]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/net/dsa/bcm_sf2_cfp.c
net: dsa: bcm_sf2: fix semicolon.cocci warnings
[mirror_ubuntu-focal-kernel.git] / drivers / net / dsa / bcm_sf2_cfp.c
CommitLineData
7318166c
FF
1/*
2 * Broadcom Starfighter 2 DSA switch CFP support
3 *
4 * Copyright (C) 2016, Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12#include <linux/list.h>
7318166c
FF
13#include <linux/ethtool.h>
14#include <linux/if_ether.h>
15#include <linux/in.h>
c6e970a0
AL
16#include <linux/netdevice.h>
17#include <net/dsa.h>
7318166c
FF
18#include <linux/bitmap.h>
19
20#include "bcm_sf2.h"
21#include "bcm_sf2_regs.h"
22
ae7a5aff
FF
23struct cfp_rule {
24 int port;
25 struct ethtool_rx_flow_spec fs;
26 struct list_head next;
27};
28
5d80bcbb
FF
29struct cfp_udf_slice_layout {
30 u8 slices[UDFS_PER_SLICE];
7318166c 31 u32 mask_value;
5d80bcbb
FF
32 u32 base_offset;
33};
7318166c 34
5d80bcbb
FF
35struct cfp_udf_layout {
36 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
7318166c
FF
37};
38
5d80bcbb
FF
39static const u8 zero_slice[UDFS_PER_SLICE] = { };
40
7318166c
FF
41/* UDF slices layout for a TCPv4/UDPv4 specification */
42static const struct cfp_udf_layout udf_tcpip4_layout = {
5d80bcbb
FF
43 .udfs = {
44 [1] = {
45 .slices = {
46 /* End of L2, byte offset 12, src IP[0:15] */
47 CFG_UDF_EOL2 | 6,
48 /* End of L2, byte offset 14, src IP[16:31] */
49 CFG_UDF_EOL2 | 7,
50 /* End of L2, byte offset 16, dst IP[0:15] */
51 CFG_UDF_EOL2 | 8,
52 /* End of L2, byte offset 18, dst IP[16:31] */
53 CFG_UDF_EOL2 | 9,
54 /* End of L3, byte offset 0, src port */
55 CFG_UDF_EOL3 | 0,
56 /* End of L3, byte offset 2, dst port */
57 CFG_UDF_EOL3 | 1,
58 0, 0, 0
59 },
60 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
61 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
62 },
7318166c 63 },
7318166c
FF
64};
65
ba0696c2
FF
66/* UDF slices layout for a TCPv6/UDPv6 specification */
67static const struct cfp_udf_layout udf_tcpip6_layout = {
68 .udfs = {
69 [0] = {
70 .slices = {
71 /* End of L2, byte offset 8, src IP[0:15] */
72 CFG_UDF_EOL2 | 4,
73 /* End of L2, byte offset 10, src IP[16:31] */
74 CFG_UDF_EOL2 | 5,
75 /* End of L2, byte offset 12, src IP[32:47] */
76 CFG_UDF_EOL2 | 6,
77 /* End of L2, byte offset 14, src IP[48:63] */
78 CFG_UDF_EOL2 | 7,
79 /* End of L2, byte offset 16, src IP[64:79] */
80 CFG_UDF_EOL2 | 8,
81 /* End of L2, byte offset 18, src IP[80:95] */
82 CFG_UDF_EOL2 | 9,
83 /* End of L2, byte offset 20, src IP[96:111] */
84 CFG_UDF_EOL2 | 10,
85 /* End of L2, byte offset 22, src IP[112:127] */
86 CFG_UDF_EOL2 | 11,
87 /* End of L3, byte offset 0, src port */
88 CFG_UDF_EOL3 | 0,
89 },
90 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
91 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
92 },
93 [3] = {
94 .slices = {
95 /* End of L2, byte offset 24, dst IP[0:15] */
96 CFG_UDF_EOL2 | 12,
97 /* End of L2, byte offset 26, dst IP[16:31] */
98 CFG_UDF_EOL2 | 13,
99 /* End of L2, byte offset 28, dst IP[32:47] */
100 CFG_UDF_EOL2 | 14,
101 /* End of L2, byte offset 30, dst IP[48:63] */
102 CFG_UDF_EOL2 | 15,
103 /* End of L2, byte offset 32, dst IP[64:79] */
104 CFG_UDF_EOL2 | 16,
105 /* End of L2, byte offset 34, dst IP[80:95] */
106 CFG_UDF_EOL2 | 17,
107 /* End of L2, byte offset 36, dst IP[96:111] */
108 CFG_UDF_EOL2 | 18,
109 /* End of L2, byte offset 38, dst IP[112:127] */
110 CFG_UDF_EOL2 | 19,
111 /* End of L3, byte offset 2, dst port */
112 CFG_UDF_EOL3 | 1,
113 },
114 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
115 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
116 },
117 },
118};
119
7318166c
FF
120static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
121{
122 unsigned int i, count = 0;
123
5d80bcbb 124 for (i = 0; i < UDFS_PER_SLICE; i++) {
7318166c
FF
