]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ |
2 | /* | |
3 | Copyright (c) 2001, 2002 by D-Link Corporation | |
4 | Written by Edward Peng.<edward_peng@dlink.com.tw> | |
5 | Created 03-May-2001, base on Linux' sundance.c. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | */ | |
1da177e4 | 12 | |
1da177e4 | 13 | #define DRV_NAME "D-Link DL2000-based linux driver" |
03a8c661 JG |
14 | #define DRV_VERSION "v1.18" |
15 | #define DRV_RELDATE "2006/06/27" | |
1da177e4 | 16 | #include "dl2k.h" |
c4694c76 | 17 | #include <linux/dma-mapping.h> |
1da177e4 LT |
18 | |
19 | static char version[] __devinitdata = | |
20 | KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n"; | |
21 | #define MAX_UNITS 8 | |
22 | static int mtu[MAX_UNITS]; | |
23 | static int vlan[MAX_UNITS]; | |
24 | static int jumbo[MAX_UNITS]; | |
25 | static char *media[MAX_UNITS]; | |
26 | static int tx_flow=-1; | |
27 | static int rx_flow=-1; | |
28 | static int copy_thresh; | |
29 | static int rx_coalesce=10; /* Rx frame count each interrupt */ | |
30 | static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */ | |
31 | static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */ | |
32 | ||
33 | ||
34 | MODULE_AUTHOR ("Edward Peng"); | |
35 | MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); | |
36 | MODULE_LICENSE("GPL"); | |
37 | module_param_array(mtu, int, NULL, 0); | |
38 | module_param_array(media, charp, NULL, 0); | |
39 | module_param_array(vlan, int, NULL, 0); | |
40 | module_param_array(jumbo, int, NULL, 0); | |
41 | module_param(tx_flow, int, 0); | |
42 | module_param(rx_flow, int, 0); | |
43 | module_param(copy_thresh, int, 0); | |
44 | module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */ | |
45 | module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */ | |
46 | module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */ | |
47 | ||
48 | ||
49 | /* Enable the default interrupts */ | |
50 | #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \ | |
51 | UpdateStats | LinkEvent) | |
52 | #define EnableInt() \ | |
53 | writew(DEFAULT_INTR, ioaddr + IntEnable) | |
54 | ||
f71e1309 AV |
55 | static const int max_intrloop = 50; |
56 | static const int multicast_filter_limit = 0x40; | |
1da177e4 LT |
57 | |
58 | static int rio_open (struct net_device *dev); | |
59 | static void rio_timer (unsigned long data); | |
60 | static void rio_tx_timeout (struct net_device *dev); | |
61 | static void alloc_list (struct net_device *dev); | |
62 | static int start_xmit (struct sk_buff *skb, struct net_device *dev); | |
63 | static irqreturn_t rio_interrupt (int irq, void *dev_instance, struct pt_regs *regs); | |
64 | static void rio_free_tx (struct net_device *dev, int irq); | |
65 | static void tx_error (struct net_device *dev, int tx_status); | |
66 | static int receive_packet (struct net_device *dev); | |
67 | static void rio_error (struct net_device *dev, int int_status); | |
68 | static int change_mtu (struct net_device *dev, int new_mtu); | |
69 | static void set_multicast (struct net_device *dev); | |
70 | static struct net_device_stats *get_stats (struct net_device *dev); | |
71 | static int clear_stats (struct net_device *dev); | |
72 | static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); | |
73 | static int rio_close (struct net_device *dev); | |
74 | static int find_miiphy (struct net_device *dev); | |
75 | static int parse_eeprom (struct net_device *dev); | |
76 | static int read_eeprom (long ioaddr, int eep_addr); | |
77 | static int mii_wait_link (struct net_device *dev, int wait); | |
78 | static int mii_set_media (struct net_device *dev); | |
79 | static int mii_get_media (struct net_device *dev); | |
80 | static int mii_set_media_pcs (struct net_device *dev); | |
81 | static int mii_get_media_pcs (struct net_device *dev); | |
82 | static int mii_read (struct net_device *dev, int phy_addr, int reg_num); | |
83 | static int mii_write (struct net_device *dev, int phy_addr, int reg_num, | |
84 | u16 data); | |
85 | ||
86 | static struct ethtool_ops ethtool_ops; | |
87 | ||
88 | static int __devinit | |
89 | rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) | |
90 | { | |
91 | struct net_device *dev; | |
92 | struct netdev_private *np; | |
93 | static int card_idx; | |
94 | int chip_idx = ent->driver_data; | |
95 | int err, irq; | |
96 | long ioaddr; | |
97 | static int version_printed; | |
98 | void *ring_space; | |
99 | dma_addr_t ring_dma; | |
100 | ||
101 | if (!version_printed++) | |
102 | printk ("%s", version); | |
103 | ||
104 | err = pci_enable_device (pdev); | |
105 | if (err) | |
106 | return err; | |
107 | ||
108 | irq = pdev->irq; | |
109 | err = pci_request_regions (pdev, "dl2k"); | |
110 | if (err) | |
111 | goto err_out_disable; | |
112 | ||
113 | pci_set_master (pdev); | |
114 | dev = alloc_etherdev (sizeof (*np)); | |
115 | if (!dev) { | |
116 | err = -ENOMEM; | |
117 | goto err_out_res; | |
118 | } | |
119 | SET_MODULE_OWNER (dev); | |
120 | SET_NETDEV_DEV(dev, &pdev->dev); | |
121 | ||
122 | #ifdef MEM_MAPPING | |
123 | ioaddr = pci_resource_start (pdev, 1); | |
124 | ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE); | |
125 | if (!ioaddr) { | |
126 | err = -ENOMEM; | |
127 | goto err_out_dev; | |
128 | } | |
129 | #else | |
130 | ioaddr = pci_resource_start (pdev, 0); | |
131 | #endif | |
132 | dev->base_addr = ioaddr; | |
133 | dev->irq = irq; | |
134 | np = netdev_priv(dev); | |
135 | np->chip_id = chip_idx; | |
136 | np->pdev = pdev; | |
137 | spin_lock_init (&np->tx_lock); | |
138 | spin_lock_init (&np->rx_lock); | |
139 | ||
140 | /* Parse manual configuration */ | |
141 | np->an_enable = 1; | |
142 | np->tx_coalesce = 1; | |
143 | if (card_idx < MAX_UNITS) { | |
144 | if (media[card_idx] != NULL) { | |
145 | np->an_enable = 0; | |
146 | if (strcmp (media[card_idx], "auto") == 0 || | |
147 | strcmp (media[card_idx], "autosense") == 0 || | |
148 | strcmp (media[card_idx], "0") == 0 ) { | |
149 | np->an_enable = 2; | |
150 | } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || | |
151 | strcmp (media[card_idx], "4") == 0) { | |
152 | np->speed = 100; | |
153 | np->full_duplex = 1; | |
154 | } else if (strcmp (media[card_idx], "100mbps_hd") == 0 | |
155 | || strcmp (media[card_idx], "3") == 0) { | |
156 | np->speed = 100; | |
157 | np->full_duplex = 0; | |
158 | } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || | |
159 | strcmp (media[card_idx], "2") == 0) { | |
160 | np->speed = 10; | |
161 | np->full_duplex = 1; | |
162 | } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || | |
163 | strcmp (media[card_idx], "1") == 0) { | |
164 | np->speed = 10; | |
165 | np->full_duplex = 0; | |
166 | } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || | |
167 | strcmp (media[card_idx], "6") == 0) { | |
168 | np->speed=1000; | |
169 | np->full_duplex=1; | |
170 | } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || | |
171 | strcmp (media[card_idx], "5") == 0) { | |
172 | np->speed = 1000; | |
173 | np->full_duplex = 0; | |
174 | } else { | |
175 | np->an_enable = 1; | |
176 | } | |
177 | } | |
178 | if (jumbo[card_idx] != 0) { | |
179 | np->jumbo = 1; | |
180 | dev->mtu = MAX_JUMBO; | |
181 | } else { | |
182 | np->jumbo = 0; | |
183 | if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) | |
184 | dev->mtu = mtu[card_idx]; | |
185 | } | |
186 | np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? | |
187 | vlan[card_idx] : 0; | |
188 | if (rx_coalesce > 0 && rx_timeout > 0) { | |
189 | np->rx_coalesce = rx_coalesce; | |
190 | np->rx_timeout = rx_timeout; | |
191 | np->coalesce = 1; | |
192 | } | |
193 | np->tx_flow = (tx_flow == 0) ? 0 : 1; | |
194 | np->rx_flow = (rx_flow == 0) ? 0 : 1; | |
195 | ||
196 | if (tx_coalesce < 1) | |
197 | tx_coalesce = 1; | |
198 | else if (tx_coalesce > TX_RING_SIZE-1) | |
199 | tx_coalesce = TX_RING_SIZE - 1; | |
200 | } | |
201 | dev->open = &rio_open; | |
202 | dev->hard_start_xmit = &start_xmit; | |
203 | dev->stop = &rio_close; | |
204 | dev->get_stats = &get_stats; | |
205 | dev->set_multicast_list = &set_multicast; | |
