]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/e1000/e1000_main.c
e1000: Support for 82571 and 82572 controllers
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / e1000 / e1000_main.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
3
2648345f 4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
1da177e4
LT
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/* Change Log
2b02893e
MC
32 * 6.0.58 4/20/05
33 * o Accepted ethtool cleanup patch from Stephen Hemminger
2648345f
MC
34 * 6.0.44+ 2/15/05
35 * o applied Anton's patch to resolve tx hang in hardware
36 * o Applied Andrew Mortons patch - e1000 stops working after resume
1da177e4
LT
37 */
38
39char e1000_driver_name[] = "e1000";
40char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41#ifndef CONFIG_E1000_NAPI
42#define DRIVERNAPI
43#else
44#define DRIVERNAPI "-NAPI"
45#endif
2b02893e 46#define DRV_VERSION "6.0.60-k2"DRIVERNAPI
1da177e4 47char e1000_driver_version[] = DRV_VERSION;
2b02893e 48char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
1da177e4
LT
49
50/* e1000_pci_tbl - PCI Device ID Table
51 *
52 * Last entry must be all 0s
53 *
54 * Macro expands to...
55 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56 */
57static struct pci_device_id e1000_pci_tbl[] = {
58 INTEL_E1000_ETHERNET_DEVICE(0x1000),
59 INTEL_E1000_ETHERNET_DEVICE(0x1001),
60 INTEL_E1000_ETHERNET_DEVICE(0x1004),
61 INTEL_E1000_ETHERNET_DEVICE(0x1008),
62 INTEL_E1000_ETHERNET_DEVICE(0x1009),
63 INTEL_E1000_ETHERNET_DEVICE(0x100C),
64 INTEL_E1000_ETHERNET_DEVICE(0x100D),
65 INTEL_E1000_ETHERNET_DEVICE(0x100E),
66 INTEL_E1000_ETHERNET_DEVICE(0x100F),
67 INTEL_E1000_ETHERNET_DEVICE(0x1010),
68 INTEL_E1000_ETHERNET_DEVICE(0x1011),
69 INTEL_E1000_ETHERNET_DEVICE(0x1012),
70 INTEL_E1000_ETHERNET_DEVICE(0x1013),
71 INTEL_E1000_ETHERNET_DEVICE(0x1014),
72 INTEL_E1000_ETHERNET_DEVICE(0x1015),
73 INTEL_E1000_ETHERNET_DEVICE(0x1016),
74 INTEL_E1000_ETHERNET_DEVICE(0x1017),
75 INTEL_E1000_ETHERNET_DEVICE(0x1018),
76 INTEL_E1000_ETHERNET_DEVICE(0x1019),
2648345f 77 INTEL_E1000_ETHERNET_DEVICE(0x101A),
1da177e4
LT
78 INTEL_E1000_ETHERNET_DEVICE(0x101D),
79 INTEL_E1000_ETHERNET_DEVICE(0x101E),
80 INTEL_E1000_ETHERNET_DEVICE(0x1026),
81 INTEL_E1000_ETHERNET_DEVICE(0x1027),
82 INTEL_E1000_ETHERNET_DEVICE(0x1028),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x108A),
2648345f
MC
92 INTEL_E1000_ETHERNET_DEVICE(0x108B),
93 INTEL_E1000_ETHERNET_DEVICE(0x108C),
94 INTEL_E1000_ETHERNET_DEVICE(0x1099),
1da177e4
LT
95 /* required last entry */
96 {0,}
97};
98
99MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
100
101int e1000_up(struct e1000_adapter *adapter);
102void e1000_down(struct e1000_adapter *adapter);
103void e1000_reset(struct e1000_adapter *adapter);
104int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
105int e1000_setup_tx_resources(struct e1000_adapter *adapter);
106int e1000_setup_rx_resources(struct e1000_adapter *adapter);
107void e1000_free_tx_resources(struct e1000_adapter *adapter);
108void e1000_free_rx_resources(struct e1000_adapter *adapter);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111/* Local Function Prototypes */
112
113static int e1000_init_module(void);
114static void e1000_exit_module(void);
115static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
116static void __devexit e1000_remove(struct pci_dev *pdev);
117static int e1000_sw_init(struct e1000_adapter *adapter);
118static int e1000_open(struct net_device *netdev);
119static int e1000_close(struct net_device *netdev);
120static void e1000_configure_tx(struct e1000_adapter *adapter);
121static void e1000_configure_rx(struct e1000_adapter *adapter);
122static void e1000_setup_rctl(struct e1000_adapter *adapter);
123static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
124static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
125static void e1000_set_multi(struct net_device *netdev);
126static void e1000_update_phy_info(unsigned long data);
127static void e1000_watchdog(unsigned long data);
128static void e1000_watchdog_task(struct e1000_adapter *adapter);
129static void e1000_82547_tx_fifo_stall(unsigned long data);
130static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
131static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
132static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
133static int e1000_set_mac(struct net_device *netdev, void *p);
134static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
135static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
136#ifdef CONFIG_E1000_NAPI
137static int e1000_clean(struct net_device *netdev, int *budget);
138static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
139 int *work_done, int work_to_do);
2d7edb92
MC
140static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
141 int *work_done, int work_to_do);
1da177e4
LT
142#else
143static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
2d7edb92 144static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
1da177e4
LT
145#endif
146static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
2d7edb92 147static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
1da177e4
LT
148static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
149static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
150 int cmd);
151void e1000_set_ethtool_ops(struct net_device *netdev);
152static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154static void e1000_tx_timeout(struct net_device *dev);
155static void e1000_tx_timeout_task(struct net_device *dev);
156static void e1000_smartspeed(struct e1000_adapter *adapter);
157static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
159
160static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
162static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
163static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
829ca9a3 165static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
1da177e4
LT
166#ifdef CONFIG_PM
167static int e1000_resume(struct pci_dev *pdev);
168#endif
169
170#ifdef CONFIG_NET_POLL_CONTROLLER
171/* for netdump / net console */
172static void e1000_netpoll (struct net_device *netdev);
173#endif
174
1da177e4
LT
175/* Exported from other modules */
176
177extern void e1000_check_options(struct e1000_adapter *adapter);
178
179static struct pci_driver e1000_driver = {
180 .name = e1000_driver_name,
181 .id_table = e1000_pci_tbl,
182 .probe = e1000_probe,
183 .remove = __devexit_p(e1000_remove),
184 /* Power Managment Hooks */
185#ifdef CONFIG_PM
186 .suspend = e1000_suspend,
187 .resume = e1000_resume
188#endif
189};
190
191MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
192MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
193MODULE_LICENSE("GPL");
194MODULE_VERSION(DRV_VERSION);
195
196static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
197module_param(debug, int, 0);
198MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
199
200/**
201 * e1000_init_module - Driver Registration Routine
202 *
203 * e1000_init_module is the first routine called when the driver is
204 * loaded. All it does is register with the PCI subsystem.
205 **/
206
207static int __init
208e1000_init_module(void)
209{
210 int ret;
211 printk(KERN_INFO "%s - version %s\n",
212 e1000_driver_string, e1000_driver_version);
213
214 printk(KERN_INFO "%s\n", e1000_copyright);
215
216 ret = pci_module_init(&e1000_driver);
8b378def 217
1da177e4
LT
218 return ret;
219}
220
221module_init(e1000_init_module);
222
223/**
224 * e1000_exit_module - Driver Exit Cleanup Routine
225 *
226 * e1000_exit_module is called just before the driver is removed
227 * from memory.
228 **/
229
230static void __exit
231e1000_exit_module(void)
232{
1da177e4
LT
233 pci_unregister_driver(&e1000_driver);
234}
235
236module_exit(e1000_exit_module);
237
238/**
239 * e1000_irq_disable - Mask off interrupt generation on the NIC
240 * @adapter: board private structure
241 **/
242
243static inline void
244e1000_irq_disable(struct e1000_adapter *adapter)
245{
246 atomic_inc(&adapter->irq_sem);
247 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
248 E1000_WRITE_FLUSH(&adapter->hw);
249 synchronize_irq(adapter->pdev->irq);
250}
251
252/**
253 * e1000_irq_enable - Enable default interrupt generation settings
254 * @adapter: board private structure
255 **/
256
257static inline void
258e1000_irq_enable(struct e1000_adapter *adapter)
259{
260 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
261 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
262 E1000_WRITE_FLUSH(&adapter->hw);
263 }
264}
2d7edb92
MC
265void
266e1000_update_mng_vlan(struct e1000_adapter *adapter)
267{
268 struct net_device *netdev = adapter->netdev;
269 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
270 uint16_t old_vid = adapter->mng_vlan_id;
271 if(adapter->vlgrp) {
272 if(!adapter->vlgrp->vlan_devices[vid]) {
273 if(adapter->hw.mng_cookie.status &
274 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
275 e1000_vlan_rx_add_vid(netdev, vid);
276 adapter->mng_vlan_id = vid;
277 } else
278 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
279
280 if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
281 (vid != old_vid) &&
282 !adapter->vlgrp->vlan_devices[old_vid])
283 e1000_vlan_rx_kill_vid(netdev, old_vid);
284 }
285 }
286}
287
1da177e4
LT
288int
289e1000_up(struct e1000_adapter *adapter)
290{
291 struct net_device *netdev = adapter->netdev;
292 int err;
293
294 /* hardware has been reset, we need to reload some things */
295
296 /* Reset the PHY if it was previously powered down */
297 if(adapter->hw.media_type == e1000_media_type_copper) {
298 uint16_t mii_reg;
299 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
300 if(mii_reg & MII_CR_POWER_DOWN)
301 e1000_phy_reset(&adapter->hw);
302 }
303
304 e1000_set_multi(netdev);
305
306 e1000_restore_vlan(adapter);
307
308 e1000_configure_tx(adapter);
309 e1000_setup_rctl(adapter);
310 e1000_configure_rx(adapter);
2d7edb92 311 adapter->alloc_rx_buf(adapter);
1da177e4 312
fa4f7ef3
MC
313#ifdef CONFIG_PCI_MSI
314 if(adapter->hw.mac_type > e1000_82547_rev_2) {
315 adapter->have_msi = TRUE;
316 if((err = pci_enable_msi(adapter->pdev))) {
317 DPRINTK(PROBE, ERR,
318 "Unable to allocate MSI interrupt Error: %d\n", err);
319 adapter->have_msi = FALSE;
320 }
321 }
322#endif
1da177e4
LT
323 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
324 SA_SHIRQ | SA_SAMPLE_RANDOM,
2648345f
MC
325 netdev->name, netdev))) {
326 DPRINTK(PROBE, ERR,
327 "Unable to allocate interrupt Error: %d\n", err);
1da177e4 328 return err;
2648345f 329 }
1da177e4
LT
330
331 mod_timer(&adapter->watchdog_timer, jiffies);
1da177e4
LT
332
333#ifdef CONFIG_E1000_NAPI
334 netif_poll_enable(netdev);
335#endif
5de55624
MC
336 e1000_irq_enable(adapter);
337
1da177e4
LT
338 return 0;
339}
340
341void
342e1000_down(struct e1000_adapter *adapter)
343{
344 struct net_device *netdev = adapter->netdev;
345
346 e1000_irq_disable(adapter);
347 free_irq(adapter->pdev->irq, netdev);
fa4f7ef3
MC
348#ifdef CONFIG_PCI_MSI
349 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
350 adapter->have_msi == TRUE)
351 pci_disable_msi(adapter->pdev);
352#endif
1da177e4
LT
353 del_timer_sync(&adapter->tx_fifo_stall_timer);
354 del_timer_sync(&adapter->watchdog_timer);
355 del_timer_sync(&adapter->phy_info_timer);
356
357#ifdef CONFIG_E1000_NAPI
358 netif_poll_disable(netdev);
359#endif
360 adapter->link_speed = 0;
361 adapter->link_duplex = 0;
362 netif_carrier_off(netdev);
363 netif_stop_queue(netdev);
364
365 e1000_reset(adapter);
366 e1000_clean_tx_ring(adapter);
367 e1000_clean_rx_ring(adapter);
368
369 /* If WoL is not enabled
2d7edb92 370 * and management mode is not IAMT
1da177e4 371 * Power down the PHY so no link is implied when interface is down */
2d7edb92
MC
372 if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
373 adapter->hw.media_type == e1000_media_type_copper &&
374 !e1000_check_mng_mode(&adapter->hw) &&
375 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
1da177e4
LT
376 uint16_t mii_reg;
377 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
378 mii_reg |= MII_CR_POWER_DOWN;
379 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
4e48a2b9 380 mdelay(1);
1da177e4
LT
381 }
382}
383
384void
385e1000_reset(struct e1000_adapter *adapter)
386{
1125ecbc 387 struct net_device *netdev = adapter->netdev;
2d7edb92 388 uint32_t pba, manc;
1125ecbc
MC
389 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
390 uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
1da177e4
LT
391
392 /* Repartition Pba for greater than 9k mtu
393 * To take effect CTRL.RST is required.
394 */
395
2d7edb92
MC
396 switch (adapter->hw.mac_type) {
397 case e1000_82547:
0e6ef3e0 398 case e1000_82547_rev_2:
2d7edb92
MC
399 pba = E1000_PBA_30K;
400 break;
868d5309
MC
401 case e1000_82571:
402 case e1000_82572:
403 pba = E1000_PBA_38K;
404 break;
2d7edb92
MC
405 case e1000_82573:
406 pba = E1000_PBA_12K;
407 break;
408 default:
409 pba = E1000_PBA_48K;
410 break;
411 }
412
1125ecbc
MC
413 if((adapter->hw.mac_type != e1000_82573) &&
414 (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
415 pba -= 8; /* allocate more FIFO for Tx */
416 /* send an XOFF when there is enough space in the
417 * Rx FIFO to hold one extra full size Rx packet
418 */
419 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
420 ETHERNET_FCS_SIZE + 1;
421 fc_low_water_mark = fc_high_water_mark + 8;
422 }
2d7edb92
MC
423
424
425 if(adapter->hw.mac_type == e1000_82547) {
1da177e4
LT
426 adapter->tx_fifo_head = 0;
427 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
428 adapter->tx_fifo_size =
429 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
430 atomic_set(&adapter->tx_fifo_stall, 0);
431 }
2d7edb92 432
1da177e4
LT
433 E1000_WRITE_REG(&adapter->hw, PBA, pba);
434
435 /* flow control settings */
436 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
1125ecbc 437 fc_high_water_mark;
1da177e4 438 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
1125ecbc 439 fc_low_water_mark;
1da177e4
LT
440 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
441 adapter->hw.fc_send_xon = 1;
442 adapter->hw.fc = adapter->hw.original_fc;
443
2d7edb92 444 /* Allow time for pending master requests to run */
1da177e4
LT
445 e1000_reset_hw(&adapter->hw);
446 if(adapter->hw.mac_type >= e1000_82544)
447 E1000_WRITE_REG(&adapter->hw, WUC, 0);
448 if(e1000_init_hw(&adapter->hw))
449 DPRINTK(PROBE, ERR, "Hardware Error\n");
2d7edb92 450 e1000_update_mng_vlan(adapter);
1da177e4
LT
451 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
452 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
453
454 e1000_reset_adaptive(&adapter->hw);
455 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2d7edb92
MC
456 if (adapter->en_mng_pt) {
457 manc = E1000_READ_REG(&adapter->hw, MANC);
458 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
459 E1000_WRITE_REG(&adapter->hw, MANC, manc);
460 }
1da177e4
LT
461}
462
463/**
464 * e1000_probe - Device Initialization Routine
465 * @pdev: PCI device information struct
466 * @ent: entry in e1000_pci_tbl
467 *
468 * Returns 0 on success, negative on failure
469 *
470 * e1000_probe initializes an adapter identified by a pci_dev structure.
