfx_close(struct net_device *dev)
1472{
e89a2cfb 1473 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1474
1475 DBG_printk("In dfx_close...\n");
1476
1477 /* Disable PDQ interrupts first */
1478
1479 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1480
1481 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1482
1483 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1484
1485 /*
1486 * Flush any pending transmit buffers
1487 *
1488 * Note: It's important that we flush the transmit buffers
1489 * BEFORE we clear our copy of the Type 2 register.
1490 * Otherwise, we'll have no idea how many buffers
1491 * we need to free.
1492 */
1493
1494 dfx_xmt_flush(bp);
1495
1496 /*
1497 * Clear Type 1 and Type 2 registers after adapter reset
1498 *
1499 * Note: Even though we're closing the adapter, it's
1500 * possible that an interrupt will occur after
1501 * dfx_close is called. Without some assurance to
1502 * the contrary we want to make sure that we don't
1503 * process receive and transmit LLC frames and update
1504 * the Type 2 register with bad information.
1505 */
1506
1507 bp->cmd_req_reg.lword = 0;
1508 bp->cmd_rsp_reg.lword = 0;
1509 bp->rcv_xmt_reg.lword = 0;
1510
1511 /* Clear consumer block for the same reason given above */
1512
1513 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1514
1515 /* Release all dynamically allocate skb in the receive ring. */
1516
1517 dfx_rcv_flush(bp);
1518
1519 /* Clear device structure flags */
1520
1521 netif_stop_queue(dev);
6aa20a22 1522
1da177e4
LT
1523 /* Deregister (free) IRQ */
1524
1525 free_irq(dev->irq, dev);
6aa20a22 1526
1da177e4
LT
1527 return(0);
1528}
1529
6aa20a22 1530
1da177e4
LT
1531/*
1532 * ======================
1533 * = dfx_int_pr_halt_id =
1534 * ======================
6aa20a22 1535 *
1da177e4
LT
1536 * Overview:
1537 * Displays halt id's in string form.
6aa20a22 1538 *
1da177e4
LT
1539 * Returns:
1540 * None
6aa20a22 1541 *
1da177e4
LT
1542 * Arguments:
1543 * bp - pointer to board information
1544 *
1545 * Functional Description:
1546 * Determine current halt id and display appropriate string.
1547 *
1548 * Return Codes:
1549 * None
1550 *
1551 * Assumptions:
1552 * None
1553 *
1554 * Side Effects:
1555 * None
1556 */
1557
1558static void dfx_int_pr_halt_id(DFX_board_t *bp)
1559 {
1560 PI_UINT32 port_status; /* PDQ port status register value */
1561 PI_UINT32 halt_id; /* PDQ port status halt ID */
1562
1563 /* Read the latest port status */
1564
1565 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1566
1567 /* Display halt state transition information */
1568
1569 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1570 switch (halt_id)
1571 {
1572 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1573 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1574 break;
1575
1576 case PI_HALT_ID_K_PARITY_ERROR:
1577 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1578 break;
1579
1580 case PI_HALT_ID_K_HOST_DIR_HALT:
1581 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1582 break;
1583
1584 case PI_HALT_ID_K_SW_FAULT:
1585 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1586 break;
1587
1588 case PI_HALT_ID_K_HW_FAULT:
1589 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1590 break;
1591
1592 case PI_HALT_ID_K_PC_TRACE:
1593 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1594 break;
1595
1596 case PI_HALT_ID_K_DMA_ERROR:
1597 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1598 break;
1599
1600 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1601 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1602 break;
1603
1604 case PI_HALT_ID_K_BUS_EXCEPTION:
1605 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1606 break;
1607
1608 default:
1609 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1610 break;
1611 }
1612 }
1613
6aa20a22 1614
1da177e4
LT
1615/*
1616 * ==========================
1617 * = dfx_int_type_0_process =
1618 * ==========================
6aa20a22 1619 *
1da177e4
LT
1620 * Overview:
1621 * Processes Type 0 interrupts.
6aa20a22 1622 *
1da177e4
LT
1623 * Returns:
1624 * None
6aa20a22 1625 *
1da177e4
LT
1626 * Arguments:
1627 * bp - pointer to board information
1628 *
1629 * Functional Description:
1630 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1631 * is a serious fault on the adapter, then an error message is displayed
1632 * and the adapter is reset.
1633 *
1634 * One tricky potential timing window is the rapid succession of "link avail"
1635 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1636 * interrupt must be done before reading the state from the Port Status
1637 * register. This is true because a state change could occur after reading
1638 * the data, but before acknowledging the interrupt. If this state change
1639 * does happen, it would be lost because the driver is using the old state,
1640 * and it will never know about the new state because it subsequently
1641 * acknowledges the state change interrupt.
1642 *
1643 * INCORRECT CORRECT
1644 * read type 0 int reasons read type 0 int reasons
1645 * read adapter state ack type 0 interrupts
1646 * ack type 0 interrupts read adapter state
1647 * ... process interrupt ... ... process interrupt ...
1648 *
1649 * Return Codes:
1650 * None
1651 *
1652 * Assumptions:
1653 * None
1654 *
1655 * Side Effects:
1656 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1657 * or if the port status indicates that the adapter is halted. The driver
1658 * is responsible for reinitializing the adapter with the current CAM
1659 * contents and adapter filter settings.
1660 */
1661
1662static void dfx_int_type_0_process(DFX_board_t *bp)
1663
1664 {
1665 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1666 PI_UINT32 state; /* current adap state (from port status) */
1667
1668 /*
1669 * Read host interrupt Type 0 register to determine which Type 0
1670 * interrupts are pending. Immediately write it back out to clear
1671 * those interrupts.
1672 */
1673
1674 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1675 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1676
1677 /* Check for Type 0 error interrupts */
1678
1679 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1680 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1681 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1682 {
1683 /* Check for Non-Existent Memory error */
1684
1685 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1686 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1687
1688 /* Check for Packet Memory Parity error */
1689
1690 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1691 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1692
1693 /* Check for Host Bus Parity error */
1694
1695 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1696 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1697
1698 /* Reset adapter and bring it back on-line */
1699
1700 bp->link_available = PI_K_FALSE; /* link is no longer available */
1701 bp->reset_type = 0; /* rerun on-board diagnostics */
1702 printk("%s: Resetting adapter...\n", bp->dev->name);
1703 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1704 {
1705 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1706 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1707 return;
1708 }
1709 printk("%s: Adapter reset successful!\n", bp->dev->name);
1710 return;
1711 }
1712
1713 /* Check for transmit flush interrupt */
1714
1715 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1716 {
1717 /* Flush any pending xmt's and acknowledge the flush interrupt */
1718
1719 bp->link_available = PI_K_FALSE; /* link is no longer available */
1720 dfx_xmt_flush(bp); /* flush any outstanding packets */
1721 (void) dfx_hw_port_ctrl_req(bp,
1722 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1723 0,
1724 0,
1725 NULL);
1726 }
1727
1728 /* Check for adapter state change */
1729
1730 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
6aa20a22 1731 {
1da177e4
LT
1732 /* Get latest adapter state */
1733
1734 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1735 if (state == PI_STATE_K_HALTED)
1736 {
1737 /*
1738 * Adapter has transitioned to HALTED state, try to reset
1739 * adapter to bring it back on-line. If reset fails,
1740 * leave the adapter in the broken state.
1741 */
1742
1743 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1744 dfx_int_pr_halt_id(bp); /* display halt id as string */
1745
1746 /* Reset adapter and bring it back on-line */
1747
1748 bp->link_available = PI_K_FALSE; /* link is no longer available */
1749 bp->reset_type = 0; /* rerun on-board diagnostics */
1750 printk("%s: Resetting adapter...\n", bp->dev->name);
1751 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1752 {
1753 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1754 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1755 return;
1756 }
1757 printk("%s: Adapter reset successful!\n", bp->dev->name);
1758 }
1759 else if (state == PI_STATE_K_LINK_AVAIL)
1760 {
1761 bp->link_available = PI_K_TRUE; /* set link available flag */
1762 }
1763 }
1764 }
1765
6aa20a22 1766
1da177e4
LT
1767/*
1768 * ==================
1769 * = dfx_int_common =
1770 * ==================
6aa20a22 1771 *
1da177e4
LT
1772 * Overview:
1773 * Interrupt service routine (ISR)
6aa20a22 1774 *
1da177e4
LT
1775 * Returns:
1776 * None
6aa20a22 1777 *
1da177e4
LT
1778 * Arguments:
1779 * bp - pointer to board information
1780 *
1781 * Functional Description:
1782 * This is the ISR which processes incoming adapter interrupts.