206 | dev->do_ioctl = &rio_ioctl; | |
207 | dev->tx_timeout = &rio_tx_timeout; | |
208 | dev->watchdog_timeo = TX_TIMEOUT; | |
209 | dev->change_mtu = &change_mtu; | |
210 | SET_ETHTOOL_OPS(dev, ðtool_ops); | |
211 | #if 0 | |
212 | dev->features = NETIF_F_IP_CSUM; | |
213 | #endif | |
214 | pci_set_drvdata (pdev, dev); | |
215 | ||
216 | ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma); | |
217 | if (!ring_space) | |
218 | goto err_out_iounmap; | |
219 | np->tx_ring = (struct netdev_desc *) ring_space; | |
220 | np->tx_ring_dma = ring_dma; | |
221 | ||
222 | ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma); | |
223 | if (!ring_space) | |
224 | goto err_out_unmap_tx; | |
225 | np->rx_ring = (struct netdev_desc *) ring_space; | |
226 | np->rx_ring_dma = ring_dma; | |
227 | ||
228 | /* Parse eeprom data */ | |
229 | parse_eeprom (dev); | |
230 | ||
231 | /* Find PHY address */ | |
232 | err = find_miiphy (dev); | |
233 | if (err) | |
234 | goto err_out_unmap_rx; | |
235 | ||
236 | /* Fiber device? */ | |
237 | np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0; | |
238 | np->link_status = 0; | |
239 | /* Set media and reset PHY */ | |
240 | if (np->phy_media) { | |
241 | /* default Auto-Negotiation for fiber deivices */ | |
242 | if (np->an_enable == 2) { | |
243 | np->an_enable = 1; | |
244 | } | |
245 | mii_set_media_pcs (dev); | |
246 | } else { | |
247 | /* Auto-Negotiation is mandatory for 1000BASE-T, | |
248 | IEEE 802.3ab Annex 28D page 14 */ | |
249 | if (np->speed == 1000) | |
250 | np->an_enable = 1; | |
251 | mii_set_media (dev); | |
252 | } | |
253 | pci_read_config_byte(pdev, PCI_REVISION_ID, &np->pci_rev_id); | |
254 | ||
255 | err = register_netdev (dev); | |
256 | if (err) | |
257 | goto err_out_unmap_rx; | |
258 | ||
259 | card_idx++; | |
260 | ||
261 | printk (KERN_INFO "%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n", | |
262 | dev->name, np->name, | |
263 | dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], | |
264 | dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], irq); | |
265 | if (tx_coalesce > 1) | |
266 | printk(KERN_INFO "tx_coalesce:\t%d packets\n", | |
267 | tx_coalesce); | |
268 | if (np->coalesce) | |
269 | printk(KERN_INFO "rx_coalesce:\t%d packets\n" | |
270 | KERN_INFO "rx_timeout: \t%d ns\n", | |
271 | np->rx_coalesce, np->rx_timeout*640); | |
272 | if (np->vlan) | |
273 | printk(KERN_INFO "vlan(id):\t%d\n", np->vlan); | |
274 | return 0; | |
275 | ||
276 | err_out_unmap_rx: | |
277 | pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); | |
278 | err_out_unmap_tx: | |
279 | pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); | |
280 | err_out_iounmap: | |
281 | #ifdef MEM_MAPPING | |
282 | iounmap ((void *) ioaddr); | |
283 | ||
284 | err_out_dev: | |
285 | #endif | |
286 | free_netdev (dev); | |
287 | ||
288 | err_out_res: | |
289 | pci_release_regions (pdev); | |
290 | ||
291 | err_out_disable: | |
292 | pci_disable_device (pdev); | |
293 | return err; | |
294 | } | |
295 | ||
296 | int | |
297 | find_miiphy (struct net_device *dev) | |
298 | { | |
299 | int i, phy_found = 0; | |
300 | struct netdev_private *np; | |
301 | long ioaddr; | |
302 | np = netdev_priv(dev); | |
303 | ioaddr = dev->base_addr; | |
304 | np->phy_addr = 1; | |
305 | ||
306 | for (i = 31; i >= 0; i--) { | |
307 | int mii_status = mii_read (dev, i, 1); | |
308 | if (mii_status != 0xffff && mii_status != 0x0000) { | |
309 | np->phy_addr = i; | |
310 | phy_found++; | |
311 | } | |
312 | } | |
313 | if (!phy_found) { | |
314 | printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); | |
315 | return -ENODEV; | |
316 | } | |
317 | return 0; | |
318 | } | |
319 | ||
320 | int | |
321 | parse_eeprom (struct net_device *dev) | |
322 | { | |
323 | int i, j; | |
324 | long ioaddr = dev->base_addr; | |
325 | u8 sromdata[256]; | |
326 | u8 *psib; | |
327 | u32 crc; | |
328 | PSROM_t psrom = (PSROM_t) sromdata; | |
329 | struct netdev_private *np = netdev_priv(dev); | |
330 | ||
331 | int cid, next; | |
332 | ||
333 | #ifdef MEM_MAPPING | |
334 | ioaddr = pci_resource_start (np->pdev, 0); | |
335 | #endif | |
336 | /* Read eeprom */ | |
337 | for (i = 0; i < 128; i++) { | |
338 | ((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i)); | |
339 | } | |
340 | #ifdef MEM_MAPPING | |
341 | ioaddr = dev->base_addr; | |
342 | #endif | |
343 | /* Check CRC */ | |
344 | crc = ~ether_crc_le (256 - 4, sromdata); | |
345 | if (psrom->crc != crc) { | |
346 | printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name); | |
347 | return -1; | |
348 | } | |
349 | ||
350 | /* Set MAC address */ | |
351 | for (i = 0; i < 6; i++) | |
352 | dev->dev_addr[i] = psrom->mac_addr[i]; | |
353 | ||
47bdd718 | 354 | /* Parse Software Information Block */ |
1da177e4 LT |
355 | i = 0x30; |
356 | psib = (u8 *) sromdata; | |
357 | do { | |
358 | cid = psib[i++]; | |
359 | next = psib[i++]; | |
360 | if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { | |
361 | printk (KERN_ERR "Cell data error\n"); | |
362 | return -1; | |
363 | } | |
364 | switch (cid) { | |
365 | case 0: /* Format version */ | |
366 | break; | |
367 | case 1: /* End of cell */ | |
368 | return 0; | |
369 | case 2: /* Duplex Polarity */ | |
370 | np->duplex_polarity = psib[i]; | |
371 | writeb (readb (ioaddr + PhyCtrl) | psib[i], | |
372 | ioaddr + PhyCtrl); | |
373 | break; | |
374 | case 3: /* Wake Polarity */ | |
375 | np->wake_polarity = psib[i]; | |
376 | break; | |
377 | case 9: /* Adapter description */ | |
378 | j = (next - i > 255) ? 255 : next - i; | |
379 | memcpy (np->name, &(psib[i]), j); | |
380 | break; | |
381 | case 4: | |
382 | case 5: | |
383 | case 6: | |
384 | case 7: | |
385 | case 8: /* Reversed */ | |
386 | break; | |
387 | default: /* Unknown cell */ | |
388 | return -1; | |
389 | } | |
390 | i = next; | |
391 | } while (1); | |
392 | ||
393 | return 0; | |
394 | } | |
395 | ||
396 | static int | |
397 | rio_open (struct net_device *dev) | |
398 | { | |
399 | struct netdev_private *np = netdev_priv(dev); | |
400 | long ioaddr = dev->base_addr; | |
401 | int i; | |
402 | u16 macctrl; | |
403 | ||
1fb9df5d | 404 | i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev); |
1da177e4 LT |
405 | if (i) |
406 | return i; | |
407 | ||
408 | /* Reset all logic functions */ | |
409 | writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset, | |
410 | ioaddr + ASICCtrl + 2); | |
411 | mdelay(10); | |
412 | ||
413 | /* DebugCtrl bit 4, 5, 9 must set */ | |
414 | writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl); | |
415 | ||
416 | /* Jumbo frame */ | |
417 | if (np->jumbo != 0) | |
418 | writew (MAX_JUMBO+14, ioaddr + MaxFrameSize); | |
419 | ||
420 | alloc_list (dev); | |
421 | ||
422 | /* Get station address */ | |
423 | for (i = 0; i < 6; i++) | |
424 | writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i); | |
425 | ||
426 | set_multicast (dev); | |
427 | if (np->coalesce) { | |
428 | writel (np->rx_coalesce | np->rx_timeout << 16, | |
429 | ioaddr + RxDMAIntCtrl); | |
430 | } | |
431 | /* Set RIO to poll every N*320nsec. */ | |
432 | writeb (0x20, ioaddr + RxDMAPollPeriod); | |
433 | writeb (0xff, ioaddr + TxDMAPollPeriod); | |
434 | writeb (0x30, ioaddr + RxDMABurstThresh); | |
435 | writeb (0x30, ioaddr + RxDMAUrgentThresh); | |
436 | writel (0x0007ffff, ioaddr + RmonStatMask); | |
437 | /* clear statistics */ | |
438 | clear_stats (dev); | |
439 | ||
440 | /* VLAN supported */ | |
441 | if (np->vlan) { | |
442 | /* priority field in RxDMAIntCtrl */ | |
443 | writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10, | |
444 | ioaddr + RxDMAIntCtrl); | |
445 | /* VLANId */ | |
446 | writew (np->vlan, ioaddr + VLANId); | |
447 | /* Length/Type should be 0x8100 */ | |
448 | writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag); | |
449 | /* Enable AutoVLANuntagging, but disable AutoVLANtagging. | |
450 | VLAN information tagged by TFC' VID, CFI fields. */ | |
451 | writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging, | |
452 | ioaddr + MACCtrl); | |
453 | } | |
454 | ||