471 * The OS initialization, configuring of the adapter private structure,
472 * and a hardware reset occur.
473 **/
474
475static int __devinit
476e1000_probe(struct pci_dev *pdev,
477 const struct pci_device_id *ent)
478{
479 struct net_device *netdev;
480 struct e1000_adapter *adapter;
2d7edb92 481 unsigned long mmio_start, mmio_len;
868d5309 482 uint32_t ctrl_ext;
2d7edb92
MC
483 uint32_t swsm;
484
1da177e4 485 static int cards_found = 0;
2d7edb92 486 int i, err, pci_using_dac;
1da177e4
LT
487 uint16_t eeprom_data;
488 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
1da177e4
LT
489 if((err = pci_enable_device(pdev)))
490 return err;
491
492 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
493 pci_using_dac = 1;
494 } else {
495 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
496 E1000_ERR("No usable DMA configuration, aborting\n");
497 return err;
498 }
499 pci_using_dac = 0;
500 }
501
502 if((err = pci_request_regions(pdev, e1000_driver_name)))
503 return err;
504
505 pci_set_master(pdev);
506
507 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
508 if(!netdev) {
509 err = -ENOMEM;
510 goto err_alloc_etherdev;
511 }
512
513 SET_MODULE_OWNER(netdev);
514 SET_NETDEV_DEV(netdev, &pdev->dev);
515
516 pci_set_drvdata(pdev, netdev);
60490fe0 517 adapter = netdev_priv(netdev);
1da177e4
LT
518 adapter->netdev = netdev;
519 adapter->pdev = pdev;
520 adapter->hw.back = adapter;
521 adapter->msg_enable = (1 << debug) - 1;
522
523 mmio_start = pci_resource_start(pdev, BAR_0);
524 mmio_len = pci_resource_len(pdev, BAR_0);
525
526 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
527 if(!adapter->hw.hw_addr) {
528 err = -EIO;
529 goto err_ioremap;
530 }
531
532 for(i = BAR_1; i <= BAR_5; i++) {
533 if(pci_resource_len(pdev, i) == 0)
534 continue;
535 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
536 adapter->hw.io_base = pci_resource_start(pdev, i);
537 break;
538 }
539 }
540
541 netdev->open = &e1000_open;
542 netdev->stop = &e1000_close;
543 netdev->hard_start_xmit = &e1000_xmit_frame;
544 netdev->get_stats = &e1000_get_stats;
545 netdev->set_multicast_list = &e1000_set_multi;
546 netdev->set_mac_address = &e1000_set_mac;
547 netdev->change_mtu = &e1000_change_mtu;
548 netdev->do_ioctl = &e1000_ioctl;
549 e1000_set_ethtool_ops(netdev);
550 netdev->tx_timeout = &e1000_tx_timeout;
551 netdev->watchdog_timeo = 5 * HZ;
552#ifdef CONFIG_E1000_NAPI
553 netdev->poll = &e1000_clean;
554 netdev->weight = 64;
555#endif
556 netdev->vlan_rx_register = e1000_vlan_rx_register;
557 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
558 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
559#ifdef CONFIG_NET_POLL_CONTROLLER
560 netdev->poll_controller = e1000_netpoll;
561#endif
562 strcpy(netdev->name, pci_name(pdev));
563
564 netdev->mem_start = mmio_start;
565 netdev->mem_end = mmio_start + mmio_len;
566 netdev->base_addr = adapter->hw.io_base;
567
568 adapter->bd_number = cards_found;
569
570 /* setup the private structure */
571
572 if((err = e1000_sw_init(adapter)))
573 goto err_sw_init;
574
2d7edb92
MC
575 if((err = e1000_check_phy_reset_block(&adapter->hw)))
576 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
577
1da177e4
LT
578 if(adapter->hw.mac_type >= e1000_82543) {
579 netdev->features = NETIF_F_SG |
580 NETIF_F_HW_CSUM |
581 NETIF_F_HW_VLAN_TX |
582 NETIF_F_HW_VLAN_RX |
583 NETIF_F_HW_VLAN_FILTER;
584 }
585
586#ifdef NETIF_F_TSO
587 if((adapter->hw.mac_type >= e1000_82544) &&
588 (adapter->hw.mac_type != e1000_82547))
589 netdev->features |= NETIF_F_TSO;
2d7edb92
MC
590
591#ifdef NETIF_F_TSO_IPV6
592 if(adapter->hw.mac_type > e1000_82547_rev_2)
593 netdev->features |= NETIF_F_TSO_IPV6;
594#endif
1da177e4
LT
595#endif
596 if(pci_using_dac)
597 netdev->features |= NETIF_F_HIGHDMA;
598
599 /* hard_start_xmit is safe against parallel locking */
600 netdev->features |= NETIF_F_LLTX;
601
2d7edb92
MC
602 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
603
1da177e4
LT
604 /* before reading the EEPROM, reset the controller to
605 * put the device in a known good starting state */
606
607 e1000_reset_hw(&adapter->hw);
608
609 /* make sure the EEPROM is good */
610
611 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
612 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
613 err = -EIO;
614 goto err_eeprom;
615 }
616
617 /* copy the MAC address out of the EEPROM */
618
2648345f 619 if(e1000_read_mac_addr(&adapter->hw))
1da177e4
LT
620 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
621 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
9beb0ac1 622 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1da177e4 623
9beb0ac1 624 if(!is_valid_ether_addr(netdev->perm_addr)) {
1da177e4
LT
625 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
626 err = -EIO;
627 goto err_eeprom;
628 }
629
630 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
631
632 e1000_get_bus_info(&adapter->hw);
633
634 init_timer(&adapter->tx_fifo_stall_timer);
635 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
636 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
637
638 init_timer(&adapter->watchdog_timer);
639 adapter->watchdog_timer.function = &e1000_watchdog;
640 adapter->watchdog_timer.data = (unsigned long) adapter;
641
642 INIT_WORK(&adapter->watchdog_task,
643 (void (*)(void *))e1000_watchdog_task, adapter);
644
645 init_timer(&adapter->phy_info_timer);
646 adapter->phy_info_timer.function = &e1000_update_phy_info;
647 adapter->phy_info_timer.data = (unsigned long) adapter;
648
649 INIT_WORK(&adapter->tx_timeout_task,
650 (void (*)(void *))e1000_tx_timeout_task, netdev);
651
652 /* we're going to reset, so assume we have no link for now */
653
654 netif_carrier_off(netdev);
655 netif_stop_queue(netdev);
656
657 e1000_check_options(adapter);
658
659 /* Initial Wake on LAN setting
660 * If APM wake is enabled in the EEPROM,
661 * enable the ACPI Magic Packet filter
662 */
663
664 switch(adapter->hw.mac_type) {
665 case e1000_82542_rev2_0:
666 case e1000_82542_rev2_1:
667 case e1000_82543:
668 break;
669 case e1000_82544:
670 e1000_read_eeprom(&adapter->hw,
671 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
672 eeprom_apme_mask = E1000_EEPROM_82544_APM;
673 break;
674 case e1000_82546:
675 case e1000_82546_rev_3:
676 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
677 && (adapter->hw.media_type == e1000_media_type_copper)) {
678 e1000_read_eeprom(&adapter->hw,
679 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
680 break;
681 }
682 /* Fall Through */
683 default:
684 e1000_read_eeprom(&adapter->hw,
685 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
686 break;
687 }
688 if(eeprom_data & eeprom_apme_mask)
689 adapter->wol |= E1000_WUFC_MAG;
690
691 /* reset the hardware with the new settings */
692 e1000_reset(adapter);
693
2d7edb92
MC
694 /* Let firmware know the driver has taken over */
695 switch(adapter->hw.mac_type) {
868d5309
MC
696 case e1000_82571:
697 case e1000_82572:
698 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
699 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
700 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
701 break;
2d7edb92
MC
702 case e1000_82573:
703 swsm = E1000_READ_REG(&adapter->hw, SWSM);
704 E1000_WRITE_REG(&adapter->hw, SWSM,
705 swsm | E1000_SWSM_DRV_LOAD);
706 break;
707 default:
708 break;
709 }
710
1da177e4
LT
711 strcpy(netdev->name, "eth%d");
712 if((err = register_netdev(netdev)))
713 goto err_register;
714
715 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
716
717 cards_found++;
718 return 0;
719
720err_register:
721err_sw_init:
722err_eeprom:
723 iounmap(adapter->hw.hw_addr);
724err_ioremap:
725 free_netdev(netdev);
726err_alloc_etherdev:
727 pci_release_regions(pdev);
728 return err;
729}
730
731/**
732 * e1000_remove - Device Removal Routine
733 * @pdev: PCI device information struct
734 *
735 * e1000_remove is called by the PCI subsystem to alert the driver
736 * that it should release a PCI device. The could be caused by a
737 * Hot-Plug event, or because the driver is going to be removed from
738 * memory.
739 **/
740
741static void __devexit
742e1000_remove(struct pci_dev *pdev)
743{
744 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 745 struct e1000_adapter *adapter = netdev_priv(netdev);
868d5309 746 uint32_t ctrl_ext;
2d7edb92 747 uint32_t manc, swsm;
1da177e4
LT
748
749 flush_scheduled_work();
750
751 if(adapter->hw.mac_type >= e1000_82540 &&
752 adapter->hw.media_type == e1000_media_type_copper) {
753 manc = E1000_READ_REG(&adapter->hw, MANC);
754 if(manc & E1000_MANC_SMBUS_EN) {
755 manc |= E1000_MANC_ARP_EN;
756 E1000_WRITE_REG(&adapter->hw, MANC, manc);
757 }
758 }
759
2d7edb92 760 switch(adapter->hw.mac_type) {
868d5309
MC
761 case e1000_82571:
762 case e1000_82572:
763 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
764 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
765 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
766 break;
2d7edb92
MC
767 case e1000_82573:
768 swsm = E1000_READ_REG(&adapter->hw, SWSM);
769 E1000_WRITE_REG(&adapter->hw, SWSM,
770 swsm & ~E1000_SWSM_DRV_LOAD);
771 break;
772
773 default:
774 break;
775 }
776
1da177e4
LT
777 unregister_netdev(netdev);
778
2d7edb92
MC
779 if(!e1000_check_phy_reset_block(&adapter->hw))
780 e1000_phy_hw_reset(&adapter->hw);
1da177e4
LT
781
782 iounmap(adapter->hw.hw_addr);
783 pci_release_regions(pdev);
784
785 free_netdev(netdev);
786
787 pci_disable_device(pdev);
788}
789
790/**
791 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
792 * @adapter: board private structure to initialize
793 *
794 * e1000_sw_init initializes the Adapter private data structure.
795 * Fields are initialized based on PCI device information and
796 * OS network device settings (MTU size).
797 **/
798
799static int __devinit
800e1000_sw_init(struct e1000_adapter *adapter)
801{
802 struct e1000_hw *hw = &adapter->hw;
803 struct net_device *netdev = adapter->netdev;
804 struct pci_dev *pdev = adapter->pdev;
805
806 /* PCI config space info */
807
808 hw->vendor_id = pdev->vendor;
809 hw->device_id = pdev->device;
810 hw->subsystem_vendor_id = pdev->subsystem_vendor;
811 hw->subsystem_id = pdev->subsystem_device;
812
813 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
814
815 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
816
817 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2d7edb92 818 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
1da177e4
LT
819 hw->max_frame_size = netdev->mtu +
820 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
821 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
822
823 /* identify the MAC */
824
825 if(e1000_set_mac_type(hw)) {
826 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
827 return -EIO;
828 }
829
830 /* initialize eeprom parameters */
831
2d7edb92
MC
832 if(e1000_init_eeprom_params(hw)) {
833 E1000_ERR("EEPROM initialization failed\n");
834 return -EIO;
835 }
1da177e4
LT
836
837 switch(hw->mac_type) {
838 default:
839 break;
840 case e1000_82541:
841 case e1000_82547:
842 case e1000_82541_rev_2:
843 case e1000_82547_rev_2:
844 hw->phy_init_script = 1;
845 break;
846 }
847
848 e1000_set_media_type(hw);
849
850 hw->wait_autoneg_complete = FALSE;
851 hw->tbi_compatibility_en = TRUE;
852 hw->adaptive_ifs = TRUE;
853
854 /* Copper options */
855
856 if(hw->media_type == e1000_media_type_copper) {
857 hw->mdix = AUTO_ALL_MODES;
858 hw->disable_polarity_correction = FALSE;
859 hw->master_slave = E1000_MASTER_SLAVE;
860 }
861
862 atomic_set(&adapter->irq_sem, 1);
863 spin_lock_init(&adapter->stats_lock);
864 spin_lock_init(&adapter->tx_lock);
865
866 return 0;
867}
868
869/**
870 * e1000_open - Called when a network interface is made active
871 * @netdev: network interface device structure
872 *
873 * Returns 0 on success, negative value on failure
874 *
875 * The open entry point is called when a network interface is made
876 * active by the system (IFF_UP). At this point all resources needed
877 * for transmit and receive operations are allocated, the interrupt
878 * handler is registered with the OS, the watchdog timer is started,
879 * and the stack is notified that the interface is ready.
880 **/
881
882static int
883e1000_open(struct net_device *netdev)
884{
60490fe0 885 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
886 int err;
887
888 /* allocate transmit descriptors */
889
890 if((err = e1000_setup_tx_resources(adapter)))
891 goto err_setup_tx;
892
893 /* allocate receive descriptors */
894
895 if((err = e1000_setup_rx_resources(adapter)))
896 goto err_setup_rx;
897
898 if((err = e1000_up(adapter)))
899 goto err_up;
2d7edb92
MC
900 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
901 if((adapter->hw.mng_cookie.status &
902 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
903 e1000_update_mng_vlan(adapter);
904 }
1da177e4
LT
905
906 return E1000_SUCCESS;
907
908err_up:
909 e1000_free_rx_resources(adapter);
910err_setup_rx:
911 e1000_free_tx_resources(adapter);
912err_setup_tx:
913 e1000_reset(adapter);
914
915 return err;
916}
917
918/**
919 * e1000_close - Disables a network interface
920 * @netdev: network interface device structure
921 *
922 * Returns 0, this is not allowed to fail
923 *
924 * The close entry point is called when an interface is de-activated
925 * by the OS. The hardware is still under the drivers control, but
926 * needs to be disabled. A global MAC reset is issued to stop the
927 * hardware, and all transmit and receive resources are freed.