1783 *
1784 * Return Codes:
1785 * None
1786 *
1787 * Assumptions:
1788 * This routine assumes PDQ interrupts have not been disabled.
1789 * When interrupts are disabled at the PDQ, the Port Status register
1790 * is automatically cleared. This routine uses the Port Status
1791 * register value to determine whether a Type 0 interrupt occurred,
1792 * so it's important that adapter interrupts are not normally
1793 * enabled/disabled at the PDQ.
1794 *
1795 * It's vital that this routine is NOT reentered for the
1796 * same board and that the OS is not in another section of
1797 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1798 * different thread.
1799 *
1800 * Side Effects:
1801 * Pending interrupts are serviced. Depending on the type of
1802 * interrupt, acknowledging and clearing the interrupt at the
1803 * PDQ involves writing a register to clear the interrupt bit
1804 * or updating completion indices.
1805 */
1806
1807static void dfx_int_common(struct net_device *dev)
1808{
e89a2cfb 1809 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
1810 PI_UINT32 port_status; /* Port Status register */
1811
1812 /* Process xmt interrupts - frequent case, so always call this routine */
1813
1814 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1815 netif_wake_queue(dev);
1816
1817 /* Process rcv interrupts - frequent case, so always call this routine */
1818
1819 dfx_rcv_queue_process(bp); /* service received LLC frames */
1820
1821 /*
1822 * Transmit and receive producer and completion indices are updated on the
1823 * adapter by writing to the Type 2 Producer register. Since the frequent
1824 * case is that we'll be processing either LLC transmit or receive buffers,
1825 * we'll optimize I/O writes by doing a single register write here.
1826 */
1827
1828 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1829
1830 /* Read PDQ Port Status register to find out which interrupts need processing */
1831
1832 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1833
1834 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1835
1836 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1837 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1838 }
1839
6aa20a22 1840
1da177e4
LT
1841/*
1842 * =================
1843 * = dfx_interrupt =
1844 * =================
feea1db2 1845 *
1da177e4
LT
1846 * Overview:
1847 * Interrupt processing routine
feea1db2 1848 *
1da177e4 1849 * Returns:
feea1db2
MR
1850 * Whether a valid interrupt was seen.
1851 *
1da177e4
LT
1852 * Arguments:
1853 * irq - interrupt vector
1854 * dev_id - pointer to device information
1da177e4
LT
1855 *
1856 * Functional Description:
1857 * This routine calls the interrupt processing routine for this adapter. It
1858 * disables and reenables adapter interrupts, as appropriate. We can support
1859 * shared interrupts since the incoming dev_id pointer provides our device
1860 * structure context.
1861 *
1862 * Return Codes:
feea1db2
MR
1863 * IRQ_HANDLED - an IRQ was handled.
1864 * IRQ_NONE - no IRQ was handled.
1da177e4
LT
1865 *
1866 * Assumptions:
1867 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1868 * on Intel-based systems) is done by the operating system outside this
1869 * routine.
1870 *
1871 * System interrupts are enabled through this call.
1872 *
1873 * Side Effects:
1874 * Interrupts are disabled, then reenabled at the adapter.
1875 */
1876
7d12e780 1877static irqreturn_t dfx_interrupt(int irq, void *dev_id)
feea1db2 1878{
e89a2cfb
MR
1879 struct net_device *dev = dev_id;
1880 DFX_board_t *bp = netdev_priv(dev);
1881 struct device *bdev = bp->bus_dev;
1882 int dfx_bus_pci = DFX_BUS_PCI(bdev);
1883 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1884 int dfx_bus_tc = DFX_BUS_TC(bdev);
1da177e4
LT
1885
1886 /* Service adapter interrupts */
1887
e89a2cfb 1888 if (dfx_bus_pci) {
feea1db2 1889 u32 status;
1da177e4 1890
feea1db2
MR
1891 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1892 if (!(status & PFI_STATUS_M_PDQ_INT))
1893 return IRQ_NONE;
1da177e4 1894
feea1db2
MR
1895 spin_lock(&bp->lock);
1896
1897 /* Disable PDQ-PFI interrupts at PFI */
1898 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1899 PFI_MODE_M_DMA_ENB);
1da177e4 1900
feea1db2 1901 /* Call interrupt service routine for this adapter */
1da177e4
LT
1902 dfx_int_common(dev);
1903
1904 /* Clear PDQ interrupt status bit and reenable interrupts */
feea1db2
MR
1905 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1906 PFI_STATUS_M_PDQ_INT);
1da177e4 1907 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
feea1db2
MR
1908 (PFI_MODE_M_PDQ_INT_ENB |
1909 PFI_MODE_M_DMA_ENB));
1da177e4 1910
feea1db2 1911 spin_unlock(&bp->lock);
e89a2cfb
MR
1912 }
1913 if (dfx_bus_eisa) {
1914 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
feea1db2 1915 u8 status;
1da177e4 1916
e89a2cfb 1917 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2
MR
1918 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1919 return IRQ_NONE;
1da177e4 1920
feea1db2
MR
1921 spin_lock(&bp->lock);
1922
1923 /* Disable interrupts at the ESIC */
1924 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb 1925 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
feea1db2
MR
1926
1927 /* Call interrupt service routine for this adapter */
1da177e4
LT
1928 dfx_int_common(dev);
1929
1930 /* Reenable interrupts at the ESIC */
e89a2cfb 1931 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
feea1db2 1932 status |= PI_CONFIG_STAT_0_M_INT_ENB;
e89a2cfb
MR
1933 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1934
1935 spin_unlock(&bp->lock);
1936 }
1937 if (dfx_bus_tc) {
1938 u32 status;
1939
1940 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1941 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1942 PI_PSTATUS_M_XMT_DATA_PENDING |
1943 PI_PSTATUS_M_SMT_HOST_PENDING |
1944 PI_PSTATUS_M_UNSOL_PENDING |
1945 PI_PSTATUS_M_CMD_RSP_PENDING |
1946 PI_PSTATUS_M_CMD_REQ_PENDING |
1947 PI_PSTATUS_M_TYPE_0_PENDING)))
1948 return IRQ_NONE;
1949
1950 spin_lock(&bp->lock);
1951
1952 /* Call interrupt service routine for this adapter */
1953 dfx_int_common(dev);
1da177e4 1954
feea1db2 1955 spin_unlock(&bp->lock);
1da177e4
LT
1956 }
1957
feea1db2
MR
1958 return IRQ_HANDLED;
1959}
1960
6aa20a22 1961
1da177e4
LT
1962/*
1963 * =====================
1964 * = dfx_ctl_get_stats =
1965 * =====================
6aa20a22 1966 *
1da177e4
LT
1967 * Overview:
1968 * Get statistics for FDDI adapter
6aa20a22 1969 *
1da177e4
LT
1970 * Returns:
1971 * Pointer to FDDI statistics structure
6aa20a22 1972 *
1da177e4
LT
1973 * Arguments:
1974 * dev - pointer to device information
1975 *
1976 * Functional Description:
1977 * Gets current MIB objects from adapter, then
1978 * returns FDDI statistics structure as defined
1979 * in if_fddi.h.
1980 *
1981 * Note: Since the FDDI statistics structure is
1982 * still new and the device structure doesn't
1983 * have an FDDI-specific get statistics handler,
1984 * we'll return the FDDI statistics structure as
1985 * a pointer to an Ethernet statistics structure.
1986 * That way, at least the first part of the statistics
1987 * structure can be decoded properly, and it allows
1988 * "smart" applications to perform a second cast to
1989 * decode the FDDI-specific statistics.
1990 *
1991 * We'll have to pay attention to this routine as the
1992 * device structure becomes more mature and LAN media
1993 * independent.