455 | init_timer (&np->timer); | |
456 | np->timer.expires = jiffies + 1*HZ; | |
457 | np->timer.data = (unsigned long) dev; | |
458 | np->timer.function = &rio_timer; | |
459 | add_timer (&np->timer); | |
460 | ||
461 | /* Start Tx/Rx */ | |
462 | writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable, | |
463 | ioaddr + MACCtrl); | |
464 | ||
465 | macctrl = 0; | |
466 | macctrl |= (np->vlan) ? AutoVLANuntagging : 0; | |
467 | macctrl |= (np->full_duplex) ? DuplexSelect : 0; | |
468 | macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; | |
469 | macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; | |
470 | writew(macctrl, ioaddr + MACCtrl); | |
471 | ||
472 | netif_start_queue (dev); | |
473 | ||
474 | /* Enable default interrupts */ | |
475 | EnableInt (); | |
476 | return 0; | |
477 | } | |
478 | ||
479 | static void | |
480 | rio_timer (unsigned long data) | |
481 | { | |
482 | struct net_device *dev = (struct net_device *)data; | |
483 | struct netdev_private *np = netdev_priv(dev); | |
484 | unsigned int entry; | |
485 | int next_tick = 1*HZ; | |
486 | unsigned long flags; | |
487 | ||
488 | spin_lock_irqsave(&np->rx_lock, flags); | |
489 | /* Recover rx ring exhausted error */ | |
490 | if (np->cur_rx - np->old_rx >= RX_RING_SIZE) { | |
491 | printk(KERN_INFO "Try to recover rx ring exhausted...\n"); | |
492 | /* Re-allocate skbuffs to fill the descriptor ring */ | |
493 | for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { | |
494 | struct sk_buff *skb; | |
495 | entry = np->old_rx % RX_RING_SIZE; | |
496 | /* Dropped packets don't need to re-allocate */ | |
497 | if (np->rx_skbuff[entry] == NULL) { | |
498 | skb = dev_alloc_skb (np->rx_buf_sz); | |
499 | if (skb == NULL) { | |
500 | np->rx_ring[entry].fraginfo = 0; | |
501 | printk (KERN_INFO | |
502 | "%s: Still unable to re-allocate Rx skbuff.#%d\n", | |
503 | dev->name, entry); | |
504 | break; | |
505 | } | |
506 | np->rx_skbuff[entry] = skb; | |
507 | skb->dev = dev; | |
508 | /* 16 byte align the IP header */ | |
509 | skb_reserve (skb, 2); | |
510 | np->rx_ring[entry].fraginfo = | |
511 | cpu_to_le64 (pci_map_single | |
689be439 | 512 | (np->pdev, skb->data, np->rx_buf_sz, |
1da177e4 LT |
513 | PCI_DMA_FROMDEVICE)); |
514 | } | |
515 | np->rx_ring[entry].fraginfo |= | |
516 | cpu_to_le64 (np->rx_buf_sz) << 48; | |
517 | np->rx_ring[entry].status = 0; | |
518 | } /* end for */ | |
519 | } /* end if */ | |
520 | spin_unlock_irqrestore (&np->rx_lock, flags); | |
521 | np->timer.expires = jiffies + next_tick; | |
522 | add_timer(&np->timer); | |
523 | } | |
524 | ||
525 | static void | |
526 | rio_tx_timeout (struct net_device *dev) | |
527 | { | |
528 | long ioaddr = dev->base_addr; | |
529 | ||
530 | printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n", | |
531 | dev->name, readl (ioaddr + TxStatus)); | |
532 | rio_free_tx(dev, 0); | |
533 | dev->if_port = 0; | |
534 | dev->trans_start = jiffies; | |
535 | } | |
536 | ||
537 | /* allocate and initialize Tx and Rx descriptors */ | |
538 | static void | |
539 | alloc_list (struct net_device *dev) | |
540 | { | |
541 | struct netdev_private *np = netdev_priv(dev); | |
542 | int i; | |
543 | ||
544 | np->cur_rx = np->cur_tx = 0; | |
545 | np->old_rx = np->old_tx = 0; | |
546 | np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); | |
547 | ||
548 | /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ | |
549 | for (i = 0; i < TX_RING_SIZE; i++) { | |
550 | np->tx_skbuff[i] = NULL; | |
551 | np->tx_ring[i].status = cpu_to_le64 (TFDDone); | |
552 | np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma + | |
553 | ((i+1)%TX_RING_SIZE) * | |
554 | sizeof (struct netdev_desc)); | |
555 | } | |
556 | ||
557 | /* Initialize Rx descriptors */ | |
558 | for (i = 0; i < RX_RING_SIZE; i++) { | |
559 | np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma + | |
560 | ((i + 1) % RX_RING_SIZE) * | |
561 | sizeof (struct netdev_desc)); | |
562 | np->rx_ring[i].status = 0; | |
563 | np->rx_ring[i].fraginfo = 0; | |
564 | np->rx_skbuff[i] = NULL; | |
565 | } | |
566 | ||
567 | /* Allocate the rx buffers */ | |
568 | for (i = 0; i < RX_RING_SIZE; i++) { | |
569 | /* Allocated fixed size of skbuff */ | |
570 | struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz); | |
571 | np->rx_skbuff[i] = skb; | |
572 | if (skb == NULL) { | |
573 | printk (KERN_ERR | |
574 | "%s: alloc_list: allocate Rx buffer error! ", | |
575 | dev->name); | |
576 | break; | |
577 | } | |
578 | skb->dev = dev; /* Mark as being used by this device. */ | |
579 | skb_reserve (skb, 2); /* 16 byte align the IP header. */ | |
580 | /* Rubicon now supports 40 bits of addressing space. */ | |
581 | np->rx_ring[i].fraginfo = | |
582 | cpu_to_le64 ( pci_map_single ( | |
689be439 | 583 | np->pdev, skb->data, np->rx_buf_sz, |
1da177e4 LT |
584 | PCI_DMA_FROMDEVICE)); |
585 | np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48; | |
586 | } | |
587 | ||
588 | /* Set RFDListPtr */ | |
589 | writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0); | |
590 | writel (0, dev->base_addr + RFDListPtr1); | |
591 | ||
592 | return; | |
593 | } | |
594 | ||
595 | static int | |
596 | start_xmit (struct sk_buff *skb, struct net_device *dev) | |
597 | { | |
598 | struct netdev_private *np = netdev_priv(dev); | |
599 | struct netdev_desc *txdesc; | |
600 | unsigned entry; | |
601 | u32 ioaddr; | |
602 | u64 tfc_vlan_tag = 0; | |
603 | ||
604 | if (np->link_status == 0) { /* Link Down */ | |
605 | dev_kfree_skb(skb); | |
606 | return 0; | |
607 | } | |
608 | ioaddr = dev->base_addr; | |
609 | entry = np->cur_tx % TX_RING_SIZE; | |
610 | np->tx_skbuff[entry] = skb; | |
611 | txdesc = &np->tx_ring[entry]; | |
612 | ||
613 | #if 0 | |
614 | if (skb->ip_summed == CHECKSUM_HW) { | |
615 | txdesc->status |= | |
616 | cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | | |
617 | IPChecksumEnable); | |
618 | } | |
619 | #endif | |
620 | if (np->vlan) { | |
621 | tfc_vlan_tag = | |
622 | cpu_to_le64 (VLANTagInsert) | | |
623 | (cpu_to_le64 (np->vlan) << 32) | | |
624 | (cpu_to_le64 (skb->priority) << 45); | |
625 | } | |
626 | txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, | |
627 | skb->len, | |
628 | PCI_DMA_TODEVICE)); | |
629 | txdesc->fraginfo |= cpu_to_le64 (skb->len) << 48; | |
630 | ||
631 | /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode | |
632 | * Work around: Always use 1 descriptor in 10Mbps mode */ | |
633 | if (entry % np->tx_coalesce == 0 || np->speed == 10) | |
634 | txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | | |
635 | WordAlignDisable | | |
636 | TxDMAIndicate | | |
637 | (1 << FragCountShift)); | |
638 | else | |
639 | txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | | |
640 | WordAlignDisable | | |
641 | (1 << FragCountShift)); | |
642 | ||
643 | /* TxDMAPollNow */ | |
644 | writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl); | |
645 | /* Schedule ISR */ | |
646 | writel(10000, ioaddr + CountDown); | |
647 | np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE; | |
648 | if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE | |
649 | < TX_QUEUE_LEN - 1 && np->speed != 10) { | |
650 | /* do nothing */ | |
651 | } else if (!netif_queue_stopped(dev)) { | |
652 | netif_stop_queue (dev); | |
653 | } | |
654 | ||
655 | /* The first TFDListPtr */ | |
656 | if (readl (dev->base_addr + TFDListPtr0) == 0) { | |
657 | writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc), | |
658 | dev->base_addr + TFDListPtr0); | |
659 | writel (0, dev->base_addr + TFDListPtr1); | |
660 | } | |
661 | ||
662 | /* NETDEV WATCHDOG timer */ | |
663 | dev->trans_start = jiffies; | |
664 | return 0; | |
665 | } | |
666 | ||
667 | static irqreturn_t | |
668 | rio_interrupt (int irq, void *dev_instance, struct pt_regs *rgs) | |
669 | { | |
670 | struct net_device *dev = dev_instance; | |
671 | struct netdev_private *np; | |
672 | unsigned int_status; | |
673 | long ioaddr; | |
674 | int cnt = max_intrloop; | |
675 | int handled = 0; | |
676 | ||
677 | ioaddr = dev->base_addr; | |