928 **/
929
930static int
931e1000_close(struct net_device *netdev)
932{
60490fe0 933 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
934
935 e1000_down(adapter);
936
937 e1000_free_tx_resources(adapter);
938 e1000_free_rx_resources(adapter);
939
2d7edb92
MC
940 if((adapter->hw.mng_cookie.status &
941 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
942 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
943 }
1da177e4
LT
944 return 0;
945}
946
947/**
948 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
949 * @adapter: address of board private structure
2d7edb92
MC
950 * @start: address of beginning of memory
951 * @len: length of memory
1da177e4
LT
952 **/
953static inline boolean_t
954e1000_check_64k_bound(struct e1000_adapter *adapter,
955 void *start, unsigned long len)
956{
957 unsigned long begin = (unsigned long) start;
958 unsigned long end = begin + len;
959
2648345f
MC
960 /* First rev 82545 and 82546 need to not allow any memory
961 * write location to cross 64k boundary due to errata 23 */
1da177e4 962 if (adapter->hw.mac_type == e1000_82545 ||
2648345f 963 adapter->hw.mac_type == e1000_82546) {
1da177e4
LT
964 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
965 }
966
967 return TRUE;
968}
969
970/**
971 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
972 * @adapter: board private structure
973 *
974 * Return 0 on success, negative on failure
975 **/
976
977int
978e1000_setup_tx_resources(struct e1000_adapter *adapter)
979{
980 struct e1000_desc_ring *txdr = &adapter->tx_ring;
981 struct pci_dev *pdev = adapter->pdev;
982 int size;
983
984 size = sizeof(struct e1000_buffer) * txdr->count;
985 txdr->buffer_info = vmalloc(size);
986 if(!txdr->buffer_info) {
2648345f
MC
987 DPRINTK(PROBE, ERR,
988 "Unable to allocate memory for the transmit descriptor ring\n");
1da177e4
LT
989 return -ENOMEM;
990 }
991 memset(txdr->buffer_info, 0, size);
992
993 /* round up to nearest 4K */
994
995 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
996 E1000_ROUNDUP(txdr->size, 4096);
997
998 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
999 if(!txdr->desc) {
1000setup_tx_desc_die:
1da177e4 1001 vfree(txdr->buffer_info);
2648345f
MC
1002 DPRINTK(PROBE, ERR,
1003 "Unable to allocate memory for the transmit descriptor ring\n");
1da177e4
LT
1004 return -ENOMEM;
1005 }
1006
2648345f 1007 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1008 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1009 void *olddesc = txdr->desc;
1010 dma_addr_t olddma = txdr->dma;
2648345f
MC
1011 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1012 "at %p\n", txdr->size, txdr->desc);
1013 /* Try again, without freeing the previous */
1da177e4 1014 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1da177e4 1015 if(!txdr->desc) {
2648345f 1016 /* Failed allocation, critical failure */
1da177e4
LT
1017 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1018 goto setup_tx_desc_die;
1019 }
1020
1021 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1022 /* give up */
2648345f
MC
1023 pci_free_consistent(pdev, txdr->size, txdr->desc,
1024 txdr->dma);
1da177e4
LT
1025 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1026 DPRINTK(PROBE, ERR,
2648345f
MC
1027 "Unable to allocate aligned memory "
1028 "for the transmit descriptor ring\n");
1da177e4
LT
1029 vfree(txdr->buffer_info);
1030 return -ENOMEM;
1031 } else {
2648345f 1032 /* Free old allocation, new allocation was successful */
1da177e4
LT
1033 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1034 }
1035 }
1036 memset(txdr->desc, 0, txdr->size);
1037
1038 txdr->next_to_use = 0;
1039 txdr->next_to_clean = 0;
1040
1041 return 0;
1042}
1043
1044/**
1045 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1046 * @adapter: board private structure
1047 *
1048 * Configure the Tx unit of the MAC after a reset.
1049 **/
1050
1051static void
1052e1000_configure_tx(struct e1000_adapter *adapter)
1053{
1054 uint64_t tdba = adapter->tx_ring.dma;
1055 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
1056 uint32_t tctl, tipg;
1057
1058 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1059 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
1060
1061 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
1062
1063 /* Setup the HW Tx Head and Tail descriptor pointers */
1064
1065 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1066 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1067
1068 /* Set the default values for the Tx Inter Packet Gap timer */
1069
1070 switch (adapter->hw.mac_type) {
1071 case e1000_82542_rev2_0:
1072 case e1000_82542_rev2_1:
1073 tipg = DEFAULT_82542_TIPG_IPGT;
1074 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1075 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1076 break;
1077 default:
1078 if(adapter->hw.media_type == e1000_media_type_fiber ||
1079 adapter->hw.media_type == e1000_media_type_internal_serdes)
1080 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1081 else
1082 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1083 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1084 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1085 }
1086 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
1087
1088 /* Set the Tx Interrupt Delay register */
1089
1090 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
1091 if(adapter->hw.mac_type >= e1000_82540)
1092 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1093
1094 /* Program the Transmit Control Register */
1095
1096 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1097
1098 tctl &= ~E1000_TCTL_CT;
1099 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1100 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1101
1102 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1103
1104 e1000_config_collision_dist(&adapter->hw);
1105
1106 /* Setup Transmit Descriptor Settings for eop descriptor */
1107 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1108 E1000_TXD_CMD_IFCS;
1109
1110 if(adapter->hw.mac_type < e1000_82543)
1111 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1112 else
1113 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1114
1115 /* Cache if we're 82544 running in PCI-X because we'll
1116 * need this to apply a workaround later in the send path. */
1117 if(adapter->hw.mac_type == e1000_82544 &&
1118 adapter->hw.bus_type == e1000_bus_type_pcix)
1119 adapter->pcix_82544 = 1;
1120}
1121
1122/**
1123 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1124 * @adapter: board private structure
1125 *
1126 * Returns 0 on success, negative on failure
1127 **/
1128
1129int
1130e1000_setup_rx_resources(struct e1000_adapter *adapter)
1131{
1132 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1133 struct pci_dev *pdev = adapter->pdev;
2d7edb92 1134 int size, desc_len;
1da177e4
LT
1135
1136 size = sizeof(struct e1000_buffer) * rxdr->count;
1137 rxdr->buffer_info = vmalloc(size);
1138 if(!rxdr->buffer_info) {
2648345f
MC
1139 DPRINTK(PROBE, ERR,
1140 "Unable to allocate memory for the receive descriptor ring\n");
1da177e4
LT
1141 return -ENOMEM;
1142 }
1143 memset(rxdr->buffer_info, 0, size);
1144
2d7edb92
MC
1145 size = sizeof(struct e1000_ps_page) * rxdr->count;
1146 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1147 if(!rxdr->ps_page) {
1148 vfree(rxdr->buffer_info);
1149 DPRINTK(PROBE, ERR,
1150 "Unable to allocate memory for the receive descriptor ring\n");
1151 return -ENOMEM;
1152 }
1153 memset(rxdr->ps_page, 0, size);
1154
1155 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1156 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1157 if(!rxdr->ps_page_dma) {
1158 vfree(rxdr->buffer_info);
1159 kfree(rxdr->ps_page);
1160 DPRINTK(PROBE, ERR,
1161 "Unable to allocate memory for the receive descriptor ring\n");
1162 return -ENOMEM;
1163 }
1164 memset(rxdr->ps_page_dma, 0, size);
1165
1166 if(adapter->hw.mac_type <= e1000_82547_rev_2)
1167 desc_len = sizeof(struct e1000_rx_desc);
1168 else
1169 desc_len = sizeof(union e1000_rx_desc_packet_split);
1170
1da177e4
LT
1171 /* Round up to nearest 4K */
1172
2d7edb92 1173 rxdr->size = rxdr->count * desc_len;
1da177e4
LT
1174 E1000_ROUNDUP(rxdr->size, 4096);
1175
1176 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1177
1178 if(!rxdr->desc) {
1179setup_rx_desc_die:
1da177e4 1180 vfree(rxdr->buffer_info);
2d7edb92
MC
1181 kfree(rxdr->ps_page);
1182 kfree(rxdr->ps_page_dma);
2648345f
MC
1183 DPRINTK(PROBE, ERR,
1184 "Unable to allocate memory for the receive descriptor ring\n");
1da177e4
LT
1185 return -ENOMEM;
1186 }
1187
2648345f 1188 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1189 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1190 void *olddesc = rxdr->desc;
1191 dma_addr_t olddma = rxdr->dma;
2648345f
MC
1192 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1193 "at %p\n", rxdr->size, rxdr->desc);
1194 /* Try again, without freeing the previous */
1da177e4 1195 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1da177e4 1196 if(!rxdr->desc) {
2648345f 1197 /* Failed allocation, critical failure */
1da177e4
LT
1198 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1199 goto setup_rx_desc_die;
1200 }
1201
1202 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1203 /* give up */
2648345f
MC
1204 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1205 rxdr->dma);
1da177e4 1206 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
2648345f
MC
1207 DPRINTK(PROBE, ERR,
1208 "Unable to allocate aligned memory "
1209 "for the receive descriptor ring\n");
1da177e4 1210 vfree(rxdr->buffer_info);
2d7edb92
MC
1211 kfree(rxdr->ps_page);
1212 kfree(rxdr->ps_page_dma);
1da177e4
LT
1213 return -ENOMEM;
1214 } else {
2648345f 1215 /* Free old allocation, new allocation was successful */
1da177e4
LT
1216 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1217 }
1218 }
1219 memset(rxdr->desc, 0, rxdr->size);
1220
1221 rxdr->next_to_clean = 0;
1222 rxdr->next_to_use = 0;
1223
1224 return 0;
1225}
1226
1227/**
2648345f 1228 * e1000_setup_rctl - configure the receive control registers
1da177e4
LT
1229 * @adapter: Board private structure
1230 **/
1231
1232static void
1233e1000_setup_rctl(struct e1000_adapter *adapter)
1234{
2d7edb92
MC
1235 uint32_t rctl, rfctl;
1236 uint32_t psrctl = 0;
1da177e4
LT
1237
1238 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1239
1240 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1241
1242 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1243 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1244 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1245
1246 if(adapter->hw.tbi_compatibility_on == 1)
1247 rctl |= E1000_RCTL_SBP;
1248 else
1249 rctl &= ~E1000_RCTL_SBP;
1250
2d7edb92
MC
1251 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1252 rctl &= ~E1000_RCTL_LPE;
1253 else
1254 rctl |= E1000_RCTL_LPE;
1255
1da177e4 1256 /* Setup buffer sizes */
868d5309 1257 if(adapter->hw.mac_type >= e1000_82571) {
2d7edb92
MC
1258 /* We can now specify buffers in 1K increments.
1259 * BSIZE and BSEX are ignored in this case. */
1260 rctl |= adapter->rx_buffer_len << 0x11;
1261 } else {
1262 rctl &= ~E1000_RCTL_SZ_4096;
1263 rctl |= E1000_RCTL_BSEX;
1264 switch (adapter->rx_buffer_len) {
1265 case E1000_RXBUFFER_2048:
1266 default:
1267 rctl |= E1000_RCTL_SZ_2048;
1268 rctl &= ~E1000_RCTL_BSEX;
1269 break;
1270 case E1000_RXBUFFER_4096:
1271 rctl |= E1000_RCTL_SZ_4096;
1272 break;
1273 case E1000_RXBUFFER_8192:
1274 rctl |= E1000_RCTL_SZ_8192;
1275 break;
1276 case E1000_RXBUFFER_16384:
1277 rctl |= E1000_RCTL_SZ_16384;
1278 break;
1279 }
1280 }
1281
1282#ifdef CONFIG_E1000_PACKET_SPLIT
1283 /* 82571 and greater support packet-split where the protocol
1284 * header is placed in skb->data and the packet data is
1285 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1286 * In the case of a non-split, skb->data is linearly filled,
1287 * followed by the page buffers. Therefore, skb->data is
1288 * sized to hold the largest protocol header.
1289 */
1290 adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
1291 && (adapter->netdev->mtu
1292 < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1293#endif
1294 if(adapter->rx_ps) {
1295 /* Configure extra packet-split registers */
1296 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1297 rfctl |= E1000_RFCTL_EXTEN;
1298 /* disable IPv6 packet split support */
1299 rfctl |= E1000_RFCTL_IPV6_DIS;
1300 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1301
1302 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1303
1304 psrctl |= adapter->rx_ps_bsize0 >>
1305 E1000_PSRCTL_BSIZE0_SHIFT;
1306 psrctl |= PAGE_SIZE >>
1307 E1000_PSRCTL_BSIZE1_SHIFT;
1308 psrctl |= PAGE_SIZE <<
1309 E1000_PSRCTL_BSIZE2_SHIFT;
1310 psrctl |= PAGE_SIZE <<
1311 E1000_PSRCTL_BSIZE3_SHIFT;
1312
1313 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1da177e4
LT
1314 }
1315
1316 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1317}
1318
1319/**
1320 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1321 * @adapter: board private structure
1322 *
1323 * Configure the Rx unit of the MAC after a reset.