1994 *
1995 * Return Codes:
1996 * None
1997 *
1998 * Assumptions:
1999 * None
2000 *
2001 * Side Effects:
2002 * None
2003 */
2004
2005static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2006 {
e89a2cfb 2007 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2008
2009 /* Fill the bp->stats structure with driver-maintained counters */
2010
2011 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2012 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2013 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2014 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2015 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2016 bp->rcv_frame_status_errors +
2017 bp->rcv_length_errors;
2018 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2019 bp->stats.gen.rx_dropped = bp->rcv_discards;
2020 bp->stats.gen.tx_dropped = bp->xmt_discards;
2021 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2022 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2023
2024 /* Get FDDI SMT MIB objects */
2025
2026 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2027 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2028 return((struct net_device_stats *) &bp->stats);
2029
2030 /* Fill the bp->stats structure with the SMT MIB object values */
2031
2032 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2033 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2034 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2035 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2036 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2037 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2038 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2039 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2040 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2041 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2042 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2043 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2044 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2045 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2046 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2047 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2048 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2049 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2050 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2051 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2052 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2053 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2054 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2055 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2056 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2057 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2058 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2059 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2060 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2061 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2062 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2063 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2064 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2065 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2066 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2067 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2068 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2069 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2070 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2071 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2072 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2073 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2074 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2075 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2076 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2077 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2078 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2079 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2080 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2081 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2082 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2083 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2084 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2085 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2086 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2087 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2088 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2089 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2090 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2091 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2092 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2093 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2094 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2095 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2096 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2097 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2098 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2099 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2100 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2101 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2102 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2103 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2104 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2105 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2106 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2107 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2108 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2109 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2110 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2111 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2112 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2113 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2114 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2115 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2116 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2117 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2118 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2119 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2120 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2121 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2122 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2123 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2124
2125 /* Get FDDI counters */
2126
2127 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2128 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2129 return((struct net_device_stats *) &bp->stats);
2130
2131 /* Fill the bp->stats structure with the FDDI counter values */
2132
2133 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2134 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2135 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2136 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2137 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2138 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2139 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2140 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2141 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2142 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2143 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2144
2145 return((struct net_device_stats *) &bp->stats);
2146 }
2147
6aa20a22 2148
1da177e4
LT
2149/*
2150 * ==============================
2151 * = dfx_ctl_set_multicast_list =
2152 * ==============================
6aa20a22 2153 *
1da177e4
LT
2154 * Overview:
2155 * Enable/Disable LLC frame promiscuous mode reception
2156 * on the adapter and/or update multicast address table.
6aa20a22 2157 *
1da177e4
LT
2158 * Returns:
2159 * None
6aa20a22 2160 *
1da177e4
LT
2161 * Arguments:
2162 * dev - pointer to device information
2163 *
2164 * Functional Description:
2165 * This routine follows a fairly simple algorithm for setting the
2166 * adapter filters and CAM:
2167 *
2168 * if IFF_PROMISC flag is set
2169 * enable LLC individual/group promiscuous mode
2170 * else
2171 * disable LLC individual/group promiscuous mode
2172 * if number of incoming multicast addresses >
2173 * (CAM max size - number of unicast addresses in CAM)
2174 * enable LLC group promiscuous mode
2175 * set driver-maintained multicast address count to zero
2176 * else
2177 * disable LLC group promiscuous mode
2178 * set driver-maintained multicast address count to incoming count
2179 * update adapter CAM
2180 * update adapter filters
2181 *
2182 * Return Codes:
2183 * None
2184 *
2185 * Assumptions:
2186 * Multicast addresses are presented in canonical (LSB) format.
2187 *
2188 * Side Effects:
2189 * On-board adapter CAM and filters are updated.
2190 */
2191
2192static void dfx_ctl_set_multicast_list(struct net_device *dev)
e89a2cfb
MR
2193{
2194 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2195 int i; /* used as index in for loop */
2196 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
2197
2198 /* Enable LLC frame promiscuous mode, if necessary */
2199
2200 if (dev->flags & IFF_PROMISC)
2201 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2202
2203 /* Else, update multicast address table */
2204
2205 else
2206 {
2207 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2208 /*
2209 * Check whether incoming multicast address count exceeds table size
2210 *
2211 * Note: The adapters utilize an on-board 64 entry CAM for
2212 * supporting perfect filtering of multicast packets
2213 * and bridge functions when adding unicast addresses.
2214 * There is no hash function available. To support
2215 * additional multicast addresses, the all multicast
2216 * filter (LLC group promiscuous mode) must be enabled.
2217 *
2218 * The firmware reserves two CAM entries for SMT-related
2219 * multicast addresses, which leaves 62 entries available.
2220 * The following code ensures that we're not being asked
2221 * to add more than 62 addresses to the CAM. If we are,
2222 * the driver will enable the all multicast filter.
2223 * Should the number of multicast addresses drop below
2224 * the high water mark, the filter will be disabled and
2225 * perfect filtering will be used.
2226 */
2227
2228 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2229 {
2230 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2231 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2232 }
2233 else
2234 {
2235 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2236 bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */
2237 }
2238
2239 /* Copy addresses to multicast address table, then update adapter CAM */
2240
2241 dmi = dev->mc_list; /* point to first multicast addr */
2242 for (i=0; i < bp->mc_count; i++)
2243 {
2244 memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2245 dmi = dmi->next; /* point to next multicast addr */
2246 }
2247 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2248 {
2249 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2250 }
2251 else
2252 {
2253 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2254 }
2255 }
2256
2257 /* Update adapter filters */
2258
2259 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2260 {
2261 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2262 }
2263 else
2264 {
2265 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2266 }
2267 }
2268
6aa20a22 2269
1da177e4
LT
2270/*
2271 * ===========================
2272 * = dfx_ctl_set_mac_address =
2273 * ===========================
6aa20a22 2274 *
1da177e4
LT
2275 * Overview:
2276 * Add node address override (unicast address) to adapter
2277 * CAM and update dev_addr field in device table.
6aa20a22 2278 *
1da177e4
LT
2279 * Returns:
2280 * None
6aa20a22 2281 *
1da177e4
LT
2282 * Arguments:
2283 * dev - pointer to device information
2284 * addr - pointer to sockaddr structure containing unicast address to add
2285 *
2286 * Functional Description:
2287 * The adapter supports node address overrides by adding one or more
2288 * unicast addresses to the adapter CAM. This is similar to adding
2289 * multicast addresses. In this routine we'll update the driver and
2290 * device structures with the new address, then update the adapter CAM
2291 * to ensure that the adapter will copy and strip frames destined and
2292 * sourced by that address.
2293 *
2294 * Return Codes:
2295 * Always returns zero.
2296 *
2297 * Assumptions:
2298 * The address pointed to by addr->sa_data is a valid unicast
2299 * address and is presented in canonical (LSB) format.
2300 *
2301 * Side Effects:
2302 * On-board adapter CAM is updated. On-board adapter filters
2303 * may be updated.
2304 */
2305
2306static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2307 {
1da177e4 2308 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
e89a2cfb 2309 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
2310
2311 /* Copy unicast address to driver-maintained structs and update count */
2312
2313 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2314 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2315 bp->uc_count = 1;
2316
2317 /*
2318 * Verify we're not exceeding the CAM size by adding unicast address
2319 *
2320 * Note: It's possible that before entering this routine we've
2321 * already filled the CAM with 62 multicast addresses.
2322 * Since we need to place the node address override into
2323 * the CAM, we have to check to see that we're not
2324 * exceeding the CAM size. If we are, we have to enable
2325 * the LLC group (multicast) promiscuous mode filter as
2326 * in dfx_ctl_set_multicast_list.
2327 */
2328
2329 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2330 {
2331 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2332 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2333
2334 /* Update adapter filters */
2335
2336 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2337 {
2338 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2339 }
2340 else
2341 {
2342 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2343 }
2344 }
2345
2346 /* Update adapter CAM with new unicast address */
2347
2348 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2349 {
2350 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2351 }
2352 else
2353 {
2354 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2355 }
2356 return(0); /* always return zero */
2357 }
2358
6aa20a22 2359
1da177e4
LT
2360/*
2361 * ======================
2362 * = dfx_ctl_update_cam =
2363 * ======================
2364 *
2365 * Overview:
2366 * Procedure to update adapter CAM (Content Addressable Memory)
2367 * with desired unicast and multicast address entries.
2368 *
2369 * Returns:
2370 * Condition code
2371 *
2372 * Arguments:
2373 * bp - pointer to board information
2374 *
2375 * Functional Description:
2376 * Updates adapter CAM with current contents of board structure
2377 * unicast and multicast address tables. Since there are only 62
2378 * free entries in CAM, this routine ensures that the command
2379 * request buffer is not overrun.
2380 *
2381 * Return Codes:
2382 * DFX_K_SUCCESS - Request succeeded
2383 * DFX_K_FAILURE - Request failed
2384 *
2385 * Assumptions:
2386 * All addresses being added (unicast and multicast) are in canonical
2387 * order.
2388 *
2389 * Side Effects:
2390 * On-board adapter CAM is updated.