678 | np = netdev_priv(dev); | |
679 | while (1) { | |
680 | int_status = readw (ioaddr + IntStatus); | |
681 | writew (int_status, ioaddr + IntStatus); | |
682 | int_status &= DEFAULT_INTR; | |
683 | if (int_status == 0 || --cnt < 0) | |
684 | break; | |
685 | handled = 1; | |
686 | /* Processing received packets */ | |
687 | if (int_status & RxDMAComplete) | |
688 | receive_packet (dev); | |
689 | /* TxDMAComplete interrupt */ | |
690 | if ((int_status & (TxDMAComplete|IntRequested))) { | |
691 | int tx_status; | |
692 | tx_status = readl (ioaddr + TxStatus); | |
693 | if (tx_status & 0x01) | |
694 | tx_error (dev, tx_status); | |
695 | /* Free used tx skbuffs */ | |
696 | rio_free_tx (dev, 1); | |
697 | } | |
698 | ||
699 | /* Handle uncommon events */ | |
700 | if (int_status & | |
701 | (HostError | LinkEvent | UpdateStats)) | |
702 | rio_error (dev, int_status); | |
703 | } | |
704 | if (np->cur_tx != np->old_tx) | |
705 | writel (100, ioaddr + CountDown); | |
706 | return IRQ_RETVAL(handled); | |
707 | } | |
708 | ||
709 | static void | |
710 | rio_free_tx (struct net_device *dev, int irq) | |
711 | { | |
712 | struct netdev_private *np = netdev_priv(dev); | |
713 | int entry = np->old_tx % TX_RING_SIZE; | |
714 | int tx_use = 0; | |
715 | unsigned long flag = 0; | |
716 | ||
717 | if (irq) | |
718 | spin_lock(&np->tx_lock); | |
719 | else | |
720 | spin_lock_irqsave(&np->tx_lock, flag); | |
721 | ||
722 | /* Free used tx skbuffs */ | |
723 | while (entry != np->cur_tx) { | |
724 | struct sk_buff *skb; | |
725 | ||
726 | if (!(np->tx_ring[entry].status & TFDDone)) | |
727 | break; | |
728 | skb = np->tx_skbuff[entry]; | |
729 | pci_unmap_single (np->pdev, | |
4c1b4622 | 730 | np->tx_ring[entry].fraginfo & DMA_48BIT_MASK, |
1da177e4 LT |
731 | skb->len, PCI_DMA_TODEVICE); |
732 | if (irq) | |
733 | dev_kfree_skb_irq (skb); | |
734 | else | |
735 | dev_kfree_skb (skb); | |
736 | ||
737 | np->tx_skbuff[entry] = NULL; | |
738 | entry = (entry + 1) % TX_RING_SIZE; | |
739 | tx_use++; | |
740 | } | |
741 | if (irq) | |
742 | spin_unlock(&np->tx_lock); | |
743 | else | |
744 | spin_unlock_irqrestore(&np->tx_lock, flag); | |
745 | np->old_tx = entry; | |
746 | ||
747 | /* If the ring is no longer full, clear tx_full and | |
748 | call netif_wake_queue() */ | |
749 | ||
750 | if (netif_queue_stopped(dev) && | |
751 | ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE | |
752 | < TX_QUEUE_LEN - 1 || np->speed == 10)) { | |
753 | netif_wake_queue (dev); | |
754 | } | |
755 | } | |
756 | ||
757 | static void | |
758 | tx_error (struct net_device *dev, int tx_status) | |
759 | { | |
760 | struct netdev_private *np; | |
761 | long ioaddr = dev->base_addr; | |
762 | int frame_id; | |
763 | int i; | |
764 | ||
765 | np = netdev_priv(dev); | |
766 | ||
767 | frame_id = (tx_status & 0xffff0000); | |
768 | printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", | |
769 | dev->name, tx_status, frame_id); | |
770 | np->stats.tx_errors++; | |
771 | /* Ttransmit Underrun */ | |
772 | if (tx_status & 0x10) { | |
773 | np->stats.tx_fifo_errors++; | |
774 | writew (readw (ioaddr + TxStartThresh) + 0x10, | |
775 | ioaddr + TxStartThresh); | |
776 | /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ | |
777 | writew (TxReset | DMAReset | FIFOReset | NetworkReset, | |
778 | ioaddr + ASICCtrl + 2); | |
779 | /* Wait for ResetBusy bit clear */ | |
780 | for (i = 50; i > 0; i--) { | |
781 | if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) | |
782 | break; | |
783 | mdelay (1); | |
784 | } | |
785 | rio_free_tx (dev, 1); | |
786 | /* Reset TFDListPtr */ | |
787 | writel (np->tx_ring_dma + | |
788 | np->old_tx * sizeof (struct netdev_desc), | |
789 | dev->base_addr + TFDListPtr0); | |
790 | writel (0, dev->base_addr + TFDListPtr1); | |
791 | ||
792 | /* Let TxStartThresh stay default value */ | |
793 | } | |
794 | /* Late Collision */ | |
795 | if (tx_status & 0x04) { | |
796 | np->stats.tx_fifo_errors++; | |
797 | /* TxReset and clear FIFO */ | |
798 | writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2); | |
799 | /* Wait reset done */ | |
800 | for (i = 50; i > 0; i--) { | |
801 | if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) | |
802 | break; | |
803 | mdelay (1); | |
804 | } | |
805 | /* Let TxStartThresh stay default value */ | |
806 | } | |
807 | /* Maximum Collisions */ | |
808 | #ifdef ETHER_STATS | |
809 | if (tx_status & 0x08) | |
810 | np->stats.collisions16++; | |
811 | #else | |
812 | if (tx_status & 0x08) | |
813 | np->stats.collisions++; | |
814 | #endif | |
815 | /* Restart the Tx */ | |
816 | writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl); | |
817 | } | |
818 | ||
819 | static int | |
820 | receive_packet (struct net_device *dev) | |
821 | { | |
822 | struct netdev_private *np = netdev_priv(dev); | |
823 | int entry = np->cur_rx % RX_RING_SIZE; | |
824 | int cnt = 30; | |
825 | ||
826 | /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ | |
827 | while (1) { | |
828 | struct netdev_desc *desc = &np->rx_ring[entry]; | |
829 | int pkt_len; | |
830 | u64 frame_status; | |
831 | ||
832 | if (!(desc->status & RFDDone) || | |
833 | !(desc->status & FrameStart) || !(desc->status & FrameEnd)) | |
834 | break; | |
835 | ||
836 | /* Chip omits the CRC. */ | |
837 | pkt_len = le64_to_cpu (desc->status & 0xffff); | |
838 | frame_status = le64_to_cpu (desc->status); | |
839 | if (--cnt < 0) | |
840 | break; | |
841 | /* Update rx error statistics, drop packet. */ | |
842 | if (frame_status & RFS_Errors) { | |
843 | np->stats.rx_errors++; | |
844 | if (frame_status & (RxRuntFrame | RxLengthError)) | |
845 | np->stats.rx_length_errors++; | |
846 | if (frame_status & RxFCSError) | |
847 | np->stats.rx_crc_errors++; | |
848 | if (frame_status & RxAlignmentError && np->speed != 1000) | |
849 | np->stats.rx_frame_errors++; | |
850 | if (frame_status & RxFIFOOverrun) | |
851 | np->stats.rx_fifo_errors++; | |
852 | } else { | |
853 | struct sk_buff *skb; | |
854 | ||
855 | /* Small skbuffs for short packets */ | |
856 | if (pkt_len > copy_thresh) { | |
9ee09d9c | 857 | pci_unmap_single (np->pdev, |
4c1b4622 | 858 | desc->fraginfo & DMA_48BIT_MASK, |
1da177e4 LT |
859 | np->rx_buf_sz, |
860 | PCI_DMA_FROMDEVICE); | |
861 | skb_put (skb = np->rx_skbuff[entry], pkt_len); | |
862 | np->rx_skbuff[entry] = NULL; | |
863 | } else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) { | |
864 | pci_dma_sync_single_for_cpu(np->pdev, | |
9ee09d9c | 865 | desc->fraginfo & |
4c1b4622 | 866 | DMA_48BIT_MASK, |
1da177e4 LT |
867 | np->rx_buf_sz, |
868 | PCI_DMA_FROMDEVICE); | |
869 | skb->dev = dev; | |
870 | /* 16 byte align the IP header */ | |
871 | skb_reserve (skb, 2); | |
872 | eth_copy_and_sum (skb, | |
689be439 | 873 | np->rx_skbuff[entry]->data, |
1da177e4 LT |
874 | pkt_len, 0); |
875 | skb_put (skb, pkt_len); | |
876 | pci_dma_sync_single_for_device(np->pdev, | |
9ee09d9c | 877 | desc->fraginfo & |
4c1b4622 | 878 | DMA_48BIT_MASK, |
1da177e4 LT |
879 | np->rx_buf_sz, |
880 | PCI_DMA_FROMDEVICE); | |
881 | } | |
882 | skb->protocol = eth_type_trans (skb, dev); | |
883 | #if 0 | |
884 | /* Checksum done by hw, but csum value unavailable. */ | |
885 | if (np->pci_rev_id >= 0x0c && | |
886 | !(frame_status & (TCPError | UDPError | IPError))) { | |
887 | skb->ip_summed = CHECKSUM_UNNECESSARY; | |
888 | } | |
889 | #endif | |
890 | netif_rx (skb); | |
891 | dev->last_rx = jiffies; | |
892 | } | |
893 | entry = (entry + 1) % RX_RING_SIZE; | |
894 | } | |
895 | spin_lock(&np->rx_lock); | |
896 | np->cur_rx = entry; | |
897 | /* Re-allocate skbuffs to fill the descriptor ring */ | |
898 | entry = np->old_rx; | |
899 | while (entry != np->cur_rx) { | |
900 | struct sk_buff *skb; | |
901 | /* Dropped packets don't need to re-allocate */ | |
902 | if (np->rx_skbuff[entry] == NULL) { | |
903 | skb = dev_alloc_skb (np->rx_buf_sz); | |
904 | if (skb == NULL) { | |
905 | np->rx_ring[entry].fraginfo = 0; | |
906 | printk (KERN_INFO | |
907 | "%s: receive_packet: " | |
908 | "Unable to re-allocate Rx skbuff.#%d\n", | |