125 if (layout[i] != 0)
126 count++;
127 }
128
129 return count;
130}
131
5d80bcbb
FF
132static inline u32 udf_upper_bits(unsigned int num_udf)
133{
134 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
135}
136
137static inline u32 udf_lower_bits(unsigned int num_udf)
138{
139 return (u8)GENMASK(num_udf - 1, 0);
140}
141
142static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
143 unsigned int start)
144{
145 const struct cfp_udf_slice_layout *slice_layout;
146 unsigned int slice_idx;
147
148 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
149 slice_layout = &l->udfs[slice_idx];
150 if (memcmp(slice_layout->slices, zero_slice,
151 sizeof(zero_slice)))
152 break;
153 }
154
155 return slice_idx;
156}
157
7318166c 158static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
5d80bcbb
FF
159 const struct cfp_udf_layout *layout,
160 unsigned int slice_num)
7318166c 161{
5d80bcbb 162 u32 offset = layout->udfs[slice_num].base_offset;
7318166c
FF
163 unsigned int i;
164
5d80bcbb
FF
165 for (i = 0; i < UDFS_PER_SLICE; i++)
166 core_writel(priv, layout->udfs[slice_num].slices[i],
167 offset + i * 4);
7318166c
FF
168}
169
170static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
171{
172 unsigned int timeout = 1000;
173 u32 reg;
174
175 reg = core_readl(priv, CORE_CFP_ACC);
176 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
177 reg |= OP_STR_DONE | op;
178 core_writel(priv, reg, CORE_CFP_ACC);
179
180 do {
181 reg = core_readl(priv, CORE_CFP_ACC);
182 if (!(reg & OP_STR_DONE))
183 break;
184
185 cpu_relax();
186 } while (timeout--);
187
188 if (!timeout)
189 return -ETIMEDOUT;
190
191 return 0;
192}
193
194static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
195 unsigned int addr)
196{
197 u32 reg;
198
df191632 199 WARN_ON(addr >= priv->num_cfp_rules);
7318166c
FF
200
201 reg = core_readl(priv, CORE_CFP_ACC);
202 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
203 reg |= addr << XCESS_ADDR_SHIFT;
204 core_writel(priv, reg, CORE_CFP_ACC);
205}
206
207static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
208{
209 /* Entry #0 is reserved */
df191632 210 return priv->num_cfp_rules - 1;
7318166c
FF
211}
212
33061458
FF
213static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
214 unsigned int rule_index,
215 unsigned int port_num,
ba0696c2
FF
216 unsigned int queue_num,
217 bool fwd_map_change)
7318166c 218{
7318166c 219 int ret;
33061458 220 u32 reg;
7318166c 221
33061458
FF
222 /* Replace ARL derived destination with DST_MAP derived, define
223 * which port and queue this should be forwarded to.
224 */
ba0696c2
FF
225 if (fwd_map_change)
226 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
227 BIT(port_num + DST_MAP_IB_SHIFT) |
228 CHANGE_TC | queue_num << NEW_TC_SHIFT;
229 else
230 reg = 0;
7318166c 231
33061458 232 core_writel(priv, reg, CORE_ACT_POL_DATA0);
7318166c 233
33061458 234 /* Set classification ID that needs to be put in Broadcom tag */
ba0696c2 235 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
7318166c 236
33061458 237 core_writel(priv, 0, CORE_ACT_POL_DATA2);
7318166c 238
33061458
FF
239 /* Configure policer RAM now */
240 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
241 if (ret) {
242 pr_err("Policer entry at %d failed\n", rule_index);
243 return ret;
244 }
7318166c 245
33061458
FF
246 /* Disable the policer */
247 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
248
249 /* Now the rate meter */
250 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
251 if (ret) {
252 pr_err("Meter entry at %d failed\n", rule_index);
253 return ret;
254 }
255
256 return 0;
257}
258
bc3fc44c
FF
259static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
260 struct ethtool_tcpip4_spec *v4_spec,
261 unsigned int slice_num,
262 bool mask)
263{
264 u32 reg, offset;