1324 **/
1325
1326static void
1327e1000_configure_rx(struct e1000_adapter *adapter)
1328{
1329 uint64_t rdba = adapter->rx_ring.dma;
2d7edb92
MC
1330 uint32_t rdlen, rctl, rxcsum;
1331
1332 if(adapter->rx_ps) {
1333 rdlen = adapter->rx_ring.count *
1334 sizeof(union e1000_rx_desc_packet_split);
1335 adapter->clean_rx = e1000_clean_rx_irq_ps;
1336 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1337 } else {
1338 rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1339 adapter->clean_rx = e1000_clean_rx_irq;
1340 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1341 }
1da177e4
LT
1342
1343 /* disable receives while setting up the descriptors */
1344 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1345 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1346
1347 /* set the Receive Delay Timer Register */
1348 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1349
1350 if(adapter->hw.mac_type >= e1000_82540) {
1351 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1352 if(adapter->itr > 1)
1353 E1000_WRITE_REG(&adapter->hw, ITR,
1354 1000000000 / (adapter->itr * 256));
1355 }
1356
1357 /* Setup the Base and Length of the Rx Descriptor Ring */
1358 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1359 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1360
1361 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1362
1363 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1364 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1365 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1366
1367 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2d7edb92 1368 if(adapter->hw.mac_type >= e1000_82543) {
1da177e4 1369 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2d7edb92
MC
1370 if(adapter->rx_csum == TRUE) {
1371 rxcsum |= E1000_RXCSUM_TUOFL;
1372
868d5309 1373 /* Enable 82571 IPv4 payload checksum for UDP fragments
2d7edb92
MC
1374 * Must be used in conjunction with packet-split. */
1375 if((adapter->hw.mac_type > e1000_82547_rev_2) &&
1376 (adapter->rx_ps)) {
1377 rxcsum |= E1000_RXCSUM_IPPCSE;
1378 }
1379 } else {
1380 rxcsum &= ~E1000_RXCSUM_TUOFL;
1381 /* don't need to clear IPPCSE as it defaults to 0 */
1382 }
1da177e4
LT
1383 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1384 }
1385
2d7edb92
MC
1386 if (adapter->hw.mac_type == e1000_82573)
1387 E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
1388
1da177e4
LT
1389 /* Enable Receives */
1390 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1391}
1392
1393/**
1394 * e1000_free_tx_resources - Free Tx Resources
1395 * @adapter: board private structure
1396 *
1397 * Free all transmit software resources
1398 **/
1399
1400void
1401e1000_free_tx_resources(struct e1000_adapter *adapter)
1402{
1403 struct pci_dev *pdev = adapter->pdev;
1404
1405 e1000_clean_tx_ring(adapter);
1406
1407 vfree(adapter->tx_ring.buffer_info);
1408 adapter->tx_ring.buffer_info = NULL;
1409
1410 pci_free_consistent(pdev, adapter->tx_ring.size,
1411 adapter->tx_ring.desc, adapter->tx_ring.dma);
1412
1413 adapter->tx_ring.desc = NULL;
1414}
1415
1416static inline void
1417e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1418 struct e1000_buffer *buffer_info)
1419{
1da177e4 1420 if(buffer_info->dma) {
2648345f
MC
1421 pci_unmap_page(adapter->pdev,
1422 buffer_info->dma,
1423 buffer_info->length,
1424 PCI_DMA_TODEVICE);
1da177e4
LT
1425 buffer_info->dma = 0;
1426 }
1427 if(buffer_info->skb) {
1428 dev_kfree_skb_any(buffer_info->skb);
1429 buffer_info->skb = NULL;
1430 }
1431}
1432
1433/**
1434 * e1000_clean_tx_ring - Free Tx Buffers
1435 * @adapter: board private structure
1436 **/
1437
1438static void
1439e1000_clean_tx_ring(struct e1000_adapter *adapter)
1440{
1441 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1442 struct e1000_buffer *buffer_info;
1443 unsigned long size;
1444 unsigned int i;
1445
1446 /* Free all the Tx ring sk_buffs */
1447
1448 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2648345f 1449 e1000_unmap_and_free_tx_resource(adapter,
1da177e4
LT
1450 &adapter->previous_buffer_info);
1451 }
1452
1453 for(i = 0; i < tx_ring->count; i++) {
1454 buffer_info = &tx_ring->buffer_info[i];
1455 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1456 }
1457
1458 size = sizeof(struct e1000_buffer) * tx_ring->count;
1459 memset(tx_ring->buffer_info, 0, size);
1460
1461 /* Zero out the descriptor ring */
1462
1463 memset(tx_ring->desc, 0, tx_ring->size);
1464
1465 tx_ring->next_to_use = 0;
1466 tx_ring->next_to_clean = 0;
1467
1468 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1469 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1470}
1471
1472/**
1473 * e1000_free_rx_resources - Free Rx Resources
1474 * @adapter: board private structure
1475 *
1476 * Free all receive software resources
1477 **/
1478
1479void
1480e1000_free_rx_resources(struct e1000_adapter *adapter)
1481{
1482 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1483 struct pci_dev *pdev = adapter->pdev;
1484
1485 e1000_clean_rx_ring(adapter);
1486
1487 vfree(rx_ring->buffer_info);
1488 rx_ring->buffer_info = NULL;
2d7edb92
MC
1489 kfree(rx_ring->ps_page);
1490 rx_ring->ps_page = NULL;
1491 kfree(rx_ring->ps_page_dma);
1492 rx_ring->ps_page_dma = NULL;
1da177e4
LT
1493
1494 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1495
1496 rx_ring->desc = NULL;
1497}
1498
1499/**
1500 * e1000_clean_rx_ring - Free Rx Buffers
1501 * @adapter: board private structure
1502 **/
1503
1504static void
1505e1000_clean_rx_ring(struct e1000_adapter *adapter)
1506{
1507 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1508 struct e1000_buffer *buffer_info;
2d7edb92
MC
1509 struct e1000_ps_page *ps_page;
1510 struct e1000_ps_page_dma *ps_page_dma;
1da177e4
LT
1511 struct pci_dev *pdev = adapter->pdev;
1512 unsigned long size;
2d7edb92 1513 unsigned int i, j;
1da177e4
LT
1514
1515 /* Free all the Rx ring sk_buffs */
1516
1517 for(i = 0; i < rx_ring->count; i++) {
1518 buffer_info = &rx_ring->buffer_info[i];
1519 if(buffer_info->skb) {
2d7edb92
MC
1520 ps_page = &rx_ring->ps_page[i];
1521 ps_page_dma = &rx_ring->ps_page_dma[i];
1da177e4
LT
1522 pci_unmap_single(pdev,
1523 buffer_info->dma,
1524 buffer_info->length,
1525 PCI_DMA_FROMDEVICE);
1526
1527 dev_kfree_skb(buffer_info->skb);
1528 buffer_info->skb = NULL;
2d7edb92
MC
1529
1530 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1531 if(!ps_page->ps_page[j]) break;
1532 pci_unmap_single(pdev,
1533 ps_page_dma->ps_page_dma[j],
1534 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1535 ps_page_dma->ps_page_dma[j] = 0;
1536 put_page(ps_page->ps_page[j]);
1537 ps_page->ps_page[j] = NULL;
1538 }
1da177e4
LT
1539 }
1540 }
1541
1542 size = sizeof(struct e1000_buffer) * rx_ring->count;
1543 memset(rx_ring->buffer_info, 0, size);
2d7edb92
MC
1544 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1545 memset(rx_ring->ps_page, 0, size);
1546 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1547 memset(rx_ring->ps_page_dma, 0, size);
1da177e4
LT
1548
1549 /* Zero out the descriptor ring */
1550
1551 memset(rx_ring->desc, 0, rx_ring->size);
1552
1553 rx_ring->next_to_clean = 0;
1554 rx_ring->next_to_use = 0;
1555
1556 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1557 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1558}
1559
1560/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1561 * and memory write and invalidate disabled for certain operations
1562 */
1563static void
1564e1000_enter_82542_rst(struct e1000_adapter *adapter)
1565{
1566 struct net_device *netdev = adapter->netdev;
1567 uint32_t rctl;
1568
1569 e1000_pci_clear_mwi(&adapter->hw);
1570
1571 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1572 rctl |= E1000_RCTL_RST;
1573 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1574 E1000_WRITE_FLUSH(&adapter->hw);
1575 mdelay(5);
1576
1577 if(netif_running(netdev))
1578 e1000_clean_rx_ring(adapter);
1579}
1580
1581static void
1582e1000_leave_82542_rst(struct e1000_adapter *adapter)
1583{
1584 struct net_device *netdev = adapter->netdev;
1585 uint32_t rctl;
1586
1587 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1588 rctl &= ~E1000_RCTL_RST;
1589 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1590 E1000_WRITE_FLUSH(&adapter->hw);
1591 mdelay(5);
1592
1593 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1594 e1000_pci_set_mwi(&adapter->hw);
1595
1596 if(netif_running(netdev)) {
1597 e1000_configure_rx(adapter);
1598 e1000_alloc_rx_buffers(adapter);
1599 }
1600}
1601
1602/**
1603 * e1000_set_mac - Change the Ethernet Address of the NIC
1604 * @netdev: network interface device structure
1605 * @p: pointer to an address structure
1606 *
1607 * Returns 0 on success, negative on failure
1608 **/
1609
1610static int
1611e1000_set_mac(struct net_device *netdev, void *p)
1612{
60490fe0 1613 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1614 struct sockaddr *addr = p;
1615
1616 if(!is_valid_ether_addr(addr->sa_data))
1617 return -EADDRNOTAVAIL;
1618
1619 /* 82542 2.0 needs to be in reset to write receive address registers */
1620
1621 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1622 e1000_enter_82542_rst(adapter);
1623
1624 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1625 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1626
1627 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1628
868d5309
MC
1629 /* With 82571 controllers, LAA may be overwritten (with the default)
1630 * due to controller reset from the other port. */
1631 if (adapter->hw.mac_type == e1000_82571) {
1632 /* activate the work around */
1633 adapter->hw.laa_is_present = 1;
1634
1635 /* Hold a copy of the LAA in RAR[14] This is done so that
1636 * between the time RAR[0] gets clobbered and the time it
1637 * gets fixed (in e1000_watchdog), the actual LAA is in one
1638 * of the RARs and no incoming packets directed to this port
1639 * are dropped. Eventaully the LAA will be in RAR[0] and
1640 * RAR[14] */
1641 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
1642 E1000_RAR_ENTRIES - 1);
1643 }
1644
1da177e4
LT
1645 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1646 e1000_leave_82542_rst(adapter);
1647
1648 return 0;
1649}
1650
1651/**
1652 * e1000_set_multi - Multicast and Promiscuous mode set
1653 * @netdev: network interface device structure
1654 *
1655 * The set_multi entry point is called whenever the multicast address
1656 * list or the network interface flags are updated. This routine is
1657 * responsible for configuring the hardware for proper multicast,
1658 * promiscuous mode, and all-multi behavior.
1659 **/
1660
1661static void
1662e1000_set_multi(struct net_device *netdev)
1663{
60490fe0 1664 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1665 struct e1000_hw *hw = &adapter->hw;
1666 struct dev_mc_list *mc_ptr;
2648345f 1667 unsigned long flags;
1da177e4
LT
1668 uint32_t rctl;
1669 uint32_t hash_value;
868d5309 1670 int i, rar_entries = E1000_RAR_ENTRIES;
1da177e4
LT
1671
1672 spin_lock_irqsave(&adapter->tx_lock, flags);
868d5309
MC
1673 /* reserve RAR[14] for LAA over-write work-around */
1674 if (adapter->hw.mac_type == e1000_82571)
1675 rar_entries--;
1da177e4 1676
2648345f
MC
1677 /* Check for Promiscuous and All Multicast modes */
1678
1da177e4
LT
1679 rctl = E1000_READ_REG(hw, RCTL);
1680
1681 if(netdev->flags & IFF_PROMISC) {
1682 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1683 } else if(netdev->flags & IFF_ALLMULTI) {
1684 rctl |= E1000_RCTL_MPE;
1685 rctl &= ~E1000_RCTL_UPE;
1686 } else {
1687 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1688 }
1689
1690 E1000_WRITE_REG(hw, RCTL, rctl);
1691
1692 /* 82542 2.0 needs to be in reset to write receive address registers */
1693
1694 if(hw->mac_type == e1000_82542_rev2_0)
1695 e1000_enter_82542_rst(adapter);
1696
1697 /* load the first 14 multicast address into the exact filters 1-14
1698 * RAR 0 is used for the station MAC adddress
1699 * if there are not 14 addresses, go ahead and clear the filters
868d5309 1700 * -- with 82571 controllers only 0-13 entries are filled here
1da177e4
LT
1701 */
1702 mc_ptr = netdev->mc_list;
1703
868d5309
MC
1704 for(i = 1; i < rar_entries; i++) {
1705 if (mc_ptr) {
1da177e4
LT
1706 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1707 mc_ptr = mc_ptr->next;
1708 } else {
1709 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1710 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1711 }
1712 }
1713
1714 /* clear the old settings from the multicast hash table */
1715
1716 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1717 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1718
1719 /* load any remaining addresses into the hash table */
1720
1721 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1722 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1723 e1000_mta_set(hw, hash_value);
1724 }
1725
1726 if(hw->mac_type == e1000_82542_rev2_0)
1727 e1000_leave_82542_rst(adapter);
1728
1729 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1730}
1731
1732/* Need to wait a few seconds after link up to get diagnostic information from
1733 * the phy */
1734
1735static void
1736e1000_update_phy_info(unsigned long data)
1737{
1738 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1739 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1740}
1741
1742/**
1743 * e1000_82547_tx_fifo_stall - Timer Call-back
1744 * @data: pointer to adapter cast into an unsigned long
1745 **/
1746
1747static void
1748e1000_82547_tx_fifo_stall(unsigned long data)
1749{
1750 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1751 struct net_device *netdev = adapter->netdev;
1752 uint32_t tctl;
1753
1754 if(atomic_read(&adapter->tx_fifo_stall)) {
1755 if((E1000_READ_REG(&adapter->hw, TDT) ==
1756 E1000_READ_REG(&adapter->hw, TDH)) &&
1757 (E1000_READ_REG(&adapter->hw, TDFT) ==
1758 E1000_READ_REG(&adapter->hw, TDFH)) &&
1759 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1760 E1000_READ_REG(&adapter->hw, TDFHS))) {
1761 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1762 E1000_WRITE_REG(&adapter->hw, TCTL,
1763 tctl & ~E1000_TCTL_EN);
1764 E1000_WRITE_REG(&adapter->hw, TDFT,
1765 adapter->tx_head_addr);
1766 E1000_WRITE_REG(&adapter->hw, TDFH,
1767 adapter->tx_head_addr);
1768 E1000_WRITE_REG(&adapter->hw, TDFTS,
1769 adapter->tx_head_addr);
1770 E1000_WRITE_REG(&adapter->hw, TDFHS,
1771 adapter->tx_head_addr);
1772 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1773 E1000_WRITE_FLUSH(&adapter->hw);
1774
1775 adapter->tx_fifo_head = 0;
1776 atomic_set(&adapter->tx_fifo_stall, 0);
1777 netif_wake_queue(netdev);
1778 } else {
1779 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1780 }
1781 }
1782}
1783
1784/**
1785 * e1000_watchdog - Timer Call-back
1786 * @data: pointer to adapter cast into an unsigned long
1787 **/
1788static void
1789e1000_watchdog(unsigned long data)
1790{
1791 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1792
1793 /* Do the rest outside of interrupt context */
1794 schedule_work(&adapter->watchdog_task);
1795}
1796
1797static void
1798e1000_watchdog_task(struct e1000_adapter *adapter)
1799{
1800 struct net_device *netdev = adapter->netdev;
1801 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1802 uint32_t link;
1803
1804 e1000_check_for_link(&adapter->hw);
2d7edb92
MC
1805 if (adapter->hw.mac_type == e1000_82573) {
1806 e1000_enable_tx_pkt_filtering(&adapter->hw);
1807 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
1808 e1000_update_mng_vlan(adapter);
1809 }
1da177e4
LT
1810
1811 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1812 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1813 link = !adapter->hw.serdes_link_down;
1814 else
1815 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1816
1817 if(link) {
1818 if(!netif_carrier_ok(netdev)) {
1819 e1000_get_speed_and_duplex(&adapter->hw,
1820 &adapter->link_speed,
1821 &adapter->link_duplex);
1822
1823 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1824 adapter->link_speed,
1825 adapter->link_duplex == FULL_DUPLEX ?
1826 "Full Duplex" : "Half Duplex");
1827
1828 netif_carrier_on(netdev);
1829 netif_wake_queue(netdev);
1830 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1831 adapter->smartspeed = 0;
1832 }
1833 } else {
1834 if(netif_carrier_ok(netdev)) {
1835 adapter->link_speed = 0;
1836 adapter->link_duplex = 0;
1837 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1838 netif_carrier_off(netdev);
1839 netif_stop_queue(netdev);
1840 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1841 }
1842
1843 e1000_smartspeed(adapter);
1844 }
1845
1846 e1000_update_stats(adapter);
1847
1848 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1849 adapter->tpt_old = adapter->stats.tpt;
1850 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1851 adapter->colc_old = adapter->stats.colc;
1852
1853 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1854 adapter->gorcl_old = adapter->stats.gorcl;
1855 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1856 adapter->gotcl_old = adapter->stats.gotcl;
1857
1858 e1000_update_adaptive(&adapter->hw);
1859
1860 if(!netif_carrier_ok(netdev)) {
1861 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1862 /* We've lost link, so the controller stops DMA,
1863 * but we've got queued Tx work that's never going
1864 * to get done, so reset controller to flush Tx.