909 | dev->name, entry); | |
910 | break; | |
911 | } | |
912 | np->rx_skbuff[entry] = skb; | |
913 | skb->dev = dev; | |
914 | /* 16 byte align the IP header */ | |
915 | skb_reserve (skb, 2); | |
916 | np->rx_ring[entry].fraginfo = | |
917 | cpu_to_le64 (pci_map_single | |
689be439 | 918 | (np->pdev, skb->data, np->rx_buf_sz, |
1da177e4 LT |
919 | PCI_DMA_FROMDEVICE)); |
920 | } | |
921 | np->rx_ring[entry].fraginfo |= | |
922 | cpu_to_le64 (np->rx_buf_sz) << 48; | |
923 | np->rx_ring[entry].status = 0; | |
924 | entry = (entry + 1) % RX_RING_SIZE; | |
925 | } | |
926 | np->old_rx = entry; | |
927 | spin_unlock(&np->rx_lock); | |
928 | return 0; | |
929 | } | |
930 | ||
931 | static void | |
932 | rio_error (struct net_device *dev, int int_status) | |
933 | { | |
934 | long ioaddr = dev->base_addr; | |
935 | struct netdev_private *np = netdev_priv(dev); | |
936 | u16 macctrl; | |
937 | ||
938 | /* Link change event */ | |
939 | if (int_status & LinkEvent) { | |
940 | if (mii_wait_link (dev, 10) == 0) { | |
941 | printk (KERN_INFO "%s: Link up\n", dev->name); | |
942 | if (np->phy_media) | |
943 | mii_get_media_pcs (dev); | |
944 | else | |
945 | mii_get_media (dev); | |
946 | if (np->speed == 1000) | |
947 | np->tx_coalesce = tx_coalesce; | |
948 | else | |
949 | np->tx_coalesce = 1; | |
950 | macctrl = 0; | |
951 | macctrl |= (np->vlan) ? AutoVLANuntagging : 0; | |
952 | macctrl |= (np->full_duplex) ? DuplexSelect : 0; | |
953 | macctrl |= (np->tx_flow) ? | |
954 | TxFlowControlEnable : 0; | |
955 | macctrl |= (np->rx_flow) ? | |
956 | RxFlowControlEnable : 0; | |
957 | writew(macctrl, ioaddr + MACCtrl); | |
958 | np->link_status = 1; | |
959 | netif_carrier_on(dev); | |
960 | } else { | |
961 | printk (KERN_INFO "%s: Link off\n", dev->name); | |
962 | np->link_status = 0; | |
963 | netif_carrier_off(dev); | |
964 | } | |
965 | } | |
966 | ||
967 | /* UpdateStats statistics registers */ | |
968 | if (int_status & UpdateStats) { | |
969 | get_stats (dev); | |
970 | } | |
971 | ||
972 | /* PCI Error, a catastronphic error related to the bus interface | |
973 | occurs, set GlobalReset and HostReset to reset. */ | |
974 | if (int_status & HostError) { | |
975 | printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n", | |
976 | dev->name, int_status); | |
977 | writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2); | |
978 | mdelay (500); | |
979 | } | |
980 | } | |
981 | ||
982 | static struct net_device_stats * | |
983 | get_stats (struct net_device *dev) | |
984 | { | |
985 | long ioaddr = dev->base_addr; | |
986 | struct netdev_private *np = netdev_priv(dev); | |
987 | #ifdef MEM_MAPPING | |
988 | int i; | |
989 | #endif | |
990 | unsigned int stat_reg; | |
991 | ||
992 | /* All statistics registers need to be acknowledged, | |
993 | else statistic overflow could cause problems */ | |
994 | ||
995 | np->stats.rx_packets += readl (ioaddr + FramesRcvOk); | |
996 | np->stats.tx_packets += readl (ioaddr + FramesXmtOk); | |
997 | np->stats.rx_bytes += readl (ioaddr + OctetRcvOk); | |
998 | np->stats.tx_bytes += readl (ioaddr + OctetXmtOk); | |
999 | ||
1000 | np->stats.multicast = readl (ioaddr + McstFramesRcvdOk); | |
1001 | np->stats.collisions += readl (ioaddr + SingleColFrames) | |
1002 | + readl (ioaddr + MultiColFrames); | |
1003 | ||
1004 | /* detailed tx errors */ | |
1005 | stat_reg = readw (ioaddr + FramesAbortXSColls); | |
1006 | np->stats.tx_aborted_errors += stat_reg; | |
1007 | np->stats.tx_errors += stat_reg; | |
1008 | ||
1009 | stat_reg = readw (ioaddr + CarrierSenseErrors); | |
1010 | np->stats.tx_carrier_errors += stat_reg; | |
1011 | np->stats.tx_errors += stat_reg; | |
1012 | ||
1013 | /* Clear all other statistic register. */ | |
1014 | readl (ioaddr + McstOctetXmtOk); | |
1015 | readw (ioaddr + BcstFramesXmtdOk); | |
1016 | readl (ioaddr + McstFramesXmtdOk); | |
1017 | readw (ioaddr + BcstFramesRcvdOk); | |
1018 | readw (ioaddr + MacControlFramesRcvd); | |
1019 | readw (ioaddr + FrameTooLongErrors); | |
1020 | readw (ioaddr + InRangeLengthErrors); | |
1021 | readw (ioaddr + FramesCheckSeqErrors); | |
1022 | readw (ioaddr + FramesLostRxErrors); | |
1023 | readl (ioaddr + McstOctetXmtOk); | |
1024 | readl (ioaddr + BcstOctetXmtOk); | |
1025 | readl (ioaddr + McstFramesXmtdOk); | |
1026 | readl (ioaddr + FramesWDeferredXmt); | |
1027 | readl (ioaddr + LateCollisions); | |
1028 | readw (ioaddr + BcstFramesXmtdOk); | |
1029 | readw (ioaddr + MacControlFramesXmtd); | |
1030 | readw (ioaddr + FramesWEXDeferal); | |
1031 | ||
1032 | #ifdef MEM_MAPPING | |
1033 | for (i = 0x100; i <= 0x150; i += 4) | |
1034 | readl (ioaddr + i); | |
1035 | #endif | |
1036 | readw (ioaddr + TxJumboFrames); | |
1037 | readw (ioaddr + RxJumboFrames); | |
1038 | readw (ioaddr + TCPCheckSumErrors); | |
1039 | readw (ioaddr + UDPCheckSumErrors); | |
1040 | readw (ioaddr + IPCheckSumErrors); | |
1041 | return &np->stats; | |
1042 | } | |
1043 | ||
1044 | static int | |
1045 | clear_stats (struct net_device *dev) | |
1046 | { | |
1047 | long ioaddr = dev->base_addr; | |
1048 | #ifdef MEM_MAPPING | |
1049 | int i; | |
1050 | #endif | |
1051 | ||
1052 | /* All statistics registers need to be acknowledged, | |
1053 | else statistic overflow could cause problems */ | |
1054 | readl (ioaddr + FramesRcvOk); | |
1055 | readl (ioaddr + FramesXmtOk); | |
1056 | readl (ioaddr + OctetRcvOk); | |
1057 | readl (ioaddr + OctetXmtOk); | |
1058 | ||
1059 | readl (ioaddr + McstFramesRcvdOk); | |
1060 | readl (ioaddr + SingleColFrames); | |
1061 | readl (ioaddr + MultiColFrames); | |
1062 | readl (ioaddr + LateCollisions); | |
1063 | /* detailed rx errors */ | |
1064 | readw (ioaddr + FrameTooLongErrors); | |
1065 | readw (ioaddr + InRangeLengthErrors); | |
1066 | readw (ioaddr + FramesCheckSeqErrors); | |
1067 | readw (ioaddr + FramesLostRxErrors); | |
1068 | ||
1069 | /* detailed tx errors */ | |
1070 | readw (ioaddr + FramesAbortXSColls); | |
1071 | readw (ioaddr + CarrierSenseErrors); | |
1072 | ||
1073 | /* Clear all other statistic register. */ | |
1074 | readl (ioaddr + McstOctetXmtOk); | |
1075 | readw (ioaddr + BcstFramesXmtdOk); | |
1076 | readl (ioaddr + McstFramesXmtdOk); | |
1077 | readw (ioaddr + BcstFramesRcvdOk); | |
1078 | readw (ioaddr + MacControlFramesRcvd); | |
1079 | readl (ioaddr + McstOctetXmtOk); | |
1080 | readl (ioaddr + BcstOctetXmtOk); | |
1081 | readl (ioaddr + McstFramesXmtdOk); | |
1082 | readl (ioaddr + FramesWDeferredXmt); | |
1083 | readw (ioaddr + BcstFramesXmtdOk); | |
1084 | readw (ioaddr + MacControlFramesXmtd); | |
1085 | readw (ioaddr + FramesWEXDeferal); | |
1086 | #ifdef MEM_MAPPING | |
1087 | for (i = 0x100; i <= 0x150; i += 4) | |
1088 | readl (ioaddr + i); | |
1089 | #endif | |
1090 | readw (ioaddr + TxJumboFrames); | |
1091 | readw (ioaddr + RxJumboFrames); | |
1092 | readw (ioaddr + TCPCheckSumErrors); | |
1093 | readw (ioaddr + UDPCheckSumErrors); | |
1094 | readw (ioaddr + IPCheckSumErrors); | |
1095 | return 0; | |
1096 | } | |
1097 | ||
1098 | ||
1099 | int | |
1100 | change_mtu (struct net_device *dev, int new_mtu) | |
1101 | { | |
1102 | struct netdev_private *np = netdev_priv(dev); | |
1103 | int max = (np->jumbo) ? MAX_JUMBO : 1536; | |
1104 | ||
1105 | if ((new_mtu < 68) || (new_mtu > max)) { | |
1106 | return -EINVAL; | |
1107 | } | |
1108 | ||
1109 | dev->mtu = new_mtu; | |
1110 | ||
1111 | return 0; | |
1112 | } | |
1113 | ||
1114 | static void | |
1115 | set_multicast (struct net_device *dev) | |
1116 | { | |
1117 | long ioaddr = dev->base_addr; | |
1118 | u32 hash_table[2]; | |
1119 | u16 rx_mode = 0; | |
1120 | struct netdev_private *np = netdev_priv(dev); | |
1121 | ||
1122 | hash_table[0] = hash_table[1] = 0; | |
1123 | /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */ | |
1124 | hash_table[1] |= cpu_to_le32(0x02000000); | |
1125 | if (dev->flags & IFF_PROMISC) { | |
1126 | /* Receive all frames promiscuously. */ | |
1127 | rx_mode = ReceiveAllFrames; | |
1128 | } else if ((dev->flags & IFF_ALLMULTI) || | |
1129 | (dev->mc_count > multicast_filter_limit)) { | |