265
266 /* C-Tag [31:24]
267 * UDF_n_A8 [23:8]
268 * UDF_n_A7 [7:0]
269 */
270 reg = 0;
271 if (mask)
272 offset = CORE_CFP_MASK_PORT(4);
273 else
274 offset = CORE_CFP_DATA_PORT(4);
275 core_writel(priv, reg, offset);
276
277 /* UDF_n_A7 [31:24]
278 * UDF_n_A6 [23:8]
279 * UDF_n_A5 [7:0]
280 */
281 reg = be16_to_cpu(v4_spec->pdst) >> 8;
282 if (mask)
283 offset = CORE_CFP_MASK_PORT(3);
284 else
285 offset = CORE_CFP_DATA_PORT(3);
286 core_writel(priv, reg, offset);
287
288 /* UDF_n_A5 [31:24]
289 * UDF_n_A4 [23:8]
290 * UDF_n_A3 [7:0]
291 */
292 reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
293 (u32)be16_to_cpu(v4_spec->psrc) << 8 |
294 (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
295 if (mask)
296 offset = CORE_CFP_MASK_PORT(2);
297 else
298 offset = CORE_CFP_DATA_PORT(2);
299 core_writel(priv, reg, offset);
300
301 /* UDF_n_A3 [31:24]
302 * UDF_n_A2 [23:8]
303 * UDF_n_A1 [7:0]
304 */
305 reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
306 (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
307 (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
308 if (mask)
309 offset = CORE_CFP_MASK_PORT(1);
310 else
311 offset = CORE_CFP_DATA_PORT(1);
312 core_writel(priv, reg, offset);
313
314 /* UDF_n_A1 [31:24]
315 * UDF_n_A0 [23:8]
316 * Reserved [7:4]
317 * Slice ID [3:2]
318 * Slice valid [1:0]
319 */
320 reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
321 (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
322 SLICE_NUM(slice_num) | SLICE_VALID;
323 if (mask)
324 offset = CORE_CFP_MASK_PORT(0);
325 else
326 offset = CORE_CFP_DATA_PORT(0);
327 core_writel(priv, reg, offset);
328}
329
33061458
FF
330static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
331 unsigned int port_num,
332 unsigned int queue_num,
333 struct ethtool_rx_flow_spec *fs)
334{
bc3fc44c 335 struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
33061458 336 const struct cfp_udf_layout *layout;
33061458
FF
337 unsigned int slice_num, rule_index;
338 u8 ip_proto, ip_frag;
339 u8 num_udf;
340 u32 reg;
341 int ret;
7318166c
FF
342
343 switch (fs->flow_type & ~FLOW_EXT) {
344 case TCP_V4_FLOW:
345 ip_proto = IPPROTO_TCP;
346 v4_spec = &fs->h_u.tcp_ip4_spec;
bc3fc44c 347 v4_m_spec = &fs->m_u.tcp_ip4_spec;
7318166c
FF
348 break;
349 case UDP_V4_FLOW:
350 ip_proto = IPPROTO_UDP;
351 v4_spec = &fs->h_u.udp_ip4_spec;
bc3fc44c 352 v4_m_spec = &fs->m_u.udp_ip4_spec;
7318166c
FF
353 break;
354 default:
355 return -EINVAL;
356 }
357
33061458
FF
358 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
359
360 /* Locate the first rule available */
361 if (fs->location == RX_CLS_LOC_ANY)
362 rule_index = find_first_zero_bit(priv->cfp.used,
43a5e00f 363 priv->num_cfp_rules);
33061458
FF
364 else
365 rule_index = fs->location;
366
43a5e00f
FF
367 if (rule_index > bcm_sf2_cfp_rule_size(priv))
368 return -ENOSPC;
369
7318166c 370 layout = &udf_tcpip4_layout;
5d80bcbb
FF
371 /* We only use one UDF slice for now */
372 slice_num = bcm_sf2_get_slice_number(layout, 0);
373 if (slice_num == UDF_NUM_SLICES)
374 return -EINVAL;
375
376 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
7318166c
FF
377
378 /* Apply the UDF layout for this filter */
5d80bcbb 379 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
7318166c
FF
380
381 /* Apply to all packets received through this port */
382 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
383
33061458
FF
384 /* Source port map match */
385 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
386
7318166c
FF
387 /* S-Tag status [31:30]
388 * C-Tag status [29:28]
389 * L2 framing [27:26]
390 * L3 framing [25:24]
391 * IP ToS [23:16]
392 * IP proto [15:08]
393 * IP Fragm [7]
394 * Non 1st frag [6]
395 * IP Authen [5]
396 * TTL range [4:3]
397 * PPPoE session [2]
398 * Reserved [1]