2391 */
2392
2393static int dfx_ctl_update_cam(DFX_board_t *bp)
2394 {
2395 int i; /* used as index */
2396 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2397
2398 /*
2399 * Fill in command request information
2400 *
2401 * Note: Even though both the unicast and multicast address
2402 * table entries are stored as contiguous 6 byte entries,
2403 * the firmware address filter set command expects each
2404 * entry to be two longwords (8 bytes total). We must be
2405 * careful to only copy the six bytes of each unicast and
2406 * multicast table entry into each command entry. This
2407 * is also why we must first clear the entire command
2408 * request buffer.
2409 */
2410
2411 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2412 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2413 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2414
2415 /* Now add unicast addresses to command request buffer, if any */
2416
2417 for (i=0; i < (int)bp->uc_count; i++)
2418 {
2419 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2420 {
2421 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2422 p_addr++; /* point to next command entry */
2423 }
2424 }
2425
2426 /* Now add multicast addresses to command request buffer, if any */
2427
2428 for (i=0; i < (int)bp->mc_count; i++)
2429 {
2430 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2431 {
2432 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2433 p_addr++; /* point to next command entry */
2434 }
2435 }
2436
2437 /* Issue command to update adapter CAM, then return */
2438
2439 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2440 return(DFX_K_FAILURE);
2441 return(DFX_K_SUCCESS);
2442 }
2443
6aa20a22 2444
1da177e4
LT
2445/*
2446 * ==========================
2447 * = dfx_ctl_update_filters =
2448 * ==========================
2449 *
2450 * Overview:
2451 * Procedure to update adapter filters with desired
2452 * filter settings.
6aa20a22 2453 *
1da177e4
LT
2454 * Returns:
2455 * Condition code
6aa20a22 2456 *
1da177e4
LT
2457 * Arguments:
2458 * bp - pointer to board information
2459 *
2460 * Functional Description:
2461 * Enables or disables filter using current filter settings.
2462 *
2463 * Return Codes:
2464 * DFX_K_SUCCESS - Request succeeded.
2465 * DFX_K_FAILURE - Request failed.
2466 *
2467 * Assumptions:
2468 * We must always pass up packets destined to the broadcast
2469 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2470 * broadcast filter enabled.
2471 *
2472 * Side Effects:
2473 * On-board adapter filters are updated.
2474 */
2475
2476static int dfx_ctl_update_filters(DFX_board_t *bp)
2477 {
2478 int i = 0; /* used as index */
2479
2480 /* Fill in command request information */
2481
2482 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2483
2484 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2485
2486 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2487 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2488
2489 /* Initialize LLC Individual/Group Promiscuous filter */
2490
2491 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2492 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2493
2494 /* Initialize LLC Group Promiscuous filter */
2495
2496 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2497 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2498
2499 /* Terminate the item code list */
2500
2501 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2502
2503 /* Issue command to update adapter filters, then return */
2504
2505 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2506 return(DFX_K_FAILURE);
2507 return(DFX_K_SUCCESS);
2508 }
2509
6aa20a22 2510
1da177e4
LT
2511/*
2512 * ======================
2513 * = dfx_hw_dma_cmd_req =
2514 * ======================
6aa20a22 2515 *
1da177e4
LT
2516 * Overview:
2517 * Sends PDQ DMA command to adapter firmware
6aa20a22 2518 *
1da177e4
LT
2519 * Returns:
2520 * Condition code
6aa20a22 2521 *
1da177e4
LT
2522 * Arguments:
2523 * bp - pointer to board information
2524 *
2525 * Functional Description:
2526 * The command request and response buffers are posted to the adapter in the manner
2527 * described in the PDQ Port Specification:
2528 *
2529 * 1. Command Response Buffer is posted to adapter.
2530 * 2. Command Request Buffer is posted to adapter.
2531 * 3. Command Request consumer index is polled until it indicates that request
2532 * buffer has been DMA'd to adapter.
2533 * 4. Command Response consumer index is polled until it indicates that response
2534 * buffer has been DMA'd from adapter.
2535 *
2536 * This ordering ensures that a response buffer is already available for the firmware
2537 * to use once it's done processing the request buffer.
2538 *
2539 * Return Codes:
2540 * DFX_K_SUCCESS - DMA command succeeded
2541 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2542 * DFX_K_HW_TIMEOUT - DMA command timed out
2543 *
2544 * Assumptions:
2545 * Command request buffer has already been filled with desired DMA command.
2546 *
2547 * Side Effects:
2548 * None
2549 */
2550
2551static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2552 {
2553 int status; /* adapter status */
2554 int timeout_cnt; /* used in for loops */
6aa20a22 2555
1da177e4 2556 /* Make sure the adapter is in a state that we can issue the DMA command in */
6aa20a22 2557
1da177e4
LT
2558 status = dfx_hw_adap_state_rd(bp);
2559 if ((status == PI_STATE_K_RESET) ||
2560 (status == PI_STATE_K_HALTED) ||
2561 (status == PI_STATE_K_DMA_UNAVAIL) ||
2562 (status == PI_STATE_K_UPGRADE))
2563 return(DFX_K_OUTSTATE);
2564
2565 /* Put response buffer on the command response queue */
2566
2567 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2568 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2569 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2570
2571 /* Bump (and wrap) the producer index and write out to register */
2572
2573 bp->cmd_rsp_reg.index.prod += 1;
2574 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2575 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2576
2577 /* Put request buffer on the command request queue */
6aa20a22 2578
1da177e4
LT
2579 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2580 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2581 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2582
2583 /* Bump (and wrap) the producer index and write out to register */
2584
2585 bp->cmd_req_reg.index.prod += 1;
2586 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2587 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2588
2589 /*
2590 * Here we wait for the command request consumer index to be equal
2591 * to the producer, indicating that the adapter has DMAed the request.
2592 */
2593
2594 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2595 {
2596 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2597 break;
2598 udelay(100); /* wait for 100 microseconds */
2599 }
6aa20a22 2600 if (timeout_cnt == 0)
1da177e4
LT
2601 return(DFX_K_HW_TIMEOUT);
2602
2603 /* Bump (and wrap) the completion index and write out to register */
2604
2605 bp->cmd_req_reg.index.comp += 1;
2606 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2607 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2608
2609 /*
2610 * Here we wait for the command response consumer index to be equal
2611 * to the producer, indicating that the adapter has DMAed the response.
2612 */
2613
2614 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2615 {
2616 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2617 break;
2618 udelay(100); /* wait for 100 microseconds */
2619 }
6aa20a22 2620 if (timeout_cnt == 0)
1da177e4
LT
2621 return(DFX_K_HW_TIMEOUT);
2622
2623 /* Bump (and wrap) the completion index and write out to register */
2624
2625 bp->cmd_rsp_reg.index.comp += 1;
2626 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2627 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2628 return(DFX_K_SUCCESS);
2629 }
2630
6aa20a22 2631
1da177e4
LT
2632/*
2633 * ========================
2634 * = dfx_hw_port_ctrl_req =
2635 * ========================
6aa20a22 2636 *
1da177e4
LT
2637 * Overview:
2638 * Sends PDQ port control command to adapter firmware
6aa20a22 2639 *
1da177e4
LT
2640 * Returns:
2641 * Host data register value in host_data if ptr is not NULL
6aa20a22 2642 *
1da177e4
LT
2643 * Arguments:
2644 * bp - pointer to board information
2645 * command - port control command
2646 * data_a - port data A register value
2647 * data_b - port data B register value
2648 * host_data - ptr to host data register value
2649 *
2650 * Functional Description:
2651 * Send generic port control command to adapter by writing
2652 * to various PDQ port registers, then polling for completion.
2653 *
2654 * Return Codes:
2655 * DFX_K_SUCCESS - port control command succeeded
2656 * DFX_K_HW_TIMEOUT - port control command timed out
2657 *
2658 * Assumptions:
2659 * None
2660 *
2661 * Side Effects:
2662 * None
2663 */
2664
2665static int dfx_hw_port_ctrl_req(
2666 DFX_board_t *bp,
2667 PI_UINT32 command,
2668 PI_UINT32 data_a,
2669 PI_UINT32 data_b,
2670 PI_UINT32 *host_data
2671 )
2672
2673 {
2674 PI_UINT32 port_cmd; /* Port Control command register value */
2675 int timeout_cnt; /* used in for loops */
2676
2677 /* Set Command Error bit in command longword */
6aa20a22 2678
1da177e4
LT
2679 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2680
2681 /* Issue port command to the adapter */
2682
2683 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2684 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2685 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2686
2687 /* Now wait for command to complete */
2688
2689 if (command == PI_PCTRL_M_BLAST_FLASH)
2690 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2691 else
2692 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2693
2694 for (; timeout_cnt > 0; timeout_cnt--)
2695 {
2696 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2697 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2698 break;
2699 udelay(100); /* wait for 100 microseconds */
2700 }
6aa20a22 2701 if (timeout_cnt == 0)
1da177e4
LT
2702 return(DFX_K_HW_TIMEOUT);
2703
2704 /*
6aa20a22
JG
2705 * If the address of host_data is non-zero, assume caller has supplied a
2706 * non NULL pointer, and return the contents of the HOST_DATA register in
1da177e4
LT
2707 * it.