1130 | /* Receive broadcast and multicast frames */ | |
1131 | rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; | |
1132 | } else if (dev->mc_count > 0) { | |
1133 | int i; | |
1134 | struct dev_mc_list *mclist; | |
1135 | /* Receive broadcast frames and multicast frames filtering | |
1136 | by Hashtable */ | |
1137 | rx_mode = | |
1138 | ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; | |
1139 | for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count; | |
1140 | i++, mclist=mclist->next) | |
1141 | { | |
1142 | int bit, index = 0; | |
1143 | int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr); | |
1144 | /* The inverted high significant 6 bits of CRC are | |
1145 | used as an index to hashtable */ | |
1146 | for (bit = 0; bit < 6; bit++) | |
1147 | if (crc & (1 << (31 - bit))) | |
1148 | index |= (1 << bit); | |
1149 | hash_table[index / 32] |= (1 << (index % 32)); | |
1150 | } | |
1151 | } else { | |
1152 | rx_mode = ReceiveBroadcast | ReceiveUnicast; | |
1153 | } | |
1154 | if (np->vlan) { | |
1155 | /* ReceiveVLANMatch field in ReceiveMode */ | |
1156 | rx_mode |= ReceiveVLANMatch; | |
1157 | } | |
1158 | ||
1159 | writel (hash_table[0], ioaddr + HashTable0); | |
1160 | writel (hash_table[1], ioaddr + HashTable1); | |
1161 | writew (rx_mode, ioaddr + ReceiveMode); | |
1162 | } | |
1163 | ||
1164 | static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | |
1165 | { | |
1166 | struct netdev_private *np = netdev_priv(dev); | |
1167 | strcpy(info->driver, "dl2k"); | |
1168 | strcpy(info->version, DRV_VERSION); | |
1169 | strcpy(info->bus_info, pci_name(np->pdev)); | |
1170 | } | |
1171 | ||
1172 | static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
1173 | { | |
1174 | struct netdev_private *np = netdev_priv(dev); | |
1175 | if (np->phy_media) { | |
1176 | /* fiber device */ | |
1177 | cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE; | |
1178 | cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE; | |
1179 | cmd->port = PORT_FIBRE; | |
1180 | cmd->transceiver = XCVR_INTERNAL; | |
1181 | } else { | |
1182 | /* copper device */ | |
1183 | cmd->supported = SUPPORTED_10baseT_Half | | |
1184 | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | |
1185 | | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | | |
1186 | SUPPORTED_Autoneg | SUPPORTED_MII; | |
1187 | cmd->advertising = ADVERTISED_10baseT_Half | | |
1188 | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | | |
1189 | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full| | |
1190 | ADVERTISED_Autoneg | ADVERTISED_MII; | |
1191 | cmd->port = PORT_MII; | |
1192 | cmd->transceiver = XCVR_INTERNAL; | |
1193 | } | |
1194 | if ( np->link_status ) { | |
1195 | cmd->speed = np->speed; | |
1196 | cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; | |
1197 | } else { | |
1198 | cmd->speed = -1; | |
1199 | cmd->duplex = -1; | |
1200 | } | |
1201 | if ( np->an_enable) | |
1202 | cmd->autoneg = AUTONEG_ENABLE; | |
1203 | else | |
1204 | cmd->autoneg = AUTONEG_DISABLE; | |
1205 | ||
1206 | cmd->phy_address = np->phy_addr; | |
1207 | return 0; | |
1208 | } | |
1209 | ||
1210 | static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
1211 | { | |
1212 | struct netdev_private *np = netdev_priv(dev); | |
1213 | netif_carrier_off(dev); | |
1214 | if (cmd->autoneg == AUTONEG_ENABLE) { | |
1215 | if (np->an_enable) | |
1216 | return 0; | |
1217 | else { | |
1218 | np->an_enable = 1; | |
1219 | mii_set_media(dev); | |
1220 | return 0; | |
1221 | } | |
1222 | } else { | |
1223 | np->an_enable = 0; | |
1224 | if (np->speed == 1000) { | |
1225 | cmd->speed = SPEED_100; | |
1226 | cmd->duplex = DUPLEX_FULL; | |
1227 | printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n"); | |
1228 | } | |
1229 | switch(cmd->speed + cmd->duplex) { | |
1230 | ||
1231 | case SPEED_10 + DUPLEX_HALF: | |
1232 | np->speed = 10; | |
1233 | np->full_duplex = 0; | |
1234 | break; | |
1235 | ||
1236 | case SPEED_10 + DUPLEX_FULL: | |
1237 | np->speed = 10; | |
1238 | np->full_duplex = 1; | |
1239 | break; | |
1240 | case SPEED_100 + DUPLEX_HALF: | |
1241 | np->speed = 100; | |
1242 | np->full_duplex = 0; | |
1243 | break; | |
1244 | case SPEED_100 + DUPLEX_FULL: | |
1245 | np->speed = 100; | |
1246 | np->full_duplex = 1; | |
1247 | break; | |
1248 | case SPEED_1000 + DUPLEX_HALF:/* not supported */ | |
1249 | case SPEED_1000 + DUPLEX_FULL:/* not supported */ | |
1250 | default: | |
1251 | return -EINVAL; | |
1252 | } | |
1253 | mii_set_media(dev); | |
1254 | } | |
1255 | return 0; | |
1256 | } | |
1257 | ||
1258 | static u32 rio_get_link(struct net_device *dev) | |
1259 | { | |
1260 | struct netdev_private *np = netdev_priv(dev); | |
1261 | return np->link_status; | |
1262 | } | |
1263 | ||
1264 | static struct ethtool_ops ethtool_ops = { | |
1265 | .get_drvinfo = rio_get_drvinfo, | |
1266 | .get_settings = rio_get_settings, | |
1267 | .set_settings = rio_set_settings, | |
1268 | .get_link = rio_get_link, | |
1269 | }; | |
1270 | ||
1271 | static int | |
1272 | rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) | |
1273 | { | |
1274 | int phy_addr; | |
1275 | struct netdev_private *np = netdev_priv(dev); | |
1276 | struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru; | |
1277 | ||
1278 | struct netdev_desc *desc; | |
1279 | int i; | |
1280 | ||
1281 | phy_addr = np->phy_addr; | |
1282 | switch (cmd) { | |
1283 | case SIOCDEVPRIVATE: | |
1284 | break; | |
1285 | ||
1286 | case SIOCDEVPRIVATE + 1: | |
1287 | miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num); | |
1288 | break; | |
1289 | case SIOCDEVPRIVATE + 2: | |
1290 | mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value); | |
1291 | break; | |
1292 | case SIOCDEVPRIVATE + 3: | |
1293 | break; | |
1294 | case SIOCDEVPRIVATE + 4: | |
1295 | break; | |
1296 | case SIOCDEVPRIVATE + 5: | |
1297 | netif_stop_queue (dev); | |
1298 | break; | |
1299 | case SIOCDEVPRIVATE + 6: | |
1300 | netif_wake_queue (dev); | |
1301 | break; | |
1302 | case SIOCDEVPRIVATE + 7: | |
1303 | printk | |
1304 | ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n", | |
1305 | netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx, | |
1306 | np->old_rx); | |
1307 | break; | |
1308 | case SIOCDEVPRIVATE + 8: | |
1309 | printk("TX ring:\n"); | |
1310 | for (i = 0; i < TX_RING_SIZE; i++) { | |
1311 | desc = &np->tx_ring[i]; | |
1312 | printk | |
1313 | ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x", | |
1314 | i, | |
1315 | (u32) (np->tx_ring_dma + i * sizeof (*desc)), | |
1316 | (u32) desc->next_desc, | |
1317 | (u32) desc->status, (u32) (desc->fraginfo >> 32), | |
1318 | (u32) desc->fraginfo); | |
1319 | printk ("\n"); | |
1320 | } | |
1321 | printk ("\n"); | |
1322 | break; | |
1323 | ||
1324 | default: | |
1325 | return -EOPNOTSUPP; | |
1326 | } | |
1327 | return 0; | |
1328 | } | |
1329 | ||
1330 | #define EEP_READ 0x0200 | |
1331 | #define EEP_BUSY 0x8000 | |
1332 | /* Read the EEPROM word */ | |
1333 | /* We use I/O instruction to read/write eeprom to avoid fail on some machines */ | |
1334 | int | |
1335 | read_eeprom (long ioaddr, int eep_addr) | |
1336 | { | |
1337 | int i = 1000; | |
1338 | outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl); | |
1339 | while (i-- > 0) { | |
1340 | if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) { | |
1341 | return inw (ioaddr + EepromData); | |
1342 | } | |
1343 | } | |
1344 | return 0; | |
1345 | } | |
1346 | ||
1347 | enum phy_ctrl_bits { | |
1348 | MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, | |
1349 | MII_DUPLEX = 0x08, | |
1350 | }; | |
1351 | ||
1352 | #define mii_delay() readb(ioaddr) | |
1353 | static void | |
1354 | mii_sendbit (struct net_device *dev, u32 data) | |
1355 | { | |
1356 | long ioaddr = dev->base_addr + PhyCtrl; | |
1357 | data = (data) ? MII_DATA1 : 0; | |
1358 | data |= MII_WRITE; | |
1359 | data |= (readb (ioaddr) & 0xf8) | MII_WRITE; | |
1360 | writeb (data, ioaddr); | |
1361 | mii_delay (); | |
1362 | writeb (data | MII_CLK, ioaddr); | |
1363 | mii_delay (); | |
1364 | } | |
1365 | ||
1366 | static int | |