1865 * (Do the reset outside of interrupt context). */
1866 schedule_work(&adapter->tx_timeout_task);
1867 }
1868 }
1869
1870 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1871 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1872 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1873 * asymmetrical Tx or Rx gets ITR=8000; everyone
1874 * else is between 2000-8000. */
1875 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1876 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1877 adapter->gotcl - adapter->gorcl :
1878 adapter->gorcl - adapter->gotcl) / 10000;
1879 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1880 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1881 }
1882
1883 /* Cause software interrupt to ensure rx ring is cleaned */
1884 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1885
2648345f 1886 /* Force detection of hung controller every watchdog period */
1da177e4
LT
1887 adapter->detect_tx_hung = TRUE;
1888
868d5309
MC
1889 /* With 82571 controllers, LAA may be overwritten due to controller
1890 * reset from the other port. Set the appropriate LAA in RAR[0] */
1891 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
1892 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1893
1da177e4
LT
1894 /* Reset the timer */
1895 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1896}
1897
1898#define E1000_TX_FLAGS_CSUM 0x00000001
1899#define E1000_TX_FLAGS_VLAN 0x00000002
1900#define E1000_TX_FLAGS_TSO 0x00000004
2d7edb92 1901#define E1000_TX_FLAGS_IPV4 0x00000008
1da177e4
LT
1902#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1903#define E1000_TX_FLAGS_VLAN_SHIFT 16
1904
1905static inline int
1906e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1907{
1908#ifdef NETIF_F_TSO
1909 struct e1000_context_desc *context_desc;
1910 unsigned int i;
1911 uint32_t cmd_length = 0;
2d7edb92 1912 uint16_t ipcse = 0, tucse, mss;
1da177e4
LT
1913 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1914 int err;
1915
1916 if(skb_shinfo(skb)->tso_size) {
1917 if (skb_header_cloned(skb)) {
1918 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1919 if (err)
1920 return err;
1921 }
1922
1923 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1924 mss = skb_shinfo(skb)->tso_size;
2d7edb92
MC
1925 if(skb->protocol == ntohs(ETH_P_IP)) {
1926 skb->nh.iph->tot_len = 0;
1927 skb->nh.iph->check = 0;
1928 skb->h.th->check =
1929 ~csum_tcpudp_magic(skb->nh.iph->saddr,
1930 skb->nh.iph->daddr,
1931 0,
1932 IPPROTO_TCP,
1933 0);
1934 cmd_length = E1000_TXD_CMD_IP;
1935 ipcse = skb->h.raw - skb->data - 1;
1936#ifdef NETIF_F_TSO_IPV6
1937 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
1938 skb->nh.ipv6h->payload_len = 0;
1939 skb->h.th->check =
1940 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
1941 &skb->nh.ipv6h->daddr,
1942 0,
1943 IPPROTO_TCP,
1944 0);
1945 ipcse = 0;
1946#endif
1947 }
1da177e4
LT
1948 ipcss = skb->nh.raw - skb->data;
1949 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1da177e4
LT
1950 tucss = skb->h.raw - skb->data;
1951 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1952 tucse = 0;
1953
1954 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2d7edb92 1955 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1da177e4
LT
1956
1957 i = adapter->tx_ring.next_to_use;
1958 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1959
1960 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1961 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1962 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1963 context_desc->upper_setup.tcp_fields.tucss = tucss;
1964 context_desc->upper_setup.tcp_fields.tucso = tucso;
1965 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1966 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1967 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1968 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1969
1970 if(++i == adapter->tx_ring.count) i = 0;
1971 adapter->tx_ring.next_to_use = i;
1972
1973 return 1;
1974 }
1975#endif
1976
1977 return 0;
1978}
1979
1980static inline boolean_t
1981e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1982{
1983 struct e1000_context_desc *context_desc;
1984 unsigned int i;
1985 uint8_t css;
1986
1987 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1988 css = skb->h.raw - skb->data;
1989
1990 i = adapter->tx_ring.next_to_use;
1991 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1992
1993 context_desc->upper_setup.tcp_fields.tucss = css;
1994 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1995 context_desc->upper_setup.tcp_fields.tucse = 0;
1996 context_desc->tcp_seg_setup.data = 0;
1997 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1998
1999 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
2000 adapter->tx_ring.next_to_use = i;
2001
2002 return TRUE;
2003 }
2004
2005 return FALSE;
2006}
2007
2008#define E1000_MAX_TXD_PWR 12
2009#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2010
2011static inline int
2012e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
2013 unsigned int first, unsigned int max_per_txd,
2014 unsigned int nr_frags, unsigned int mss)
2015{
2016 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2017 struct e1000_buffer *buffer_info;
2018 unsigned int len = skb->len;
2019 unsigned int offset = 0, size, count = 0, i;
2020 unsigned int f;
2021 len -= skb->data_len;
2022
2023 i = tx_ring->next_to_use;
2024
2025 while(len) {
2026 buffer_info = &tx_ring->buffer_info[i];
2027 size = min(len, max_per_txd);
2028#ifdef NETIF_F_TSO
2029 /* Workaround for premature desc write-backs
2030 * in TSO mode. Append 4-byte sentinel desc */
2031 if(unlikely(mss && !nr_frags && size == len && size > 8))
2032 size -= 4;
2033#endif
97338bde
MC
2034 /* work-around for errata 10 and it applies
2035 * to all controllers in PCI-X mode
2036 * The fix is to make sure that the first descriptor of a
2037 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2038 */
2039 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2040 (size > 2015) && count == 0))
2041 size = 2015;
2042
1da177e4
LT
2043 /* Workaround for potential 82544 hang in PCI-X. Avoid
2044 * terminating buffers within evenly-aligned dwords. */
2045 if(unlikely(adapter->pcix_82544 &&
2046 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2047 size > 4))
2048 size -= 4;
2049
2050 buffer_info->length = size;
2051 buffer_info->dma =
2052 pci_map_single(adapter->pdev,
2053 skb->data + offset,
2054 size,
2055 PCI_DMA_TODEVICE);
2056 buffer_info->time_stamp = jiffies;
2057
2058 len -= size;
2059 offset += size;
2060 count++;
2061 if(unlikely(++i == tx_ring->count)) i = 0;
2062 }
2063
2064 for(f = 0; f < nr_frags; f++) {
2065 struct skb_frag_struct *frag;
2066
2067 frag = &skb_shinfo(skb)->frags[f];
2068 len = frag->size;
2069 offset = frag->page_offset;
2070
2071 while(len) {
2072 buffer_info = &tx_ring->buffer_info[i];
2073 size = min(len, max_per_txd);
2074#ifdef NETIF_F_TSO
2075 /* Workaround for premature desc write-backs
2076 * in TSO mode. Append 4-byte sentinel desc */
2077 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2078 size -= 4;
2079#endif
2080 /* Workaround for potential 82544 hang in PCI-X.
2081 * Avoid terminating buffers within evenly-aligned
2082 * dwords. */
2083 if(unlikely(adapter->pcix_82544 &&
2084 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2085 size > 4))
2086 size -= 4;
2087
2088 buffer_info->length = size;
2089 buffer_info->dma =
2090 pci_map_page(adapter->pdev,
2091 frag->page,
2092 offset,
2093 size,
2094 PCI_DMA_TODEVICE);
2095 buffer_info->time_stamp = jiffies;
2096
2097 len -= size;
2098 offset += size;
2099 count++;
2100 if(unlikely(++i == tx_ring->count)) i = 0;
2101 }
2102 }
2103
2104 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2105 tx_ring->buffer_info[i].skb = skb;
2106 tx_ring->buffer_info[first].next_to_watch = i;
2107
2108 return count;
2109}
2110
2111static inline void
2112e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
2113{
2114 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2115 struct e1000_tx_desc *tx_desc = NULL;
2116 struct e1000_buffer *buffer_info;
2117 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2118 unsigned int i;
2119
2120 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2121 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2122 E1000_TXD_CMD_TSE;
2d7edb92
MC
2123 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2124
2125 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2126 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
1da177e4
LT
2127 }
2128
2129 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2130 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2131 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2132 }
2133
2134 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2135 txd_lower |= E1000_TXD_CMD_VLE;
2136 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2137 }
2138
2139 i = tx_ring->next_to_use;
2140
2141 while(count--) {
2142 buffer_info = &tx_ring->buffer_info[i];
2143 tx_desc = E1000_TX_DESC(*tx_ring, i);
2144 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2145 tx_desc->lower.data =
2146 cpu_to_le32(txd_lower | buffer_info->length);
2147 tx_desc->upper.data = cpu_to_le32(txd_upper);
2148 if(unlikely(++i == tx_ring->count)) i = 0;
2149 }
2150
2151 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2152
2153 /* Force memory writes to complete before letting h/w
2154 * know there are new descriptors to fetch. (Only
2155 * applicable for weak-ordered memory model archs,
2156 * such as IA-64). */
2157 wmb();
2158
2159 tx_ring->next_to_use = i;
2160 E1000_WRITE_REG(&adapter->hw, TDT, i);
2161}
2162
2163/**
2164 * 82547 workaround to avoid controller hang in half-duplex environment.
2165 * The workaround is to avoid queuing a large packet that would span
2166 * the internal Tx FIFO ring boundary by notifying the stack to resend
2167 * the packet at a later time. This gives the Tx FIFO an opportunity to
2168 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2169 * to the beginning of the Tx FIFO.
2170 **/
2171
2172#define E1000_FIFO_HDR 0x10
2173#define E1000_82547_PAD_LEN 0x3E0
2174
2175static inline int
2176e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2177{
2178 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2179 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2180
2181 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2182
2183 if(adapter->link_duplex != HALF_DUPLEX)
2184 goto no_fifo_stall_required;
2185
2186 if(atomic_read(&adapter->tx_fifo_stall))
2187 return 1;
2188
2189 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2190 atomic_set(&adapter->tx_fifo_stall, 1);
2191 return 1;
2192 }
2193
2194no_fifo_stall_required:
2195 adapter->tx_fifo_head += skb_fifo_len;
2196 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2197 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2198 return 0;
2199}
2200
2d7edb92
MC
2201#define MINIMUM_DHCP_PACKET_SIZE 282
2202static inline int
2203e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2204{
2205 struct e1000_hw *hw = &adapter->hw;
2206 uint16_t length, offset;
2207 if(vlan_tx_tag_present(skb)) {
2208 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2209 ( adapter->hw.mng_cookie.status &
2210 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2211 return 0;
2212 }
2213 if(htons(ETH_P_IP) == skb->protocol) {
2214 const struct iphdr *ip = skb->nh.iph;
2215 if(IPPROTO_UDP == ip->protocol) {
2216 struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2217 if(ntohs(udp->dest) == 67) {
2218 offset = (uint8_t *)udp + 8 - skb->data;
2219 length = skb->len - offset;
2220
2221 return e1000_mng_write_dhcp_info(hw,
2222 (uint8_t *)udp + 8, length);
2223 }
2224 }
2225 } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2226 struct ethhdr *eth = (struct ethhdr *) skb->data;
2227 if((htons(ETH_P_IP) == eth->h_proto)) {
2228 const struct iphdr *ip =
2229 (struct iphdr *)((uint8_t *)skb->data+14);
2230 if(IPPROTO_UDP == ip->protocol) {
2231 struct udphdr *udp =
2232 (struct udphdr *)((uint8_t *)ip +
2233 (ip->ihl << 2));
2234 if(ntohs(udp->dest) == 67) {
2235 offset = (uint8_t *)udp + 8 - skb->data;
2236 length = skb->len - offset;
2237
2238 return e1000_mng_write_dhcp_info(hw,
2239 (uint8_t *)udp + 8,
2240 length);
2241 }
2242 }
2243 }
2244 }
2245 return 0;
2246}
2247
1da177e4
LT
2248#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2249static int
2250e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2251{
60490fe0 2252 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2253 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2254 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2255 unsigned int tx_flags = 0;
2256 unsigned int len = skb->len;
2257 unsigned long flags;
2258 unsigned int nr_frags = 0;
2259 unsigned int mss = 0;
2260 int count = 0;
2261 int tso;
2262 unsigned int f;
2263 len -= skb->data_len;
2264
2265 if(unlikely(skb->len <= 0)) {
2266 dev_kfree_skb_any(skb);
2267 return NETDEV_TX_OK;
2268 }
2269
2270#ifdef NETIF_F_TSO
2271 mss = skb_shinfo(skb)->tso_size;
2648345f 2272 /* The controller does a simple calculation to
1da177e4
LT
2273 * make sure there is enough room in the FIFO before
2274 * initiating the DMA for each buffer. The calc is:
2275 * 4 = ceil(buffer len/mss). To make sure we don't
2276 * overrun the FIFO, adjust the max buffer len if mss
2277 * drops. */
2278 if(mss) {
2279 max_per_txd = min(mss << 2, max_per_txd);
2280 max_txd_pwr = fls(max_per_txd) - 1;
2281 }
2282
2283 if((mss) || (skb->ip_summed == CHECKSUM_HW))
2284 count++;
2648345f 2285 count++;
1da177e4
LT
2286#else
2287 if(skb->ip_summed == CHECKSUM_HW)
2288 count++;
2289#endif
2290 count += TXD_USE_COUNT(len, max_txd_pwr);
2291
2292 if(adapter->pcix_82544)
2293 count++;
2294
97338bde
MC
2295 /* work-around for errata 10 and it applies to all controllers
2296 * in PCI-X mode, so add one more descriptor to the count
2297 */
2298 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2299 (len > 2015)))
2300 count++;
2301
1da177e4
LT
2302 nr_frags = skb_shinfo(skb)->nr_frags;
2303 for(f = 0; f < nr_frags; f++)
2304 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2305 max_txd_pwr);
2306 if(adapter->pcix_82544)
2307 count += nr_frags;
2308
2309 local_irq_save(flags);
2310 if (!spin_trylock(&adapter->tx_lock)) {
2311 /* Collision - tell upper layer to requeue */
2312 local_irq_restore(flags);
2313 return NETDEV_TX_LOCKED;
2314 }
868d5309
MC
2315#ifdef NETIF_F_TSO
2316 /* TSO Workaround for 82571/2 Controllers -- if skb->data
2317 * points to just header, pull a few bytes of payload from
2318 * frags into skb->data */
2319 if (skb_shinfo(skb)->tso_size) {
2320 uint8_t hdr_len;
2321 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2322 if (skb->data_len && (hdr_len < (skb->len - skb->data_len)) &&
2323 (adapter->hw.mac_type == e1000_82571 ||
2324 adapter->hw.mac_type == e1000_82572)) {
2325 unsigned int pull_size;
2326 pull_size = min((unsigned int)4, skb->data_len);
2327 if (!__pskb_pull_tail(skb, pull_size)) {
2328 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2329 dev_kfree_skb_any(skb);
2330 return -EFAULT;
2331 }
2332 }
2333 }
2334#endif
2335
2d7edb92
MC
2336 if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2337 e1000_transfer_dhcp_info(adapter, skb);
2338
1da177e4
LT
2339
2340 /* need: count + 2 desc gap to keep tail from touching
2341 * head, otherwise try next time */
2342 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
2343 netif_stop_queue(netdev);
2344 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2345 return NETDEV_TX_BUSY;
2346 }
2347
2348 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2349 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2350 netif_stop_queue(netdev);
2351 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2352 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2353 return NETDEV_TX_BUSY;
2354 }
2355 }
2356
2357 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2358 tx_flags |= E1000_TX_FLAGS_VLAN;
2359 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2360 }
2361
2362 first = adapter->tx_ring.next_to_use;
2363
2364 tso = e1000_tso(adapter, skb);
2365 if (tso < 0) {
2366 dev_kfree_skb_any(skb);
b2b3d824 2367 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1da177e4
LT
2368 return NETDEV_TX_OK;
2369 }
2370
2371 if (likely(tso))
2372 tx_flags |= E1000_TX_FLAGS_TSO;
2373 else if(likely(e1000_tx_csum(adapter, skb)))
2374 tx_flags |= E1000_TX_FLAGS_CSUM;
2375
2d7edb92 2376 /* Old method was to assume IPv4 packet by default if TSO was enabled.
868d5309 2377 * 82571 hardware supports TSO capabilities for IPv6 as well...
2d7edb92
MC
2378 * no longer assume, we must. */
2379 if(likely(skb->protocol == ntohs(ETH_P_IP)))
2380 tx_flags |= E1000_TX_FLAGS_IPV4;
2381
1da177e4
LT
2382 e1000_tx_queue(adapter,
2383 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2384 tx_flags);
2385
2386 netdev->trans_start = jiffies;
2387
2388 /* Make sure there is space in the ring for the next send. */
2389 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2390 netif_stop_queue(netdev);
2391
2392 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2393 return NETDEV_TX_OK;
2394}
2395
2396/**
2397 * e1000_tx_timeout - Respond to a Tx Hang
2398 * @netdev: network interface device structure
2399 **/
2400
2401static void
2402e1000_tx_timeout(struct net_device *netdev)
2403{
60490fe0 2404 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2405
2406 /* Do the reset outside of interrupt context */
2407 schedule_work(&adapter->tx_timeout_task);
2408}
2409
2410static void
2411e1000_tx_timeout_task(struct net_device *netdev)
2412{
60490fe0 2413 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2414
2415 e1000_down(adapter);
2416 e1000_up(adapter);
2417}
2418
2419/**
2420 * e1000_get_stats - Get System Network Statistics
2421 * @netdev: network interface device structure
2422 *
2423 * Returns the address of the device statistics structure.
2424 * The statistics are actually updated from the timer callback.