2708 */
2709
2710 if (host_data != NULL)
2711 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2712 return(DFX_K_SUCCESS);
2713 }
2714
6aa20a22 2715
1da177e4
LT
2716/*
2717 * =====================
2718 * = dfx_hw_adap_reset =
2719 * =====================
6aa20a22 2720 *
1da177e4
LT
2721 * Overview:
2722 * Resets adapter
6aa20a22 2723 *
1da177e4
LT
2724 * Returns:
2725 * None
6aa20a22 2726 *
1da177e4
LT
2727 * Arguments:
2728 * bp - pointer to board information
2729 * type - type of reset to perform
2730 *
2731 * Functional Description:
2732 * Issue soft reset to adapter by writing to PDQ Port Reset
2733 * register. Use incoming reset type to tell adapter what
2734 * kind of reset operation to perform.
2735 *
2736 * Return Codes:
2737 * None
2738 *
2739 * Assumptions:
2740 * This routine merely issues a soft reset to the adapter.
2741 * It is expected that after this routine returns, the caller
2742 * will appropriately poll the Port Status register for the
2743 * adapter to enter the proper state.
2744 *
2745 * Side Effects:
2746 * Internal adapter registers are cleared.
2747 */
2748
2749static void dfx_hw_adap_reset(
2750 DFX_board_t *bp,
2751 PI_UINT32 type
2752 )
2753
2754 {
2755 /* Set Reset type and assert reset */
2756
2757 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2758 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2759
2760 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2761
2762 udelay(20);
2763
2764 /* Deassert reset */
2765
2766 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2767 }
2768
6aa20a22 2769
1da177e4
LT
2770/*
2771 * ========================
2772 * = dfx_hw_adap_state_rd =
2773 * ========================
6aa20a22 2774 *
1da177e4
LT
2775 * Overview:
2776 * Returns current adapter state
6aa20a22 2777 *
1da177e4
LT
2778 * Returns:
2779 * Adapter state per PDQ Port Specification
6aa20a22 2780 *
1da177e4
LT
2781 * Arguments:
2782 * bp - pointer to board information
2783 *
2784 * Functional Description:
2785 * Reads PDQ Port Status register and returns adapter state.
2786 *
2787 * Return Codes:
2788 * None
2789 *
2790 * Assumptions:
2791 * None
2792 *
2793 * Side Effects:
2794 * None
2795 */
2796
2797static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2798 {
2799 PI_UINT32 port_status; /* Port Status register value */
2800
2801 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2802 return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2803 }
2804
6aa20a22 2805
1da177e4
LT
2806/*
2807 * =====================
2808 * = dfx_hw_dma_uninit =
2809 * =====================
6aa20a22 2810 *
1da177e4
LT
2811 * Overview:
2812 * Brings adapter to DMA_UNAVAILABLE state
6aa20a22 2813 *
1da177e4
LT
2814 * Returns:
2815 * Condition code
6aa20a22 2816 *
1da177e4
LT
2817 * Arguments:
2818 * bp - pointer to board information
2819 * type - type of reset to perform
2820 *
2821 * Functional Description:
2822 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2823 * 1. Set reset type bit in Port Data A Register then reset adapter.
2824 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2825 *
2826 * Return Codes:
2827 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2828 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2829 *
2830 * Assumptions:
2831 * None
2832 *
2833 * Side Effects:
2834 * Internal adapter registers are cleared.
2835 */
2836
2837static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2838 {
2839 int timeout_cnt; /* used in for loops */
2840
2841 /* Set reset type bit and reset adapter */
2842
2843 dfx_hw_adap_reset(bp, type);
2844
2845 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2846
2847 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2848 {
2849 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2850 break;
2851 udelay(100); /* wait for 100 microseconds */
2852 }
6aa20a22 2853 if (timeout_cnt == 0)
1da177e4
LT
2854 return(DFX_K_HW_TIMEOUT);
2855 return(DFX_K_SUCCESS);
2856 }
6aa20a22 2857
1da177e4
LT
2858/*
2859 * Align an sk_buff to a boundary power of 2
2860 *
2861 */
6aa20a22 2862
1da177e4
LT
2863static void my_skb_align(struct sk_buff *skb, int n)
2864{
2865 unsigned long x = (unsigned long)skb->data;
2866 unsigned long v;
6aa20a22 2867
1da177e4 2868 v = ALIGN(x, n); /* Where we want to be */
6aa20a22 2869
1da177e4
LT
2870 skb_reserve(skb, v - x);
2871}
2872
6aa20a22 2873
1da177e4
LT
2874/*
2875 * ================
2876 * = dfx_rcv_init =
2877 * ================
6aa20a22 2878 *
1da177e4
LT
2879 * Overview:
2880 * Produces buffers to adapter LLC Host receive descriptor block
6aa20a22 2881 *
1da177e4
LT
2882 * Returns:
2883 * None
6aa20a22 2884 *
1da177e4
LT
2885 * Arguments:
2886 * bp - pointer to board information
2887 * get_buffers - non-zero if buffers to be allocated
2888 *
2889 * Functional Description:
2890 * This routine can be called during dfx_adap_init() or during an adapter
2891 * reset. It initializes the descriptor block and produces all allocated
2892 * LLC Host queue receive buffers.
2893 *
2894 * Return Codes:
2895 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2896 * dynamic buffer allocation). If the buffer allocation failed, the
2897 * already allocated buffers will not be released and the caller should do
2898 * this.
2899 *
2900 * Assumptions:
2901 * The PDQ has been reset and the adapter and driver maintained Type 2
2902 * register indices are cleared.
2903 *
2904 * Side Effects:
2905 * Receive buffers are posted to the adapter LLC queue and the adapter
2906 * is notified.
2907 */
2908
2909static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2910 {
2911 int i, j; /* used in for loop */
2912
2913 /*
2914 * Since each receive buffer is a single fragment of same length, initialize
2915 * first longword in each receive descriptor for entire LLC Host descriptor
2916 * block. Also initialize second longword in each receive descriptor with
2917 * physical address of receive buffer. We'll always allocate receive
2918 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2919 * block and produce new receive buffers by simply updating the receive
2920 * producer index.
2921 *
2922 * Assumptions:
2923 * To support all shipping versions of PDQ, the receive buffer size
2924 * must be mod 128 in length and the physical address must be 128 byte
2925 * aligned. In other words, bits 0-6 of the length and address must
2926 * be zero for the following descriptor field entries to be correct on
2927 * all PDQ-based boards. We guaranteed both requirements during
2928 * driver initialization when we allocated memory for the receive buffers.
2929 */
2930
2931 if (get_buffers) {
2932#ifdef DYNAMIC_BUFFERS
2933 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2934 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2935 {
2936 struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2937 if (!newskb)
2938 return -ENOMEM;
2939 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2940 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2941 /*
2942 * align to 128 bytes for compatibility with
2943 * the old EISA boards.
2944 */
6aa20a22 2945
1da177e4
LT
2946 my_skb_align(newskb, 128);
2947 bp->descr_block_virt->rcv_data[i + j].long_1 =
e89a2cfb 2948 (u32)dma_map_single(bp->bus_dev, newskb->data,
1da177e4 2949 NEW_SKB_SIZE,
e89a2cfb 2950 DMA_FROM_DEVICE);
1da177e4
LT
2951 /*
2952 * p_rcv_buff_va is only used inside the
2953 * kernel so we put the skb pointer here.
2954 */
2955 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2956 }
2957#else
2958 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2959 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2960 {
2961 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2962 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2963 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2964 bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2965 }
2966#endif
2967 }
2968
2969 /* Update receive producer and Type 2 register */
2970
2971 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2972 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2973 return 0;
2974 }
2975
6aa20a22 2976
1da177e4
LT
2977/*
2978 * =========================
2979 * = dfx_rcv_queue_process =
2980 * =========================
6aa20a22 2981 *
1da177e4
LT
2982 * Overview:
2983 * Process received LLC frames.