1367 | mii_getbit (struct net_device *dev) | |
1368 | { | |
1369 | long ioaddr = dev->base_addr + PhyCtrl; | |
1370 | u8 data; | |
1371 | ||
1372 | data = (readb (ioaddr) & 0xf8) | MII_READ; | |
1373 | writeb (data, ioaddr); | |
1374 | mii_delay (); | |
1375 | writeb (data | MII_CLK, ioaddr); | |
1376 | mii_delay (); | |
1377 | return ((readb (ioaddr) >> 1) & 1); | |
1378 | } | |
1379 | ||
1380 | static void | |
1381 | mii_send_bits (struct net_device *dev, u32 data, int len) | |
1382 | { | |
1383 | int i; | |
1384 | for (i = len - 1; i >= 0; i--) { | |
1385 | mii_sendbit (dev, data & (1 << i)); | |
1386 | } | |
1387 | } | |
1388 | ||
1389 | static int | |
1390 | mii_read (struct net_device *dev, int phy_addr, int reg_num) | |
1391 | { | |
1392 | u32 cmd; | |
1393 | int i; | |
1394 | u32 retval = 0; | |
1395 | ||
1396 | /* Preamble */ | |
1397 | mii_send_bits (dev, 0xffffffff, 32); | |
1398 | /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ | |
1399 | /* ST,OP = 0110'b for read operation */ | |
1400 | cmd = (0x06 << 10 | phy_addr << 5 | reg_num); | |
1401 | mii_send_bits (dev, cmd, 14); | |
1402 | /* Turnaround */ | |
1403 | if (mii_getbit (dev)) | |
1404 | goto err_out; | |
1405 | /* Read data */ | |
1406 | for (i = 0; i < 16; i++) { | |
1407 | retval |= mii_getbit (dev); | |
1408 | retval <<= 1; | |
1409 | } | |
1410 | /* End cycle */ | |
1411 | mii_getbit (dev); | |
1412 | return (retval >> 1) & 0xffff; | |
1413 | ||
1414 | err_out: | |
1415 | return 0; | |
1416 | } | |
1417 | static int | |
1418 | mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) | |
1419 | { | |
1420 | u32 cmd; | |
1421 | ||
1422 | /* Preamble */ | |
1423 | mii_send_bits (dev, 0xffffffff, 32); | |
1424 | /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ | |
1425 | /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ | |
1426 | cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; | |
1427 | mii_send_bits (dev, cmd, 32); | |
1428 | /* End cycle */ | |
1429 | mii_getbit (dev); | |
1430 | return 0; | |
1431 | } | |
1432 | static int | |
1433 | mii_wait_link (struct net_device *dev, int wait) | |
1434 | { | |
1435 | BMSR_t bmsr; | |
1436 | int phy_addr; | |
1437 | struct netdev_private *np; | |
1438 | ||
1439 | np = netdev_priv(dev); | |
1440 | phy_addr = np->phy_addr; | |
1441 | ||
1442 | do { | |
1443 | bmsr.image = mii_read (dev, phy_addr, MII_BMSR); | |
1444 | if (bmsr.bits.link_status) | |
1445 | return 0; | |
1446 | mdelay (1); | |
1447 | } while (--wait > 0); | |
1448 | return -1; | |
1449 | } | |
1450 | static int | |
1451 | mii_get_media (struct net_device *dev) | |
1452 | { | |
1453 | ANAR_t negotiate; | |
1454 | BMSR_t bmsr; | |
1455 | BMCR_t bmcr; | |
1456 | MSCR_t mscr; | |
1457 | MSSR_t mssr; | |
1458 | int phy_addr; | |
1459 | struct netdev_private *np; | |
1460 | ||
1461 | np = netdev_priv(dev); | |
1462 | phy_addr = np->phy_addr; | |
1463 | ||
1464 | bmsr.image = mii_read (dev, phy_addr, MII_BMSR); | |
1465 | if (np->an_enable) { | |
1466 | if (!bmsr.bits.an_complete) { | |
1467 | /* Auto-Negotiation not completed */ | |
1468 | return -1; | |
1469 | } | |
1470 | negotiate.image = mii_read (dev, phy_addr, MII_ANAR) & | |
1471 | mii_read (dev, phy_addr, MII_ANLPAR); | |
1472 | mscr.image = mii_read (dev, phy_addr, MII_MSCR); | |
1473 | mssr.image = mii_read (dev, phy_addr, MII_MSSR); | |
1474 | if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) { | |
1475 | np->speed = 1000; | |
1476 | np->full_duplex = 1; | |
1477 | printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); | |
1478 | } else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) { | |
1479 | np->speed = 1000; | |
1480 | np->full_duplex = 0; | |
1481 | printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); | |
1482 | } else if (negotiate.bits.media_100BX_FD) { | |
1483 | np->speed = 100; | |
1484 | np->full_duplex = 1; | |
1485 | printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); | |
1486 | } else if (negotiate.bits.media_100BX_HD) { | |
1487 | np->speed = 100; | |
1488 | np->full_duplex = 0; | |
1489 | printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); | |
1490 | } else if (negotiate.bits.media_10BT_FD) { | |
1491 | np->speed = 10; | |
1492 | np->full_duplex = 1; | |
1493 | printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); | |
1494 | } else if (negotiate.bits.media_10BT_HD) { | |
1495 | np->speed = 10; | |
1496 | np->full_duplex = 0; | |
1497 | printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); | |
1498 | } | |
1499 | if (negotiate.bits.pause) { | |
1500 | np->tx_flow &= 1; | |
1501 | np->rx_flow &= 1; | |
1502 | } else if (negotiate.bits.asymmetric) { | |
1503 | np->tx_flow = 0; | |
1504 | np->rx_flow &= 1; | |
1505 | } | |
1506 | /* else tx_flow, rx_flow = user select */ | |
1507 | } else { | |
1508 | bmcr.image = mii_read (dev, phy_addr, MII_BMCR); | |
1509 | if (bmcr.bits.speed100 == 1 && bmcr.bits.speed1000 == 0) { | |
1510 | printk (KERN_INFO "Operating at 100 Mbps, "); | |
1511 | } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 0) { | |
1512 | printk (KERN_INFO "Operating at 10 Mbps, "); | |
1513 | } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 1) { | |
1514 | printk (KERN_INFO "Operating at 1000 Mbps, "); | |
1515 | } | |
1516 | if (bmcr.bits.duplex_mode) { | |
1517 | printk ("Full duplex\n"); | |
1518 | } else { | |
1519 | printk ("Half duplex\n"); | |
1520 | } | |
1521 | } | |
1522 | if (np->tx_flow) | |
1523 | printk(KERN_INFO "Enable Tx Flow Control\n"); | |
1524 | else | |
1525 | printk(KERN_INFO "Disable Tx Flow Control\n"); | |
1526 | if (np->rx_flow) | |
1527 | printk(KERN_INFO "Enable Rx Flow Control\n"); | |
1528 | else | |
1529 | printk(KERN_INFO "Disable Rx Flow Control\n"); | |
1530 | ||
1531 | return 0; | |
1532 | } | |
1533 | ||
1534 | static int | |
1535 | mii_set_media (struct net_device *dev) | |
1536 | { | |
1537 | PHY_SCR_t pscr; | |
1538 | BMCR_t bmcr; | |
1539 | BMSR_t bmsr; | |
1540 | ANAR_t anar; | |
1541 | int phy_addr; | |
1542 | struct netdev_private *np; | |
1543 | np = netdev_priv(dev); | |
1544 | phy_addr = np->phy_addr; | |
1545 | ||
1546 | /* Does user set speed? */ | |
1547 | if (np->an_enable) { | |
1548 | /* Advertise capabilities */ | |
1549 | bmsr.image = mii_read (dev, phy_addr, MII_BMSR); | |
1550 | anar.image = mii_read (dev, phy_addr, MII_ANAR); | |
1551 | anar.bits.media_100BX_FD = bmsr.bits.media_100BX_FD; | |
1552 | anar.bits.media_100BX_HD = bmsr.bits.media_100BX_HD; | |
1553 | anar.bits.media_100BT4 = bmsr.bits.media_100BT4; | |
1554 | anar.bits.media_10BT_FD = bmsr.bits.media_10BT_FD; | |
1555 | anar.bits.media_10BT_HD = bmsr.bits.media_10BT_HD; | |
1556 | anar.bits.pause = 1; | |
1557 | anar.bits.asymmetric = 1; | |
1558 | mii_write (dev, phy_addr, MII_ANAR, anar.image); | |
1559 | ||
1560 | /* Enable Auto crossover */ | |
1561 | pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR); | |
1562 | pscr.bits.mdi_crossover_mode = 3; /* 11'b */ | |
1563 | mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image); | |
1564 | ||
1565 | /* Soft reset PHY */ | |
1566 | mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); | |
1567 | bmcr.image = 0; | |
1568 | bmcr.bits.an_enable = 1; | |
1569 | bmcr.bits.restart_an = 1; | |
1570 | bmcr.bits.reset = 1; | |
1571 | mii_write (dev, phy_addr, MII_BMCR, bmcr.image); | |
1572 | mdelay(1); | |
1573 | } else { | |
1574 | /* Force speed setting */ | |
1575 | /* 1) Disable Auto crossover */ | |
1576 | pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR); | |
1577 | pscr.bits.mdi_crossover_mode = 0; | |
1578 | mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image); | |
1579 | ||
1580 | /* 2) PHY Reset */ | |
1581 | bmcr.image = mii_read (dev, phy_addr, MII_BMCR); | |
1582 | bmcr.bits.reset = 1; | |
1583 | mii_write (dev, phy_addr, MII_BMCR, bmcr.image); | |
1584 | ||
1585 | /* 3) Power Down */ | |
1586 | bmcr.image = 0x1940; /* must be 0x1940 */ | |
1587 | mii_write (dev, phy_addr, MII_BMCR, bmcr.image); | |
1588 | mdelay (100); /* wait a certain time */ | |
1589 | ||
1590 | /* 4) Advertise nothing */ | |