399 * UDF_Valid[8] [0]
400 */
39cdd349 401 core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
5d80bcbb
FF
402 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
403 udf_upper_bits(num_udf),
7318166c
FF
404 CORE_CFP_DATA_PORT(6));
405
bc3fc44c
FF
406 /* Mask with the specific layout for IPv4 packets */
407 core_writel(priv, layout->udfs[slice_num].mask_value |
408 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
409
7318166c
FF
410 /* UDF_Valid[7:0] [31:24]
411 * S-Tag [23:8]
412 * C-Tag [7:0]
413 */
5d80bcbb 414 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
7318166c 415
7318166c 416 /* Mask all but valid UDFs */
5d80bcbb 417 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
7318166c 418
bc3fc44c
FF
419 /* Program the match and the mask */
420 bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
421 bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
7318166c 422
7318166c
FF
423 /* Insert into TCAM now */
424 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
425
426 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
427 if (ret) {
428 pr_err("TCAM entry at addr %d failed\n", rule_index);
429 return ret;
430 }
431
33061458 432 /* Insert into Action and policer RAMs now */
ba0696c2
FF
433 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
434 queue_num, true);
33061458 435 if (ret)
7318166c 436 return ret;
7318166c
FF
437
438 /* Turn on CFP for this rule now */
439 reg = core_readl(priv, CORE_CFP_CTL_REG);
440 reg |= BIT(port);
441 core_writel(priv, reg, CORE_CFP_CTL_REG);
442
443 /* Flag the rule as being used and return it */
444 set_bit(rule_index, priv->cfp.used);
ba0696c2 445 set_bit(rule_index, priv->cfp.unique);
7318166c
FF
446 fs->location = rule_index;
447
448 return 0;
449}
450
ba0696c2
FF
451static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
452 const __be32 *ip6_addr, const __be16 port,
dd8eff68
FF
453 unsigned int slice_num,
454 bool mask)
ba0696c2 455{
dd8eff68 456 u32 reg, tmp, val, offset;
ba0696c2
FF
457
458 /* C-Tag [31:24]
459 * UDF_n_B8 [23:8] (port)
460 * UDF_n_B7 (upper) [7:0] (addr[15:8])
461 */
462 reg = be32_to_cpu(ip6_addr[3]);
463 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
dd8eff68
FF
464 if (mask)
465 offset = CORE_CFP_MASK_PORT(4);
466 else
467 offset = CORE_CFP_DATA_PORT(4);
468 core_writel(priv, val, offset);
ba0696c2
FF
469
470 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
471 * UDF_n_B6 [23:8] (addr[31:16])
472 * UDF_n_B5 (upper) [7:0] (addr[47:40])
473 */
474 tmp = be32_to_cpu(ip6_addr[2]);
475 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
476 ((tmp >> 8) & 0xff);
dd8eff68
FF
477 if (mask)
478 offset = CORE_CFP_MASK_PORT(3);
479 else
480 offset = CORE_CFP_DATA_PORT(3);
481 core_writel(priv, val, offset);
ba0696c2
FF
482
483 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
484 * UDF_n_B4 [23:8] (addr[63:48])
485 * UDF_n_B3 (upper) [7:0] (addr[79:72])
486 */
487 reg = be32_to_cpu(ip6_addr[1]);
488 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
489 ((reg >> 8) & 0xff);
dd8eff68
FF
490 if (mask)
491 offset = CORE_CFP_MASK_PORT(2);
492 else
493 offset = CORE_CFP_DATA_PORT(2);
494 core_writel(priv, val, offset);
ba0696c2
FF
495
496 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
497 * UDF_n_B2 [23:8] (addr[95:80])
498 * UDF_n_B1 (upper) [7:0] (addr[111:104])
499 */
500 tmp = be32_to_cpu(ip6_addr[0]);
501 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
502 ((tmp >> 8) & 0xff);
dd8eff68
FF
503 if (mask)
504 offset = CORE_CFP_MASK_PORT(1);
505 else
506 offset = CORE_CFP_DATA_PORT(1);
507 core_writel(priv, val, offset);
ba0696c2
FF
508
509 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
510 * UDF_n_B0 [23:8] (addr[127:112])
511 * Reserved [7:4]
512 * Slice ID [3:2]
513 * Slice valid [1:0]
514 */