6aa20a22 2984 *
1da177e4
LT
2985 * Returns:
2986 * None
6aa20a22 2987 *
1da177e4
LT
2988 * Arguments:
2989 * bp - pointer to board information
2990 *
2991 * Functional Description:
2992 * Received LLC frames are processed until there are no more consumed frames.
2993 * Once all frames are processed, the receive buffers are returned to the
2994 * adapter. Note that this algorithm fixes the length of time that can be spent
2995 * in this routine, because there are a fixed number of receive buffers to
2996 * process and buffers are not produced until this routine exits and returns
2997 * to the ISR.
2998 *
2999 * Return Codes:
3000 * None
3001 *
3002 * Assumptions:
3003 * None
3004 *
3005 * Side Effects:
3006 * None
3007 */
3008
3009static void dfx_rcv_queue_process(
3010 DFX_board_t *bp
3011 )
3012
3013 {
3014 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3015 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3016 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3017 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3018
3019 /* Service all consumed LLC receive frames */
3020
3021 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3022 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3023 {
3024 /* Process any errors */
3025
3026 int entry;
3027
3028 entry = bp->rcv_xmt_reg.index.rcv_comp;
3029#ifdef DYNAMIC_BUFFERS
3030 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3031#else
3032 p_buff = (char *) bp->p_rcv_buff_va[entry];
3033#endif
3034 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3035
3036 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3037 {
3038 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3039 bp->rcv_crc_errors++;
3040 else
3041 bp->rcv_frame_status_errors++;
3042 }
3043 else
3044 {
3045 int rx_in_place = 0;
3046
3047 /* The frame was received without errors - verify packet length */
3048
3049 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3050 pkt_len -= 4; /* subtract 4 byte CRC */
3051 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3052 bp->rcv_length_errors++;
3053 else{
3054#ifdef DYNAMIC_BUFFERS
3055 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3056 struct sk_buff *newskb;
3057
3058 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3059 if (newskb){
3060 rx_in_place = 1;
6aa20a22 3061
1da177e4
LT
3062 my_skb_align(newskb, 128);
3063 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
e89a2cfb 3064 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3065 bp->descr_block_virt->rcv_data[entry].long_1,
3066 NEW_SKB_SIZE,
e89a2cfb 3067 DMA_FROM_DEVICE);
1da177e4
LT
3068 skb_reserve(skb, RCV_BUFF_K_PADDING);
3069 bp->p_rcv_buff_va[entry] = (char *)newskb;
3070 bp->descr_block_virt->rcv_data[entry].long_1 =
e89a2cfb 3071 (u32)dma_map_single(bp->bus_dev,
1da177e4
LT
3072 newskb->data,
3073 NEW_SKB_SIZE,
e89a2cfb 3074 DMA_FROM_DEVICE);
1da177e4
LT
3075 } else
3076 skb = NULL;
3077 } else
3078#endif
3079 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3080 if (skb == NULL)
3081 {
3082 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3083 bp->rcv_discards++;
3084 break;
3085 }
3086 else {
3087#ifndef DYNAMIC_BUFFERS
3088 if (! rx_in_place)
3089#endif
3090 {
3091 /* Receive buffer allocated, pass receive packet up */
3092
27d7ff46
ACM
3093 skb_copy_to_linear_data(skb,
3094 p_buff + RCV_BUFF_K_PADDING,
3095 pkt_len + 3);
1da177e4 3096 }
6aa20a22 3097
1da177e4
LT
3098 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3099 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
1da177e4
LT
3100 skb->protocol = fddi_type_trans(skb, bp->dev);
3101 bp->rcv_total_bytes += skb->len;
3102 netif_rx(skb);
3103
3104 /* Update the rcv counters */
3105 bp->dev->last_rx = jiffies;
3106 bp->rcv_total_frames++;
3107 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3108 bp->rcv_multicast_frames++;
3109 }
3110 }
3111 }
3112
3113 /*
3114 * Advance the producer (for recycling) and advance the completion
3115 * (for servicing received frames). Note that it is okay to
3116 * advance the producer without checking that it passes the
3117 * completion index because they are both advanced at the same
3118 * rate.
3119 */
3120
3121 bp->rcv_xmt_reg.index.rcv_prod += 1;
3122 bp->rcv_xmt_reg.index.rcv_comp += 1;
3123 }
3124 }
3125
6aa20a22 3126
1da177e4
LT
3127/*
3128 * =====================
3129 * = dfx_xmt_queue_pkt =
3130 * =====================
6aa20a22 3131 *
1da177e4
LT
3132 * Overview:
3133 * Queues packets for transmission
6aa20a22 3134 *
1da177e4
LT
3135 * Returns:
3136 * Condition code
6aa20a22 3137 *
1da177e4
LT
3138 * Arguments:
3139 * skb - pointer to sk_buff to queue for transmission
3140 * dev - pointer to device information
3141 *
3142 * Functional Description:
3143 * Here we assume that an incoming skb transmit request
3144 * is contained in a single physically contiguous buffer
3145 * in which the virtual address of the start of packet
3146 * (skb->data) can be converted to a physical address
3147 * by using pci_map_single().
3148 *
3149 * Since the adapter architecture requires a three byte
3150 * packet request header to prepend the start of packet,
3151 * we'll write the three byte field immediately prior to
3152 * the FC byte. This assumption is valid because we've
3153 * ensured that dev->hard_header_len includes three pad
3154 * bytes. By posting a single fragment to the adapter,
3155 * we'll reduce the number of descriptor fetches and
3156 * bus traffic needed to send the request.
3157 *
3158 * Also, we can't free the skb until after it's been DMA'd
3159 * out by the adapter, so we'll queue it in the driver and
3160 * return it in dfx_xmt_done.
3161 *
3162 * Return Codes:
3163 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3164 * 1 - caller should requeue the sk_buff for later transmission
3165 *
3166 * Assumptions:
3167 * First and foremost, we assume the incoming skb pointer
3168 * is NOT NULL and is pointing to a valid sk_buff structure.
3169 *
3170 * The outgoing packet is complete, starting with the
3171 * frame control byte including the last byte of data,
3172 * but NOT including the 4 byte CRC. We'll let the
3173 * adapter hardware generate and append the CRC.
3174 *
3175 * The entire packet is stored in one physically
3176 * contiguous buffer which is not cached and whose
3177 * 32-bit physical address can be determined.
3178 *
3179 * It's vital that this routine is NOT reentered for the
3180 * same board and that the OS is not in another section of
3181 * code (eg. dfx_int_common) for the same board on a
3182 * different thread.
3183 *
3184 * Side Effects:
3185 * None
3186 */
3187
3188static int dfx_xmt_queue_pkt(
3189 struct sk_buff *skb,
3190 struct net_device *dev
3191 )
3192
3193 {
e89a2cfb 3194 DFX_board_t *bp = netdev_priv(dev);
1da177e4
LT
3195 u8 prod; /* local transmit producer index */
3196 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3197 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3198 unsigned long flags;
3199
3200 netif_stop_queue(dev);
6aa20a22 3201
1da177e4
LT
3202 /*
3203 * Verify that incoming transmit request is OK
3204 *
3205 * Note: The packet size check is consistent with other
3206 * Linux device drivers, although the correct packet
3207 * size should be verified before calling the
3208 * transmit routine.
3209 */
3210
3211 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3212 {
6aa20a22 3213 printk("%s: Invalid packet length - %u bytes\n",
1da177e4
LT
3214 dev->name, skb->len);
3215 bp->xmt_length_errors++; /* bump error counter */
3216 netif_wake_queue(dev);
3217 dev_kfree_skb(skb);
3218 return(0); /* return "success" */
3219 }
3220 /*
3221 * See if adapter link is available, if not, free buffer
3222 *
3223 * Note: If the link isn't available, free buffer and return 0
3224 * rather than tell the upper layer to requeue the packet.
3225 * The methodology here is that by the time the link
3226 * becomes available, the packet to be sent will be
3227 * fairly stale. By simply dropping the packet, the
3228 * higher layer protocols will eventually time out
3229 * waiting for response packets which it won't receive.