2425 **/
2426
2427static struct net_device_stats *
2428e1000_get_stats(struct net_device *netdev)
2429{
60490fe0 2430 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2431
2432 e1000_update_stats(adapter);
2433 return &adapter->net_stats;
2434}
2435
2436/**
2437 * e1000_change_mtu - Change the Maximum Transfer Unit
2438 * @netdev: network interface device structure
2439 * @new_mtu: new value for maximum frame size
2440 *
2441 * Returns 0 on success, negative on failure
2442 **/
2443
2444static int
2445e1000_change_mtu(struct net_device *netdev, int new_mtu)
2446{
60490fe0 2447 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2448 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2449
2450 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2451 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2452 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2453 return -EINVAL;
2454 }
2455
868d5309 2456#define MAX_STD_JUMBO_FRAME_SIZE 9234
2d7edb92 2457 /* might want this to be bigger enum check... */
868d5309
MC
2458 /* 82571 controllers limit jumbo frame size to 10500 bytes */
2459 if ((adapter->hw.mac_type == e1000_82571 ||
2460 adapter->hw.mac_type == e1000_82572) &&
2461 max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2462 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2463 "on 82571 and 82572 controllers.\n");
2464 return -EINVAL;
2465 }
2466
2467 if(adapter->hw.mac_type == e1000_82573 &&
2d7edb92
MC
2468 max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2469 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2470 "on 82573\n");
1da177e4 2471 return -EINVAL;
2d7edb92 2472 }
1da177e4 2473
2d7edb92
MC
2474 if(adapter->hw.mac_type > e1000_82547_rev_2) {
2475 adapter->rx_buffer_len = max_frame;
2476 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
1da177e4 2477 } else {
2d7edb92
MC
2478 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2479 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2480 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2481 "on 82542\n");
2482 return -EINVAL;
2483
2484 } else {
2485 if(max_frame <= E1000_RXBUFFER_2048) {
2486 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2487 } else if(max_frame <= E1000_RXBUFFER_4096) {
2488 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2489 } else if(max_frame <= E1000_RXBUFFER_8192) {
2490 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2491 } else if(max_frame <= E1000_RXBUFFER_16384) {
2492 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2493 }
2494 }
1da177e4
LT
2495 }
2496
2d7edb92
MC
2497 netdev->mtu = new_mtu;
2498
2499 if(netif_running(netdev)) {
1da177e4
LT
2500 e1000_down(adapter);
2501 e1000_up(adapter);
2502 }
2503
1da177e4
LT
2504 adapter->hw.max_frame_size = max_frame;
2505
2506 return 0;
2507}
2508
2509/**
2510 * e1000_update_stats - Update the board statistics counters
2511 * @adapter: board private structure
2512 **/
2513
2514void
2515e1000_update_stats(struct e1000_adapter *adapter)
2516{
2517 struct e1000_hw *hw = &adapter->hw;
2518 unsigned long flags;
2519 uint16_t phy_tmp;
2520
2521#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2522
2523 spin_lock_irqsave(&adapter->stats_lock, flags);
2524
2525 /* these counters are modified from e1000_adjust_tbi_stats,
2526 * called from the interrupt context, so they must only
2527 * be written while holding adapter->stats_lock
2528 */
2529
2530 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2531 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2532 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2533 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2534 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2535 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2536 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2537 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2538 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2539 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2540 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2541 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2542 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2543
2544 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2545 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2546 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2547 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2548 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2549 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2550 adapter->stats.dc += E1000_READ_REG(hw, DC);
2551 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2552 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2553 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2554 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2555 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2556 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2557 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2558 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2559 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2560 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2561 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2562 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2563 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2564 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2565 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2566 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2567 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2568 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2569 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2570 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2571 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2572 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2573 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2574 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2575 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2576 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2577 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2578
2579 /* used for adaptive IFS */
2580
2581 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2582 adapter->stats.tpt += hw->tx_packet_delta;
2583 hw->collision_delta = E1000_READ_REG(hw, COLC);
2584 adapter->stats.colc += hw->collision_delta;
2585
2586 if(hw->mac_type >= e1000_82543) {
2587 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2588 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2589 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2590 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2591 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2592 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2593 }
2d7edb92
MC
2594 if(hw->mac_type > e1000_82547_rev_2) {
2595 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2596 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2597 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2598 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2599 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2600 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2601 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2602 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
2603 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
2604 }
1da177e4
LT
2605
2606 /* Fill out the OS statistics structure */
2607
2608 adapter->net_stats.rx_packets = adapter->stats.gprc;
2609 adapter->net_stats.tx_packets = adapter->stats.gptc;
2610 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2611 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2612 adapter->net_stats.multicast = adapter->stats.mprc;
2613 adapter->net_stats.collisions = adapter->stats.colc;
2614
2615 /* Rx Errors */
2616
2617 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2618 adapter->stats.crcerrs + adapter->stats.algnerrc +
6d915757
MC
2619 adapter->stats.rlec + adapter->stats.mpc +
2620 adapter->stats.cexterr;
1da177e4
LT
2621 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2622 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2623 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2624 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2625 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2626
2627 /* Tx Errors */
2628
2629 adapter->net_stats.tx_errors = adapter->stats.ecol +
2630 adapter->stats.latecol;
2631 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2632 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2633 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2634
2635 /* Tx Dropped needs to be maintained elsewhere */
2636
2637 /* Phy Stats */
2638
2639 if(hw->media_type == e1000_media_type_copper) {
2640 if((adapter->link_speed == SPEED_1000) &&
2641 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2642 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2643 adapter->phy_stats.idle_errors += phy_tmp;
2644 }
2645
2646 if((hw->mac_type <= e1000_82546) &&
2647 (hw->phy_type == e1000_phy_m88) &&
2648 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2649 adapter->phy_stats.receive_errors += phy_tmp;
2650 }
2651
2652 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2653}
2654
2655/**
2656 * e1000_intr - Interrupt Handler
2657 * @irq: interrupt number
2658 * @data: pointer to a network interface device structure
2659 * @pt_regs: CPU registers structure
2660 **/
2661
2662static irqreturn_t
2663e1000_intr(int irq, void *data, struct pt_regs *regs)
2664{
2665 struct net_device *netdev = data;
60490fe0 2666 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2667 struct e1000_hw *hw = &adapter->hw;
2668 uint32_t icr = E1000_READ_REG(hw, ICR);
2669#ifndef CONFIG_E1000_NAPI
2670 unsigned int i;
2671#endif
2672
2673 if(unlikely(!icr))
2674 return IRQ_NONE; /* Not our interrupt */
2675
2676 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2677 hw->get_link_status = 1;
2678 mod_timer(&adapter->watchdog_timer, jiffies);
2679 }
2680
2681#ifdef CONFIG_E1000_NAPI
2682 if(likely(netif_rx_schedule_prep(netdev))) {
2683
2684 /* Disable interrupts and register for poll. The flush
2685 of the posted write is intentionally left out.
2686 */
2687
2688 atomic_inc(&adapter->irq_sem);
2689 E1000_WRITE_REG(hw, IMC, ~0);
2690 __netif_rx_schedule(netdev);
2691 }
2692#else
2693 /* Writing IMC and IMS is needed for 82547.
2694 Due to Hub Link bus being occupied, an interrupt
2695 de-assertion message is not able to be sent.
2696 When an interrupt assertion message is generated later,
2697 two messages are re-ordered and sent out.
2698 That causes APIC to think 82547 is in de-assertion
2699 state, while 82547 is in assertion state, resulting
2700 in dead lock. Writing IMC forces 82547 into
2701 de-assertion state.
2702 */
2703 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2704 atomic_inc(&adapter->irq_sem);
2648345f 2705 E1000_WRITE_REG(hw, IMC, ~0);
1da177e4
LT
2706 }
2707
2708 for(i = 0; i < E1000_MAX_INTR; i++)
2d7edb92 2709 if(unlikely(!adapter->clean_rx(adapter) &
1da177e4
LT
2710 !e1000_clean_tx_irq(adapter)))
2711 break;
2712
2713 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2714 e1000_irq_enable(adapter);
2715#endif
2716
2717 return IRQ_HANDLED;
2718}
2719
2720#ifdef CONFIG_E1000_NAPI
2721/**
2722 * e1000_clean - NAPI Rx polling callback
2723 * @adapter: board private structure
2724 **/
2725
2726static int
2727e1000_clean(struct net_device *netdev, int *budget)
2728{
60490fe0 2729 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
2730 int work_to_do = min(*budget, netdev->quota);
2731 int tx_cleaned;
2732 int work_done = 0;
2648345f 2733
1da177e4 2734 tx_cleaned = e1000_clean_tx_irq(adapter);
2d7edb92 2735 adapter->clean_rx(adapter, &work_done, work_to_do);
1da177e4
LT
2736
2737 *budget -= work_done;
2738 netdev->quota -= work_done;
2739
f0d11ed0 2740 if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
2b02893e 2741 /* If no Tx and not enough Rx work done, exit the polling mode */
1da177e4
LT
2742 netif_rx_complete(netdev);
2743 e1000_irq_enable(adapter);
2744 return 0;
2745 }
2746
2747 return 1;
2748}
2749
2750#endif
2751/**
2752 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2753 * @adapter: board private structure
2754 **/
2755
2756static boolean_t
2757e1000_clean_tx_irq(struct e1000_adapter *adapter)
2758{
2759 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2760 struct net_device *netdev = adapter->netdev;
2761 struct e1000_tx_desc *tx_desc, *eop_desc;
2762 struct e1000_buffer *buffer_info;
2763 unsigned int i, eop;
2764 boolean_t cleaned = FALSE;
2765
2766 i = tx_ring->next_to_clean;
2767 eop = tx_ring->buffer_info[i].next_to_watch;
2768 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2769
2770 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2701234f
MC
2771 /* Premature writeback of Tx descriptors clear (free buffers
2772 * and unmap pci_mapping) previous_buffer_info */
1da177e4 2773 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2701234f 2774 e1000_unmap_and_free_tx_resource(adapter,
1da177e4
LT
2775 &adapter->previous_buffer_info);
2776 }
2777
2778 for(cleaned = FALSE; !cleaned; ) {
2779 tx_desc = E1000_TX_DESC(*tx_ring, i);
2780 buffer_info = &tx_ring->buffer_info[i];
2781 cleaned = (i == eop);
2782
2701234f
MC
2783#ifdef NETIF_F_TSO
2784 if (!(netdev->features & NETIF_F_TSO)) {
2785#endif
2786 e1000_unmap_and_free_tx_resource(adapter,
2787 buffer_info);
2788#ifdef NETIF_F_TSO
1da177e4 2789 } else {
2701234f
MC
2790 if (cleaned) {
2791 memcpy(&adapter->previous_buffer_info,
2792 buffer_info,
2793 sizeof(struct e1000_buffer));
2794 memset(buffer_info, 0,
2795 sizeof(struct e1000_buffer));
2796 } else {
2797 e1000_unmap_and_free_tx_resource(
2798 adapter, buffer_info);
2799 }
1da177e4 2800 }
2701234f 2801#endif
1da177e4
LT
2802
2803 tx_desc->buffer_addr = 0;
2804 tx_desc->lower.data = 0;
2805 tx_desc->upper.data = 0;
2806
1da177e4
LT
2807 if(unlikely(++i == tx_ring->count)) i = 0;
2808 }
2809
2810 eop = tx_ring->buffer_info[i].next_to_watch;
2811 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2812 }
2813
2814 tx_ring->next_to_clean = i;
2815
2816 spin_lock(&adapter->tx_lock);
2817
2818 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2819 netif_carrier_ok(netdev)))
2820 netif_wake_queue(netdev);
2821
2822 spin_unlock(&adapter->tx_lock);
1da177e4 2823 if(adapter->detect_tx_hung) {
2648345f
MC
2824
2825 /* Detect a transmit hang in hardware, this serializes the
1da177e4
LT
2826 * check with the clearing of time_stamp and movement of i */
2827 adapter->detect_tx_hung = FALSE;
70b8f1e1
MC
2828 if (tx_ring->buffer_info[i].dma &&
2829 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
2830 && !(E1000_READ_REG(&adapter->hw, STATUS) &
2831 E1000_STATUS_TXOFF)) {
2832
2833 /* detected Tx unit hang */
2834 i = tx_ring->next_to_clean;
2835 eop = tx_ring->buffer_info[i].next_to_watch;
2836 eop_desc = E1000_TX_DESC(*tx_ring, eop);
c6963ef5 2837 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
70b8f1e1
MC
2838 " TDH <%x>\n"
2839 " TDT <%x>\n"
2840 " next_to_use <%x>\n"
2841 " next_to_clean <%x>\n"
2842 "buffer_info[next_to_clean]\n"
b4ee21f4 2843 " dma <%llx>\n"
70b8f1e1
MC
2844 " time_stamp <%lx>\n"
2845 " next_to_watch <%x>\n"
2846 " jiffies <%lx>\n"
2847 " next_to_watch.status <%x>\n",
2848 E1000_READ_REG(&adapter->hw, TDH),
2849 E1000_READ_REG(&adapter->hw, TDT),
2850 tx_ring->next_to_use,
2851 i,
b4ee21f4 2852 (unsigned long long)tx_ring->buffer_info[i].dma,
70b8f1e1
MC
2853 tx_ring->buffer_info[i].time_stamp,
2854 eop,
2855 jiffies,
2856 eop_desc->upper.fields.status);
1da177e4 2857 netif_stop_queue(netdev);
70b8f1e1 2858 }
1da177e4 2859 }
2701234f
MC
2860#ifdef NETIF_F_TSO
2861
2862 if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
2863 time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
2864 e1000_unmap_and_free_tx_resource(
2865 adapter, &adapter->previous_buffer_info);
1da177e4 2866
2701234f 2867#endif
1da177e4
LT
2868 return cleaned;
2869}
2870
2871/**
2872 * e1000_rx_checksum - Receive Checksum Offload for 82543
2d7edb92
MC
2873 * @adapter: board private structure
2874 * @status_err: receive descriptor status and error fields
2875 * @csum: receive descriptor csum field
2876 * @sk_buff: socket buffer with received data
1da177e4
LT
2877 **/
2878
2879static inline void
2880e1000_rx_checksum(struct e1000_adapter *adapter,
2d7edb92
MC
2881 uint32_t status_err, uint32_t csum,
2882 struct sk_buff *skb)
1da177e4 2883{
2d7edb92
MC
2884 uint16_t status = (uint16_t)status_err;
2885 uint8_t errors = (uint8_t)(status_err >> 24);
2886 skb->ip_summed = CHECKSUM_NONE;
2887
1da177e4 2888 /* 82543 or newer only */
2d7edb92 2889 if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
1da177e4 2890 /* Ignore Checksum bit is set */
2d7edb92
MC
2891 if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
2892 /* TCP/UDP checksum error bit is set */
2893 if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
1da177e4 2894 /* let the stack verify checksum errors */
1da177e4 2895 adapter->hw_csum_err++;
2d7edb92
MC
2896 return;
2897 }
2898 /* TCP/UDP Checksum has not been calculated */
2899 if(adapter->hw.mac_type <= e1000_82547_rev_2) {
2900 if(!(status & E1000_RXD_STAT_TCPCS))
2901 return;
1da177e4 2902 } else {
2d7edb92
MC
2903 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
2904 return;
2905 }
2906 /* It must be a TCP or UDP packet with a valid checksum */
2907 if (likely(status & E1000_RXD_STAT_TCPCS)) {
1da177e4
LT
2908 /* TCP checksum is good */
2909 skb->ip_summed = CHECKSUM_UNNECESSARY;
2d7edb92
MC
2910 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
2911 /* IP fragment with UDP payload */
2912 /* Hardware complements the payload checksum, so we undo it
2913 * and then put the value in host order for further stack use.