515 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
516 SLICE_NUM(slice_num) | SLICE_VALID;
dd8eff68
FF
517 if (mask)
518 offset = CORE_CFP_MASK_PORT(0);
519 else
520 offset = CORE_CFP_DATA_PORT(0);
521 core_writel(priv, reg, offset);
ba0696c2
FF
522}
523
ae7a5aff
FF
524static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
525 int port, u32 location)
526{
527 struct cfp_rule *rule = NULL;
528
529 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
530 if (rule->port == port && rule->fs.location == location)
531 break;
f9086200 532 }
ae7a5aff
FF
533
534 return rule;
535}
536
537static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
538 struct ethtool_rx_flow_spec *fs)
539{
540 struct cfp_rule *rule = NULL;
541 size_t fs_size = 0;
542 int ret = 1;
543
544 if (list_empty(&priv->cfp.rules_list))
545 return ret;
546
547 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
548 ret = 1;
549 if (rule->port != port)
550 continue;
551
552 if (rule->fs.flow_type != fs->flow_type ||
553 rule->fs.ring_cookie != fs->ring_cookie ||
554 rule->fs.m_ext.data[0] != fs->m_ext.data[0])
555 continue;
556
557 switch (fs->flow_type & ~FLOW_EXT) {
558 case TCP_V6_FLOW:
559 case UDP_V6_FLOW:
560 fs_size = sizeof(struct ethtool_tcpip6_spec);
561 break;
562 case TCP_V4_FLOW:
563 case UDP_V4_FLOW:
564 fs_size = sizeof(struct ethtool_tcpip4_spec);
565 break;
566 default:
567 continue;
568 }
569
570 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
571 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
572 if (ret == 0)
573 break;
574 }
575
576 return ret;
577}
578
ba0696c2
FF
579static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
580 unsigned int port_num,
581 unsigned int queue_num,
582 struct ethtool_rx_flow_spec *fs)
583{
dd8eff68 584 struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
ba0696c2 585 unsigned int slice_num, rule_index[2];
ba0696c2
FF
586 const struct cfp_udf_layout *layout;
587 u8 ip_proto, ip_frag;
588 int ret = 0;
589 u8 num_udf;
590 u32 reg;
591
592 switch (fs->flow_type & ~FLOW_EXT) {
593 case TCP_V6_FLOW:
594 ip_proto = IPPROTO_TCP;
595 v6_spec = &fs->h_u.tcp_ip6_spec;
dd8eff68 596 v6_m_spec = &fs->m_u.tcp_ip6_spec;
ba0696c2
FF
597 break;
598 case UDP_V6_FLOW:
599 ip_proto = IPPROTO_UDP;
600 v6_spec = &fs->h_u.udp_ip6_spec;
dd8eff68 601 v6_m_spec = &fs->m_u.udp_ip6_spec;
ba0696c2
FF
602 break;
603 default:
604 return -EINVAL;
605 }
606
607 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
608
609 layout = &udf_tcpip6_layout;
610 slice_num = bcm_sf2_get_slice_number(layout, 0);
611 if (slice_num == UDF_NUM_SLICES)
612 return -EINVAL;
613
614 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
615
616 /* Negotiate two indexes, one for the second half which we are chained
617 * from, which is what we will return to user-space, and a second one
618 * which is used to store its first half. That first half does not
619 * allow any choice of placement, so it just needs to find the next
620 * available bit. We return the second half as fs->location because
621 * that helps with the rule lookup later on since the second half is
622 * chained from its first half, we can easily identify IPv6 CFP rules
623 * by looking whether they carry a CHAIN_ID.
624 *
625 * We also want the second half to have a lower rule_index than its
626 * first half because the HW search is by incrementing addresses.
627 */
628 if (fs->location == RX_CLS_LOC_ANY)
6c05561c
FF
629 rule_index[1] = find_first_zero_bit(priv->cfp.used,
630 priv->num_cfp_rules);
ba0696c2 631 else
6c05561c
FF
632 rule_index[1] = fs->location;
633 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
634 return -ENOSPC;
ba0696c2
FF
635
636 /* Flag it as used (cleared on error path) such that we can immediately
637 * obtain a second one to chain from.