3230 */
3231
3232 if (bp->link_available == PI_K_FALSE)
3233 {
3234 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3235 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3236 else
3237 {
3238 bp->xmt_discards++; /* bump error counter */
3239 dev_kfree_skb(skb); /* free sk_buff now */
3240 netif_wake_queue(dev);
3241 return(0); /* return "success" */
3242 }
3243 }
3244
3245 spin_lock_irqsave(&bp->lock, flags);
6aa20a22 3246
1da177e4
LT
3247 /* Get the current producer and the next free xmt data descriptor */
3248
3249 prod = bp->rcv_xmt_reg.index.xmt_prod;
3250 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3251
3252 /*
3253 * Get pointer to auxiliary queue entry to contain information
3254 * for this packet.
3255 *
3256 * Note: The current xmt producer index will become the
3257 * current xmt completion index when we complete this
3258 * packet later on. So, we'll get the pointer to the
3259 * next auxiliary queue entry now before we bump the
3260 * producer index.
3261 */
3262
3263 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3264
3265 /* Write the three PRH bytes immediately before the FC byte */
3266
3267 skb_push(skb,3);
3268 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3269 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3270 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3271
3272 /*
3273 * Write the descriptor with buffer info and bump producer
3274 *
3275 * Note: Since we need to start DMA from the packet request
3276 * header, we'll add 3 bytes to the DMA buffer length,
3277 * and we'll determine the physical address of the
3278 * buffer from the PRH, not skb->data.
3279 *
3280 * Assumptions:
3281 * 1. Packet starts with the frame control (FC) byte
3282 * at skb->data.
3283 * 2. The 4-byte CRC is not appended to the buffer or
3284 * included in the length.
3285 * 3. Packet length (skb->len) is from FC to end of
3286 * data, inclusive.
3287 * 4. The packet length does not exceed the maximum
3288 * FDDI LLC frame length of 4491 bytes.
3289 * 5. The entire packet is contained in a physically
3290 * contiguous, non-cached, locked memory space
3291 * comprised of a single buffer pointed to by
3292 * skb->data.
3293 * 6. The physical address of the start of packet
3294 * can be determined from the virtual address
3295 * by using pci_map_single() and is only 32-bits
3296 * wide.
3297 */
3298
3299 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
e89a2cfb
MR
3300 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3301 skb->len, DMA_TO_DEVICE);
1da177e4
LT
3302
3303 /*
3304 * Verify that descriptor is actually available
3305 *
3306 * Note: If descriptor isn't available, return 1 which tells
3307 * the upper layer to requeue the packet for later
3308 * transmission.
3309 *
3310 * We need to ensure that the producer never reaches the
3311 * completion, except to indicate that the queue is empty.
3312 */
3313
3314 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3315 {
3316 skb_pull(skb,3);
3317 spin_unlock_irqrestore(&bp->lock, flags);
3318 return(1); /* requeue packet for later */
3319 }
3320
3321 /*
3322 * Save info for this packet for xmt done indication routine
3323 *
3324 * Normally, we'd save the producer index in the p_xmt_drv_descr
3325 * structure so that we'd have it handy when we complete this
3326 * packet later (in dfx_xmt_done). However, since the current
3327 * transmit architecture guarantees a single fragment for the
3328 * entire packet, we can simply bump the completion index by
3329 * one (1) for each completed packet.
3330 *
3331 * Note: If this assumption changes and we're presented with
3332 * an inconsistent number of transmit fragments for packet
3333 * data, we'll need to modify this code to save the current
3334 * transmit producer index.
3335 */
3336
3337 p_xmt_drv_descr->p_skb = skb;
3338
3339 /* Update Type 2 register */
3340
3341 bp->rcv_xmt_reg.index.xmt_prod = prod;
3342 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3343 spin_unlock_irqrestore(&bp->lock, flags);
3344 netif_wake_queue(dev);
3345 return(0); /* packet queued to adapter */
3346 }
3347
6aa20a22 3348
1da177e4
LT
3349/*
3350 * ================
3351 * = dfx_xmt_done =
3352 * ================
6aa20a22 3353 *
1da177e4
LT
3354 * Overview:
3355 * Processes all frames that have been transmitted.
6aa20a22 3356 *
1da177e4
LT
3357 * Returns:
3358 * None
6aa20a22 3359 *
1da177e4
LT
3360 * Arguments:
3361 * bp - pointer to board information
3362 *
3363 * Functional Description:
3364 * For all consumed transmit descriptors that have not
3365 * yet been completed, we'll free the skb we were holding
3366 * onto using dev_kfree_skb and bump the appropriate
3367 * counters.
3368 *
3369 * Return Codes:
3370 * None
3371 *
3372 * Assumptions:
3373 * The Type 2 register is not updated in this routine. It is
3374 * assumed that it will be updated in the ISR when dfx_xmt_done
3375 * returns.
3376 *
3377 * Side Effects:
3378 * None
3379 */
3380
3381static int dfx_xmt_done(DFX_board_t *bp)
3382 {
3383 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3384 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3385 u8 comp; /* local transmit completion index */
3386 int freed = 0; /* buffers freed */
3387
3388 /* Service all consumed transmit frames */
3389
3390 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3391 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3392 {
3393 /* Get pointer to the transmit driver descriptor block information */
3394
3395 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3396
3397 /* Increment transmit counters */
3398
3399 bp->xmt_total_frames++;
3400 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3401
3402 /* Return skb to operating system */
3403 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3404 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3405 bp->descr_block_virt->xmt_data[comp].long_1,
3406 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3407 DMA_TO_DEVICE);
1da177e4
LT
3408 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3409
3410 /*
3411 * Move to start of next packet by updating completion index
3412 *
3413 * Here we assume that a transmit packet request is always
3414 * serviced by posting one fragment. We can therefore
3415 * simplify the completion code by incrementing the
3416 * completion index by one. This code will need to be
3417 * modified if this assumption changes. See comments
3418 * in dfx_xmt_queue_pkt for more details.
3419 */
3420
3421 bp->rcv_xmt_reg.index.xmt_comp += 1;
3422 freed++;
3423 }
3424 return freed;
3425 }
3426
6aa20a22 3427
1da177e4
LT
3428/*
3429 * =================
3430 * = dfx_rcv_flush =
3431 * =================
6aa20a22 3432 *
1da177e4
LT
3433 * Overview:
3434 * Remove all skb's in the receive ring.
6aa20a22 3435 *
1da177e4
LT
3436 * Returns:
3437 * None
6aa20a22 3438 *
1da177e4
LT
3439 * Arguments:
3440 * bp - pointer to board information
3441 *
3442 * Functional Description:
3443 * Free's all the dynamically allocated skb's that are
3444 * currently attached to the device receive ring. This
3445 * function is typically only used when the device is
3446 * initialized or reinitialized.
3447 *
3448 * Return Codes:
3449 * None
3450 *
3451 * Side Effects:
3452 * None
3453 */
3454#ifdef DYNAMIC_BUFFERS
3455static void dfx_rcv_flush( DFX_board_t *bp )
3456 {
3457 int i, j;
3458
3459 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3460 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3461 {
3462 struct sk_buff *skb;
3463 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3464 if (skb)
3465 dev_kfree_skb(skb);
3466 bp->p_rcv_buff_va[i+j] = NULL;
3467 }
3468
3469 }
3470#else
3471static inline void dfx_rcv_flush( DFX_board_t *bp )
3472{
3473}
3474#endif /* DYNAMIC_BUFFERS */
3475
3476/*
3477 * =================
3478 * = dfx_xmt_flush =
3479 * =================
6aa20a22 3480 *
1da177e4
LT
3481 * Overview:
3482 * Processes all frames whether they've been transmitted
3483 * or not.
6aa20a22 3484 *
1da177e4
LT
3485 * Returns:
3486 * None
6aa20a22 3487 *
1da177e4
LT
3488 * Arguments:
3489 * bp - pointer to board information
3490 *
3491 * Functional Description:
3492 * For all produced transmit descriptors that have not
3493 * yet been completed, we'll free the skb we were holding
3494 * onto using dev_kfree_skb and bump the appropriate
3495 * counters. Of course, it's possible that some of
3496 * these transmit requests actually did go out, but we
3497 * won't make that distinction here. Finally, we'll
3498 * update the consumer index to match the producer.
3499 *
3500 * Return Codes:
3501 * None
3502 *
3503 * Assumptions:
3504 * This routine does NOT update the Type 2 register. It
3505 * is assumed that this routine is being called during a
3506 * transmit flush interrupt, or a shutdown or close routine.