2914 */
2915 csum = ntohl(csum ^ 0xFFFF);
2916 skb->csum = csum;
2917 skb->ip_summed = CHECKSUM_HW;
1da177e4 2918 }
2d7edb92 2919 adapter->hw_csum_good++;
1da177e4
LT
2920}
2921
2922/**
2d7edb92 2923 * e1000_clean_rx_irq - Send received data up the network stack; legacy
1da177e4
LT
2924 * @adapter: board private structure
2925 **/
2926
2927static boolean_t
2928#ifdef CONFIG_E1000_NAPI
2929e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2930 int work_to_do)
2931#else
2932e1000_clean_rx_irq(struct e1000_adapter *adapter)
2933#endif
2934{
2935 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2936 struct net_device *netdev = adapter->netdev;
2937 struct pci_dev *pdev = adapter->pdev;
2938 struct e1000_rx_desc *rx_desc;
2939 struct e1000_buffer *buffer_info;
2940 struct sk_buff *skb;
2941 unsigned long flags;
2942 uint32_t length;
2943 uint8_t last_byte;
2944 unsigned int i;
2945 boolean_t cleaned = FALSE;
2946
2947 i = rx_ring->next_to_clean;
2948 rx_desc = E1000_RX_DESC(*rx_ring, i);
2949
2950 while(rx_desc->status & E1000_RXD_STAT_DD) {
2951 buffer_info = &rx_ring->buffer_info[i];
2952#ifdef CONFIG_E1000_NAPI
2953 if(*work_done >= work_to_do)
2954 break;
2955 (*work_done)++;
2956#endif
2957 cleaned = TRUE;
2958
2959 pci_unmap_single(pdev,
2960 buffer_info->dma,
2961 buffer_info->length,
2962 PCI_DMA_FROMDEVICE);
2963
2964 skb = buffer_info->skb;
2965 length = le16_to_cpu(rx_desc->length);
2966
2967 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2968 /* All receives must fit into a single buffer */
2969 E1000_DBG("%s: Receive packet consumed multiple"
2648345f 2970 " buffers\n", netdev->name);
1da177e4
LT
2971 dev_kfree_skb_irq(skb);
2972 goto next_desc;
2973 }
2974
2975 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2976 last_byte = *(skb->data + length - 1);
2977 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2978 rx_desc->errors, length, last_byte)) {
2979 spin_lock_irqsave(&adapter->stats_lock, flags);
2980 e1000_tbi_adjust_stats(&adapter->hw,
2981 &adapter->stats,
2982 length, skb->data);
2983 spin_unlock_irqrestore(&adapter->stats_lock,
2984 flags);
2985 length--;
2986 } else {
2987 dev_kfree_skb_irq(skb);
2988 goto next_desc;
2989 }
2990 }
2991
2992 /* Good Receive */
2993 skb_put(skb, length - ETHERNET_FCS_SIZE);
2994
2995 /* Receive Checksum Offload */
2d7edb92
MC
2996 e1000_rx_checksum(adapter,
2997 (uint32_t)(rx_desc->status) |
2998 ((uint32_t)(rx_desc->errors) << 24),
2999 rx_desc->csum, skb);
1da177e4
LT
3000 skb->protocol = eth_type_trans(skb, netdev);
3001#ifdef CONFIG_E1000_NAPI
3002 if(unlikely(adapter->vlgrp &&
3003 (rx_desc->status & E1000_RXD_STAT_VP))) {
3004 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2d7edb92
MC
3005 le16_to_cpu(rx_desc->special) &
3006 E1000_RXD_SPC_VLAN_MASK);
1da177e4
LT
3007 } else {
3008 netif_receive_skb(skb);
3009 }
3010#else /* CONFIG_E1000_NAPI */
3011 if(unlikely(adapter->vlgrp &&
3012 (rx_desc->status & E1000_RXD_STAT_VP))) {
3013 vlan_hwaccel_rx(skb, adapter->vlgrp,
3014 le16_to_cpu(rx_desc->special) &
3015 E1000_RXD_SPC_VLAN_MASK);
3016 } else {
3017 netif_rx(skb);
3018 }
3019#endif /* CONFIG_E1000_NAPI */
3020 netdev->last_rx = jiffies;
3021
3022next_desc:
3023 rx_desc->status = 0;
3024 buffer_info->skb = NULL;
3025 if(unlikely(++i == rx_ring->count)) i = 0;
3026
3027 rx_desc = E1000_RX_DESC(*rx_ring, i);
3028 }
1da177e4 3029 rx_ring->next_to_clean = i;
2d7edb92
MC
3030 adapter->alloc_rx_buf(adapter);
3031
3032 return cleaned;
3033}
3034
3035/**
3036 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3037 * @adapter: board private structure
3038 **/
3039
3040static boolean_t
3041#ifdef CONFIG_E1000_NAPI
3042e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
3043 int work_to_do)
3044#else
3045e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
3046#endif
3047{
3048 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3049 union e1000_rx_desc_packet_split *rx_desc;
3050 struct net_device *netdev = adapter->netdev;
3051 struct pci_dev *pdev = adapter->pdev;
3052 struct e1000_buffer *buffer_info;
3053 struct e1000_ps_page *ps_page;
3054 struct e1000_ps_page_dma *ps_page_dma;
3055 struct sk_buff *skb;
3056 unsigned int i, j;
3057 uint32_t length, staterr;
3058 boolean_t cleaned = FALSE;
3059
3060 i = rx_ring->next_to_clean;
3061 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
683a38f3 3062 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
2d7edb92
MC
3063
3064 while(staterr & E1000_RXD_STAT_DD) {
3065 buffer_info = &rx_ring->buffer_info[i];
3066 ps_page = &rx_ring->ps_page[i];
3067 ps_page_dma = &rx_ring->ps_page_dma[i];
3068#ifdef CONFIG_E1000_NAPI
3069 if(unlikely(*work_done >= work_to_do))
3070 break;
3071 (*work_done)++;
3072#endif
3073 cleaned = TRUE;
3074 pci_unmap_single(pdev, buffer_info->dma,
3075 buffer_info->length,
3076 PCI_DMA_FROMDEVICE);
3077
3078 skb = buffer_info->skb;
3079
3080 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3081 E1000_DBG("%s: Packet Split buffers didn't pick up"
3082 " the full packet\n", netdev->name);
3083 dev_kfree_skb_irq(skb);
3084 goto next_desc;
3085 }
1da177e4 3086
2d7edb92
MC
3087 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3088 dev_kfree_skb_irq(skb);
3089 goto next_desc;
3090 }
3091
3092 length = le16_to_cpu(rx_desc->wb.middle.length0);
3093
3094 if(unlikely(!length)) {
3095 E1000_DBG("%s: Last part of the packet spanning"
3096 " multiple descriptors\n", netdev->name);
3097 dev_kfree_skb_irq(skb);
3098 goto next_desc;
3099 }
3100
3101 /* Good Receive */
3102 skb_put(skb, length);
3103
3104 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3105 if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3106 break;
3107
3108 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3109 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3110 ps_page_dma->ps_page_dma[j] = 0;
3111 skb_shinfo(skb)->frags[j].page =
3112 ps_page->ps_page[j];
3113 ps_page->ps_page[j] = NULL;
3114 skb_shinfo(skb)->frags[j].page_offset = 0;
3115 skb_shinfo(skb)->frags[j].size = length;
3116 skb_shinfo(skb)->nr_frags++;
3117 skb->len += length;
3118 skb->data_len += length;
3119 }
3120
3121 e1000_rx_checksum(adapter, staterr,
3122 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3123 skb->protocol = eth_type_trans(skb, netdev);
3124
3125#ifdef HAVE_RX_ZERO_COPY
3126 if(likely(rx_desc->wb.upper.header_status &
3127 E1000_RXDPS_HDRSTAT_HDRSP))
3128 skb_shinfo(skb)->zero_copy = TRUE;
3129#endif
3130#ifdef CONFIG_E1000_NAPI
3131 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3132 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
683a38f3
MC
3133 le16_to_cpu(rx_desc->wb.middle.vlan) &
3134 E1000_RXD_SPC_VLAN_MASK);
2d7edb92
MC
3135 } else {
3136 netif_receive_skb(skb);
3137 }
3138#else /* CONFIG_E1000_NAPI */
3139 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3140 vlan_hwaccel_rx(skb, adapter->vlgrp,
683a38f3
MC
3141 le16_to_cpu(rx_desc->wb.middle.vlan) &
3142 E1000_RXD_SPC_VLAN_MASK);
2d7edb92
MC
3143 } else {
3144 netif_rx(skb);
3145 }
3146#endif /* CONFIG_E1000_NAPI */
3147 netdev->last_rx = jiffies;
3148
3149next_desc:
3150 rx_desc->wb.middle.status_error &= ~0xFF;
3151 buffer_info->skb = NULL;
3152 if(unlikely(++i == rx_ring->count)) i = 0;
3153
3154 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
683a38f3 3155 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
2d7edb92
MC
3156 }
3157 rx_ring->next_to_clean = i;
3158 adapter->alloc_rx_buf(adapter);
1da177e4
LT
3159
3160 return cleaned;
3161}
3162
3163/**
2d7edb92 3164 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
1da177e4
LT
3165 * @adapter: address of board private structure
3166 **/
3167
3168static void
3169e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
3170{
3171 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3172 struct net_device *netdev = adapter->netdev;
3173 struct pci_dev *pdev = adapter->pdev;
3174 struct e1000_rx_desc *rx_desc;
3175 struct e1000_buffer *buffer_info;
3176 struct sk_buff *skb;
2648345f
MC
3177 unsigned int i;
3178 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
1da177e4
LT
3179
3180 i = rx_ring->next_to_use;
3181 buffer_info = &rx_ring->buffer_info[i];
3182
3183 while(!buffer_info->skb) {
1da177e4 3184 skb = dev_alloc_skb(bufsz);
2648345f 3185
1da177e4
LT
3186 if(unlikely(!skb)) {
3187 /* Better luck next round */
3188 break;
3189 }
3190
2648345f 3191 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
3192 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3193 struct sk_buff *oldskb = skb;
2648345f
MC
3194 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3195 "at %p\n", bufsz, skb->data);
3196 /* Try again, without freeing the previous */
1da177e4 3197 skb = dev_alloc_skb(bufsz);
2648345f 3198 /* Failed allocation, critical failure */
1da177e4
LT
3199 if (!skb) {
3200 dev_kfree_skb(oldskb);
3201 break;
3202 }
2648345f 3203
1da177e4
LT
3204 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3205 /* give up */
3206 dev_kfree_skb(skb);
3207 dev_kfree_skb(oldskb);
3208 break; /* while !buffer_info->skb */
3209 } else {
2648345f 3210 /* Use new allocation */
1da177e4
LT
3211 dev_kfree_skb(oldskb);
3212 }
3213 }
1da177e4
LT
3214 /* Make buffer alignment 2 beyond a 16 byte boundary
3215 * this will result in a 16 byte aligned IP header after
3216 * the 14 byte MAC header is removed
3217 */
3218 skb_reserve(skb, NET_IP_ALIGN);
3219
3220 skb->dev = netdev;
3221
3222 buffer_info->skb = skb;
3223 buffer_info->length = adapter->rx_buffer_len;
3224 buffer_info->dma = pci_map_single(pdev,
3225 skb->data,
3226 adapter->rx_buffer_len,
3227 PCI_DMA_FROMDEVICE);
3228
2648345f
MC
3229 /* Fix for errata 23, can't cross 64kB boundary */
3230 if (!e1000_check_64k_bound(adapter,
3231 (void *)(unsigned long)buffer_info->dma,
3232 adapter->rx_buffer_len)) {
3233 DPRINTK(RX_ERR, ERR,
3234 "dma align check failed: %u bytes at %p\n",
3235 adapter->rx_buffer_len,
3236 (void *)(unsigned long)buffer_info->dma);
1da177e4
LT
3237 dev_kfree_skb(skb);
3238 buffer_info->skb = NULL;
3239
2648345f 3240 pci_unmap_single(pdev, buffer_info->dma,
1da177e4
LT
3241 adapter->rx_buffer_len,
3242 PCI_DMA_FROMDEVICE);
3243
3244 break; /* while !buffer_info->skb */
3245 }
1da177e4
LT
3246 rx_desc = E1000_RX_DESC(*rx_ring, i);
3247 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3248
3249 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3250 /* Force memory writes to complete before letting h/w
3251 * know there are new descriptors to fetch. (Only
3252 * applicable for weak-ordered memory model archs,
3253 * such as IA-64). */
3254 wmb();
1da177e4
LT
3255 E1000_WRITE_REG(&adapter->hw, RDT, i);
3256 }
3257
3258 if(unlikely(++i == rx_ring->count)) i = 0;
3259 buffer_info = &rx_ring->buffer_info[i];
3260 }
3261
3262 rx_ring->next_to_use = i;
3263}
3264
2d7edb92
MC
3265/**
3266 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3267 * @adapter: address of board private structure
3268 **/
3269
3270static void
3271e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
3272{
3273 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3274 struct net_device *netdev = adapter->netdev;
3275 struct pci_dev *pdev = adapter->pdev;
3276 union e1000_rx_desc_packet_split *rx_desc;
3277 struct e1000_buffer *buffer_info;
3278 struct e1000_ps_page *ps_page;
3279 struct e1000_ps_page_dma *ps_page_dma;
3280 struct sk_buff *skb;
3281 unsigned int i, j;
3282
3283 i = rx_ring->next_to_use;
3284 buffer_info = &rx_ring->buffer_info[i];
3285 ps_page = &rx_ring->ps_page[i];
3286 ps_page_dma = &rx_ring->ps_page_dma[i];
3287
3288 while(!buffer_info->skb) {
3289 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3290
3291 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3292 if(unlikely(!ps_page->ps_page[j])) {
3293 ps_page->ps_page[j] =
3294 alloc_page(GFP_ATOMIC);
3295 if(unlikely(!ps_page->ps_page[j]))
3296 goto no_buffers;
3297 ps_page_dma->ps_page_dma[j] =
3298 pci_map_page(pdev,
3299 ps_page->ps_page[j],
3300 0, PAGE_SIZE,
3301 PCI_DMA_FROMDEVICE);
3302 }
3303 /* Refresh the desc even if buffer_addrs didn't
3304 * change because each write-back erases this info.
3305 */
3306 rx_desc->read.buffer_addr[j+1] =
3307 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3308 }
3309
3310 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3311
3312 if(unlikely(!skb))
3313 break;
3314
3315 /* Make buffer alignment 2 beyond a 16 byte boundary
3316 * this will result in a 16 byte aligned IP header after
3317 * the 14 byte MAC header is removed
3318 */
3319 skb_reserve(skb, NET_IP_ALIGN);
3320
3321 skb->dev = netdev;
3322
3323 buffer_info->skb = skb;
3324 buffer_info->length = adapter->rx_ps_bsize0;
3325 buffer_info->dma = pci_map_single(pdev, skb->data,
3326 adapter->rx_ps_bsize0,
3327 PCI_DMA_FROMDEVICE);
3328
3329 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3330
3331 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3332 /* Force memory writes to complete before letting h/w
3333 * know there are new descriptors to fetch. (Only
3334 * applicable for weak-ordered memory model archs,
3335 * such as IA-64). */
3336 wmb();
3337 /* Hardware increments by 16 bytes, but packet split
3338 * descriptors are 32 bytes...so we increment tail
3339 * twice as much.