638 */
6c05561c 639 set_bit(rule_index[1], priv->cfp.used);
ba0696c2 640
6c05561c
FF
641 rule_index[0] = find_first_zero_bit(priv->cfp.used,
642 priv->num_cfp_rules);
643 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
ba0696c2
FF
644 ret = -ENOSPC;
645 goto out_err;
646 }
647
648 /* Apply the UDF layout for this filter */
649 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
650
651 /* Apply to all packets received through this port */
652 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
653
654 /* Source port map match */
655 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
656
657 /* S-Tag status [31:30]
658 * C-Tag status [29:28]
659 * L2 framing [27:26]
660 * L3 framing [25:24]
661 * IP ToS [23:16]
662 * IP proto [15:08]
663 * IP Fragm [7]
664 * Non 1st frag [6]
665 * IP Authen [5]
666 * TTL range [4:3]
667 * PPPoE session [2]
668 * Reserved [1]
669 * UDF_Valid[8] [0]
670 */
671 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
672 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
673 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
674
675 /* Mask with the specific layout for IPv6 packets including
676 * UDF_Valid[8]
677 */
678 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
679 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
680
681 /* UDF_Valid[7:0] [31:24]
682 * S-Tag [23:8]
683 * C-Tag [7:0]
684 */
685 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
686
687 /* Mask all but valid UDFs */
688 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
689
690 /* Slice the IPv6 source address and port */
dd8eff68
FF
691 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
692 slice_num, false);
693 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
6fef90c6 694 SLICE_NUM_MASK, true);
ba0696c2
FF
695
696 /* Insert into TCAM now because we need to insert a second rule */
697 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
698
699 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
700 if (ret) {
701 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
702 goto out_err;
703 }
704
705 /* Insert into Action and policer RAMs now */
706 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
707 queue_num, false);
708 if (ret)
709 goto out_err;
710
711 /* Now deal with the second slice to chain this rule */
712 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
713 if (slice_num == UDF_NUM_SLICES) {
714 ret = -EINVAL;
715 goto out_err;
716 }
717
718 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
719
720 /* Apply the UDF layout for this filter */
721 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
722
723 /* Chained rule, source port match is coming from the rule we are
724 * chained from.
725 */
726 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
727 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
728
729 /*
730 * CHAIN ID [31:24] chain to previous slice
731 * Reserved [23:20]
732 * UDF_Valid[11:8] [19:16]
733 * UDF_Valid[7:0] [15:8]
734 * UDF_n_D11 [7:0]
735 */
736 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
737 udf_lower_bits(num_udf) << 8;
738 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
739
740 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
741 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
742 udf_lower_bits(num_udf) << 8;
743 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
744
745 /* Don't care */
746 core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
747
748 /* Mask all */
749 core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
750
dd8eff68
FF
751 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
752 false);
753 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
754 SLICE_NUM_MASK, true);
ba0696c2
FF
755
756 /* Insert into TCAM now */
757 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
758
759 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
760 if (ret) {
761 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
762 goto out_err;
763 }
764
765 /* Insert into Action and policer RAMs now, set chain ID to
766 * the one we are chained to
767 */
6fef90c6 768 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
ba0696c2
FF
769 queue_num, true);
770 if (ret)
771 goto out_err;
772
773 /* Turn on CFP for this rule now */
774 reg = core_readl(priv, CORE_CFP_CTL_REG);
775 reg |= BIT(port);
776 core_writel(priv, reg, CORE_CFP_CTL_REG);
777
778 /* Flag the second half rule as being used now, return it as the
779 * location, and flag it as unique while dumping rules
780 */
6c05561c 781 set_bit(rule_index[0], priv->cfp.used);
ba0696c2
FF
782 set_bit(rule_index[1], priv->cfp.unique);
783 fs->location = rule_index[1];
784
785 return ret;
786
787out_err:
6c05561c 788 clear_bit(rule_index[1], priv->cfp.used);
ba0696c2
FF
789 return ret;
790}
791
ce24b08a
FF
792static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
793 struct ethtool_rx_flow_spec *fs)
33061458
FF
794{
795 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
8a75f4f2
FF
796 s8 cpu_port = ds->ports[port].cpu_dp->index;
797 __u64 ring_cookie = fs->ring_cookie;
33061458 798 unsigned int queue_num, port_num;
ce24b08a 799 int ret;
ae7a5aff 800
8a75f4f2
FF
801 /* This rule is a Wake-on-LAN filter and we must specifically
802 * target the CPU port in order for it to be working.
803 */
804 if (ring_cookie == RX_CLS_FLOW_WAKE)
805 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
806
33061458
FF
807 /* We do not support discarding packets, check that the
808 * destination port is enabled and that we are within the
809 * number of ports supported by the switch
810 */
8a75f4f2 811 port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
33061458 812
8a75f4f2 813 if (ring_cookie == RX_CLS_FLOW_DISC ||
2104bc0a
FF
814 !(dsa_is_user_port(ds, port_num) ||
815 dsa_is_cpu_port(ds, port_num)) ||
33061458
FF
816 port_num >= priv->hw_params.num_ports)
817 return -EINVAL;
818 /*
819 * We have a small oddity where Port 6 just does not have a
820 * valid bit here (so we substract by one).