1591 | mii_write (dev, phy_addr, MII_ANAR, 0); | |
1592 | ||
1593 | /* 5) Set media and Power Up */ | |
1594 | bmcr.image = 0; | |
1595 | bmcr.bits.power_down = 1; | |
1596 | if (np->speed == 100) { | |
1597 | bmcr.bits.speed100 = 1; | |
1598 | bmcr.bits.speed1000 = 0; | |
1599 | printk (KERN_INFO "Manual 100 Mbps, "); | |
1600 | } else if (np->speed == 10) { | |
1601 | bmcr.bits.speed100 = 0; | |
1602 | bmcr.bits.speed1000 = 0; | |
1603 | printk (KERN_INFO "Manual 10 Mbps, "); | |
1604 | } | |
1605 | if (np->full_duplex) { | |
1606 | bmcr.bits.duplex_mode = 1; | |
1607 | printk ("Full duplex\n"); | |
1608 | } else { | |
1609 | bmcr.bits.duplex_mode = 0; | |
1610 | printk ("Half duplex\n"); | |
1611 | } | |
1612 | #if 0 | |
1613 | /* Set 1000BaseT Master/Slave setting */ | |
1614 | mscr.image = mii_read (dev, phy_addr, MII_MSCR); | |
1615 | mscr.bits.cfg_enable = 1; | |
1616 | mscr.bits.cfg_value = 0; | |
1617 | #endif | |
1618 | mii_write (dev, phy_addr, MII_BMCR, bmcr.image); | |
1619 | mdelay(10); | |
1620 | } | |
1621 | return 0; | |
1622 | } | |
1623 | ||
1624 | static int | |
1625 | mii_get_media_pcs (struct net_device *dev) | |
1626 | { | |
1627 | ANAR_PCS_t negotiate; | |
1628 | BMSR_t bmsr; | |
1629 | BMCR_t bmcr; | |
1630 | int phy_addr; | |
1631 | struct netdev_private *np; | |
1632 | ||
1633 | np = netdev_priv(dev); | |
1634 | phy_addr = np->phy_addr; | |
1635 | ||
1636 | bmsr.image = mii_read (dev, phy_addr, PCS_BMSR); | |
1637 | if (np->an_enable) { | |
1638 | if (!bmsr.bits.an_complete) { | |
1639 | /* Auto-Negotiation not completed */ | |
1640 | return -1; | |
1641 | } | |
1642 | negotiate.image = mii_read (dev, phy_addr, PCS_ANAR) & | |
1643 | mii_read (dev, phy_addr, PCS_ANLPAR); | |
1644 | np->speed = 1000; | |
1645 | if (negotiate.bits.full_duplex) { | |
1646 | printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); | |
1647 | np->full_duplex = 1; | |
1648 | } else { | |
1649 | printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); | |
1650 | np->full_duplex = 0; | |
1651 | } | |
1652 | if (negotiate.bits.pause) { | |
1653 | np->tx_flow &= 1; | |
1654 | np->rx_flow &= 1; | |
1655 | } else if (negotiate.bits.asymmetric) { | |
1656 | np->tx_flow = 0; | |
1657 | np->rx_flow &= 1; | |
1658 | } | |
1659 | /* else tx_flow, rx_flow = user select */ | |
1660 | } else { | |
1661 | bmcr.image = mii_read (dev, phy_addr, PCS_BMCR); | |
1662 | printk (KERN_INFO "Operating at 1000 Mbps, "); | |
1663 | if (bmcr.bits.duplex_mode) { | |
1664 | printk ("Full duplex\n"); | |
1665 | } else { | |
1666 | printk ("Half duplex\n"); | |
1667 | } | |
1668 | } | |
1669 | if (np->tx_flow) | |
1670 | printk(KERN_INFO "Enable Tx Flow Control\n"); | |
1671 | else | |
1672 | printk(KERN_INFO "Disable Tx Flow Control\n"); | |
1673 | if (np->rx_flow) | |
1674 | printk(KERN_INFO "Enable Rx Flow Control\n"); | |
1675 | else | |
1676 | printk(KERN_INFO "Disable Rx Flow Control\n"); | |
1677 | ||
1678 | return 0; | |
1679 | } | |
1680 | ||
1681 | static int | |
1682 | mii_set_media_pcs (struct net_device *dev) | |
1683 | { | |
1684 | BMCR_t bmcr; | |
1685 | ESR_t esr; | |
1686 | ANAR_PCS_t anar; | |
1687 | int phy_addr; | |
1688 | struct netdev_private *np; | |
1689 | np = netdev_priv(dev); | |
1690 | phy_addr = np->phy_addr; | |
1691 | ||
1692 | /* Auto-Negotiation? */ | |
1693 | if (np->an_enable) { | |
1694 | /* Advertise capabilities */ | |
1695 | esr.image = mii_read (dev, phy_addr, PCS_ESR); | |
1696 | anar.image = mii_read (dev, phy_addr, MII_ANAR); | |
1697 | anar.bits.half_duplex = | |
1698 | esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD; | |
1699 | anar.bits.full_duplex = | |
1700 | esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD; | |
1701 | anar.bits.pause = 1; | |
1702 | anar.bits.asymmetric = 1; | |
1703 | mii_write (dev, phy_addr, MII_ANAR, anar.image); | |
1704 | ||
1705 | /* Soft reset PHY */ | |
1706 | mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); | |
1707 | bmcr.image = 0; | |
1708 | bmcr.bits.an_enable = 1; | |
1709 | bmcr.bits.restart_an = 1; | |
1710 | bmcr.bits.reset = 1; | |
1711 | mii_write (dev, phy_addr, MII_BMCR, bmcr.image); | |
1712 | mdelay(1); | |
1713 | } else { | |
1714 | /* Force speed setting */ | |
1715 | /* PHY Reset */ | |
1716 | bmcr.image = 0; | |
1717 | bmcr.bits.reset = 1; | |
1718 | mii_write (dev, phy_addr, MII_BMCR, bmcr.image); | |
1719 | mdelay(10); | |
1720 | bmcr.image = 0; | |
1721 | bmcr.bits.an_enable = 0; | |
1722 | if (np->full_duplex) { | |
1723 | bmcr.bits.duplex_mode = 1; | |
1724 | printk (KERN_INFO "Manual full duplex\n"); | |
1725 | } else { | |
1726 | bmcr.bits.duplex_mode = 0; | |
1727 | printk (KERN_INFO "Manual half duplex\n"); | |
1728 | } | |
1729 | mii_write (dev, phy_addr, MII_BMCR, bmcr.image); | |
1730 | mdelay(10); | |
1731 | ||
1732 | /* Advertise nothing */ | |
1733 | mii_write (dev, phy_addr, MII_ANAR, 0); | |
1734 | } | |
1735 | return 0; | |
1736 | } | |
1737 | ||
1738 | ||
1739 | static int | |
1740 | rio_close (struct net_device *dev) | |
1741 | { | |
1742 | long ioaddr = dev->base_addr; | |
1743 | struct netdev_private *np = netdev_priv(dev); | |
1744 | struct sk_buff *skb; | |
1745 | int i; | |
1746 | ||
1747 | netif_stop_queue (dev); | |
1748 | ||
1749 | /* Disable interrupts */ | |
1750 | writew (0, ioaddr + IntEnable); | |
1751 | ||
1752 | /* Stop Tx and Rx logics */ | |
1753 | writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl); | |
1754 | synchronize_irq (dev->irq); | |
1755 | free_irq (dev->irq, dev); | |
1756 | del_timer_sync (&np->timer); | |
1757 | ||
1758 | /* Free all the skbuffs in the queue. */ | |
1759 | for (i = 0; i < RX_RING_SIZE; i++) { | |
1760 | np->rx_ring[i].status = 0; | |
1761 | np->rx_ring[i].fraginfo = 0; | |
1762 | skb = np->rx_skbuff[i]; | |
1763 | if (skb) { | |
9ee09d9c | 1764 | pci_unmap_single(np->pdev, |
4c1b4622 | 1765 | np->rx_ring[i].fraginfo & DMA_48BIT_MASK, |
9ee09d9c | 1766 | skb->len, PCI_DMA_FROMDEVICE); |
1da177e4 LT |
1767 | dev_kfree_skb (skb); |
1768 | np->rx_skbuff[i] = NULL; | |
1769 | } | |
1770 | } | |
1771 | for (i = 0; i < TX_RING_SIZE; i++) { | |
1772 | skb = np->tx_skbuff[i]; | |
1773 | if (skb) { | |
9ee09d9c | 1774 | pci_unmap_single(np->pdev, |
4c1b4622 | 1775 | np->tx_ring[i].fraginfo & DMA_48BIT_MASK, |
9ee09d9c | 1776 | skb->len, PCI_DMA_TODEVICE); |
1da177e4 LT |
1777 | dev_kfree_skb (skb); |
1778 | np->tx_skbuff[i] = NULL; | |
1779 | } | |
1780 | } | |
1781 | ||
1782 | return 0; | |
1783 | } | |
1784 | ||
1785 | static void __devexit | |
1786 | rio_remove1 (struct pci_dev *pdev) | |
1787 | { | |
1788 | struct net_device *dev = pci_get_drvdata (pdev); | |
1789 | ||
1790 | if (dev) { | |
1791 | struct netdev_private *np = netdev_priv(dev); | |
1792 | ||
1793 | unregister_netdev (dev); | |
1794 | pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, | |
1795 | np->rx_ring_dma); | |
1796 | pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, | |
1797 | np->tx_ring_dma); | |
1798 | #ifdef MEM_MAPPING | |
1799 | iounmap ((char *) (dev->base_addr)); | |
1800 | #endif | |
1801 | free_netdev (dev); | |
1802 | pci_release_regions (pdev); | |
1803 | pci_disable_device (pdev); | |
1804 | } | |
1805 | pci_set_drvdata (pdev, NULL); | |
1806 | } | |
1807 | ||
1808 | static struct pci_driver rio_driver = { | |
1809 | .name = "dl2k", | |
1810 | .id_table = rio_pci_tbl, | |
1811 | .probe = rio_probe1, | |
1812 | .remove = __devexit_p(rio_remove1), | |
1813 | }; | |
1814 | ||
1815 | static int __init | |
1816 | rio_init (void) | |
1817 | { | |
1818 | return pci_module_init (&rio_driver); | |
1819 | } | |
1820 | ||
1821 | static void __exit | |
1822 | rio_exit (void) | |
1823 | { | |
1824 | pci_unregister_driver (&rio_driver); | |
1825 | } | |
1826 | ||
1827 | module_init (rio_init); | |
1828 | module_exit (rio_exit); | |
1829 | ||
1830 | /* | |
1831 | ||
1832 | Compile command: | |
1833 | ||
1834 | gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c | |
1835 | ||
1836 | Read Documentation/networking/dl2k.txt for details. | |
1837 | ||
1838 | */ | |
1839 |