3340 */
3341 E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
3342 }
3343
3344 if(unlikely(++i == rx_ring->count)) i = 0;
3345 buffer_info = &rx_ring->buffer_info[i];
3346 ps_page = &rx_ring->ps_page[i];
3347 ps_page_dma = &rx_ring->ps_page_dma[i];
3348 }
3349
3350no_buffers:
3351 rx_ring->next_to_use = i;
3352}
3353
1da177e4
LT
3354/**
3355 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3356 * @adapter:
3357 **/
3358
3359static void
3360e1000_smartspeed(struct e1000_adapter *adapter)
3361{
3362 uint16_t phy_status;
3363 uint16_t phy_ctrl;
3364
3365 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3366 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3367 return;
3368
3369 if(adapter->smartspeed == 0) {
3370 /* If Master/Slave config fault is asserted twice,
3371 * we assume back-to-back */
3372 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3373 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3374 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3375 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3376 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3377 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3378 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3379 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3380 phy_ctrl);
3381 adapter->smartspeed++;
3382 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3383 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3384 &phy_ctrl)) {
3385 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3386 MII_CR_RESTART_AUTO_NEG);
3387 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3388 phy_ctrl);
3389 }
3390 }
3391 return;
3392 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3393 /* If still no link, perhaps using 2/3 pair cable */
3394 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3395 phy_ctrl |= CR_1000T_MS_ENABLE;
3396 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3397 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3398 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3399 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3400 MII_CR_RESTART_AUTO_NEG);
3401 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3402 }
3403 }
3404 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3405 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3406 adapter->smartspeed = 0;
3407}
3408
3409/**
3410 * e1000_ioctl -
3411 * @netdev:
3412 * @ifreq:
3413 * @cmd:
3414 **/
3415
3416static int
3417e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3418{
3419 switch (cmd) {
3420 case SIOCGMIIPHY:
3421 case SIOCGMIIREG:
3422 case SIOCSMIIREG:
3423 return e1000_mii_ioctl(netdev, ifr, cmd);
3424 default:
3425 return -EOPNOTSUPP;
3426 }
3427}
3428
3429/**
3430 * e1000_mii_ioctl -
3431 * @netdev:
3432 * @ifreq:
3433 * @cmd:
3434 **/
3435
3436static int
3437e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3438{
60490fe0 3439 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3440 struct mii_ioctl_data *data = if_mii(ifr);
3441 int retval;
3442 uint16_t mii_reg;
3443 uint16_t spddplx;
97876fc6 3444 unsigned long flags;
1da177e4
LT
3445
3446 if(adapter->hw.media_type != e1000_media_type_copper)
3447 return -EOPNOTSUPP;
3448
3449 switch (cmd) {
3450 case SIOCGMIIPHY:
3451 data->phy_id = adapter->hw.phy_addr;
3452 break;
3453 case SIOCGMIIREG:
97876fc6 3454 if(!capable(CAP_NET_ADMIN))
1da177e4 3455 return -EPERM;
97876fc6
MC
3456 spin_lock_irqsave(&adapter->stats_lock, flags);
3457 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3458 &data->val_out)) {
3459 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 3460 return -EIO;
97876fc6
MC
3461 }
3462 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
3463 break;
3464 case SIOCSMIIREG:
97876fc6 3465 if(!capable(CAP_NET_ADMIN))
1da177e4 3466 return -EPERM;
97876fc6 3467 if(data->reg_num & ~(0x1F))
1da177e4
LT
3468 return -EFAULT;
3469 mii_reg = data->val_in;
97876fc6
MC
3470 spin_lock_irqsave(&adapter->stats_lock, flags);
3471 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3472 mii_reg)) {
3473 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 3474 return -EIO;
97876fc6
MC
3475 }
3476 if(adapter->hw.phy_type == e1000_phy_m88) {
1da177e4
LT
3477 switch (data->reg_num) {
3478 case PHY_CTRL:
3479 if(mii_reg & MII_CR_POWER_DOWN)
3480 break;
3481 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3482 adapter->hw.autoneg = 1;
3483 adapter->hw.autoneg_advertised = 0x2F;
3484 } else {
3485 if (mii_reg & 0x40)
3486 spddplx = SPEED_1000;
3487 else if (mii_reg & 0x2000)
3488 spddplx = SPEED_100;
3489 else
3490 spddplx = SPEED_10;
3491 spddplx += (mii_reg & 0x100)
3492 ? FULL_DUPLEX :
3493 HALF_DUPLEX;
3494 retval = e1000_set_spd_dplx(adapter,
3495 spddplx);
97876fc6
MC
3496 if(retval) {
3497 spin_unlock_irqrestore(
3498 &adapter->stats_lock,
3499 flags);
1da177e4 3500 return retval;
97876fc6 3501 }
1da177e4
LT
3502 }
3503 if(netif_running(adapter->netdev)) {
3504 e1000_down(adapter);
3505 e1000_up(adapter);
3506 } else
3507 e1000_reset(adapter);
3508 break;
3509 case M88E1000_PHY_SPEC_CTRL:
3510 case M88E1000_EXT_PHY_SPEC_CTRL:
97876fc6
MC
3511 if(e1000_phy_reset(&adapter->hw)) {
3512 spin_unlock_irqrestore(
3513 &adapter->stats_lock, flags);
1da177e4 3514 return -EIO;
97876fc6 3515 }
1da177e4
LT
3516 break;
3517 }
3518 } else {
3519 switch (data->reg_num) {
3520 case PHY_CTRL:
3521 if(mii_reg & MII_CR_POWER_DOWN)
3522 break;
3523 if(netif_running(adapter->netdev)) {
3524 e1000_down(adapter);
3525 e1000_up(adapter);
3526 } else
3527 e1000_reset(adapter);
3528 break;
3529 }
3530 }
97876fc6 3531 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
3532 break;
3533 default:
3534 return -EOPNOTSUPP;
3535 }
3536 return E1000_SUCCESS;
3537}
3538
3539void
3540e1000_pci_set_mwi(struct e1000_hw *hw)
3541{
3542 struct e1000_adapter *adapter = hw->back;
2648345f 3543 int ret_val = pci_set_mwi(adapter->pdev);
1da177e4 3544
2648345f
MC
3545 if(ret_val)
3546 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
1da177e4
LT
3547}
3548
3549void
3550e1000_pci_clear_mwi(struct e1000_hw *hw)
3551{
3552 struct e1000_adapter *adapter = hw->back;
3553
3554 pci_clear_mwi(adapter->pdev);
3555}
3556
3557void
3558e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3559{
3560 struct e1000_adapter *adapter = hw->back;
3561
3562 pci_read_config_word(adapter->pdev, reg, value);
3563}
3564
3565void
3566e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3567{
3568 struct e1000_adapter *adapter = hw->back;
3569
3570 pci_write_config_word(adapter->pdev, reg, *value);
3571}
3572
3573uint32_t
3574e1000_io_read(struct e1000_hw *hw, unsigned long port)
3575{
3576 return inl(port);
3577}
3578
3579void
3580e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
3581{
3582 outl(value, port);
3583}
3584
3585static void
3586e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
3587{
60490fe0 3588 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3589 uint32_t ctrl, rctl;
3590
3591 e1000_irq_disable(adapter);
3592 adapter->vlgrp = grp;
3593
3594 if(grp) {
3595 /* enable VLAN tag insert/strip */
3596 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3597 ctrl |= E1000_CTRL_VME;
3598 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3599
3600 /* enable VLAN receive filtering */
3601 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3602 rctl |= E1000_RCTL_VFE;
3603 rctl &= ~E1000_RCTL_CFIEN;
3604 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2d7edb92 3605 e1000_update_mng_vlan(adapter);
1da177e4
LT
3606 } else {
3607 /* disable VLAN tag insert/strip */
3608 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3609 ctrl &= ~E1000_CTRL_VME;
3610 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3611
3612 /* disable VLAN filtering */
3613 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3614 rctl &= ~E1000_RCTL_VFE;
3615 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2d7edb92
MC
3616 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
3617 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3618 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3619 }
1da177e4
LT
3620 }
3621
3622 e1000_irq_enable(adapter);
3623}
3624
3625static void
3626e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
3627{
60490fe0 3628 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 3629 uint32_t vfta, index;
2d7edb92
MC
3630 if((adapter->hw.mng_cookie.status &
3631 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3632 (vid == adapter->mng_vlan_id))
3633 return;
1da177e4
LT
3634 /* add VID to filter table */
3635 index = (vid >> 5) & 0x7F;
3636 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3637 vfta |= (1 << (vid & 0x1F));
3638 e1000_write_vfta(&adapter->hw, index, vfta);
3639}
3640
3641static void
3642e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
3643{
60490fe0 3644 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3645 uint32_t vfta, index;
3646
3647 e1000_irq_disable(adapter);
3648
3649 if(adapter->vlgrp)
3650 adapter->vlgrp->vlan_devices[vid] = NULL;
3651
3652 e1000_irq_enable(adapter);
3653
2d7edb92
MC
3654 if((adapter->hw.mng_cookie.status &
3655 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3656 (vid == adapter->mng_vlan_id))
3657 return;
1da177e4
LT
3658 /* remove VID from filter table */
3659 index = (vid >> 5) & 0x7F;
3660 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3661 vfta &= ~(1 << (vid & 0x1F));
3662 e1000_write_vfta(&adapter->hw, index, vfta);
3663}
3664
3665static void
3666e1000_restore_vlan(struct e1000_adapter *adapter)
3667{
3668 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3669
3670 if(adapter->vlgrp) {
3671 uint16_t vid;
3672 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3673 if(!adapter->vlgrp->vlan_devices[vid])
3674 continue;
3675 e1000_vlan_rx_add_vid(adapter->netdev, vid);
3676 }
3677 }
3678}
3679
3680int
3681e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3682{
3683 adapter->hw.autoneg = 0;
3684
6921368f
MC
3685 /* Fiber NICs only allow 1000 gbps Full duplex */
3686 if((adapter->hw.media_type == e1000_media_type_fiber) &&
3687 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3688 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
3689 return -EINVAL;
3690 }
3691
1da177e4
LT
3692 switch(spddplx) {
3693 case SPEED_10 + DUPLEX_HALF:
3694 adapter->hw.forced_speed_duplex = e1000_10_half;
3695 break;
3696 case SPEED_10 + DUPLEX_FULL:
3697 adapter->hw.forced_speed_duplex = e1000_10_full;
3698 break;
3699 case SPEED_100 + DUPLEX_HALF:
3700 adapter->hw.forced_speed_duplex = e1000_100_half;
3701 break;
3702 case SPEED_100 + DUPLEX_FULL:
3703 adapter->hw.forced_speed_duplex = e1000_100_full;
3704 break;
3705 case SPEED_1000 + DUPLEX_FULL:
3706 adapter->hw.autoneg = 1;
3707 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3708 break;
3709 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3710 default:
2648345f 3711 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
1da177e4
LT
3712 return -EINVAL;
3713 }
3714 return 0;
3715}
3716
1da177e4 3717static int
829ca9a3 3718e1000_suspend(struct pci_dev *pdev, pm_message_t state)
1da177e4
LT
3719{
3720 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 3721 struct e1000_adapter *adapter = netdev_priv(netdev);
2d7edb92 3722 uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
1da177e4
LT
3723 uint32_t wufc = adapter->wol;
3724
3725 netif_device_detach(netdev);
3726
3727 if(netif_running(netdev))
3728 e1000_down(adapter);
3729
3730 status = E1000_READ_REG(&adapter->hw, STATUS);
3731 if(status & E1000_STATUS_LU)
3732 wufc &= ~E1000_WUFC_LNKC;
3733
3734 if(wufc) {
3735 e1000_setup_rctl(adapter);
3736 e1000_set_multi(netdev);
3737
3738 /* turn on all-multi mode if wake on multicast is enabled */
3739 if(adapter->wol & E1000_WUFC_MC) {
3740 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3741 rctl |= E1000_RCTL_MPE;
3742 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3743 }
3744
3745 if(adapter->hw.mac_type >= e1000_82540) {
3746 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3747 /* advertise wake from D3Cold */
3748 #define E1000_CTRL_ADVD3WUC 0x00100000
3749 /* phy power management enable */
3750 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3751 ctrl |= E1000_CTRL_ADVD3WUC |
3752 E1000_CTRL_EN_PHY_PWR_MGMT;
3753 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3754 }
3755
3756 if(adapter->hw.media_type == e1000_media_type_fiber ||
3757 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3758 /* keep the laser running in D3 */
3759 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3760 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3761 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3762 }
3763
2d7edb92
MC
3764 /* Allow time for pending master requests to run */
3765 e1000_disable_pciex_master(&adapter->hw);
3766
1da177e4
LT
3767 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3768 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3769 pci_enable_wake(pdev, 3, 1);
3770 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3771 } else {
3772 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3773 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3774 pci_enable_wake(pdev, 3, 0);
3775 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3776 }
3777
3778 pci_save_state(pdev);
3779
3780 if(adapter->hw.mac_type >= e1000_82540 &&
3781 adapter->hw.media_type == e1000_media_type_copper) {
3782 manc = E1000_READ_REG(&adapter->hw, MANC);
3783 if(manc & E1000_MANC_SMBUS_EN) {
3784 manc |= E1000_MANC_ARP_EN;
3785 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3786 pci_enable_wake(pdev, 3, 1);
3787 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3788 }
3789 }
3790
2d7edb92 3791 switch(adapter->hw.mac_type) {
868d5309
MC
3792 case e1000_82571:
3793 case e1000_82572:
3794 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3795 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
3796 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3797 break;
2d7edb92
MC
3798 case e1000_82573:
3799 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3800 E1000_WRITE_REG(&adapter->hw, SWSM,
3801 swsm & ~E1000_SWSM_DRV_LOAD);
3802 break;
3803 default:
3804 break;
3805 }
3806
1da177e4 3807 pci_disable_device(pdev);
829ca9a3 3808 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1da177e4
LT
3809
3810 return 0;
3811}
3812
3813#ifdef CONFIG_PM
3814static int
3815e1000_resume(struct pci_dev *pdev)
3816{
3817 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 3818 struct e1000_adapter *adapter = netdev_priv(netdev);
2b02893e 3819 uint32_t manc, ret_val, swsm;
868d5309 3820 uint32_t ctrl_ext;
1da177e4 3821
829ca9a3 3822 pci_set_power_state(pdev, PCI_D0);
1da177e4 3823 pci_restore_state(pdev);
2b02893e 3824 ret_val = pci_enable_device(pdev);
a4cb847d 3825 pci_set_master(pdev);
1da177e4 3826
829ca9a3
PM
3827 pci_enable_wake(pdev, PCI_D3hot, 0);
3828 pci_enable_wake(pdev, PCI_D3cold, 0);
1da177e4
LT
3829
3830 e1000_reset(adapter);
3831 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3832
3833 if(netif_running(netdev))
3834 e1000_up(adapter);
3835
3836 netif_device_attach(netdev);
3837
3838 if(adapter->hw.mac_type >= e1000_82540 &&
3839 adapter->hw.media_type == e1000_media_type_copper) {
3840 manc = E1000_READ_REG(&adapter->hw, MANC);
3841 manc &= ~(E1000_MANC_ARP_EN);
3842 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3843 }
3844
2d7edb92 3845 switch(adapter->hw.mac_type) {
868d5309
MC
3846 case e1000_82571:
3847 case e1000_82572:
3848 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3849 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
3850 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3851 break;
2d7edb92
MC
3852 case e1000_82573:
3853 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3854 E1000_WRITE_REG(&adapter->hw, SWSM,
3855 swsm | E1000_SWSM_DRV_LOAD);
3856 break;
3857 default:
3858 break;
3859 }
3860
1da177e4
LT
3861 return 0;
3862}
3863#endif
1da177e4
LT
3864#ifdef CONFIG_NET_POLL_CONTROLLER
3865/*
3866 * Polling 'interrupt' - used by things like netconsole to send skbs
3867 * without having to re-enable interrupts. It's not called while
3868 * the interrupt routine is executing.
3869 */
3870static void
2648345f 3871e1000_netpoll(struct net_device *netdev)
1da177e4 3872{
60490fe0 3873 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3874 disable_irq(adapter->pdev->irq);
3875 e1000_intr(adapter->pdev->irq, netdev, NULL);
6b0b3157 3876 e1000_clean_tx_irq(adapter);
1da177e4
LT
3877 enable_irq(adapter->pdev->irq);
3878}
3879#endif
3880
3881/* e1000_main.c */