821 */
8a75f4f2 822 queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
33061458
FF
823 if (port_num >= 7)
824 port_num -= 1;
825
ba0696c2
FF
826 switch (fs->flow_type & ~FLOW_EXT) {
827 case TCP_V4_FLOW:
828 case UDP_V4_FLOW:
829 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
830 queue_num, fs);
831 break;
832 case TCP_V6_FLOW:
833 case UDP_V6_FLOW:
834 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
835 queue_num, fs);
836 break;
837 default:
ae7a5aff 838 ret = -EINVAL;
ba0696c2
FF
839 break;
840 }
33061458 841
ce24b08a
FF
842 return ret;
843}
844
845static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
846 struct ethtool_rx_flow_spec *fs)
847{
848 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
849 struct cfp_rule *rule = NULL;
850 int ret = -EINVAL;
851
852 /* Check for unsupported extensions */
853 if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
854 fs->m_ext.data[1]))
855 return -EINVAL;
856
857 if (fs->location != RX_CLS_LOC_ANY &&
858 test_bit(fs->location, priv->cfp.used))
859 return -EBUSY;
860
861 if (fs->location != RX_CLS_LOC_ANY &&
862 fs->location > bcm_sf2_cfp_rule_size(priv))
863 return -EINVAL;
864
865 ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
866 if (ret == 0)
867 return -EEXIST;
868
869 rule = kzalloc(sizeof(*rule), GFP_KERNEL);
870 if (!rule)
871 return -ENOMEM;
872
873 ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
ae7a5aff
FF
874 if (ret) {
875 kfree(rule);
876 return ret;
877 }
878
879 rule->port = port;
880 memcpy(&rule->fs, fs, sizeof(*fs));
881 list_add_tail(&rule->next, &priv->cfp.rules_list);
882
ba0696c2 883 return ret;
33061458
FF
884}
885
ba0696c2
FF
886static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
887 u32 loc, u32 *next_loc)
7318166c
FF
888{
889 int ret;
890 u32 reg;
891
7318166c
FF
892 /* Indicate which rule we want to read */
893 bcm_sf2_cfp_rule_addr_set(priv, loc);
894
895 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
896 if (ret)
897 return ret;
898
ba0696c2
FF
899 /* Check if this is possibly an IPv6 rule that would
900 * indicate we need to delete its companion rule
901 * as well
902 */
903 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
904 if (next_loc)
905 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
906
7318166c
FF
907 /* Clear its valid bits */
908 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
909 reg &= ~SLICE_VALID;
910 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
911
912 /* Write back this entry into the TCAM now */
913 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
914 if (ret)
915 return ret;
916
917 clear_bit(loc, priv->cfp.used);
ba0696c2 918 clear_bit(loc, priv->cfp.unique);
7318166c
FF
919
920 return 0;
921}
922
ce24b08a
FF
923static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
924 u32 loc)
ba0696c2
FF
925{
926 u32 next_loc = 0;
927 int ret;
928
ce24b08a
FF
929 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
930 if (ret)
931 return ret;
932
933 /* If this was an IPv6 rule, delete is companion rule too */
934 if (next_loc)
935 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
936
937 return ret;
938}
939
940static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
941{
942 struct cfp_rule *rule;
943 int ret;
944
1942adf6
FF
945 /* Refuse deleting unused rules, and those that are not unique since
946 * that could leave IPv6 rules with one of the chained rule in the
947 * table.
948 */
949 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
950 return -EINVAL;
951
ae7a5aff
FF
952 rule = bcm_sf2_cfp_rule_find(priv, port, loc);
953 if (!rule)
954 return -EINVAL;
955
ce24b08a 956 ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
ba0696c2 957
ae7a5aff
FF
958 list_del(&rule->next);
959 kfree(rule);
960
ba0696c2
FF
961 return ret;
962}
963
7318166c
FF
964static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
965{
966 unsigned int i;
967
968 for (i = 0; i < sizeof(flow->m_u); i++)
969 flow->m_u.hdata[i] ^= 0xff;
970
971 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
972 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
973 flow->m_ext.data[0] ^= cpu_to_be32(~0);
974 flow->m_ext.data[1] ^= cpu_to_be32(~0);
975}
976
ae7a5aff
FF
977static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
978 struct ethtool_rxnfc *nfc)
979{
980 struct cfp_rule *rule;
981
982 rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
983 if (!rule)
984 return -EINVAL;
985
986 memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
987
988 bcm_sf2_invert_masks(&nfc->fs);
989
990 /* Put the TCAM size here */
991 nfc->data = bcm_sf2_cfp_rule_size(priv);
992
993 return 0;
994}
995
7318166c
FF
996/* We implement the search doing a TCAM search operation */