3507 *
3508 * Side Effects:
3509 * None
3510 */
3511
3512static void dfx_xmt_flush( DFX_board_t *bp )
3513 {
3514 u32 prod_cons; /* rcv/xmt consumer block longword */
3515 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3516 u8 comp; /* local transmit completion index */
3517
3518 /* Flush all outstanding transmit frames */
3519
3520 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3521 {
3522 /* Get pointer to the transmit driver descriptor block information */
3523
3524 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3525
3526 /* Return skb to operating system */
3527 comp = bp->rcv_xmt_reg.index.xmt_comp;
e89a2cfb 3528 dma_unmap_single(bp->bus_dev,
1da177e4
LT
3529 bp->descr_block_virt->xmt_data[comp].long_1,
3530 p_xmt_drv_descr->p_skb->len,
e89a2cfb 3531 DMA_TO_DEVICE);
1da177e4
LT
3532 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3533
3534 /* Increment transmit error counter */
3535
3536 bp->xmt_discards++;
3537
3538 /*
3539 * Move to start of next packet by updating completion index
3540 *
3541 * Here we assume that a transmit packet request is always
3542 * serviced by posting one fragment. We can therefore
3543 * simplify the completion code by incrementing the
3544 * completion index by one. This code will need to be
3545 * modified if this assumption changes. See comments
3546 * in dfx_xmt_queue_pkt for more details.
3547 */
3548
3549 bp->rcv_xmt_reg.index.xmt_comp += 1;
3550 }
3551
3552 /* Update the transmit consumer index in the consumer block */
3553
3554 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3555 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3556 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3557 }
3558
e89a2cfb
MR
3559/*
3560 * ==================
3561 * = dfx_unregister =
3562 * ==================
3563 *
3564 * Overview:
3565 * Shuts down an FDDI controller
3566 *
3567 * Returns:
3568 * Condition code
3569 *
3570 * Arguments:
3571 * bdev - pointer to device information
3572 *
3573 * Functional Description:
3574 *
3575 * Return Codes:
3576 * None
3577 *
3578 * Assumptions:
3579 * It compiles so it should work :-( (PCI cards do :-)
3580 *
3581 * Side Effects:
3582 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3583 * freed.
3584 */
3585static void __devexit dfx_unregister(struct device *bdev)
1da177e4 3586{
e89a2cfb
MR
3587 struct net_device *dev = dev_get_drvdata(bdev);
3588 DFX_board_t *bp = netdev_priv(dev);
3589 int dfx_bus_pci = DFX_BUS_PCI(bdev);
3590 int dfx_bus_tc = DFX_BUS_TC(bdev);
3591 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3592 resource_size_t bar_start = 0; /* pointer to port */
3593 resource_size_t bar_len = 0; /* resource length */
1da177e4
LT
3594 int alloc_size; /* total buffer size used */
3595
3596 unregister_netdev(dev);
1da177e4
LT
3597
3598 alloc_size = sizeof(PI_DESCR_BLOCK) +
3599 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3600#ifndef DYNAMIC_BUFFERS
3601 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3602#endif
3603 sizeof(PI_CONSUMER_BLOCK) +
3604 (PI_ALIGN_K_DESC_BLK - 1);
3605 if (bp->kmalloced)
e89a2cfb
MR
3606 dma_free_coherent(bdev, alloc_size,
3607 bp->kmalloced, bp->kmalloced_dma);
3608
3609 dfx_bus_uninit(dev);
3610
3611 dfx_get_bars(bdev, &bar_start, &bar_len);
3612 if (dfx_use_mmio) {
3613 iounmap(bp->base.mem);
3614 release_mem_region(bar_start, bar_len);
3615 } else
3616 release_region(bar_start, bar_len);
3617
3618 if (dfx_bus_pci)
3619 pci_disable_device(to_pci_dev(bdev));
3620
1da177e4
LT
3621 free_netdev(dev);
3622}
3623
1da177e4 3624
fcdff139
MR
3625static int __devinit __maybe_unused dfx_dev_register(struct device *);
3626static int __devexit __maybe_unused dfx_dev_unregister(struct device *);
1da177e4 3627
e89a2cfb
MR
3628#ifdef CONFIG_PCI
3629static int __devinit dfx_pci_register(struct pci_dev *,
3630 const struct pci_device_id *);
3631static void __devexit dfx_pci_unregister(struct pci_dev *);
3632
3633static struct pci_device_id dfx_pci_table[] = {
3634 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3635 { }
1da177e4 3636};
e89a2cfb 3637MODULE_DEVICE_TABLE(pci, dfx_pci_table);
1da177e4 3638
e89a2cfb 3639static struct pci_driver dfx_pci_driver = {
1da177e4 3640 .name = "defxx",
e89a2cfb
MR
3641 .id_table = dfx_pci_table,
3642 .probe = dfx_pci_register,
3643 .remove = __devexit_p(dfx_pci_unregister),
1da177e4
LT
3644};
3645
e89a2cfb
MR
3646static __devinit int dfx_pci_register(struct pci_dev *pdev,
3647 const struct pci_device_id *ent)
3648{
3649 return dfx_register(&pdev->dev);
3650}
1da177e4 3651
e89a2cfb 3652static void __devexit dfx_pci_unregister(struct pci_dev *pdev)
1da177e4 3653{
e89a2cfb
MR
3654 dfx_unregister(&pdev->dev);
3655}
3656#endif /* CONFIG_PCI */
3657
3658#ifdef CONFIG_EISA
3659static struct eisa_device_id dfx_eisa_table[] = {
3660 { "DEC3001", DEFEA_PROD_ID_1 },
3661 { "DEC3002", DEFEA_PROD_ID_2 },
3662 { "DEC3003", DEFEA_PROD_ID_3 },
3663 { "DEC3004", DEFEA_PROD_ID_4 },
3664 { }
3665};
3666MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3667
3668static struct eisa_driver dfx_eisa_driver = {
3669 .id_table = dfx_eisa_table,
3670 .driver = {
3671 .name = "defxx",
3672 .bus = &eisa_bus_type,
3673 .probe = dfx_dev_register,
3674 .remove = __devexit_p(dfx_dev_unregister),
3675 },
3676};
3677#endif /* CONFIG_EISA */
3678
3679#ifdef CONFIG_TC
3680static struct tc_device_id const dfx_tc_table[] = {
3681 { "DEC ", "PMAF-FA " },
3682 { "DEC ", "PMAF-FD " },
3683 { "DEC ", "PMAF-FS " },
3684 { "DEC ", "PMAF-FU " },
3685 { }
3686};
3687MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3688
3689static struct tc_driver dfx_tc_driver = {
3690 .id_table = dfx_tc_table,
3691 .driver = {
3692 .name = "defxx",
3693 .bus = &tc_bus_type,
3694 .probe = dfx_dev_register,
3695 .remove = __devexit_p(dfx_dev_unregister),
3696 },
3697};
3698#endif /* CONFIG_TC */
1da177e4 3699
fcdff139 3700static int __devinit __maybe_unused dfx_dev_register(struct device *dev)
e89a2cfb
MR
3701{
3702 int status;
1da177e4 3703
e89a2cfb
MR
3704 status = dfx_register(dev);
3705 if (!status)
3706 get_device(dev);
3707 return status;
1da177e4
LT
3708}
3709
fcdff139 3710static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev)
1da177e4 3711{
e89a2cfb
MR
3712 put_device(dev);
3713 dfx_unregister(dev);
3714 return 0;
3715}
6aa20a22 3716
1da177e4 3717
e89a2cfb
MR
3718static int __devinit dfx_init(void)
3719{
3720 int status;
3721
3722 status = pci_register_driver(&dfx_pci_driver);
3723 if (!status)
3724 status = eisa_driver_register(&dfx_eisa_driver);
3725 if (!status)
3726 status = tc_register_driver(&dfx_tc_driver);
3727 return status;
1da177e4
LT
3728}
3729
e89a2cfb 3730static void __devexit dfx_cleanup(void)
1da177e4 3731{
e89a2cfb
MR
3732 tc_unregister_driver(&dfx_tc_driver);
3733 eisa_driver_unregister(&dfx_eisa_driver);
3734 pci_unregister_driver(&dfx_pci_driver);
6aa20a22 3735}
1da177e4
LT
3736
3737module_init(dfx_init);
3738module_exit(dfx_cleanup);
3739MODULE_AUTHOR("Lawrence V. Stefani");
e89a2cfb 3740MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
1da177e4
LT
3741 DRV_VERSION " " DRV_RELDATE);
3742MODULE_LICENSE("GPL");
3743
6aa20a22 3744
1da177e4
LT
3745/*
3746 * Local variables:
3747 * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3748 * End:
3749 */