997static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
998 int port, struct ethtool_rxnfc *nfc,
999 u32 *rule_locs)
1000{
1001 unsigned int index = 1, rules_cnt = 0;
7318166c 1002
ba0696c2 1003 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
4daa70cf
FF
1004 rule_locs[rules_cnt] = index;
1005 rules_cnt++;
1006 }
7318166c
FF
1007
1008 /* Put the TCAM size here */
1009 nfc->data = bcm_sf2_cfp_rule_size(priv);
1010 nfc->rule_cnt = rules_cnt;
1011
1012 return 0;
1013}
1014
1015int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1016 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1017{
8a75f4f2 1018 struct net_device *p = ds->ports[port].cpu_dp->master;
7318166c
FF
1019 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1020 int ret = 0;
1021
1022 mutex_lock(&priv->cfp.lock);
1023
1024 switch (nfc->cmd) {
1025 case ETHTOOL_GRXCLSRLCNT:
1026 /* Subtract the default, unusable rule */
ba0696c2 1027 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
df191632 1028 priv->num_cfp_rules) - 1;
7318166c
FF
1029 /* We support specifying rule locations */
1030 nfc->data |= RX_CLS_LOC_SPECIAL;
1031 break;
1032 case ETHTOOL_GRXCLSRULE:
4daa70cf 1033 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
7318166c
FF
1034 break;
1035 case ETHTOOL_GRXCLSRLALL:
1036 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1037 break;
1038 default:
1039 ret = -EOPNOTSUPP;
1040 break;
1041 }
1042
1043 mutex_unlock(&priv->cfp.lock);
1044
8a75f4f2
FF
1045 if (ret)
1046 return ret;
1047
1048 /* Pass up the commands to the attached master network device */
1049 if (p->ethtool_ops->get_rxnfc) {
1050 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1051 if (ret == -EOPNOTSUPP)
1052 ret = 0;
1053 }
1054
7318166c
FF
1055 return ret;
1056}
1057
1058int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1059 struct ethtool_rxnfc *nfc)
1060{
8a75f4f2 1061 struct net_device *p = ds->ports[port].cpu_dp->master;
7318166c
FF
1062 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1063 int ret = 0;
1064
1065 mutex_lock(&priv->cfp.lock);
1066
1067 switch (nfc->cmd) {
1068 case ETHTOOL_SRXCLSRLINS:
1069 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1070 break;
1071
1072 case ETHTOOL_SRXCLSRLDEL:
1073 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1074 break;
1075 default:
1076 ret = -EOPNOTSUPP;
1077 break;
1078 }
1079
1080 mutex_unlock(&priv->cfp.lock);
1081
8a75f4f2
FF
1082 if (ret)
1083 return ret;
1084
1085 /* Pass up the commands to the attached master network device.
1086 * This can fail, so rollback the operation if we need to.
1087 */
1088 if (p->ethtool_ops->set_rxnfc) {
1089 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1090 if (ret && ret != -EOPNOTSUPP) {
1091 mutex_lock(&priv->cfp.lock);
1092 bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1093 mutex_unlock(&priv->cfp.lock);
1094 } else {
1095 ret = 0;
1096 }
1097 }
1098
7318166c
FF
1099 return ret;
1100}
1101
1102int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1103{
1104 unsigned int timeout = 1000;
1105 u32 reg;
1106
1107 reg = core_readl(priv, CORE_CFP_ACC);
1108 reg |= TCAM_RESET;
1109 core_writel(priv, reg, CORE_CFP_ACC);
1110
1111 do {
1112 reg = core_readl(priv, CORE_CFP_ACC);
1113 if (!(reg & TCAM_RESET))
1114 break;
1115
1116 cpu_relax();
1117 } while (timeout--);
1118
1119 if (!timeout)
1120 return -ETIMEDOUT;
1121
1122 return 0;
1123}
ae7a5aff
FF
1124
1125void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1126{
1127 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1128 struct cfp_rule *rule, *n;
1129
1130 if (list_empty(&priv->cfp.rules_list))
1131 return;
1132
1133 list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1134 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1135}
1c0130f0
FF
1136
1137int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1138{
1139 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1140 struct cfp_rule *rule;
1141 int ret = 0;
1142 u32 reg;
1143
1144 if (list_empty(&priv->cfp.rules_list))
1145 return ret;
1146
1147 reg = core_readl(priv, CORE_CFP_CTL_REG);
1148 reg &= ~CFP_EN_MAP_MASK;
1149 core_writel(priv, reg, CORE_CFP_CTL_REG);
1150
1151 ret = bcm_sf2_cfp_rst(priv);
1152 if (ret)
1153 return ret;
1154
1155 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1156 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1157 rule->fs.location);
1158 if (ret) {
1159 dev_err(ds->dev, "failed to remove rule\n");
1160 return ret;
1161 }
1162
1163 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1164 if (ret) {
1165 dev_err(ds->dev, "failed to restore rule\n");
1166 return ret;
1167 }
f9086200 1168 }
1c0130f0
FF
1169
1170 return ret;
1171}